JP5258669B2 - Film forming method and transfer substrate - Google Patents

Film forming method and transfer substrate Download PDF

Info

Publication number
JP5258669B2
JP5258669B2 JP2009115210A JP2009115210A JP5258669B2 JP 5258669 B2 JP5258669 B2 JP 5258669B2 JP 2009115210 A JP2009115210 A JP 2009115210A JP 2009115210 A JP2009115210 A JP 2009115210A JP 5258669 B2 JP5258669 B2 JP 5258669B2
Authority
JP
Japan
Prior art keywords
layer
substrate
light
organic material
donor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009115210A
Other languages
Japanese (ja)
Other versions
JP2010267387A (en
JP2010267387A5 (en
Inventor
幸一郎 田中
卓之 井上
博之 戸簾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2009115210A priority Critical patent/JP5258669B2/en
Publication of JP2010267387A publication Critical patent/JP2010267387A/en
Publication of JP2010267387A5 publication Critical patent/JP2010267387A5/ja
Application granted granted Critical
Publication of JP5258669B2 publication Critical patent/JP5258669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本明細書に開示される発明は、成膜方法及び発光装置の作製方法に関する。   The invention disclosed in this specification relates to a film formation method and a method for manufacturing a light-emitting device.

薄型軽量、高速応答性、直流低電圧駆動などの特徴を有する有機化合物を発光体として用いた発光素子は、次世代のフラットパネルディスプレイへ応用されている。特に、発光素子をマトリクス状に配置した表示装置は、従来の液晶表示装置と比較して、視野角が広く視認性が優れる点に優位性があると考えられている。   Light-emitting elements using organic compounds having characteristics such as thin and light weight, high-speed response, and direct current low-voltage driving as light emitters are applied to next-generation flat panel displays. In particular, a display device in which light emitting elements are arranged in a matrix is considered to be superior to a conventional liquid crystal display device in that it has a wide viewing angle and excellent visibility.

発光素子の発光機構は、一対の電極間にEL層を挟んで電圧を印加することにより、陰極から注入された電子および陽極から注入された正孔がEL層の発光中心で再結合して分子励起子を形成し、その分子励起子が基底状態に緩和する際にエネルギーを放出して発光するといわれている。励起状態には一重項励起と三重項励起が知られ、発光はどちらの励起状態を経ても可能であると考えられている。   The light-emitting mechanism of the light-emitting element is such that when a voltage is applied with an EL layer sandwiched between a pair of electrodes, electrons injected from the cathode and holes injected from the anode are recombined at the emission center of the EL layer. It is said that when excitons are formed and the molecular excitons relax to the ground state, they emit energy and emit light. Singlet excitation and triplet excitation are known as excited states, and light emission is considered to be possible through either excited state.

発光素子を構成するEL層は、少なくとも発光層を有する。また、EL層は、発光層の他に、正孔注入層、正孔輸送層、電子輸送層、電子注入層などを有する積層構造とすることもできる。   The EL layer included in the light-emitting element has at least a light-emitting layer. In addition, the EL layer can have a stacked structure including a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like in addition to the light-emitting layer.

また、ドナー基板と呼ばれる基板上に有機材料を一様に成膜し、有機材料が成膜されたドナー基板と転写対象基板を重ね合わせて、ドナーにレーザビームを照射し、レーザビームが照射された領域の有機薄膜(発光素子のEL層)を転写対象基板に転写する技術が開発されてきている(特許文献1〜特許文献5参照)。このようなレーザ転写の技術として、LIPS(Laser−Induced Pattern−wise Sublimation)、LITI(Laser−Induced Thermal Imaging)(特許文献6参照)、RIST(Radiation Induced Sublimation Transfer)が提案されている。   In addition, an organic material is uniformly formed on a substrate called a donor substrate, the donor substrate on which the organic material is formed and the transfer target substrate are superimposed, and the donor is irradiated with a laser beam, and the laser beam is irradiated. A technique for transferring an organic thin film (EL layer of a light emitting element) in a region to a transfer target substrate has been developed (see Patent Documents 1 to 5). As such laser transfer techniques, LIPS (Laser-Induced Pattern-Wise Sublimation), LITI (Laser-Induced Thermal Imaging) (see Patent Document 6), and RIST (Radiation Induced Substimulation Trans) are proposed.

特表2007−504621号公報Special table 2007-504621 特開2003−223991号公報Japanese Patent Laid-Open No. 2003-223991 特開2003−308974号公報JP 2003-308974 A 特開2003−197372号公報JP 2003-197372 A 特開平10−208881号公報Japanese Patent Laid-Open No. 10-208881 特開2006−5328号公報JP 2006-5328 A

上述の転写技術を使って、転写対象の基板に有機材料を転写するためには、ドナー基板上に蒸着された有機材料を、光照射すればよい。しかしながら、光照射されない領域の有機材料は使われないので、光照射されない領域が多いと、有機材料の利用効率は低くなる恐れがある。   In order to transfer the organic material to the transfer target substrate using the transfer technique described above, the organic material deposited on the donor substrate may be irradiated with light. However, since an organic material in a region that is not irradiated with light is not used, if there are many regions that are not irradiated with light, the utilization efficiency of the organic material may be lowered.

そこで、本発明の1つの様態は、ドナー基板上に形成した有機材料の利用効率を上げることを課題とする。   In view of this, an object of one embodiment of the present invention is to increase the utilization efficiency of an organic material formed over a donor substrate.

一方の面に複数の凹部を有する透光性基板をドナー基板として用い、凹部上に光吸収層及び有機材料を形成する。   A light-transmitting substrate having a plurality of recesses on one surface is used as a donor substrate, and a light absorption layer and an organic material are formed on the recesses.

ドナー基板の凹部の曲面形状は、ドナー基板と転写対象基板を対向させたときに、ドナー基板上に形成された光吸収層の表面が、転写対象基板上の有機材料を転写させたい領域に向くように設計する。   The concave shape of the concave portion of the donor substrate is such that when the donor substrate and the transfer target substrate are opposed to each other, the surface of the light absorption layer formed on the donor substrate faces the region where the organic material on the transfer target substrate is to be transferred. To design.

ドナー基板と転写対象基板を対向させ、ドナー基板の他方の面(光吸収層及び有機材料が成膜されていない面)から、レーザビームまたはランプ光(以後これらを単に「光」と呼ぶ)を照射する。光が光吸収層で熱に変換されることにより、ドナー基板から有機材料が飛び出す。   The donor substrate and the transfer target substrate are opposed to each other, and a laser beam or lamp light (hereinafter simply referred to as “light”) is emitted from the other surface of the donor substrate (the surface on which the light absorption layer and the organic material are not formed). Irradiate. When the light is converted into heat in the light absorption layer, the organic material jumps out of the donor substrate.

このとき光吸収層の温度が一様であると、光吸収層の表面に対して有機材料は垂直かつまっすぐ飛ぶ。そのため、ドナー基板の凹部に形成された有機材料は、転写対象の基板上に転写される。   At this time, if the temperature of the light absorption layer is uniform, the organic material flies perpendicularly and straight to the surface of the light absorption layer. Therefore, the organic material formed in the concave portion of the donor substrate is transferred onto the transfer target substrate.

転写対象の基板上の所望の領域を囲むように、ドナー基板の凹部を形成することにより、転写対象の基板以外の領域に飛ぶ有機材料を少なくすることができる。これにより有機材料を効率よく使用することができる。   By forming the concave portion of the donor substrate so as to surround a desired region on the transfer target substrate, it is possible to reduce the organic material flying to the region other than the transfer target substrate. Thereby, an organic material can be used efficiently.

第1の面に複数の凹部を有する第1の基板上に、光吸収層、第1の有機物層を形成し、前記第1の基板の第1の面に、第2の基板を対向させ、前記第1の面と反対側の第2の面から、光を照射する。前記光を照射することにより、前記第1の基板上の第1の有機物層を飛ばして、前記第2の基板上に第2の有機物層を成膜することを特徴とする成膜方法に関する。   Forming a light absorption layer and a first organic material layer on a first substrate having a plurality of recesses on a first surface, and making a second substrate face the first surface of the first substrate; Light is irradiated from the second surface opposite to the first surface. The present invention relates to a film forming method characterized in that, by irradiating the light, the first organic material layer on the first substrate is skipped, and the second organic material layer is formed on the second substrate.

前記有機物層は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれか1つ、あるいは2つ以上である。   The organic material layer is one or more of a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.

第1の面に複数の凹部を有する第1の基板上に、光吸収層、第1の有機物層を形成し、第2の基板の第1の面に、陽極または陰極の一方である第1の電極及び絶縁物を形成する。前記第1の基板の第1の面に、前記第2の基板の第1の面を対向させ、前記第1の面と反対側の第2の面から、光を照射する。前記光を照射することにより、前記第1の基板上の第1の有機物層を飛ばして、前記第1の電極及び絶縁物上に、第2の有機物層を成膜し、前記第2の有機物層上に、陽極または陰極の他方である第2の電極を形成することを特徴とする発光装置の作製方法に関する。   A light absorption layer and a first organic material layer are formed on a first substrate having a plurality of recesses on a first surface, and the first surface of the second substrate is one of an anode and a cathode. Electrodes and insulators are formed. The first surface of the second substrate is opposed to the first surface of the first substrate, and light is irradiated from the second surface opposite to the first surface. By irradiating the light, the first organic material layer on the first substrate is skipped, and a second organic material layer is formed on the first electrode and the insulator, and the second organic material is formed. The present invention relates to a method for manufacturing a light-emitting device, in which a second electrode which is the other of an anode and a cathode is formed on a layer.

前記有機物層は、発光層を含む。   The organic material layer includes a light emitting layer.

前記第1の面に複数の凹部を有する第1の基板は、凹シリンドリカルアレイ面を持つ透光性基板である。   The first substrate having a plurality of recesses on the first surface is a light-transmitting substrate having a concave cylindrical array surface.

ドナー基板の凹部に有機材料を形成し、ドナー基板の凹部の形状と転写対の象基板の位置を適切に設計することにより、形成された有機材料を効率よく転写対象の基板上に転写することができる。これにより有機材料の利用効率を大幅に上げることができる。   An organic material is formed in the concave portion of the donor substrate, and the formed organic material is efficiently transferred onto the transfer target substrate by appropriately designing the shape of the concave portion of the donor substrate and the position of the transfer substrate. Can do. Thereby, the utilization efficiency of an organic material can be raised significantly.

成膜方法を示す断面図。Sectional drawing which shows the film-forming method. 計算に用いた構造を示す図。The figure which shows the structure used for calculation. 計算に用いた構造を示す図。The figure which shows the structure used for calculation. 各位置における時間と温度の関係を示す図。The figure which shows the relationship between time and temperature in each position. 各位置における時間と温度の関係を示す図。The figure which shows the relationship between time and temperature in each position. 温度分布を示す図。The figure which shows temperature distribution. 光の波長と相対強度の関係を示す図。The figure which shows the relationship between the wavelength of light, and relative intensity. 発光装置の作製方法を示す図。4A and 4B illustrate a method for manufacturing a light-emitting device.

以下、本明細書に開示された発明の実施の態様について、図面を参照して説明する。但し、本明細書に開示された発明は多くの異なる態様で実施することが可能であり、本明細書に開示された発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。なお、以下に示す図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the invention disclosed in this specification will be described with reference to the drawings. However, the invention disclosed in this specification can be implemented in many different modes, and various changes can be made in form and details without departing from the spirit and scope of the invention disclosed in this specification. It will be readily understood by those skilled in the art. Therefore, the present invention is not construed as being limited to the description of this embodiment mode. Note that in the drawings described below, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.

なお本明細書に開示された発明において、半導体装置とは、半導体を利用することで機能する素子及び装置全般を指し、電子回路、表示装置、発光装置等を含む電気装置およびその電気装置を搭載した電子機器をその範疇とする。   Note that in the invention disclosed in this specification, a semiconductor device refers to all elements and devices that function by utilizing a semiconductor, and includes an electric device including an electronic circuit, a display device, a light-emitting device, and the like. The category is the electronic equipment.

[実施の形態1]
本実施の形態の形態を図1(A)〜図1(C)、図8(A)〜図8(C)を用いて説明する。
[Embodiment 1]
Embodiment modes will be described with reference to FIGS. 1A to 1C and FIGS. 8A to 8C.

まず、第1の面に凹部を有するドナー基板101の該第1の面上に、下地膜102、光吸収層103、有機材料層104を積層させる。凹部を有するドナー基板は、例えば、凹シリンドリカルアレイ面を持つ透光性基板が挙げられる。次いで、転写対象の基板111とドナー基板101の第1の面を対向させる(図1(A)参照)。   First, the base film 102, the light absorption layer 103, and the organic material layer 104 are stacked over the first surface of the donor substrate 101 having a recess on the first surface. As for the donor substrate which has a recessed part, the translucent board | substrate with a concave cylindrical array surface is mentioned, for example. Next, the substrate 111 to be transferred and the first surface of the donor substrate 101 are opposed to each other (see FIG. 1A).

なお光吸収層103と有機材料層104との間に、光照射の際光吸収層103を保護する保護層を設けてもよい。保護層は、酸化珪素膜や酸化窒素膜を用いて形成することができる。   Note that a protective layer that protects the light absorption layer 103 during light irradiation may be provided between the light absorption layer 103 and the organic material layer 104. The protective layer can be formed using a silicon oxide film or a nitrogen oxide film.

透光性基板として、例えば、ガラス基板、石英基板、無機材料を含むプラスチック基板などを用いることができる。本実施の形態では、透光性基板としてガラス基板を用いる。   As the light-transmitting substrate, for example, a glass substrate, a quartz substrate, a plastic substrate containing an inorganic material, or the like can be used. In this embodiment, a glass substrate is used as the light-transmitting substrate.

ドナー基板101の第1の面に設けられた凹シリンドリカルアレイ面は、転写対象の基板111と対向させたとき、基板111上の、有機材料層104を転写させたい領域に向くように設計する。   The concave cylindrical array surface provided on the first surface of the donor substrate 101 is designed to face the region on the substrate 111 where the organic material layer 104 is to be transferred when facing the substrate 111 to be transferred.

例えば、基板111上に形成する画素の大きさが100μm、画素ピッチが300μmの画素の場合とする。この場合、ドナー基板101の第1の面と転写対象の基板111との距離を10μm程度とする場合は、ドナー基板101の凹面の曲率半径は150μm程度にする。また、ドナー基板101の第1の面と転写対象の基板111の距離を100μm程度とする場合は、ドナー基板101の凹面の曲率半径は210μm程度とする。   For example, it is assumed that the pixel formed on the substrate 111 has a size of 100 μm and a pixel pitch of 300 μm. In this case, when the distance between the first surface of the donor substrate 101 and the transfer target substrate 111 is about 10 μm, the radius of curvature of the concave surface of the donor substrate 101 is about 150 μm. When the distance between the first surface of the donor substrate 101 and the substrate 111 to be transferred is about 100 μm, the radius of curvature of the concave surface of the donor substrate 101 is about 210 μm.

ドナー基板101の第1の面と転写対象の基板111の距離を、10μm以下にする場合は、設計上曲率半径が画素ピッチを下回るため、ドナー基板101の凹型と凹型の間を平面にする必要がある。その場合、平面部分の裏面に反射層108を形成するとよい(図1(C)参照)。   When the distance between the first surface of the donor substrate 101 and the substrate 111 to be transferred is 10 μm or less, the radius of curvature is less than the pixel pitch in the design, so it is necessary to make the plane between the concave and concave shapes of the donor substrate 101 flat. There is. In that case, the reflective layer 108 may be formed on the back surface of the planar portion (see FIG. 1C).

反射層108は、照射される光に対して、反射率が85%以上、さらに好ましくは、反射率が90%以上であることが好ましい。   The reflective layer 108 has a reflectance of 85% or more, more preferably 90% or more, with respect to the irradiated light.

よって、反射層108は、照射する光に対して高い反射率を有する材料で形成されていることが好ましい。例えば、アルミニウム、銀、金、白金、銅、アルミニウムを含む合金、または銀を含む合金などを用いることができる。   Therefore, the reflective layer 108 is preferably formed of a material having a high reflectance with respect to the light to be irradiated. For example, aluminum, silver, gold, platinum, copper, an alloy containing aluminum, an alloy containing silver, or the like can be used.

下地膜102は、窒素を含む酸化珪素膜、酸化珪素膜、窒化珪素膜、酸素を含む窒化珪素膜のいずれかを用いればよく、本実施の形態では、下地膜102として窒素を含む酸化珪素膜を用いる。   As the base film 102, any of a silicon oxide film containing nitrogen, a silicon oxide film, a silicon nitride film, and a silicon nitride film containing oxygen may be used. In this embodiment mode, a silicon oxide film containing nitrogen is used as the base film 102. Is used.

光吸収層103は、照射する光に対して低い反射率を有し、高い吸収率を有する材料で形成されていることが好ましい。また、耐熱性に優れた材料であることが好ましい。例えば、モリブデン、窒化タンタル、チタン、タングステン、カーボンなどを用いることができる。本実施の形態では、光吸収層103として、チタン膜を用いる。   The light absorption layer 103 is preferably formed of a material having a low reflectance with respect to the irradiated light and a high absorption rate. Moreover, it is preferable that it is a material excellent in heat resistance. For example, molybdenum, tantalum nitride, titanium, tungsten, carbon, or the like can be used. In this embodiment, a titanium film is used as the light absorption layer 103.

有機材料層104として、発光層を用いればよい。さらに本実施の形態を用いて、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれかを成膜することも可能であり、その場合は有機材料層104として、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれかを用いればよい。あるいは、有機材料層104として、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれか2つ以上を積層した積層膜を用いてもよい。   A light emitting layer may be used as the organic material layer 104. Furthermore, any of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer can be formed using this embodiment mode. In that case, as the organic material layer 104, a hole is formed. Any of an injection layer, a hole transport layer, an electron transport layer, and an electron injection layer may be used. Alternatively, as the organic material layer 104, a stacked film in which any two or more of a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer are stacked may be used.

ドナー基板101と転写対象の基板111との間は、真空治具などを用いて真空度10−3Pa以下に保つ。その状態で、ドナー基板101の第1の面と反対側である第2の面から光105を照射する。 A vacuum degree of 10 −3 Pa or less is maintained between the donor substrate 101 and the transfer target substrate 111 using a vacuum jig or the like. In this state, the light 105 is irradiated from the second surface opposite to the first surface of the donor substrate 101.

光105としては、ドナー基板101として、ガラス基板やプラスチック基板を用いる場合には、近赤外から近紫外までの光が好ましい。   As the light 105, when a glass substrate or a plastic substrate is used as the donor substrate 101, light from near infrared to near ultraviolet is preferable.

ドナー基板101と基板111を、X方向及びY方向に走査するステージに載せることで、ドナー基板101の全面に光105を照射することができる。   By placing the donor substrate 101 and the substrate 111 on a stage that scans in the X direction and the Y direction, the entire surface of the donor substrate 101 can be irradiated with the light 105.

光105を照射することより、ドナー基板101上の有機材料層104が転写対象の基板111に転写され、基板111上に有機材料層107が形成される(図1(B)参照)。なお図1(B)においては、転写された有機材料層107を有機材料層107aとし、転写途中の有機材料層107を有機材料層107bとしている。   By irradiation with the light 105, the organic material layer 104 over the donor substrate 101 is transferred to the substrate 111 to be transferred, and the organic material layer 107 is formed over the substrate 111 (see FIG. 1B). In FIG. 1B, the transferred organic material layer 107 is an organic material layer 107a, and the organic material layer 107 being transferred is an organic material layer 107b.

光吸収層103の表面が凹面になっていることで、有機材料層104は曲面の向いている方向に飛び出す。そのため、転写対象の基板111の所望の領域に有機材料層104を転写することができる。   Since the surface of the light absorption layer 103 is concave, the organic material layer 104 jumps out in the direction in which the curved surface faces. Therefore, the organic material layer 104 can be transferred to a desired region of the substrate 111 to be transferred.

図8(A)〜図8(C)に、図1(A)〜図1(B)の作製工程を用いた発光装置の作製方法を示す。なお図8(A)〜図8(C)と図1(A)〜図1(B)で同じものは同じ符号で示している。   FIGS. 8A to 8C illustrate a method for manufacturing a light-emitting device using the manufacturing steps of FIGS. 1A to 1B. 8A to 8C and FIGS. 1A to 1B are denoted by the same reference numerals.

基板111の第1の面上に第1の電極121及び絶縁物125を形成する。次いで、下地膜102、光吸収層103、有機材料層104を第1に面上に積層したドナー基板101と、基板111の第1の面を対向させる(図8(A)参照)。   A first electrode 121 and an insulator 125 are formed on the first surface of the substrate 111. Next, the donor substrate 101 in which the base film 102, the light absorption layer 103, and the organic material layer 104 are first stacked over the surface is opposed to the first surface of the substrate 111 (see FIG. 8A).

次いで図1(B)に示す作製工程と同様にして、ドナー基板101の第2の面から光105を照射し、電極121及び絶縁物125上に、有機材料層107を形成する(図8(B)参照)。なお図8(B)においては、図1(B)と同様、転写された有機材料層107を有機材料層107aとし、転写途中の有機材料層107を有機材料層107bとしている。   Next, in the same manner as the manufacturing process illustrated in FIG. 1B, light 105 is irradiated from the second surface of the donor substrate 101, so that the organic material layer 107 is formed over the electrode 121 and the insulator 125 (see FIG. 8B). B)). 8B, similarly to FIG. 1B, the transferred organic material layer 107 is an organic material layer 107a, and the organic material layer 107 being transferred is an organic material layer 107b.

有機材料層107を形成後、有機材料層107上に第2の電極122を形成する(図8(C)参照)。第1の電極121及び第2の電極122は、いずれか一方が陽極、他方が陰極であればよい。以上により、発光素子が作製される。   After the organic material layer 107 is formed, the second electrode 122 is formed over the organic material layer 107 (see FIG. 8C). One of the first electrode 121 and the second electrode 122 may be an anode and the other may be a cathode. Thus, a light emitting element is manufactured.

なお発光素子を作製する際には、有機材料層104には発光層が含まれるが、あるいは、発光層、並びに、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれか1つ以上を積層した積層膜を用いてもよい。   Note that when the light-emitting element is manufactured, the organic material layer 104 includes a light-emitting layer, or any one of the light-emitting layer and the hole injection layer, the hole transport layer, the electron transport layer, or the electron injection layer. A laminated film in which one or more are laminated may be used.

本実施例では、ドナー基板の表面の温度分布の計算結果について、図2、図3、図4、図5、図6(A)〜図6(B)、図7を用いて説明する。   In this embodiment, calculation results of the temperature distribution on the surface of the donor substrate will be described with reference to FIGS. 2, 3, 4, 5, 6 (A) to 6 (B), and 7.

本実施例では、図2に示す同期構造を有する構造を計算モデルとして、白色光を下から照射した場合の温度分布を求める。図2に示す構造は、ドナー基板101上に、下地膜102、光吸収層103、有機材料層104有している。ドナー基板101としてガラス基板、下地膜102として膜厚500nmの酸化珪素膜、光吸収層103として膜厚150nmのチタン膜、有機材料層104は膜厚50nmと設定する。曲率半径Rは210μmとし、同期構造のピッチの半分の長さLは150μmとする。   In this embodiment, a temperature distribution when white light is irradiated from below is obtained using the structure having the synchronous structure shown in FIG. 2 as a calculation model. The structure shown in FIG. 2 includes a base film 102, a light absorption layer 103, and an organic material layer 104 over a donor substrate 101. The donor substrate 101 is set to be a glass substrate, the base film 102 is set to a silicon oxide film having a thickness of 500 nm, the light absorption layer 103 is set to 150 nm, and the organic material layer 104 is set to have a thickness of 50 nm. The radius of curvature R is 210 μm, and the half length L of the pitch of the synchronous structure is 150 μm.

また、光吸収層103における光の反射や干渉、透過はなく、電磁場の影響も無いものとする。また、ある位置における光の強度は入射角度にのみ依存するとする。   Further, it is assumed that there is no reflection, interference, or transmission of light in the light absorption layer 103 and no influence of an electromagnetic field. Further, it is assumed that the light intensity at a certain position depends only on the incident angle.

また発熱量の計算には、図3に示すように光吸収層103を7つの領域(領域1〜領域7)に分割し、それぞれの領域の中心点における光の強度を、その領域の光の強度として代表させ、それらの比により発熱量を定義する。   In calculating the amount of heat generation, the light absorption layer 103 is divided into seven regions (regions 1 to 7) as shown in FIG. 3, and the light intensity at the center point of each region is determined by the light intensity of the region. The amount of heat generated is defined by the ratio of the strength as a representative.

発熱は0.2m秒とし、有機材料層104の表面が300℃程度となるように、発熱量を定義する。   The amount of heat generation is defined so that the heat generation is 0.2 ms and the surface of the organic material layer 104 is about 300 ° C.

表1は領域1〜領域7において、各領域の中心における光の入射角度より求めた、各領域のエネルギの比を示す。ただし、領域1の発熱量は113.4W/cmとする。 Table 1 shows the energy ratio of each region obtained from the incident angle of light at the center of each region in regions 1 to 7. However, the heat generation amount of the region 1 is 113.4 W / cm 2 .

光は図7に示す相対強度を有するフラッシュランプと想定し、極値をとる波長とその極値間の波長に対する光の強度分布を用いる。   The light is assumed to be a flash lamp having the relative intensity shown in FIG.

最高温度の温度分布は280℃付近〜340℃付近となった。また、この時約300℃未満である領域は全体の約26%程度であり、その領域は図3の点線で示したように、領域5から領域7にかけた領域であった。   The temperature distribution of the maximum temperature was around 280 ° C to 340 ° C. At this time, the region below about 300 ° C. is about 26% of the entire region, and the region is a region from region 5 to region 7 as indicated by the dotted line in FIG.

領域7に与えた発熱量は最も少ないが、領域7中の、上に凸の形状を有する領域で熱の逃げが少ないため、その付近の温度は高くなった。   Although the amount of heat generated in the region 7 is the smallest, the heat in the region 7 having an upwardly convex shape is small, so that the temperature in the vicinity thereof is high.

図4に、熱伝導計算により得られた各位置の時間と温度の関係を示す。また図5に、領域5から領域7にかけての各位置における時間と温度の関係を示す。   FIG. 4 shows the relationship between time and temperature at each position obtained by heat conduction calculation. FIG. 5 shows the relationship between time and temperature at each position from region 5 to region 7.

図4及び図5において、各位置はドナー基板101の凹部の最低点を起点(x=0)として、凹部の最高点までの距離xで表している。(図2参照)。   4 and 5, each position is represented by a distance x to the highest point of the recess, starting from the lowest point of the recess of the donor substrate 101 (x = 0). (See FIG. 2).

また図6(A)に、最高温度が300℃になった時の温度分布を示す。図6(B)に最高温度に到達した時(発熱開始から0.2m秒)の温度分布を示す。   FIG. 6A shows a temperature distribution when the maximum temperature reaches 300 ° C. FIG. 6B shows the temperature distribution when the maximum temperature is reached (0.2 milliseconds from the start of heat generation).

本実施例で述べられる計算結果では、光吸収層103の表面に平行に同じ温度が分布しており、また光吸収層103の表面から深さ方向に沿って、温度が小さくなっている。   In the calculation results described in this embodiment, the same temperature is distributed in parallel to the surface of the light absorption layer 103, and the temperature decreases from the surface of the light absorption layer 103 along the depth direction.

101 ドナー基板
102 下地膜
103 光吸収層
104 有機材料層
105 光
107 有機材料層
107a 有機材料層
107b 有機材料層
108 反射層
111 基板
121 電極
125 絶縁物
122 電極
101 Donor substrate 102 Base film 103 Light absorption layer 104 Organic material layer 105 Light 107 Organic material layer 107a Organic material layer 107b Organic material layer 108 Reflective layer 111 Substrate 121 Electrode 125 Insulator 122 Electrode

Claims (2)

第1の基板と第2の基板とを対向させ、
前記第1の基板の第1の面に設けられた第1の層に含まれる有機物を飛ばして、前記第2の基板の上方に第2の層を形成する成膜方法であって、
前記第1の面は、複数の凹部を有し、
前記凹部は、曲面形状を有し、
前記凹部と重なる部分を有するように、光を吸収する機能を有する第3の層が設けられ、
前記第3の層を介して前記凹部と重なる部分を有するように、前記第1の層が設けられ、
前記第1の基板の前記第1の面とは反対側の第2の面から光を照射して、前記第1の層に含まれる前記有機物を飛ばして、前記第2の基板の上方に前記第2の層を形成し、
前記曲面形状は、円柱側面の一部の形状であることを特徴とする成膜方法。
The first substrate and the second substrate are opposed to each other,
A film forming method for forming a second layer above the second substrate by skipping organic substances contained in a first layer provided on a first surface of the first substrate,
The first surface has a plurality of recesses,
The concave portion has a curved shape,
A third layer having a function of absorbing light is provided so as to have a portion overlapping with the recess,
The first layer is provided so as to have a portion that overlaps the concave portion via the third layer,
Irradiating light from the second surface opposite to the first surface of the first substrate, the organic matter contained in the first layer is blown, and the second substrate is placed above the second substrate. Forming a second layer ;
The film forming method , wherein the curved surface shape is a partial shape of a cylindrical side surface .
複数の凹部を有し、
前記凹部は、曲面形状を有し、
前記凹部と重なる部分を有するように、光を吸収する機能を有する第1の層が設けられ、
前記第1の層を介して前記凹部と重なる部分を有するように、有機物を含む第2の層が設けられ
前記曲面形状は、円柱側面の一部の形状であることを特徴とする転写用基板。
Having a plurality of recesses,
The concave portion has a curved shape,
A first layer having a function of absorbing light is provided so as to have a portion overlapping the concave portion
A second layer containing an organic substance is provided so as to have a portion overlapping the concave portion via the first layer ;
The substrate for transfer , wherein the curved surface shape is a partial shape of a cylindrical side surface .
JP2009115210A 2009-05-12 2009-05-12 Film forming method and transfer substrate Expired - Fee Related JP5258669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115210A JP5258669B2 (en) 2009-05-12 2009-05-12 Film forming method and transfer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115210A JP5258669B2 (en) 2009-05-12 2009-05-12 Film forming method and transfer substrate

Publications (3)

Publication Number Publication Date
JP2010267387A JP2010267387A (en) 2010-11-25
JP2010267387A5 JP2010267387A5 (en) 2012-06-07
JP5258669B2 true JP5258669B2 (en) 2013-08-07

Family

ID=43364202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115210A Expired - Fee Related JP5258669B2 (en) 2009-05-12 2009-05-12 Film forming method and transfer substrate

Country Status (1)

Country Link
JP (1) JP5258669B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195665A (en) * 1998-12-25 2000-07-14 Toyota Motor Corp Forming method for organic film
JP2004087143A (en) * 2002-08-22 2004-03-18 Sony Corp Transfer base, transferring apparatus, and transferring method
KR20090028413A (en) * 2007-09-13 2009-03-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of light emitting device, and evaporation donor substrate
JP2009146715A (en) * 2007-12-13 2009-07-02 Sony Corp Donor substrate, and manufacturing method for display device
CN102067726B (en) * 2008-06-16 2014-06-04 东丽株式会社 Patterning method, device manufacturing method using the patterning method, and device

Also Published As

Publication number Publication date
JP2010267387A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US9614190B2 (en) Flexible display device and manufacturing method thereof
JP5578846B2 (en) Structured OLED with micro-optical elements that generate directed light
JP5001270B2 (en) Organic device and method of manufacturing the same
EP1905106B1 (en) Method for generating an electrode layer pattern in an organic functional device
US11245086B2 (en) Nano-objects for purcell enhancement, out-coupling and engineering radiation pattern
JP5172402B2 (en) Organic EL device
JP2011204645A (en) Light-emitting device
JP5945787B2 (en) Organic electroluminescence device
US8766517B2 (en) Organic light emitting device with conducting cover
US20080188156A1 (en) Method for Structuring a Light Emitting Device
KR101262816B1 (en) Light-Emitting Component
KR102015845B1 (en) Laser irradiation device and fabrication method for organic light emitting diodes using the same
JP5258669B2 (en) Film forming method and transfer substrate
JP4420065B2 (en) TRANSFER METHOD, TRANSFER DEVICE, AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
JP2005183045A (en) Manufacturing method of organic el panel
JP2011129368A (en) Method of manufacturing organic light-emitting device, and organic light-emitting device
JP4224639B2 (en) High density integrated light emitting device manufacturing method, high density integrated light emitting device, and high density integrated light emitting device manufacturing apparatus
JP6229483B2 (en) Mask for film formation, mask film formation method, and method for manufacturing organic electroluminescence element
JP5805618B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME
JP2011040186A (en) Substrate for deposition, deposition method, and manufacturing method of light-emitting element
JP2005166441A (en) Organic el panel and manufacturing method of the same
JP2008085142A (en) Organic el element, and optical wiring module
WO2021005796A1 (en) Flexible light-emitting device, method for manufacturing same, and support substrate
KR100691310B1 (en) Organic Electro-Luminescence Display and Method of Manufacturing the same
JP2010146854A (en) Organic el panel, and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees