JP2992829B2 - Laser length gauge - Google Patents

Laser length gauge

Info

Publication number
JP2992829B2
JP2992829B2 JP2102739A JP10273990A JP2992829B2 JP 2992829 B2 JP2992829 B2 JP 2992829B2 JP 2102739 A JP2102739 A JP 2102739A JP 10273990 A JP10273990 A JP 10273990A JP 2992829 B2 JP2992829 B2 JP 2992829B2
Authority
JP
Japan
Prior art keywords
phase
light
optical
interference light
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2102739A
Other languages
Japanese (ja)
Other versions
JPH041503A (en
Inventor
秀 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2102739A priority Critical patent/JP2992829B2/en
Priority to DE69017159T priority patent/DE69017159T2/en
Priority to EP90313424A priority patent/EP0433008B1/en
Publication of JPH041503A publication Critical patent/JPH041503A/en
Priority to US08/073,292 priority patent/US5305088A/en
Application granted granted Critical
Publication of JP2992829B2 publication Critical patent/JP2992829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ測長計に関し、詳しくは、レーザか
らの光を参照光路と測長光路とに分岐してから合わせた
干渉光を、直線偏光の状態を変える偏光素子を通過させ
た後、複数の光学素子によって光学的に位相が90゜ずれ
た2相または3相の干渉光に分岐し、それら分岐された
干渉光を検出した電気信号に基づいて測長光路長の変化
及び/又は変化の方向を測定するレーザ測長計に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser length meter, and more particularly, to linearly couple interference light obtained by splitting light from a laser into a reference optical path and a length measuring optical path. After passing through a polarizing element that changes the state of polarization, the light is branched into two- or three-phase interference light optically shifted by 90 ° by a plurality of optical elements. The present invention relates to a laser length measuring device that measures a change in a measurement optical path length and / or a direction of the change based on the following formula:

〔従来の技術〕[Conventional technology]

上述のようなレーザ測長計として第6図に示したよう
な干渉縞計数型レーザ測長計は知られている。
An interference fringe counting type laser length meter as shown in FIG. 6 is known as a laser length meter as described above.

このレーザ測長計においては、安定化レーザ1からの
直線偏光がビームスプリッタ2でλ/8板3および固定コ
ーナキューブ4を有する参照光路と移動コーナキューブ
5を有する測長光路とに分岐され、参照光路に分岐した
参照光がλ/8板3を2回通ることによって円偏光にさ
れ、この参照光の円偏光と測長光路に分岐した測長光の
直線偏光とが再びビームスプリッタ2によって合わされ
て2分割され、その2分割の一方がさらに偏光ビームス
プリッタ6により、測長光がその偏光面に対し±45゜方
向の分光となるように2分割され、以上によって得られ
た3種の分割光がそれぞれフィルタ7および偏光板8を
通ることにより移動コーナキューブ5の矢印方向の移動
で干渉する位相が順次90゜づつずれた3種の干渉光とさ
れ、それら3種の干渉光がそれぞれ検出器9に入射して
90゜づつ位相差のある3種の電気信号に変換され、それ
ら3種の電気信号がそれぞれ増幅器10で増幅された後に
順次位相の90゜ずれた隣同士を組とする2組にされて、
それら2組の電気信号がそれぞれ減算器11に入力される
ことによって得られる90゜位相のずれたsinθおよびcos
θ(但し、θ=2π(Lm−Lr)/λ、Lm…測長光路長、
Lr…参照光路長、λ…波長)で変化する電気信号の少な
くとも一方から測長光路長の変化を求め、両方から変化
の方向を求めている。
In this laser length meter, linearly polarized light from a stabilized laser 1 is split by a beam splitter 2 into a reference optical path having a λ / 8 plate 3 and a fixed corner cube 4 and a length measuring optical path having a moving corner cube 5. The reference light branched to the optical path passes through the λ / 8 plate 3 twice to be converted into circularly polarized light. The circularly polarized light of the reference light and the linearly polarized light of the measuring light branched to the measuring optical path are combined again by the beam splitter 2. One of the two divisions is further divided by the polarization beam splitter 6 so that the measured light is separated into ± 45 ° directions with respect to the polarization plane by the polarization beam splitter 6. When the light passes through the filter 7 and the polarizing plate 8, respectively, the three types of interference light whose phases interfere with each other by the movement of the moving corner cube 5 in the direction of the arrow are sequentially shifted by 90 °. Re respectively incident on the detector 9
After being converted into three kinds of electric signals having a phase difference of 90 °, the three kinds of electric signals are respectively amplified by the amplifier 10 and then sequentially made into two sets, each of which is adjacent to each other and shifted by 90 ° in phase.
These two sets of electric signals are input to the subtracter 11 to obtain 90 ° out of phase sin θ and cos
θ (where θ = 2π (Lm−Lr) / λ, Lm...
Lr: Reference optical path length, λ: Wavelength), the change in the measured optical path length is obtained from at least one of the electrical signals that change, and the change direction is obtained from both.

すなわち、このレーザ測長計は、レーザ光の偏光原理
を利用して順次位相が90゜ずれた3種の干渉縞信号を
得、その順次隣り合う信号の差から測長光路長の変化と
変化の方向の測定に用いる前述のsinθ,cosθで変化す
る信号を得ているから、レーザ光の強度変動等の外乱の
影響が相殺されて信号レベルの中心が常に一定になり、
干渉縞のミスカウントが少なくなって、精度の高い測定
がなされると言う特長がある。
In other words, this laser length meter uses the principle of polarization of laser light to obtain three types of interference fringe signals sequentially shifted in phase by 90 °, and determines the change in the measured optical path length and the change based on the difference between the sequentially adjacent signals. Since the signal that changes in the above-mentioned sin θ and cos θ used for measuring the direction is obtained, the influence of disturbances such as intensity fluctuation of the laser beam is canceled out, and the center of the signal level is always constant,
There is the advantage that the miscount of interference fringes is reduced and measurement with high accuracy is performed.

しかし、従来のこのレーザ測長計は、偏光ビームスプ
リッタ6をビームスプリッタ2に対して正確に配設する
必要があるだけでなく、3種の分割光路のそれぞれにつ
いてフィルタ7および偏光板8を正確に配設しなければ
ならないと言う煩わしさがある。
However, this conventional laser length meter not only requires the polarizing beam splitter 6 to be accurately arranged with respect to the beam splitter 2, but also makes the filter 7 and the polarizing plate 8 accurate for each of the three types of split optical paths. There is an annoyance that it must be arranged.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、光学的に2相または3相の干渉光を分岐す
る複数の光学素子の正確な配設が容易にできる干渉縞計
数型レーザ測長計の提供を第1の目的とする。
SUMMARY OF THE INVENTION It is a first object of the present invention to provide an interference fringe counting type laser length meter which can easily arrange a plurality of optical elements for optically splitting two-phase or three-phase interference light.

さらに、第1の目的に加え、複数の光学素子の結合配
置を一層容易にするレーザ測長計を提供することを第2
の目的とする。
Further, in addition to the first object, a second object of the present invention is to provide a laser length measuring device which makes it easier to combine and arrange a plurality of optical elements.
The purpose of.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、レーザからの光を参照光路と測長光路とに
分岐してから合わせた干渉光を、直線偏光の状態を変え
る45゜旋光板を通過させた後、複数の光学素子により光
学的に位相が90゜ずれた2相または3相の干渉光に分岐
させ、それら分岐された干渉光を検出した電気信号に基
づいて測長光路長の変化及び/又は変化の方向を測定す
るように構成するとともに、2相または3相の干渉光に
分岐させる前記複数の光学素子の全部、または、その内
の一部の光学素子を、隣同士互いに接触させ、かつ、前
記45゜旋光板と一体的に結合せしめたことを特徴とする
レーザ測長計にあり、この構成によって前記第1の目的
を達成する。
According to the present invention, the interference light obtained by splitting the light from the laser into the reference optical path and the length measuring optical path is passed through a 45 ° optical rotation plate that changes the state of linearly polarized light, and then optically controlled by a plurality of optical elements. To change into two-phase or three-phase interference light whose phase is shifted by 90 °, and to measure the change and / or the direction of the change of the length measurement optical path length based on the detected electric signal of the branched interference light. All of the plurality of optical elements or some of the plurality of optical elements that divide into two-phase or three-phase interference light are brought into contact with each other next to each other, and integrated with the 45 ° optical rotation plate. The laser length measurement device is characterized in that the first object is achieved by this configuration.

さらに、前記複数の光学素子は、光学的に2相の干渉
光に分岐するλ/4以上のリタデーションを持つ波長板、
および、前記波長板の下流側に隣接した偏光ビームスプ
リッタを含み、前記波長板または前記偏光ビームスプリ
ッタを光軸周りに調節回動可能に設けた、ことにより、
前記第2の目的を達成する。
Further, the plurality of optical elements optically split into two-phase interference light wavelength plate having a retardation of λ / 4 or more,
And, including a polarizing beam splitter adjacent to the downstream side of the wave plate, the wave plate or the polarizing beam splitter is provided rotatably adjustable around the optical axis,
The second object is achieved.

〔作用〕[Action]

すなわち、本発明のレーザ測長計においては、干渉光
を分岐する複数の光学素子のうち全部若しくは一部の光
学素子は、隣同士互いに接触し、45゜旋光板とともに、
一体的に結合しているので、複数の光学素子の配設が容
易に正確になされ、正確に位相が90゜ずれた干渉光を容
易に得ることができる。さらに、複数の光学素子のうち
全部若しくは一部の光学素子を一体的に結合したもの
に、直線偏光の状態を変える45゜旋光板をも一体にして
いる。換言すれば、レーザからの光を参照光路と測長光
路とに分岐してから合わせた干渉光は、直線偏光した状
態のまま、一体的に結合したものに入射することにな
る。従って、一体的に結合したものの上流側にミラーを
配置して、干渉光の光路を変更することが可能となり、
配置位置設定の自由度を大きくすることができる。
That is, in the laser length measuring device of the present invention, all or some of the plurality of optical elements that branch the interference light are in contact with each other next to each other, and together with the 45 ° optical rotation plate,
Since they are integrally connected, the arrangement of the plurality of optical elements can be easily and accurately performed, and interference light having a phase shifted by 90 ° can be easily obtained. Further, a 45 ° optical rotation plate that changes the state of linearly polarized light is also integrated with an optical element in which all or some of the optical elements are integrally coupled. In other words, the interference light obtained by splitting the light from the laser into the reference optical path and the length measuring optical path is incident on the integrally coupled light in a linearly polarized state. Therefore, it is possible to change the optical path of the interference light by arranging a mirror on the upstream side of what is integrally coupled,
The degree of freedom in setting the arrangement position can be increased.

詳述すると、一般の金属の反射鏡を用いたミラーで光
を反射させると、その反射前後で位相に変化が生じる。
そのため、ミラーで反射させる干渉光が円偏光した状態
であれば、反射による位相の変化によって楕円偏光とな
り、測定精度に多大な悪影響を及ぼす。従って、参照光
と測長光とを合わせた干渉光を、直ぐに、その偏光の状
態を変えると、その後にミラーを配置することが難し
く、干渉光を分岐する光学素子の配置にも制限がでてく
る。これに対して、干渉光が直線偏光した状態で入射面
に平行若しくは垂直にミラーで反射させれば、その位相
の変化は、測長光路長の変化及び/又は変化の方向の測
定には何ら影響を与えない。このように、干渉光を、直
線偏光した状態のまま、複数の光学素子のうち全部若し
くは一部の光学素子を一体化したものに、入射すること
により、光学ユニットの上流側にミラーを配置したとし
てもその測定精度に影響を受けず、ミラーを配置するこ
とが可能となり、配置位置設定の自由度を大きくするこ
とができる。
More specifically, when light is reflected by a mirror using a general metal reflecting mirror, the phase changes before and after the reflection.
Therefore, if the interference light reflected by the mirror is in a circularly polarized state, it becomes elliptically polarized due to a change in phase due to the reflection, which has a great adverse effect on measurement accuracy. Therefore, if the polarization state of the interference light obtained by combining the reference light and the measurement light is changed immediately, it is difficult to arrange a mirror after that, and the arrangement of the optical element that splits the interference light is limited. Come. On the other hand, if the interference light is linearly polarized and reflected by a mirror in parallel or perpendicular to the plane of incidence, the change in the phase will not affect the measurement path length change and / or the direction of the change. Has no effect. In this way, the mirror is arranged on the upstream side of the optical unit by making the interference light, in a state of being linearly polarized, incident on the one obtained by integrating all or some of the plurality of optical elements into one. Thus, the mirror can be arranged without being affected by the measurement accuracy, and the degree of freedom in setting the arrangement position can be increased.

また、前記複数の光学素子のうちのλ/4以上のリタデ
ーションを持つ波長板、又は、該波長板の下流側に隣接
する偏光ビームスプリッタを、光軸周りに調節回動可能
に設けたので、分岐した干渉光の位相を正確に90゜とす
ることができ、複数の光学素子の結合配置が一層容易と
なる。
In addition, a wavelength plate having a retardation of λ / 4 or more of the plurality of optical elements, or a polarizing beam splitter adjacent to the downstream side of the wavelength plate is provided so as to be adjustable and rotatable around the optical axis. The phase of the branched interference light can be made exactly 90 °, and the coupling arrangement of a plurality of optical elements is further facilitated.

〔実施例〕〔Example〕

以下、本発明を第1図乃至第5図により説明する。 Hereinafter, the present invention will be described with reference to FIGS.

第1図および第2図はそれぞれ本発明のレーザ測長計
の例を示す構成概要図、第3図は干渉光束と検出器の関
係を示す図、第4図は位相差π/2ラジアンの場合の2種
の干渉縞信号のリサージュ図形、第5図は位相差がπ/2
ラジアンから△θラジアンずれた場合のリサージュ図形
である。
1 and 2 are schematic diagrams showing examples of a laser length measuring device according to the present invention. FIG. 3 is a diagram showing a relationship between an interference light beam and a detector. FIG. 4 is a diagram showing a case where a phase difference is π / 2 radians. Lissajous figure of two kinds of interference fringe signals, FIG. 5 shows a phase difference of π / 2
It is a Lissajous figure when it deviates from radians by △ θ radians.

第1図および第2図において、第6図と同一符号は同
一機能のものを示している。そして、12はλ/4板、12A
はλ/4板あるいはそれ以上の例えばλ/2板といった波長
板、13は45゜旋光板、14は45゜反射平面、15は結像レン
ズ、16は反射増幅器である。
1 and 2, the same reference numerals as those in FIG. 6 indicate those having the same functions. And 12 is a λ / 4 plate, 12A
Is a wavelength plate such as a λ / 4 plate or more, for example, a λ / 2 plate, 13 is a 45 ° optical rotation plate, 14 is a 45 ° reflection plane, 15 is an imaging lens, and 16 is a reflection amplifier.

すなわち、第1,2図のレーザ測長計は、安定化レーザ
1の直線偏光ビームをλ/4板12で円偏光にし、その円偏
光を偏光ビームスプリッタ6で互いに直交する直線偏光
の参照光路の参照光と測長光路の測長光とに分割した後
に合わせるようにしたことで、その後干渉光を得るのに
参照光と測長光が偏光ビームスプリッタ6で同様に偏光
される結果、両光の強度を等しくし易く、したがって干
渉縞の明瞭な干渉光を容易に得られるようにした点、お
よび偏光ビームスプリッタ6で合わせられた光を45゜ミ
ラー平面または全反射平面と言った45゜反射平面14で反
射して光路を変えるようにしたことで、光学的に干渉光
を分岐する光学素子の配設位置設定の自由度を大きくし
た点が第6図のレーザ測長計とまず相違している。
That is, the laser length measuring device shown in FIGS. 1 and 2 converts the linearly polarized beam of the stabilized laser 1 into circularly polarized light by the λ / 4 plate 12, and converts the circularly polarized light by the polarization beam splitter 6 into a reference light path of linearly polarized light orthogonal to each other. Since the reference light and the measurement light on the measurement optical path are divided and then combined, the reference light and the measurement light are similarly polarized by the polarization beam splitter 6 to obtain interference light. And that the light combined by the polarization beam splitter 6 is reflected at 45 ° mirror plane or total reflection plane. The difference from the laser length measuring device shown in FIG. 6 is that the degree of freedom in setting the arrangement position of the optical element that optically branches the interference light is increased by changing the optical path by reflecting the light on the plane 14. I have.

さらに、第1図のレーザ測長計は、干渉縞位相が順次
90゜ずれた3相の干渉光を得る光学素子の45゜旋光板1
3、ビームスプリッタ2、ビームスプリッタ2によって
2分割された一方の分割光についてのλ/4板12と偏光ビ
ームスプリッタ6、ビームスプリッタ2によって2分割
された他方の分割光についての偏光ビームスプリッタ
6、およびその偏光ビームスプリッタ6を通過した光に
ついての45゜反射平面14を有する平板状や側面三角、四
角、平行四辺形のプリズム構成の光学素子を光路順に隣
り合うもの同志接触させた状態で一体化している。そし
て45゜旋光板13がビームスプリッタ2を参照光と測長光
の合わせられた光を得るための偏光ビームスプリッタ6
と側面を平行に配置し得るものにしている。したがっ
て、光学的に3相の干渉光を得る複数の光学素子の配設
が、第6図のレーザ測長計に比較して、極めて容易に正
確になされて、干渉縞位相が順次90゜ずれた3相の干渉
光を容易に得ることができる。
Further, the laser length measuring device shown in FIG.
45 ° optical rotation plate 1 of an optical element that obtains three-phase interference light shifted by 90 °
3, the beam splitter 2, the λ / 4 plate 12 and the polarizing beam splitter 6 for one of the split beams split by the beam splitter 2, and the polarizing beam splitter 6 for the other split beam split into two by the beam splitter 2. In addition, optical elements in the form of a flat plate or a triangular, quadrangular, or parallelogram prism having a 45 ° reflecting plane 14 for the light passing through the polarizing beam splitter 6 are integrated in a state of being adjacent to each other in the order of the optical path. ing. Then, the 45 ° optical rotation plate 13 causes the beam splitter 2 to use the polarization beam splitter 6 for obtaining the combined light of the reference light and the length measuring light.
And the side can be arranged in parallel. Therefore, the arrangement of a plurality of optical elements for optically obtaining three-phase interference light is extremely easily and accurately performed as compared with the laser length meter of FIG. 6, and the interference fringe phase is sequentially shifted by 90 °. Three-phase interference light can be easily obtained.

また、第2図のレーザ測長計は、干渉縞位相が90゜ず
れた2相の干渉光を得る光学素子の45゜旋光板13、ビー
ムスプリッタ2、ビームスプリッタ2によって2分割さ
れた一方の分割光についてのλ/4板等の波長板12Aと偏
光ビームスプリッタ6、ビームスプリッタ2によって2
分割された他方の分割光についての偏光ビームスプリッ
タ6を有する平板状や三角、四角、平行四辺形の45゜プ
リズム構成の光学素子を光路順に隣り合うもの同志接触
させた状態で一体化している。したがって、第1図のレ
ーザ測長計に比較して45゜反射平面14を有する光学素子
がないだけ一体化光学素子の形成が容易であるし、干渉
光の結像レンズ15や検出器9の配設も2相の干渉光に対
してだけでよいので一層容易である。
In addition, the laser length measuring device shown in FIG. 2 is one of two divisions performed by a 45 ° optical rotation plate 13, a beam splitter 2, and a beam splitter 2 of an optical element for obtaining two-phase interference light in which the interference fringe phase is shifted by 90 °. A wavelength plate 12A such as a λ / 4 plate for light, a polarizing beam splitter 6, and a beam splitter 2
An optical element having a 45 ° prism configuration of a flat plate, a triangle, a square, or a parallelogram having a polarization beam splitter 6 for the other split light is integrated in a state of being adjacent to each other and being in contact with each other in the order of the optical path. Therefore, as compared with the laser length measuring device shown in FIG. 1, since there is no optical element having the 45 ° reflection plane 14, it is easy to form an integrated optical element, and the arrangement of the imaging lens 15 and the detector 9 for the interference light. It is even easier to set up only two-phase interference light.

第1,2図のレーザ測長計は、明瞭な干渉縞信号を得る
ために、干渉光を結像レンズ15で検出器9に結像させて
いる。それには、第3図に示したように、干渉光束17中
に現れる干渉縞部分17Aが検出器9で捕えられるように
干渉光に対して結像レンズ15および検出器9の位置を設
定することが重要である。この点、第1図のレーザ測長
計は3相の干渉光をそれぞれに対して結像レンズ15と検
出器9を配設しなくてはならないが、第2図のレーザ測
長計は2相の干渉光に対してだけでよいから、1相分容
易である。
1 and 2, the interference light is imaged on the detector 9 by the imaging lens 15 in order to obtain a clear interference fringe signal. For this purpose, as shown in FIG. 3, the positions of the imaging lens 15 and the detector 9 are set with respect to the interference light so that the interference fringe portion 17A appearing in the interference light beam 17 is captured by the detector 9. is important. In this regard, the laser length measuring device shown in FIG. 1 must be provided with an imaging lens 15 and a detector 9 for each of the three-phase interference light, while the laser length measuring device shown in FIG. Since it is sufficient only for the interference light, it is easy for one phase.

また第2図のレーザ測長計は、2相の干渉光が正確に
位相差90゜であれば、そのうちの1相の干渉光の検出信
号から反転増幅器16によって180゜位相差の干渉縞信号
を作っているから、正確に位相が90゜ずれた3相の干渉
縞信号を得ることができる。
If the two-phase interference light has an accurate phase difference of 90 °, the laser length measuring device shown in FIG. 2 uses the inverting amplifier 16 to generate an interference fringe signal having a 180 ° phase difference from the detection signal of the one-phase interference light. As a result, three-phase interference fringe signals whose phases are shifted by 90 ° can be obtained accurately.

以上述べたように、第1,2図のレーザ測長計では順次
位相が90゜ずれた干渉光を比較的容易に得ることがで
き、したがって、sinθ,cosθで変化する干渉縞信号す
なわち、リサージュ図形が第4図に示したような円とな
る干渉縞信号を得易い。そして、このようなsinθ,cos
θの干渉縞信号からは、測長光路の干渉縞間の変化も容
易に正確に測定することができる。しかし、それも参照
光と測長光の合わさった光から分割して干渉光を得る光
学素子の一体化が正確になされていることが条件とな
る。一体化が正確になされていないと、得られる干渉光
の位相差が90゜からずれて、そのために最終的に得られ
る2相の干渉縞信号もsinθ,cos(θ+△θ)で変化す
るものとなり、そのリサージュ図形は第5図に示したよ
うな楕円となる。このようなsinθ,cos(θ+△θ)の
干渉縞信号からは、周期的な誤差が生ずるため、測長光
路の干渉縞間の変化を正確に測定することは困難であ
る。
As described above, the laser length measuring apparatus shown in FIGS. 1 and 2 can easily obtain the interference light having the phase sequentially shifted by 90 °, and therefore, the interference fringe signal that changes with sin θ and cos θ, that is, the Lissajous figure Is easy to obtain an interference fringe signal having a circle as shown in FIG. And such sinθ, cos
From the interference fringe signal of θ, a change between interference fringes on the length measuring optical path can be easily and accurately measured. However, it is also required that the optical element for obtaining the interference light by dividing the combined light of the reference light and the measurement light be accurately integrated. If the integration is not accurate, the phase difference of the obtained interference light will deviate from 90 °, so that the finally obtained two-phase interference fringe signal will also change with sinθ, cos (θ + △ θ) And the Lissajous figure becomes an ellipse as shown in FIG. Since a periodic error is generated from such an interference fringe signal of sin θ, cos (θ + △ θ), it is difficult to accurately measure the change between the interference fringes in the length measuring optical path.

そこで、第2図のレーザ測長計における光学的に2相
の干渉光を分岐する光学素子のλ/4以上好ましくはλ/2
以上のリタデーションを持つ波長板12Aまたはその下流
の偏光ビームスプリッタ6を光軸周りに調節回動可能と
することにより、波長板12Aまたは偏光ビームスプリッ
タ6を光軸周りに調節回動して、2相の干渉光の位相差
を正確に90゜とすることができる。したがって、この例
では一層容易にsinθ,cosθで変化する干渉縞信号を得
ることができる。
Therefore, the optical element for optically splitting two-phase interference light in the laser length measuring device shown in FIG.
The wavelength plate 12A or the polarizing beam splitter 6 downstream of the wavelength plate 12A having the above-described retardation can be adjusted and rotated around the optical axis. The phase difference of the phase interference light can be made exactly 90 °. Therefore, in this example, an interference fringe signal that varies with sin θ and cos θ can be obtained more easily.

本発明は、以上述べた例に限らず、参照光と測長光の
合わさった光を得るまでの光路の光学素子が従来のレー
ザ測長計におけると同様のものであってもよいし、また
2相の干渉光を分岐するものでは、干渉光を光ファイバ
ー等で測長演算器の検出器に導くようにすれば電気的な
ノイズの入ることが少ないから、反転増幅器によって3
相目の干渉縞信号を作らないものであってもよい。
The present invention is not limited to the above-described example, and the optical element in the optical path up to obtaining the combined light of the reference light and the length measuring light may be the same as that in the conventional laser length measuring device. In the case of splitting the interference light of the phase, if the interference light is guided to the detector of the length measuring unit by an optical fiber or the like, electric noise is less likely to be introduced.
A signal that does not generate a phase interference fringe signal may be used.

〔発明の効果〕〔The invention's effect〕

本発明のレーザ測長計においては、干渉光を分岐する
複数の光学素子のうち全部若しくは一部の光学素子は、
隣同士互いに接触し、直線偏光を変える45゜旋光板とと
もに一体的に結合しているので、複数の光学素子の配設
が容易に正確になされ、正確に位相が90゜ずれた干渉光
を容易に得ることができるとともに、配置位置設定の自
由度を大きくすることができる。
In the laser length measurement device of the present invention, all or some of the plurality of optical elements that branch the interference light,
Adjacent to each other and integrated with a 45 ° optical rotation plate that changes linear polarization, multiple optical elements can be easily and accurately arranged, and interference light whose phase is shifted by 90 ° can be easily adjusted. And the degree of freedom in setting the arrangement position can be increased.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図はそれぞれ本発明のレーザ測長計の
例を示す構成概要図、第3図は干渉光束と検出器の関係
を示す図、第4図は位相差π/2ラジアンの場合の2種の
干渉縞信号のリサージュ図形、第5図は位相差がπ/2ラ
ジアンから△θラジアンずれた場合のリサージュ図形、
第6図は従来の干渉縞計数型測長計の例を示す構成概要
図である。 1……安定化レーザ、2……ビームスプリッタ 3……λ/8板、4……固定コーナキューブ 5……移動コーナキューブ 6……偏光ビームスプリッタ 7……フィルタ、8……偏光板 9……検出器、10……増幅器 11……減算器、12……λ/4板 12A……λ/4以上のリタデーションを持つ波長板 13……45゜旋光板、14……45゜反射平面 15……結像レンズ、16……反転増幅器 17……干渉光束、17A……干渉縞部分
1 and 2 are schematic diagrams showing examples of a laser length measuring device according to the present invention. FIG. 3 is a diagram showing a relationship between an interference light beam and a detector. FIG. 4 is a diagram showing a case where a phase difference is π / 2 radians. Lissajous figure of two kinds of interference fringe signals, FIG. 5 is a Lissajous figure when the phase difference is shifted from π / 2 radians by △ θ radians,
FIG. 6 is a schematic configuration diagram showing an example of a conventional interference fringe counting type length measuring instrument. DESCRIPTION OF SYMBOLS 1 ... Stabilized laser, 2 ... Beam splitter 3 ... λ / 8 plate, 4 ... Fixed corner cube 5 ... Moving corner cube 6 ... Polarized beam splitter 7 ... Filter, 8 ... Polarizer 9 ... ... Detector, 10 ... Amplifier 11 ... Subtractor, 12 ... λ / 4 plate 12A ... Wave plate with retardation of more than λ / 4 13 …… 45 ° optical rotation plate, 14 …… 45 ° reflection plane 15 …… imaging lens, 16 …… inverting amplifier 17 …… interference beam, 17A …… interference fringe part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザからの光を参照光路と測長光路とに
分岐してから合わせた干渉光を、直線偏光の状態を変え
る45゜旋光板を通過させた後、複数の光学素子により光
学的に位相が90゜ずれた2相または3相の干渉光に分岐
させ、それら分岐された干渉光を検出した電気信号に基
づいて測長光路長の変化及び/又は変化の方向を測定す
るように構成するとともに、 2相または3相の干渉光に分岐させる前記複数の光学素
子の全部、または、その内の一部の光学素子を、隣同士
互いに接触させ、かつ、前記45゜旋光板と一体的に結合
せしめたことを特徴とするレーザ測長計。
An interference light obtained by splitting light from a laser into a reference optical path and a length measuring optical path is passed through a 45 ° optical rotation plate that changes a state of linear polarization, and then optically converted by a plurality of optical elements. The two-phase or three-phase interference light whose phase is shifted by 90 ° is branched, and the change and / or the direction of the change of the length measurement optical path length is measured based on the electric signal detected from the branched interference light. And all or a part of the plurality of optical elements branched into two-phase or three-phase interference light are brought into contact with each other next to each other, and the 45 ° optical rotation plate and Laser length measuring instrument characterized by being integrally connected.
【請求項2】前記複数の光学素子は、光学的に2相の干
渉光に分岐するλ/4以上のリタデーションを持つ波長
板、および、前記波長板の下流側に隣接した偏光ビーム
スプリッタを含み、前記波長板または前記偏光ビームス
プリッタを光軸周りに調節回動可能に設けたことを特徴
とする特許請求の範囲1項に記載のレーザ測長計。
2. The optical device according to claim 1, wherein the plurality of optical elements include a wave plate optically branched into two-phase interference light and having a retardation of λ / 4 or more, and a polarizing beam splitter adjacent to a downstream side of the wave plate. 2. A laser length measuring instrument according to claim 1, wherein said wavelength plate or said polarizing beam splitter is provided so as to be adjustable and rotatable around an optical axis.
JP2102739A 1989-12-11 1990-04-18 Laser length gauge Expired - Lifetime JP2992829B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2102739A JP2992829B2 (en) 1990-04-18 1990-04-18 Laser length gauge
DE69017159T DE69017159T2 (en) 1989-12-11 1990-12-11 Laser interferometric measuring device.
EP90313424A EP0433008B1 (en) 1989-12-11 1990-12-11 Laser interferometric measuring apparatus
US08/073,292 US5305088A (en) 1989-12-11 1993-06-07 Laser interferometric measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2102739A JP2992829B2 (en) 1990-04-18 1990-04-18 Laser length gauge

Publications (2)

Publication Number Publication Date
JPH041503A JPH041503A (en) 1992-01-07
JP2992829B2 true JP2992829B2 (en) 1999-12-20

Family

ID=14335611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2102739A Expired - Lifetime JP2992829B2 (en) 1989-12-11 1990-04-18 Laser length gauge

Country Status (1)

Country Link
JP (1) JP2992829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3205235B2 (en) * 1995-01-19 2001-09-04 シャープ株式会社 Lead frame, resin-encapsulated semiconductor device, method of manufacturing the same, and mold for manufacturing semiconductor device used in the manufacturing method
JP5066589B2 (en) 2009-05-15 2012-11-07 パナソニック株式会社 Probe for three-dimensional shape measuring device and three-dimensional shape measuring device
CN113810103B (en) * 2021-09-08 2022-09-09 中国矿业大学(北京) Wavelength measurement system and wavelength measurement method

Also Published As

Publication number Publication date
JPH041503A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
US7333214B2 (en) Detector for interferometric distance measurement
US10890487B2 (en) Integrated polarization interferometer and snapshot specro-polarimeter applying same
US3728030A (en) Polarization interferometer
CA2576978C (en) Optical sensor using low-coherence interferometry
US8179534B2 (en) Fixed wavelength absolute distance interferometer
US5172186A (en) Laser interferometry length measuring an apparatus employing a beam slitter
JP2603305B2 (en) Displacement measuring device
US20040119982A1 (en) Angle-of-rotation measuring device and angle-of-rotation measuring method
US6128080A (en) Extended range interferometric refractometer
EP0433008B1 (en) Laser interferometric measuring apparatus
JP2629948B2 (en) encoder
KR20120042694A (en) Heterodyne interferometer using aom
JPH045922B2 (en)
JPH04282402A (en) Differential type interference prism
JP3679409B2 (en) Differential refractive index measurement method and apparatus and related uses
JP2992829B2 (en) Laser length gauge
US5067813A (en) Optical apparatus for measuring displacement of an object
JP3413945B2 (en) Fringe counting displacement interferometer
JPH02115701A (en) Laser interferometric length measuring meter
CN111006582B (en) Interference phase shift sensitivity enhancing method based on moire fringes
JPS58196416A (en) Optical fiber laser gyroscope
JPH02298804A (en) Interferometer
JP2981927B2 (en) Multi-phase splitting optical system
GB2107079A (en) Improvements in or relating to interferometers
JP3000518B2 (en) Polarized wavefront three-segment optical device