JPH08285690A - Depolarization device and light power measuring device using the depolarization device - Google Patents

Depolarization device and light power measuring device using the depolarization device

Info

Publication number
JPH08285690A
JPH08285690A JP11780895A JP11780895A JPH08285690A JP H08285690 A JPH08285690 A JP H08285690A JP 11780895 A JP11780895 A JP 11780895A JP 11780895 A JP11780895 A JP 11780895A JP H08285690 A JPH08285690 A JP H08285690A
Authority
JP
Japan
Prior art keywords
light
rays
optical power
converting
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11780895A
Other languages
Japanese (ja)
Inventor
Hirotaka Yoshida
博貴 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP11780895A priority Critical patent/JPH08285690A/en
Publication of JPH08285690A publication Critical patent/JPH08285690A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To prevent a depolarization device from being influenced by an unknown polarization condition of incident light rays by providing it with a means by which the light to be measured is made to parallel rays and are separated into orthogonal linear polarization components and emitted, a means by which received orthogonal linear polarization components are exchanged into circular polarization, and a light receiving element for photoelectrically converting the circular polarization beams. CONSTITUTION: The light 81 to be measured that has been emitted from a light connector 80 is made parallel rays by a collimate lens 14, and they are made incident on a polarization beam spitter 16. The rays of p-wave component 17p straightforwardly transmitted through the beam splitter 16 are incident on one surface of a 1/4 wavelength plate 20. On the other hand, the rays of s-wave component 17s reflected by 90deg are reflected at right angles by a prism 18, and are also incident on one surface of the wavelength plate 20. Since the wavelength plate 20 is installed in such an optical arrangement that the direction of the optical axis of the crystal thereof makes 45deg to the p-wave component 17p and s-wave component 17s, both the linear polarized rays of the p-wave component 17pa and s-wave component 17s are together converted into circularly polarized rays and emitted. An condenser lens 22 converges the circularly polarized beams from the wavelength plate 20 on the light- receiving surface of a light-receiving element 50.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、未知の入射光線の偏
光状態に影響されること無く絶対光パワーを光電変換す
る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for photoelectrically converting absolute optical power without being affected by the unknown polarization state of incident light.

【0002】[0002]

【従来の技術】図3は、従来の光パワー測定装置の一構
成例である。被測定光源100は、未知の偏光状態の光
源である。構成は、光コネクタ80と、光ファイバ35
と、受光素子50と、増幅表示部70で成る。増幅表示
部70は、IV変換器71と、アンプ72と、AD変換
器74と、光パワー演算部76と表示部78で成る。
2. Description of the Related Art FIG. 3 shows an example of the configuration of a conventional optical power measuring device. The measured light source 100 is a light source with an unknown polarization state. The configuration is the optical connector 80 and the optical fiber 35.
And the light receiving element 50 and the amplification display section 70. The amplification display unit 70 includes an IV converter 71, an amplifier 72, an AD converter 74, an optical power calculation unit 76, and a display unit 78.

【0003】被測定光源100は、光コネクタ80に接
続され、光ファイバ35の開放端面から空間光として出
射し、受光素子(ホトダイオード)50へある入射角度
θを持たせた入射光線30を与えて、入射パワーに比例
した電流信号に変換されて出力する。
The light source 100 to be measured is connected to an optical connector 80, emitted from the open end face of an optical fiber 35 as spatial light, and gives an incident light beam 30 having a certain incident angle θ to a light receiving element (photodiode) 50. , Is converted into a current signal proportional to the incident power and output.

【0004】受光素子50は、一般に結晶面の方向によ
り入射光線の偏光状態(無偏光、ランダム偏光、直線偏
光、円偏光)により光電変換効率に差を生じる。この偏
差は、使用する素子にもよるが数%程度の偏差をもたら
す場合がある。この為、被測定光源100の絶対光パワ
ーを正確に測定することができない場合がある。
In the light receiving element 50, the photoelectric conversion efficiency generally varies depending on the polarization state of the incident light (non-polarized light, random polarized light, linearly polarized light, circularly polarized light) depending on the crystal plane direction. This deviation may cause a deviation of about several percent depending on the element used. Therefore, the absolute optical power of the measured light source 100 may not be accurately measured.

【0005】前記受光素子50からの微弱な電流信号を
受けて、増幅表示部70のIV変換器71で電流入力を
電圧信号に変換し、アンプ72で増幅し、AD変換器7
4でデジタル信号に量子化した後、光パワー演算部76
で光パワーに換算した後表示部78で光パワーのレベル
をデジタル表示している。
Upon receiving a weak current signal from the light receiving element 50, the IV converter 71 of the amplification display unit 70 converts the current input into a voltage signal, the amplifier 72 amplifies the voltage signal, and the AD converter 7
After being quantized into a digital signal by 4, the optical power calculation unit 76
After being converted into optical power by, the display unit 78 digitally displays the optical power level.

【0006】[0006]

【発明が解決しようとする課題】上記説明のように、受
光素子50に入射する光線の偏光状態によっては光電変
換効率に差を生じる。このことは、被測定光源100の
絶対光パワーを正確に測定すべき測定器においては好ま
しくなく測定上の難点となっていた。そこで、本発明が
解決しようとする課題は、入射光線の未知の偏光状態に
影響されることの無い光電変換装置を実現することを目
的とする。
As described above, there is a difference in photoelectric conversion efficiency depending on the polarization state of the light beam incident on the light receiving element 50. This is not preferable in a measuring instrument which should measure the absolute optical power of the measured light source 100 accurately, which is a difficulty in measurement. Therefore, an object of the present invention is to realize a photoelectric conversion device that is not affected by the unknown polarization state of incident light.

【0007】[0007]

【課題を解決する為の手段】上記課題を解決するため
に、本発明の構成では、被測定光81を受けて、並行光
線にした後、直交する直線偏光(P波、S波)成分に分
離出射する手段を設け、前記2つの直交する直線偏光光
線を受けて、両光線を円偏光に変換する手段を設け、前
記2つの円偏光ビームを受けて、光電変換する受光素子
50を設ける構成手段にする。これにより、未知の偏光
状態の光パワーの電気信号への変換時に、入射光線の未
知の偏光状態に影響されることの無い光電変換装置を実
現できる。
In order to solve the above-mentioned problems, in the structure of the present invention, the light 81 to be measured is received, converted into parallel rays, and then converted into orthogonal linearly polarized (P-wave, S-wave) components. A configuration is provided in which a means for separating and outputting is provided, a means for receiving the two orthogonal linearly polarized light beams and converting both light beams into circularly polarized light, and a light receiving element 50 for receiving the two circularly polarized light beams and performing photoelectric conversion are provided. Use it as a means. This makes it possible to realize a photoelectric conversion device that is not affected by the unknown polarization state of the incident light beam when converting the optical power of the unknown polarization state into an electric signal.

【0008】第1図は、本発明による第1の解決手段の
構成を示している。本発明では、被測定光81を並行光
線にするコリメート手段14を設け、前記並行光線を受
けて、直交する直線偏光(P波、S波)成分に分離出射
する偏光ビームスプリッタ16を設け、前記の直交する
直線偏光光線を受けて、結晶の光軸方向(基準軸)に対
して両光線とも45度となる光学配置にして、両光線を
円偏光に変換する1/4波長板20を設け、前記2つの
円偏光ビームを受けて、受光素子50の受光面へ集光す
る集光手段(集光レンズ22)を設ける構成手段にす
る。
FIG. 1 shows the configuration of the first solving means according to the present invention. In the present invention, the collimating means 14 for converting the light to be measured 81 into parallel rays is provided, and the polarization beam splitter 16 for receiving the parallel rays and separating and emitting the orthogonal linearly polarized light (P wave, S wave) components is provided. Is provided with a quarter-wave plate 20 that receives linearly polarized light rays orthogonal to each other and has an optical arrangement in which both light rays are 45 degrees with respect to the optical axis direction (reference axis) of the crystal, and converts both light rays into circularly polarized light. A component means for receiving the two circularly polarized beams and condensing them on the light receiving surface of the light receiving element 50 (condensing lens 22) is provided.

【0009】第2図は、本発明による第2の解決手段の
構成を示している。本発明では、被測定光81を並行光
線にするコリメート手段14を設け、前記並行光線を受
けて、入射光軸をそのまま直進する常光線と、入射光軸
と並行した異常光線に分岐し、かつ互いに直交する直線
偏光成分25p、25sの並行光線として出射するビーム
・ディスプレーシングプリズム24を設け、前記の直交
する直線偏光光線を受けて、結晶の光軸方向(基準軸)
に対して両光線とも45度となる光学配置にして、両光
線を円偏光に変換する1/4波長板20を設ける構成手
段にする。
FIG. 2 shows the configuration of the second solving means according to the present invention. In the present invention, the collimating means 14 for converting the light to be measured 81 into parallel rays is provided, receives the parallel rays, and branches into an ordinary ray that advances straight along the incident optical axis and an extraordinary ray parallel to the incident optical axis, and A beam dissipating prism 24 for emitting parallel light beams of linearly polarized light components 25p and 25s orthogonal to each other is provided to receive the linearly polarized light beams orthogonal to each other and the optical axis direction of the crystal (reference axis).
On the other hand, the optical arrangement is such that both light rays are 45 degrees, and a quarter wave plate 20 for converting both light rays into circularly polarized light is provided as a constituent means.

【0010】上記構成に加えて、受光素子50からの電
流信号を受けて、増幅して光パワーレベルに換算して表
示する増幅表示部70を設けて光パワー測定装置にした
構成がある。また、この増幅表示部70の構成として
は、受光素子50からの電流信号を受けて、IV変換器
71で電流入力を電圧信号に変換し、アンプ72で増幅
し、AD変換器74でデジタル信号に量子化した後、光
パワー演算部76で光パワーに換算した後表示部78で
光パワーのレベルをデジタル表示する実現手段がある。
In addition to the above configuration, there is a configuration in which an optical power measuring device is provided with an amplification display section 70 which receives a current signal from the light receiving element 50, amplifies it, converts it into an optical power level and displays it. The amplification display unit 70 has a configuration in which a current signal from the light receiving element 50 is received, the IV converter 71 converts the current input into a voltage signal, the amplifier 72 amplifies the voltage signal, and the AD converter 74 a digital signal. There is a realization means for digitally displaying the level of the optical power on the display unit 78 after it is quantized into the optical power and converted to the optical power by the optical power calculation unit 76.

【0011】[0011]

【作用】コリメートレンズ14は、被測定光81を並行
光線にし、これにより偏光ビームスプリッタ16による
直交偏光成分への分離が可能する作用がある。実施例1
の偏光ビームスプリッタ16は、未知の偏光状態の並行
光線を受けて、直交する直線偏光(P波、S波)成分に
分離出力する作用がある。実施例2のビーム・ディスプ
レーシングプリズム24は、入射光軸をそのまま直進す
る常光線と、入射光軸と並行した異常光線の、両者が直
交した直線偏光成分25p、25sの並行光線として分岐
出射する作用がある。
The collimating lens 14 has the function of making the light 81 to be measured into parallel rays, which allows the polarization beam splitter 16 to separate the light into orthogonal polarization components. Example 1
The polarization beam splitter 16 has a function of receiving parallel rays of an unknown polarization state and separating and outputting them into orthogonal linearly polarized light components (P wave, S wave). The beam dissipating prism 24 of the second embodiment splits and outputs an ordinary ray that goes straight on the incident optical axis and an extraordinary ray that is parallel to the incident optical axis as parallel rays of linear polarization components 25p and 25s that are orthogonal to each other. It has an effect.

【0012】1/4波長板20は、2つの直交する直線
偏光光線を受けて、結晶の光軸方向(基準軸)を両光線
とも45度となる光学配置を与えることで、両光線を円
偏光に変換して出力する作用がある。集光レンズ22
は、2つの円偏光ビームを集光することで、1つの受光
素子50で受光させる役割がある。
The quarter-wave plate 20 receives two linearly polarized light rays that are orthogonal to each other, and gives an optical arrangement in which both light rays have an optical axis direction (reference axis) of 45 degrees so that both light rays are circular. It has the effect of converting to polarized light and outputting. Condensing lens 22
Has a role of condensing two circularly polarized beams so that one light receiving element 50 receives the light.

【0013】[0013]

【実施例】【Example】

(実施例1)本発明の第1の実施例では、偏光ビームス
プリッタを使用して未知の偏光状態の光線を直交する偏
光成分(P波、S波)に分離し、各々円偏光に変換した
後で集光した光線を光電変換することで偏光依存性を解
消する構成手段としている。
(Embodiment 1) In the first embodiment of the present invention, a light beam of unknown polarization state is separated into orthogonal polarization components (P wave, S wave) using a polarization beam splitter, and each is converted into circular polarization. It is a constituent means for eliminating the polarization dependency by photoelectrically converting the light rays that are collected later.

【0014】光パワー測定装置の一構成例は、図1に示
すように、光コネクタ80と、コリメートレンズ14
と、偏光ビームスプリッタ16と、プリズム18と、1
/4波長板20と、集光レンズ22と、受光素子50
と、増幅表示部70で成る。光コネクタ80と受光素子
50と増幅表示部70は、従来と同様である。
An example of the configuration of the optical power measuring device is, as shown in FIG. 1, an optical connector 80 and a collimating lens 14.
, Polarization beam splitter 16, prism 18, and 1
/ 4 wavelength plate 20, condenser lens 22, and light receiving element 50
And an amplification display unit 70. The optical connector 80, the light receiving element 50, and the amplification display unit 70 are the same as those in the related art.

【0015】コリメートレンズ14は、光コネクタ80
から出射した被測定光81を受けて、並行光線にした
後、偏光ビームスプリッタ16に入射させる。
The collimator lens 14 has an optical connector 80.
The light 81 to be measured emitted from is converted into parallel rays, which are then incident on the polarization beam splitter 16.

【0016】偏光ビームスプリッタ(polarizing berms
plitters)16は、一対の直角プリズムを張り合わせて
あり、このプリズムの斜面で偏光面が互いに90度の2
つの直線偏光(P波、S波)成分に分岐するようにした
光学素子である。このプリズムの斜面には数波長分の厚
みの誘電体多層膜コーティング層が形成されていて偏光
作用を持たせてある。この為に、測定波長λ範囲は有限
の狭い波長領域でのみ適用可能である。これを透過直進
したP波成分17pの光線は1/4波長板20の一面に
入射する。他方90度に反射したS波成分17sの光線
はプリズム18で直角に反射させて同じく1/4波長板
20の一面に入射する。
Polarizing beamsplitters
The prism 16 is composed of a pair of right-angled prisms attached to each other.
It is an optical element that is branched into two linearly polarized light components (P wave, S wave). A dielectric multilayer coating layer having a thickness of several wavelengths is formed on the inclined surface of this prism so as to have a polarization effect. For this reason, the measurement wavelength λ range is applicable only in a finite narrow wavelength range. The light beam of the P wave component 17p that has passed through this straight line enters one surface of the quarter wavelength plate 20. On the other hand, the light beam of the S wave component 17s reflected at 90 degrees is reflected at a right angle by the prism 18 and is incident on one surface of the quarter wavelength plate 20 in the same manner.

【0017】1/4波長板20は、直線偏光を円偏光に
変換するものであって、直交する2つのP波成分17p
あるいはS波成分17sに対して、結晶の光軸方向(基
準軸)を両光線とも45度となる光学配置に設置する。
これによりP波成分17p及びS波成分17sの両直線偏
光は、共に円偏光に変換されて各々出射する。
The quarter-wave plate 20 is for converting linearly polarized light into circularly polarized light, and has two orthogonal P-wave components 17p.
Alternatively, with respect to the S wave component 17s, the optical axis direction (reference axis) of the crystal is set in an optical arrangement in which both light beams are 45 degrees.
As a result, both the linearly polarized light of the P wave component 17p and the linearly polarized light of the S wave component 17s are both converted into circularly polarized light and emitted.

【0018】集光レンズ22は、前記1/4波長板20
からの両円偏光ビームを受光素子50の受光面上に集光
する。ここで、両光線は、同じ円偏光であるから受光素
子50での光電変換効率は常に一定であり、偏光状態の
影響を受けない光パワーの検出が可能となる。
The condenser lens 22 is the quarter wavelength plate 20.
The two circularly polarized light beams from are focused on the light receiving surface of the light receiving element 50. Here, since both light rays have the same circular polarization, the photoelectric conversion efficiency in the light receiving element 50 is always constant, and it is possible to detect the optical power that is not affected by the polarization state.

【0019】以後は、従来と同様にして、受光素子50
で光電変換した微弱な電流信号を受けて、IV変換器7
1で電流入力を電圧信号に変換し、アンプ72で増幅
し、AD変換器74でデジタル信号に量子化した後、光
パワー演算部76で光パワーに換算した後表示部78で
光パワーのレベルをデジタル表示している。
After that, the light receiving element 50 is processed in the same manner as in the conventional case.
The IV converter 7 receives the weak current signal photoelectrically converted by
The current input is converted into a voltage signal by 1, amplified by the amplifier 72, quantized into a digital signal by the AD converter 74, converted into optical power by the optical power calculation unit 76, and then displayed by the display unit 78. Is displayed digitally.

【0020】(実施例2)本発明の第2の実施例では、
ビーム・ディスプレーシングプリズムを使用して未知の
偏光状態の光線を直交する常光線と異常光線の2成分に
分離し、各々円偏光に変換した後で光電変換する。この
ことで偏光依存性を解消する構成手段としている。
(Embodiment 2) In the second embodiment of the present invention,
A beam dissipating prism is used to separate a ray of unknown polarization state into two components, an ordinary ray and an extraordinary ray, which are orthogonal to each other. This is a means for eliminating the polarization dependence.

【0021】光パワー測定装置の一構成例は、図2に示
すように、光コネクタ80と、コリメートレンズ14
と、ビーム・ディスプレーシングプリズム24と、1/
4波長板20と、受光素子50と、増幅表示部70で成
る。光コネクタ80とコリメートレンズ14と1/4波
長板20と受光素子50と増幅表示部70は、実施例1
の場合と同様である。
An example of the configuration of the optical power measuring device is, as shown in FIG. 2, an optical connector 80 and a collimating lens 14.
And the beam displaying prism 24, 1 /
The four-wave plate 20, the light receiving element 50, and the amplification display section 70 are included. The optical connector 80, the collimator lens 14, the quarter wavelength plate 20, the light receiving element 50, and the amplification display unit 70 are the same as those in the first embodiment.
Is the same as

【0022】ビーム・ディスプレーシングプリズム(be
am displacing prism)24は、入射光を偏光面が互い
に直交する2つの並行な直線偏光(P波、S波)成分に
分岐出射するカルサイトの複屈折特性を利用した偏光子
であって、入射光軸をそのまま直進する常光線と、入射
光軸と並行した異常光線の直交した直線偏光成分として
分岐出射する。両ビームの分離距離は例えば2.7mmの
ものがる。複屈折素子である為、広い波長範囲迄利用可
能である。これが、コリメートレンズ14からの並行光
線を受けて、互いに直交する2つの並行な直線偏光成分
25p、25sに分岐出射する。
Beam Displaying Prism (be
am displacing prism) 24 is a polarizer utilizing the birefringence characteristic of calcite that splits and outputs incident light into two parallel linearly polarized light components (P wave, S wave) whose polarization planes are orthogonal to each other. An ordinary ray that travels straight along the optical axis and an extraordinary ray that is parallel to the incident optical axis are branched and emitted as orthogonal linearly polarized light components. The separation distance between the two beams is, for example, 2.7 mm. Since it is a birefringent element, it can be used in a wide wavelength range. This receives parallel rays from the collimator lens 14 and splits and emits them into two parallel linearly polarized light components 25p and 25s which are orthogonal to each other.

【0023】1/4波長板20では、この両並行光線を
受けて、実施例1同様にして直線偏光を円偏光に変換し
て出射する。
The ¼ wavelength plate 20 receives the two parallel rays and converts the linearly polarized light into circularly polarized light in the same manner as in the first embodiment and outputs the circularly polarized light.

【0024】受光素子50は、前記1/4波長板20か
らの両並行光線を受光面で受けられる受光面(例えば3
mm以上の受光面)を有する受光素子を使用して1つの受
光素子50で光電変換する。これにより集光手段を不要
にする。無論、実施例1のように集光レンズを挿入する
構成としても良い。この受光素子50で光電変換する両
光線は、同じ円偏光であるから受光素子の光電変換効率
は常に一定であり、偏光状態の影響を受けないこととな
る。
The light-receiving element 50 has a light-receiving surface (for example, 3) that can receive both parallel rays from the quarter-wave plate 20.
Photoelectric conversion is performed by one light receiving element 50 using a light receiving element having a light receiving surface of mm or more). This eliminates the need for light collecting means. Of course, a configuration in which a condenser lens is inserted as in the first embodiment may be adopted. Since both light rays photoelectrically converted by the light receiving element 50 are the same circularly polarized light, the photoelectric conversion efficiency of the light receiving element is always constant and is not affected by the polarization state.

【0025】以後は、従来と同様にして、受光素子50
で光電変換した微弱な電流信号を受けて、IV変換器7
1で電流入力を電圧信号に変換し、アンプ72で増幅
し、AD変換器74でデジタル信号に量子化した後、光
パワー演算部76で光パワーに換算した後表示部78で
光パワーのレベルをデジタル表示している。
After that, in the same manner as the conventional one, the light receiving element 50
The IV converter 7 receives the weak current signal photoelectrically converted by
The current input is converted into a voltage signal by 1, amplified by the amplifier 72, quantized into a digital signal by the AD converter 74, converted into optical power by the optical power calculation unit 76, and then displayed by the display unit 78. Is displayed digitally.

【0026】上記実施例1の説明では、プリズム18を
使用して90度反射させる場合で説明していたが、他に
ミラー等の反射板を用いても良く、同様にして実施でき
る。
In the above description of the first embodiment, the case where the prism 18 is used for 90-degree reflection has been described, but a reflector such as a mirror may be used instead, and the same operation can be performed.

【0027】[0027]

【発明の効果】本発明は、以上説明したように構成され
ているので、下記に記載されるような効果を奏する。コ
リメートレンズ14は、被測定光81を並行光線にして
偏光ビームスプリッタ16により偏光分離が可能する効
果がある。実施例1の偏光ビームスプリッタ16は、未
知の偏光状態の並行光線を受けて、直交する直線偏光
(P波、S波)成分に分離出力する効果がある。実施例
2のビーム・ディスプレーシングプリズム24は、入射
光軸をそのまま直進する常光線と、入射光軸と並行した
異常光線の、両者が直交した直線偏光成分25p、25s
の並行光線として分岐出射する効果が得られる。
Since the present invention is configured as described above, it has the following effects. The collimator lens 14 has an effect of converting the measured light 81 into parallel rays and allowing polarization separation by the polarization beam splitter 16. The polarization beam splitter 16 of the first embodiment has an effect of receiving parallel rays of an unknown polarization state and separating and outputting the parallel linearly polarized light components (P wave, S wave). The beam dissipating prism 24 according to the second embodiment has linear polarization components 25p and 25s in which an ordinary ray that goes straight on the incident optical axis and an extraordinary ray that is parallel to the incident optical axis are orthogonal to each other.
The effect of branching out as parallel rays of

【0028】1/4波長板20は、2つの直交する直線
偏光光線を受けて、結晶の光軸方向(基準軸)を両光線
とも45度となる光学配置とすることで、両光線を円偏
光に変換して出力する効果がある。集光レンズ22は、
2つの円偏光ビームを集光することで、1つの受光素子
50で受光可能になる。
The quarter-wave plate 20 receives two orthogonal linearly polarized light rays and arranges them so that the optical axis direction (reference axis) of the crystal is 45 degrees for both light rays. It has the effect of converting to polarized light and outputting. The condenser lens 22 is
By condensing the two circularly polarized beams, one light receiving element 50 can receive light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の、光パワー測定装置の一構
成例である。
FIG. 1 is a configuration example of an optical power measuring device according to a first embodiment of the present invention.

【図2】本発明の実施例2の、光パワー測定装置の一構
成例である。
FIG. 2 is a configuration example of an optical power measuring device according to a second embodiment of the present invention.

【図3】従来の、光パワー測定装置の一構成例である。FIG. 3 is a configuration example of a conventional optical power measuring device.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 未知の偏光状態の光パワーを電気信号に
変換する受光装置において、 被測定光を受けて、並行光線にした後、直交する直線偏
光成分に分離出射する手段を設け、 前記2つの直交する直線偏光光線を受けて、両光線を円
偏光に変換する手段を設け、 前記2つの円偏光ビームを受けて、光電変換する受光素
子を設け、 以上を具備していることを特徴とした偏光解消装置。
1. A light receiving device for converting an optical power of an unknown polarization state into an electric signal, further comprising means for receiving a light to be measured, converting the light into parallel rays, and separating and emitting the linearly polarized light components orthogonal to each other. A means for receiving two linearly polarized light beams orthogonal to each other and converting the two light beams into circularly polarized light; and a light receiving element for receiving the two circularly polarized light beams and performing photoelectric conversion. Depolarizer.
【請求項2】 未知の偏光状態の光パワーを電気信号に
変換する受光装置において、 被測定光を並行光線にするコリメート手段を設け、 前記並行光線を受けて、直交する直線偏光成分に分離出
射する偏光ビームスプリッタを設け、 前記の直交する直線偏光光線を受けて、結晶の光軸方向
に対して両光線とも45度となる光学配置にして、両光
線を円偏光に変換する1/4波長板を設け、 前記2つの円偏光ビームを受けて、受光素子の受光面へ
集光する集光手段を設け、 以上を具備していることを特徴とした偏光解消装置。
2. A light receiving device for converting an optical power of an unknown polarization state into an electric signal, further comprising collimating means for converting the light under measurement into parallel light rays, receiving the parallel light rays, and separating and emitting the linearly polarized light components orthogonal to each other. A quarter-wavelength which is provided with a polarization beam splitter for receiving the above-mentioned orthogonal linearly polarized light rays and has an optical arrangement in which both light rays are 45 degrees with respect to the optical axis direction of the crystal, and converts both light rays into circularly polarized light. A depolarizing device comprising: a plate; and a condensing unit that receives the two circularly polarized beams and condenses them on a light receiving surface of a light receiving element.
【請求項3】 未知の偏光状態の光パワーを電気信号に
変換する受光装置において、 被測定光を並行光線にするコリメート手段を設け、 前記並行光線を受けて、入射光軸をそのまま直進する常
光線と、入射光軸と並行した異常光線に分岐し、かつ互
いに直交する直線偏光成分の並行光線として出射するビ
ーム・ディスプレーシングプリズムを設け、 前記の直交する直線偏光光線を受けて、結晶の光軸方向
に対して両光線とも45度となる光学配置にして、両光
線を円偏光に変換する1/4波長板を設け、 以上を具備していることを特徴とした偏光解消装置。
3. A light receiving device for converting an optical power of an unknown polarization state into an electric signal, wherein collimating means for converting the light under measurement into parallel light rays is provided, and the parallel light rays are received and the incident optical axis is moved straight. A beam dissipating prism that splits a light ray and an extraordinary ray parallel to the incident optical axis and emits it as a parallel ray of linearly polarized light components orthogonal to each other is provided. An optical depolarizer having the optical arrangement in which both rays are 45 degrees with respect to the axial direction, a quarter-wave plate for converting both rays into circularly polarized light, and having the above.
【請求項4】 請求項1、2、3記載の構成に加えて、
受光素子からの電流信号を受けて、増幅して光パワーレ
ベルに換算して表示する増幅表示部(70)を設けた光
パワー測定装置。
4. In addition to the structure according to claims 1, 2, and 3,
An optical power measuring device provided with an amplification display section (70) which receives a current signal from a light receiving element, amplifies it, converts it into an optical power level, and displays it.
【請求項5】 増幅表示部(70)は、受光素子からの
電流信号を受けて、IV変換器で電流入力を電圧信号に
変換し、アンプで増幅し、AD変換器でデジタル信号に
量子化した後、光パワー演算部で光パワーに換算した後
表示部で光パワーのレベルをデジタル表示する手段とし
た請求項4記載の光パワー測定装置。
5. The amplification display section (70) receives the current signal from the light receiving element, converts the current input into a voltage signal with an IV converter, amplifies it with an amplifier, and quantizes it into a digital signal with an AD converter. 5. The optical power measuring device according to claim 4, further comprising means for digitally displaying the level of the optical power on the display unit after converting the optical power to the optical power by the optical power calculation unit.
JP11780895A 1995-04-19 1995-04-19 Depolarization device and light power measuring device using the depolarization device Withdrawn JPH08285690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11780895A JPH08285690A (en) 1995-04-19 1995-04-19 Depolarization device and light power measuring device using the depolarization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11780895A JPH08285690A (en) 1995-04-19 1995-04-19 Depolarization device and light power measuring device using the depolarization device

Publications (1)

Publication Number Publication Date
JPH08285690A true JPH08285690A (en) 1996-11-01

Family

ID=14720787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11780895A Withdrawn JPH08285690A (en) 1995-04-19 1995-04-19 Depolarization device and light power measuring device using the depolarization device

Country Status (1)

Country Link
JP (1) JPH08285690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928076A (en) * 2012-11-26 2013-02-13 核工业理化工程研究院 Laser real-time power monitoring device and monitoring method free from influence of polarization degree
CN103018007A (en) * 2011-09-22 2013-04-03 致茂电子股份有限公司 Optical sensing system and devices
JP2015516092A (en) * 2012-05-10 2015-06-04 京東方科技集團股▲ふん▼有限公司 OLED display structure and OLED display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018007A (en) * 2011-09-22 2013-04-03 致茂电子股份有限公司 Optical sensing system and devices
JP2015516092A (en) * 2012-05-10 2015-06-04 京東方科技集團股▲ふん▼有限公司 OLED display structure and OLED display device
CN102928076A (en) * 2012-11-26 2013-02-13 核工业理化工程研究院 Laser real-time power monitoring device and monitoring method free from influence of polarization degree
CN102928076B (en) * 2012-11-26 2014-08-20 核工业理化工程研究院 Laser real-time power monitoring device and monitoring method free from influence of polarization degree

Similar Documents

Publication Publication Date Title
US7280221B2 (en) High efficiency low coherence interferometry
US10895477B2 (en) Sine-cosine optical frequency encoder devices based on optical polarization properties
JP4108040B2 (en) Current measuring device
US5834933A (en) Method for magnetooptic current measurement and magnetooptic current-measuring device
US7369232B2 (en) Stokes parameter measurement device and method
JP2527965B2 (en) Voltage detector
US20070103694A1 (en) Interferometry system
US11747408B2 (en) Interference type photomagnetic field sensor device
JPH08285690A (en) Depolarization device and light power measuring device using the depolarization device
US6909506B2 (en) Stokes parameter measurement device and method
JP3528482B2 (en) Fourier spectrometer
JPH0115808B2 (en)
JPS60263866A (en) Optical electric field sensor
JPH06307858A (en) Optical displacement meter
JP5260261B2 (en) Polarization separation interferometer and polarization separation interferometer type length measuring device
JPH06186256A (en) Circumferentially turning photocurrent transformer sensor
JP2023104659A (en) Interference type optical magnetic sensor device
JP2580443B2 (en) Optical voltage sensor
JP2004093549A (en) Device for measuring stokes parameters and measuring method
JP2023158963A (en) Interference type optical magnetic field sensor device
JP4713769B2 (en) High-frequency superposition operation inspection system for semiconductor laser
JPH07111456B2 (en) Polarization-maintaining optical fiber type magnetic field sensor
JPH0617825B2 (en) Polarization interferometer
JPS6110776A (en) Current/voltage simultaneous measuring apparatus using optical fiber
JPH0510878A (en) Gas detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702