JP5254662B2 - Vehicle shock absorber and vehicle bumper device - Google Patents

Vehicle shock absorber and vehicle bumper device Download PDF

Info

Publication number
JP5254662B2
JP5254662B2 JP2008135819A JP2008135819A JP5254662B2 JP 5254662 B2 JP5254662 B2 JP 5254662B2 JP 2008135819 A JP2008135819 A JP 2008135819A JP 2008135819 A JP2008135819 A JP 2008135819A JP 5254662 B2 JP5254662 B2 JP 5254662B2
Authority
JP
Japan
Prior art keywords
main body
hollow
curvature
radius
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008135819A
Other languages
Japanese (ja)
Other versions
JP2009280145A (en
Inventor
真一 羽田
順 正保
恭一 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Keikinzoku Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Keikinzoku Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Keikinzoku Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008135819A priority Critical patent/JP5254662B2/en
Publication of JP2009280145A publication Critical patent/JP2009280145A/en
Application granted granted Critical
Publication of JP5254662B2 publication Critical patent/JP5254662B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Description

本発明は、車両用衝撃吸収具及び車両用バンパ装置に関するものである。   The present invention relates to a vehicle shock absorber and a vehicle bumper device.

従来、車両用衝撃吸収具としては、例えば特許文献1に記載されたものが知られている。この車両用衝撃吸収具は、略田の字の一定断面形状を有するアルミニウム合金の押出材からなり、例えば車両衝突に伴いその押出しの軸方向に圧縮の衝撃荷重(軸圧縮荷重)を受けた際に、オイラー座屈を抑えて軸圧縮変形、いわゆる蛇腹変形することで衝撃エネルギーを効率よく吸収するものである。そして、図6に示すように、衝撃エネルギーをより効率よく吸収するべく、内側に形成された複数のリブが外周部と接続する部位の曲率半径(Ra)をリブの厚さの1/2以下にし、且つ、これらリブ同士が交差する部位の曲率半径(Rb)を1mm以下にすることが提案されている。
特許第3520959号公報
Conventionally, as an impact absorber for vehicles, what was indicated, for example in patent documents 1 is known. This vehicle shock absorber is made of an extruded material of an aluminum alloy having a constant cross-sectional shape that is substantially U-shaped. For example, when the vehicle receives a compression impact load (axial compression load) in the axial direction of the extrusion due to a vehicle collision. Furthermore, the impact energy is efficiently absorbed by suppressing the Euler buckling and performing axial compression deformation, so-called bellows deformation. As shown in FIG. 6, in order to absorb the impact energy more efficiently, the radius of curvature (Ra) of the portion where the plurality of ribs formed on the inside are connected to the outer peripheral portion is equal to or less than ½ of the rib thickness. In addition, it has been proposed that the radius of curvature (Rb) of the portion where these ribs intersect is 1 mm or less.
Japanese Patent No. 3520959

ところで、特許文献1の車両用衝撃吸収具では、リブの各曲率半径(Ra,Rb)がそれぞれ一定であることで、図6に破線にて示すように、蛇腹変形時、基本的に同一断面上では該断面形状が全て同じ方向に凸変形する。この場合、図4に変形量(ストローク)に対する荷重の推移を破線にて示したように、荷重の振幅(変動幅)が大きくなって十分に効率よく衝撃エネルギーを吸収することができず、その分、変形量の増大を余儀なくされてしまう。 By the way, in the impact absorber for vehicles of patent document 1, since each curvature radius (Ra, Rb) of each rib is constant, as shown with a broken line in FIG. Above, all the cross-sectional shapes are convexly deformed in the same direction. In this case, as shown by the broken line in FIG. 4 for the transition of the load with respect to the deformation amount (stroke), the load amplitude (fluctuation range) increases and the impact energy cannot be absorbed sufficiently efficiently. Therefore, the amount of deformation is forced to increase.

本発明の目的は、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収し、変形量を低減することができる車両用衝撃吸収具及び車両用バンパ装置を提供することにある。   An object of the present invention is to provide a vehicle shock absorber and a vehicle bumper device that can reduce load amplitude at the time of bellows deformation, absorb shock energy more efficiently, and reduce deformation amount. .

上記問題点を解決するために、請求項1に記載の発明は、軸圧縮荷重を蛇腹変形で吸収して衝撃エネルギーを吸収する押出材からなる車両用衝撃吸収具において、四角筒状の本体部と、該本体部に接続され互いに交差する一対の内側のリブとを備え、該両リブにより前記本体部内に一の対角方向に並設される2つの第1中空部及び他の対角方向に並設される2つの第2中空部が区画形成された一定断面形状を有し、前記リブが前記本体部と接続する部位は湾曲形状に成形されており、前記第1中空部において前記リブが前記本体部と接続する部位の曲率半径及び肉厚を、前記第2中空部において前記リブが前記本体部と接続する部位の曲率半径及び肉厚よりも大きく設定し、且つ、前記両リブが交差する部位は湾曲形状に成形されており、前記第1中空部において前記両リブが交差する部位の曲率半径及び肉厚を、前記第2中空部において前記両リブが交差する部位の曲率半径及び肉厚よりも大きく設定し、且つ、前記本体部の角部をなす部位は湾曲形状に成形されており、前記第1中空部において前記本体部の角部をなす部位の曲率半径を、前記第2中空部において前記本体部の角部をなす部位の曲率半径よりも大きく設定し、且つ、前記第2中空部において前記本体部の角部をなす部位に対向して、外向きのフランジが前記両リブの一方のリブと平行に突設されていることを要旨とする。 In order to solve the above-mentioned problems, the invention according to claim 1 is a quadrangular tubular main body in a vehicle shock absorber made of an extruded material that absorbs impact energy by absorbing axial compression load by bellows deformation. And a pair of inner ribs connected to the main body portion and intersecting each other, and the two first hollow portions arranged in one diagonal direction in the main body portion by the two ribs and the other diagonal direction Two second hollow portions arranged in parallel to each other have a constant cross-sectional shape, and a portion where the rib is connected to the main body portion is formed in a curved shape, and the rib in the first hollow portion Is set such that the radius of curvature and thickness of the portion connected to the main body portion are larger than the radius of curvature and thickness of the portion of the second hollow portion where the rib is connected to the main body portion, and the ribs are The intersecting part is formed in a curved shape, and the front The curvature radius and thickness of the portion where the ribs intersect in the first hollow portion are set larger than the curvature radius and thickness of the portion where the ribs intersect in the second hollow portion, and the main body portion The portion forming the corner of the main body is formed in a curved shape, the radius of curvature of the portion forming the corner of the main body in the first hollow portion, and the portion forming the corner of the main body in the second hollow portion And an outward flange projecting in parallel with one of the two ribs so as to face a portion forming the corner of the main body in the second hollow portion. the gist that you are.

同構成によれば、前記第1中空部において前記リブが前記本体部と接続する部位の曲率半径及び肉厚は、前記第2中空部において前記リブが前記本体部と接続する部位の曲率半径及び肉厚よりも大きく設定されることで、前記第1中空部の当該部位における断面形状の凸変形が促進され、相対的に隣接する前記第2中空部の当該部位における断面形状の凹変形が促進される。同様に、前記第1中空部において前記両リブが交差する部位の曲率半径及び肉厚は、前記第2中空部において前記両リブが交差する部位の曲率半径及び肉厚よりも大きく設定されることで、前記第1中空部の当該部位における断面形状の凸変形が促進され、相対的に隣接する前記第2中空部の当該部位における断面形状の凹変形が促進される。つまり、この車両用衝撃吸収具では、前記各第1中空部の断面形状全体に凸変形が促進され、前記各第2中空部の断面形状全体に凹変形が促進されることで、断面形状が互い違いの方向に凸変形する。従って、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収することができ、その分、変形量を低減することができる。また、前記第1中空部において前記本体部の角部をなす部位の曲率半径は、前記第2中空部において前記本体部の角部をなす部位の曲率半径よりも大きく設定されることで、前記第1中空部の当該部位における断面形状の凸変形が促進され、相対的に前記第2中空部の当該部位における断面形状の凹変形が促進される。従って、前記各第1中空部の断面形状全体の凸変形及び前記各第2中空部の断面形状全体の凹変形が更に促進されることで、蛇腹変形時の荷重振幅を更に小さくすることができる。さらに、前記第2中空部において前記本体部の角部をなす部位では、前記外向きのフランジによって断面形状の凸変形が阻害されることで、相対的に凹変形が促進される。従って、前記各第2中空部の断面形状全体の凹変形が更に促進されることで、蛇腹変形時の荷重振幅を更に小さくすることができる。 According to this configuration, the radius of curvature and thickness of the portion rib is connected to the body portion in the first hollow portion, the curvature of the portion where the said ribs in the second hollow portion connected to said body portion radius and By setting the thickness larger than the wall thickness, the convex deformation of the cross-sectional shape at the portion of the first hollow portion is promoted, and the concave deformation of the cross-sectional shape at the portion of the second hollow portion that is relatively adjacent is promoted. Is done. Similarly, the radius of curvature and thickness of the portion where the ribs intersect in the first hollow portion are set larger than the radius of curvature and thickness of the portion where the ribs intersect in the second hollow portion. Thus, the convex deformation of the cross-sectional shape at the portion of the first hollow portion is promoted, and the concave deformation of the cross-sectional shape at the portion of the second hollow portion that is relatively adjacent is promoted. That is, in this vehicle shock absorber, convex deformation is promoted over the entire cross-sectional shape of each first hollow portion, and concave deformation is promoted over the entire cross-sectional shape of each second hollow portion, so that the cross-sectional shape is Convex deformation in alternate directions. Therefore, the load amplitude at the time of bellows deformation can be reduced to absorb the impact energy more efficiently, and the amount of deformation can be reduced accordingly. The radius of curvature of the portion forming the corner of the main body in the first hollow portion is set to be larger than the radius of curvature of the portion forming the corner of the main body in the second hollow portion, The convex deformation of the cross-sectional shape at the part of the first hollow part is promoted, and the concave deformation of the cross-sectional shape at the part of the second hollow part is relatively promoted. Therefore, the convex deformation of the entire cross-sectional shape of each first hollow portion and the concave deformation of the entire cross-sectional shape of each second hollow portion are further promoted, so that the load amplitude at the time of bellows deformation can be further reduced. . Furthermore, in the part which makes the corner | angular part of the said main-body part in a said 2nd hollow part, convex deformation of a cross-sectional shape is inhibited by the said outward flange, and a concave deformation is accelerated | stimulated relatively. Accordingly, the concave deformation of the entire cross-sectional shape of each second hollow portion is further promoted, so that the load amplitude at the time of bellows deformation can be further reduced.

請求項2に記載の発明は、請求項1に記載の車両用衝撃吸収具において、前記第2中空部において前記フランジの前記本体部と接続する部位の曲率半径及び肉厚を、前記第2中空部において前記本体部の角部をなす部位の曲率半径及び肉厚よりも大きく設定したことを要旨とする。 According to a second aspect of the present invention, in the vehicle impact absorber according to the first aspect, the radius of curvature and the thickness of a portion of the second hollow portion connected to the main body portion of the flange are set to the second hollow portion. The gist of the present invention is that it is set to be larger than the radius of curvature and thickness of the portion forming the corner of the main body .

同構成によれば、第2中空部において本体部の角部をなす部位では、フランジによって断面形状の凸変形が阻害されることで、相対的に凹変形が促進される。 According to this configuration, the concave deformation is relatively promoted by inhibiting the convex deformation of the cross-sectional shape by the flange at the portion forming the corner of the main body portion in the second hollow portion.

請求項3に記載の発明は、請求項1又は2に記載の車両用衝撃吸収具において、蛇腹変形時、前記本体部内に一の対角方向に並設される前記両第1中空部の断面形状全体は凸変形し、他の対角方向に並設される前記両第2中空部の断面形状全体は凹変形することを要旨とする。 A third aspect of the present invention is the vehicle impact absorber according to the first or second aspect, wherein the first hollow portions are arranged in parallel in one diagonal direction in the main body portion when the bellows is deformed. The gist is that the entire shape is convexly deformed, and the entire cross-sectional shape of the second hollow portions arranged side by side in the other diagonal direction is concavely deformed .

同構成によれば、各第1中空部の断面形状全体に凸変形が促進され、各第2中空部の断面形状全体に凹変形が促進されることで、断面形状が互い違いの方向に変形する。従って、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収することができ、その分、変形量を低減することができる。 According to this configuration, convex deformation is promoted over the entire cross-sectional shape of each first hollow portion, and concave deformation is promoted over the entire cross-sectional shape of each second hollow portion, so that the cross-sectional shape is deformed in alternate directions. . Therefore, the load amplitude at the time of bellows deformation can be reduced to absorb the impact energy more efficiently, and the amount of deformation can be reduced accordingly.

請求項4に記載の発明は、車両の幅方向に延びるバンパリインホースの両端部において、該バンパリインホースと車両の前後方向に延びる一対のサイドメンバとの間にそれぞれ介在される一対のクラッシュボックスを備えた車両用バンパ装置において、前記クラッシュボックスとして、請求項1〜3のいずれか一項に記載の車両用衝撃吸収具を備えたことを要旨とする。   According to a fourth aspect of the present invention, a pair of bumper in hoses extending in the width direction of the vehicle is interposed between the bumper in hoses and the pair of side members extending in the front-rear direction of the vehicle. The vehicle bumper device provided with the crash box is characterized in that the impact absorber for vehicle according to any one of claims 1 to 3 is provided as the crash box.

同構成によれば、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収し、変形量を低減することができるクラッシュボックスを備えた車両用バンパ装置を提供することができる。   According to this configuration, it is possible to provide a vehicle bumper device including a crash box that can reduce the load amplitude during bellows deformation to absorb impact energy more efficiently and reduce the amount of deformation.

本発明では、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収し、変形量を低減することができる車両用衝撃吸収具及び車両用バンパ装置を提供することができる。   According to the present invention, it is possible to provide a vehicle impact absorber and a vehicle bumper device that can reduce the load amplitude at the time of bellows deformation, absorb impact energy more efficiently, and reduce the deformation amount.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態について図面に従って説明する。
図1は、自動車などの車両のフロント部分に適用される本実施形態に係る車両用バンパ装置を示す平面図である。同図に示されるように、車両幅方向両側には、例えば金属板からなり、断面略四角形の中空構造を有して車両前後方向に延びる一対のサイドメンバ11が配設されている。これらサイドメンバ11は、ボデーの一部を構成する。なお、各サイドメンバ11の前端には、該サイドメンバ11の開口部を閉塞する態様で、例えば金属板からなる略四角形のブラケット12が溶接にて固着されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view showing a vehicle bumper device according to this embodiment applied to a front portion of a vehicle such as an automobile. As shown in the figure, on both sides in the vehicle width direction, a pair of side members 11 made of, for example, a metal plate and having a hollow structure with a substantially square cross section and extending in the vehicle front-rear direction are disposed. These side members 11 constitute a part of the body. Note that a substantially rectangular bracket 12 made of, for example, a metal plate is fixed to the front end of each side member 11 by welding in such a manner as to close the opening of the side member 11.

車両用バンパ装置は、例えばアルミニウム合金の押出材からなり車両前後方向に延びて前記各ブラケット12の前面に取着される車両用衝撃吸収具としてのクラッシュボックス13を備える。一対のクラッシュボックス13は、例えば車両衝突に伴う軸圧縮荷重を蛇腹変形で吸収して衝撃エネルギーを吸収する。そして、前記各クラッシュボックス13の前端には、車両幅方向に延在するバンパリインホース16の各端部が取着されている。   The vehicle bumper device includes a crash box 13 as a vehicle shock absorber that is made of, for example, an aluminum alloy extruded material and extends in the vehicle front-rear direction and is attached to the front surface of each bracket 12. The pair of crash boxes 13 absorbs impact energy by absorbing, for example, an axial compression load accompanying a vehicle collision by bellows deformation. And each end part of the bumper inn hose 16 extended in the vehicle width direction is attached to the front end of each said crash box 13.

図2は、前記クラッシュボックス13を示す横断面図(図1のA−A線に沿った断面図)である。同図に示されるように、本実施形態のクラッシュボックス13は、その外形をなす四角筒状の本体部21と、該本体部21に接続され互いに交差する一対の内側のリブ22,23とを備える。なお、前記リブ22,23が前記本体部21と接続する部位、前記両リブ22,23が交差する部位、前記本体部21の角部をなす部位はそれぞれ湾曲形状に成形されている。   FIG. 2 is a cross-sectional view (cross-sectional view taken along the line AA in FIG. 1) showing the crash box 13. As shown in the figure, the crash box 13 of the present embodiment includes a rectangular cylindrical main body portion 21 that forms the outer shape, and a pair of inner ribs 22 and 23 that are connected to the main body portion 21 and intersect each other. Prepare. The portion where the ribs 22 and 23 are connected to the main body 21, the portion where the ribs 22 and 23 intersect, and the portion forming the corner of the main body 21 are each formed into a curved shape.

クラッシュボックス13は、両リブ22,23により前記本体部21内に一の対角方向(図2の左上から右下に向かう方向)に並設される2つの第1中空部C1,C2及び他の対角方向に並設される2つの第2中空部C3,C4が区画形成されて、略田の字の一定断面形状を有する。第1及び第2中空部C1〜C4の開口面積は互いに略同等に設定されている。   The crash box 13 includes two first hollow portions C1 and C2 arranged in parallel in one diagonal direction (the direction from the upper left to the lower right in FIG. 2) in the main body portion 21 by both ribs 22 and 23. The two second hollow portions C3 and C4 arranged side by side in a diagonal direction are sectioned and have a constant cross-sectional shape of a substantially square shape. The opening areas of the first and second hollow portions C1 to C4 are set substantially equal to each other.

本実施形態では、図2の範囲A1に示すように、第1中空部C1,C2においてリブ22が本体部21と接続する部位の曲率半径(Ra1)を、第2中空部C3,C4においてリブ22が本体部21と接続する部位の曲率半径(Ra2)よりも大きく設定している。すなわち、第2中空部C3,C4においてリブ22は、本体部21と略直角に接続して当該部位の曲率半径(Ra2)が実質的にゼロとなっている。また、図2の範囲A2に示すように、第1中空部C1,C2においてリブ23が本体部21と接続する部位の曲率半径(Rb1)を、第2中空部C3,C4においてリブ23が本体部21と接続する部位の曲率半径(Rb2)よりも大きく設定している。すなわち、第2中空部C3,C4においてリブ23は、本体部21と略直角に接続して当該部位の曲率半径(Rb2)が実質的にゼロとなっている。なお、本実施形態では、第1中空部C1,C2における曲率半径(Ra1)及び曲率半径(Rb1)が互いに同等に設定されており、第2中空部C3,C4における曲率半径(Ra2)及び曲率半径(Rb2)が互いに同等に設定されている。   In the present embodiment, as shown in a range A1 in FIG. 2, the radius of curvature (Ra1) of the portion where the rib 22 is connected to the main body 21 in the first hollow portions C1 and C2 is the rib radius in the second hollow portions C3 and C4. 22 is set to be larger than the radius of curvature (Ra2) of the portion connected to the main body 21. That is, in the second hollow portions C3 and C4, the rib 22 is connected to the main body portion 21 at a substantially right angle, and the curvature radius (Ra2) of the portion is substantially zero. 2, the radius of curvature (Rb1) of the portion where the rib 23 is connected to the main body 21 in the first hollow portions C1 and C2, and the rib 23 is the main body in the second hollow portions C3 and C4. The radius of curvature (Rb2) of the portion connected to the portion 21 is set larger. That is, in the second hollow portions C3 and C4, the rib 23 is connected to the main body portion 21 at a substantially right angle, and the curvature radius (Rb2) of the portion is substantially zero. In this embodiment, the radius of curvature (Ra1) and the radius of curvature (Rb1) in the first hollow portions C1, C2 are set to be equal to each other, and the radius of curvature (Ra2) and the curvature in the second hollow portions C3, C4 are set. The radii (Rb2) are set to be equal to each other.

さらに、図2の範囲A3に示すように、第1中空部C1,C2において両リブ22,23が交差する部位の曲率半径(Rc1)を、第2中空部C3,C4において両リブ22,23が交差する部位の曲率半径(Rc2)よりも大きく設定している。すなわち、第2中空部C3,C4において両リブ22,23は、略直角で交差して当該部位の曲率半径(Rc2)が実質的にゼロとなっている。   Further, as shown in a range A3 in FIG. 2, the curvature radius (Rc1) of the portion where the ribs 22 and 23 intersect in the first hollow portions C1 and C2 is set as the radius of curvature (Rc1) in the second hollow portions C3 and C4. Is set to be larger than the radius of curvature (Rc2) of the portion where the two intersect. That is, in the second hollow portions C3 and C4, the ribs 22 and 23 intersect at a substantially right angle, and the curvature radius (Rc2) of the portion is substantially zero.

以上により、第1中空部C1,C2の前記各部位における断面形状の凸変形が促進され、相対的に隣接する第2中空部C3,C4の前記各部位における断面形状の凹変形が促進される。   As described above, the convex deformation of the cross-sectional shape in the respective portions of the first hollow portions C1, C2 is promoted, and the concave deformation of the cross-sectional shape in the respective portions of the relatively adjacent second hollow portions C3, C4 is promoted. .

また、図2の範囲A4に示すように、第1中空部C1,C2において本体部21の角部をなす部位に曲率半径(Rd1)が設定されている。これに合わせて、本体部21の角部外側に、曲率半径(Re)が設定されている。そして、この曲率半径(Rd1)を、図2の範囲A5に示すように、第2中空部C3,C4において本体部21の角部をなす部位の曲率半径(Rd2)よりも大きく設定している。すなわち、第2中空部C3,C4において本体部21の角部をなす部位は、略直角で交差して当該部位の曲率半径(Rd2)が実質的にゼロとなっている。これにより、第1中空部C1,C2の当該部位における断面形状の凸変形が促進され、相対的に第2中空部C3,C4の当該部位における断面形状の凹変形が促進される。なお、外側の曲率半径(Re)は、内側の曲率半径(Rd1)よりも大きく設定されている。   Further, as shown in a range A4 in FIG. 2, a radius of curvature (Rd1) is set at a portion that forms a corner of the main body 21 in the first hollow portions C1 and C2. In accordance with this, a radius of curvature (Re) is set outside the corner of the main body 21. And this curvature radius (Rd1) is set larger than the curvature radius (Rd2) of the site | part which makes the corner | angular part of the main-body part 21 in 2nd hollow part C3, C4, as shown to range A5 of FIG. . That is, in the second hollow portions C3 and C4, the portions forming the corners of the main body portion 21 intersect at a substantially right angle, and the curvature radius (Rd2) of the portions is substantially zero. Thereby, the convex deformation of the cross-sectional shape in the said part of 1st hollow part C1, C2 is accelerated | stimulated, and the concave deformation of the cross-sectional shape in the said part of 2nd hollow part C3, C4 is accelerated | stimulated relatively. The outer radius of curvature (Re) is set larger than the inner radius of curvature (Rd1).

さらに、図2の範囲A5に併せ示すように、クラッシュボックス13(本体部21)には、第2中空部C3,C4において本体部21の角部をなす部位に対向して、外向きのフランジ24が前記リブ22と平行に突設されている。そして、各フランジ24が本体部21と接続する部位に曲率半径(Rf)が設定されている。これにより、第2中空部C3,C4において本体部21の角部をなす部位では、フランジ24によって断面形状の凸変形が阻害されることで、相対的に凹変形が促進される。   Further, as shown in the range A5 in FIG. 2, the crush box 13 (main body portion 21) has an outward flange facing the portion forming the corner of the main body portion 21 in the second hollow portions C3 and C4. 24 protrudes in parallel with the rib 22. A radius of curvature (Rf) is set at a portion where each flange 24 is connected to the main body 21. Thereby, in the site | part which makes the corner | angular part of the main-body part 21 in 2nd hollow part C3, C4, a concave deformation is accelerated | stimulated relatively by the convex deformation of a cross-sectional shape being inhibited by the flange 24.

図3は、本実施形態におけるクラッシュボックス13の蛇腹変形時の断面形状の特性を示す説明図である。同図に破線にて示すように、蛇腹変形時、前述の態様で一の対角方向に並設される両第1中空部C1,C2の断面形状全体に凸変形が促進され、他の対角方向に並設される両第2中空部C3,C4の断面形状全体に凹変形が促進されることで、断面形状(各辺)が互い違いの方向に凸変形することが確認される。この場合、図4に変形量(ストローク)に対する荷重の推移を実線にて示したように、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収することができ、その分、変形量が低減される。   FIG. 3 is an explanatory diagram showing the characteristics of the cross-sectional shape of the crash box 13 in the present embodiment when the bellows is deformed. As shown by the broken line in the figure, at the time of bellows deformation, convex deformation is promoted over the entire cross-sectional shape of both first hollow portions C1, C2 arranged in parallel in one diagonal direction in the above-described manner, and other pairs It is confirmed that the cross-sectional shape (each side) is convexly deformed in a staggered direction by accelerating the concave deformation in the entire cross-sectional shape of both the second hollow portions C3 and C4 arranged side by side in the angular direction. In this case, as shown by the solid line in FIG. 4 for the transition of the load with respect to the deformation amount (stroke), the load amplitude at the time of the bellows deformation can be reduced and the impact energy can be absorbed more efficiently. The amount of deformation is reduced.

以上詳述したように、本実施形態によれば、以下に示す効果が得られるようになる。
(1)本実施形態では、第1中空部C1,C2においてリブ22,23が本体部21と接続する部位の曲率半径(Ra1),(Rb1)は、第2中空部C3,C4において22,23が本体部21と接続する部位の曲率半径(Ra2),(Rb2)よりもそれぞれ大きく設定されることで、第1中空部C1,C2の当該部位における断面形状の凸変形が促進され、相対的に隣接する第2中空部C3,C4の当該部位における断面形状の凹変形が促進される。同様に、第1中空部C1,C2において両リブ22,23が交差する部位の曲率半径(Rc1)は、第2中空部C3,C4において両リブ22,23が交差する部位の曲率半径(Rc2)よりも大きく設定されることで、第1中空部C1,C2の当該部位における断面形状の凸変形が促進され、相対的に隣接する第2中空部C3,C4の当該部位における断面形状の凹変形が促進される。つまり、このクラッシュボックス13では、各第1中空部C1,C2の断面形状全体に凸変形が促進され、各第2中空部C3,C4の断面形状全体に凹変形が促進されることで、断面形状が互い違いの方向に凸変形する。従って、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収することができ、その分、変形量を低減することができる。そして、クラッシュボックス13を車両の前後方向に短くできる分、全体としてより小型化することができ、あるいは意匠の自由度を向上することができる。
As described above in detail, according to the present embodiment, the following effects can be obtained.
(1) In this embodiment, the radii of curvature (Ra1) and (Rb1) of the portions where the ribs 22 and 23 are connected to the main body 21 in the first hollow portions C1 and C2 are 22 and 2 in the second hollow portions C3 and C4. 23 is set to be larger than the curvature radii (Ra2) and (Rb2) of the part connected to the main body part 21, respectively, and the convex deformation of the cross-sectional shape at the part of the first hollow part C1 and C2 is promoted. Thus, the concave deformation of the cross-sectional shape at the corresponding portion of the second hollow portions C3 and C4 adjacent to each other is promoted. Similarly, the curvature radius (Rc1) of the portion where both ribs 22, 23 intersect in the first hollow portions C1, C2 is the curvature radius (Rc2) of the portion where both ribs 22, 23 intersect in the second hollow portions C3, C4. ), The convex deformation of the cross-sectional shape at the corresponding portion of the first hollow portions C1, C2 is promoted, and the concave portion of the cross-sectional shape at the corresponding portion of the second hollow portions C3, C4 that are relatively adjacent to each other is promoted. Deformation is promoted. That is, in this crush box 13, convex deformation is promoted to the entire cross-sectional shape of each first hollow portion C1, C2, and concave deformation is promoted to the entire cross-sectional shape of each second hollow portion C3, C4. The shape is convexly deformed in alternate directions. Therefore, the load amplitude at the time of bellows deformation can be reduced to absorb the impact energy more efficiently, and the amount of deformation can be reduced accordingly. And since the crash box 13 can be shortened in the front-rear direction of the vehicle, the overall size can be further reduced, or the degree of freedom of design can be improved.

(2)本実施形態では、本体部21の角部外側に曲率半径(Re)が設定されており、第1中空部C1,C2において本体部21の角部をなす部位の曲率半径(Rd1)は、第2中空部C3,C4において本体部21の角部をなす部位の曲率半径(Rd2)よりも大きく設定されることで、第1中空部C1,C2の当該部位における断面形状の凸変形が促進され、相対的に第2中空部C3,C4の当該部位における断面形状の凹変形が促進される。従って、各第1中空部C1,C2の断面形状全体の凸変形及び各第2中空部C3,C4の断面形状全体の凹変形が更に促進されることで、蛇腹変形時の荷重振幅を更に小さくすることができる。   (2) In the present embodiment, the radius of curvature (Re) is set outside the corner of the main body 21 and the radius of curvature (Rd1) of the portion forming the corner of the main body 21 in the first hollow portions C1 and C2. Is set to be larger than the radius of curvature (Rd2) of the portion forming the corner portion of the main body portion 21 in the second hollow portions C3 and C4, so that the convex deformation of the cross-sectional shape in the corresponding portions of the first hollow portions C1 and C2 Is promoted, and the concave deformation of the cross-sectional shape at the portion of the second hollow portions C3 and C4 is relatively promoted. Therefore, the convex deformation of the entire cross-sectional shape of each of the first hollow portions C1 and C2 and the concave deformation of the entire cross-sectional shape of each of the second hollow portions C3 and C4 are further promoted, thereby further reducing the load amplitude at the time of bellows deformation. can do.

(3)本実施形態では、第2中空部C3,C4において本体部21の角部をなす部位では、外向きのフランジ24によって断面形状の凸変形が阻害されることで、相対的に凹変形が促進される。従って、各第2中空部C3,C4の断面形状全体の凹変形が更に促進されることで、蛇腹変形時の荷重振幅を更に小さくすることができる。   (3) In the present embodiment, in the second hollow portions C3 and C4, the portions that form the corners of the main body portion 21 are relatively concavely deformed by the convex deformation of the cross-sectional shape being inhibited by the outward flange 24. Is promoted. Accordingly, the concave deformation of the entire cross-sectional shape of each of the second hollow portions C3 and C4 is further promoted, so that the load amplitude at the time of bellows deformation can be further reduced.

(第2の実施形態)
以下、本発明を具体化した第2の実施形態を図面に従って説明する。
図5は、本実施形態のクラッシュボックス30を示す横断面図である。同図に示されるように、このクラッシュボックス30は、例えばアルミニウム合金の押出材からなり、その外形をなす四角筒状の本体部31と、該本体部31に接続され互いに交差する一対の内側のリブ32,33とを備える。クラッシュボックス30は、両リブ32,33により前記本体部31内に一の対角方向(図5の左上から右下に向かう方向)に並設される2つの第1中空部C11,C12及び他の対角方向に並設される2つの第2中空部C13,C14が区画形成されて、略田の字の一定断面形状を有する。第1及び第2中空部C11〜C14の開口面積は互いに略同等に設定されている。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a cross-sectional view showing the crash box 30 of the present embodiment. As shown in the figure, the crush box 30 is made of, for example, an extruded material of an aluminum alloy, and has a rectangular cylindrical main body 31 forming an outer shape thereof, and a pair of inner sides connected to the main body 31 and intersecting each other. Ribs 32 and 33 are provided. The crash box 30 includes two first hollow portions C11, C12 and the like arranged in parallel in the diagonal direction (the direction from the upper left to the lower right in FIG. 5) in the main body 31 by the ribs 32, 33. The two second hollow portions C13 and C14 arranged side by side in a diagonal direction are partitioned and have a constant cross-sectional shape of a substantially square shape. The opening areas of the first and second hollow portions C11 to C14 are set substantially equal to each other.

本実施形態では、第1及び第2中空部C11〜C14において、各リブ32,33が本体部31と接続する部位の曲率半径を互いに同等に設定している。また、第1及び第2中空部C11〜C14において、両リブ32,33が交差する部位の曲率半径を互いに同等に設定している。さらに、第1及び第2中空部C11〜C14において、本体部31の角部をなす部位の曲率半径を互いに同等に設定している。   In the present embodiment, in the first and second hollow portions C11 to C14, the radii of curvature of the portions where the ribs 32 and 33 are connected to the main body portion 31 are set to be equal to each other. Moreover, in the 1st and 2nd hollow parts C11-C14, the curvature radius of the site | part which both ribs 32 and 33 cross | intersect is set mutually equivalent. Further, in the first and second hollow portions C11 to C14, the radii of curvature of the portions forming the corners of the main body 31 are set to be equal to each other.

そして、図5の範囲Bに示すように、クラッシュボックス30(本体部31)には、第2中空部C13,C14において本体部31の角部をなす部位に対向して、外向きのフランジ34が前記リブ32と平行に突設されている。そして、各フランジ34が本体部31と接続する部位に曲率半径(Rg)が設定されている。この曲率半径(Rg)は、第2中空部C13,C14において本体部31の角部をなす部位の曲率半径よりも大きく設定している。これにより、第2中空部C13,C14において本体部31の角部をなす部位では、フランジ34によって断面形状の凸変形が阻害されることで、相対的に凹変形が促進される。従って、クラッシュボックス30の蛇腹変形時、これを起点に一の対角方向に並設される両第1中空部C11,C12の断面形状全体に凸変形が促進され、他の対角方向に並設される両第2中空部C13,C14の断面形状全体に凹変形が促進されることで、断面形状(各辺)が互い違いの方向に凸変形しやすくなる。この場合、蛇腹変形時の荷重振幅が小さくなるのは前記第1の実施形態と同様である。   Then, as shown in range B of FIG. 5, the crash box 30 (main body portion 31) has an outward flange 34 facing the portion forming the corner of the main body portion 31 in the second hollow portions C <b> 13 and C <b> 14. Projecting in parallel with the rib 32. A radius of curvature (Rg) is set at a portion where each flange 34 is connected to the main body 31. This radius of curvature (Rg) is set to be larger than the radius of curvature of the portion forming the corner of the main body 31 in the second hollow portions C13 and C14. Thereby, in the site | part which makes the corner | angular part of the main-body part 31 in 2nd hollow part C13, C14, a concave deformation is accelerated | stimulated relatively because the flange 34 inhibits the convex deformation of a cross-sectional shape. Therefore, when the bellows of the crash box 30 is deformed, the convex deformation is promoted in the entire cross-sectional shape of the first hollow portions C11 and C12 arranged in one diagonal direction starting from this, and the crush box 30 is arranged in the other diagonal direction. The concave deformation is promoted in the entire cross-sectional shape of both the second hollow portions C13 and C14 provided, so that the cross-sectional shape (each side) is likely to be convexly deformed in alternate directions. In this case, the load amplitude when the bellows is deformed is the same as in the first embodiment.

以上詳述したように、本実施形態によれば、以下に示す効果が得られるようになる。
(1)本実施形態では、第2中空部C13,C14において本体部31の角部をなす部位では、外向きのフランジ34によって断面形状の凸変形が阻害されることで、相対的に凹変形が促進される。従って、クラッシュボックス30の蛇腹変形時、これを起点に一の対角方向に並設される両第1中空部C11,C12の断面形状全体に凸変形が促進され、他の対角方向に並設される両第2中空部C13,C14の断面形状全体に凹変形が促進されることで、断面形状(各辺)が互い違いの方向に凸変形しやすくなる。この場合、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収することができ、その分、変形量を低減することができる。そして、クラッシュボックス30を車両の前後方向に短くできる分、全体としてより小型化することができ、あるいは意匠の自由度を向上することができる。
As described above in detail, according to the present embodiment, the following effects can be obtained.
(1) In the present embodiment, in the second hollow portions C13 and C14, the portions forming the corners of the main body portion 31 are relatively concavely deformed by the convex flange shape being inhibited by the outward flange 34. Is promoted. Therefore, when the bellows of the crash box 30 is deformed, the convex deformation is promoted in the entire cross-sectional shape of the first hollow portions C11 and C12 arranged in one diagonal direction starting from this, and the crush box 30 is arranged in the other diagonal direction. The concave deformation is promoted in the entire cross-sectional shape of both the second hollow portions C13 and C14 provided, so that the cross-sectional shape (each side) is likely to be convexly deformed in alternate directions. In this case, the load amplitude at the time of bellows deformation can be reduced to absorb the impact energy more efficiently, and the amount of deformation can be reduced accordingly. And since the crash box 30 can be shortened in the front-rear direction of the vehicle, the overall size can be further reduced, or the degree of freedom of design can be improved.

なお、上記実施形態は以下のように変更してもよい。
・前記第1の実施形態において、曲率半径(Rc1)は、曲率半径(Ra1)と同等であってもよい。同様に、曲率半径(Rc2)は、曲率半径(Ra2)と同等であってもよい。
In addition, you may change the said embodiment as follows.
In the first embodiment, the curvature radius (Rc1) may be equal to the curvature radius (Ra1). Similarly, the curvature radius (Rc2) may be equal to the curvature radius (Ra2).

・前記第1の実施形態において、曲率半径(Rd2)は、曲率半径(Ra2)と同等であってもよい。
・前記第1の実施形態において、曲率半径(Re)は、曲率半径(Ra1)と同等であってもよい。つまり、曲率半径(Rd1)は、曲率半径(Ra1)よりも小さくてもよい。
In the first embodiment, the curvature radius (Rd2) may be equal to the curvature radius (Ra2).
In the first embodiment, the curvature radius (Re) may be equal to the curvature radius (Ra1). That is, the curvature radius (Rd1) may be smaller than the curvature radius (Ra1).

・前記第1の実施形態において、フランジ24を割愛してもよい。
・前記第1の実施形態において、本体部21の角部外側の曲率半径(Re)を割愛するとともに、曲率半径(Rd1)を曲率半径(Rd2)と同等に設定してもよい。
In the first embodiment, the flange 24 may be omitted.
In the first embodiment, the curvature radius (Re) outside the corner of the main body 21 may be omitted, and the curvature radius (Rd1) may be set equal to the curvature radius (Rd2).

・前記第2の実施形態において、第1中空部C11,C12に合わせて本体部21の角部外側に前記第1の実施形態と同様の曲率半径(Re)を設定してもよい。
・本発明に係る車両用衝撃吸収具を、例えばサイドメンバ11などその他の衝撃吸収用のフレームに適用してもよい。この場合、クラッシュボックス13を割愛し、バンパリインホース16をサイドメンバ11に直結してもよい。
In the second embodiment, the same radius of curvature (Re) as that of the first embodiment may be set outside the corner of the main body 21 in accordance with the first hollow portions C11 and C12.
-You may apply the shock absorber for vehicles which concerns on this invention to the flame | frame for other shock absorptions, such as the side member 11, for example. In this case, the crash box 13 may be omitted, and the bumper inhose 16 may be directly connected to the side member 11.

・本発明は、車両のリヤ部分に適用してもよい。
次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
・軸圧縮荷重を蛇腹変形で吸収して衝撃エネルギーを吸収する押出材からなる車両用衝撃吸収具において、
四角筒状の本体部と、該本体部に接続され互いに交差する一対の内側のリブとを備え、該両リブにより前記本体部内に一の対角方向に並設される2つの第1中空部及び他の対角方向に並設される2つの第2中空部が区画形成されて略田の字の一定断面形状を有し、
前記第2中空部において前記本体部の角部をなす部位に対向して、外向きのフランジを突設したことを特徴とする車両用衝撃吸収具。同構成によれば、前記第2中空部において前記本体部の角部をなす部位では、前記外向きのフランジによって断面形状の凸変形が阻害されることで、相対的に凹変形が促進される。従って、この車両用衝撃吸収具では、前記各第2中空部の断面形状の凹変形が促進され、相対的に前記各第1中空部の断面形状の凸変形が促進されることで、断面形状が互い違いの方向に凸変形しやすくなる。これにより、蛇腹変形時の荷重振幅を小さくして衝撃エネルギーをより効率的に吸収することができ、その分、変形量を低減することができる。
The present invention may be applied to the rear portion of the vehicle.
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
-In a vehicle shock absorber made of an extruded material that absorbs impact energy by absorbing axial compression load by bellows deformation,
Two first hollow portions provided with a rectangular tube-shaped main body portion and a pair of inner ribs connected to the main body portion and intersecting each other, and arranged in a diagonal direction in the main body portion by the two ribs And two second hollow portions arranged side by side in a diagonal direction are sectioned and have a constant cross-sectional shape of a substantially square shape,
An impact absorber for a vehicle, wherein an outward flange projects from a portion forming a corner of the main body in the second hollow portion. According to the configuration, in the portion forming the corner portion of the main body portion in the second hollow portion, the concave deformation is relatively promoted by inhibiting the convex deformation of the cross-sectional shape by the outward flange. . Therefore, in this vehicle impact absorber, the concave deformation of the cross-sectional shape of each of the second hollow portions is promoted, and the convex deformation of the cross-sectional shape of each of the first hollow portions is relatively promoted, so that the cross-sectional shape However, it tends to be convexly deformed in alternate directions. Thereby, the load amplitude at the time of bellows deformation can be reduced and the impact energy can be absorbed more efficiently, and the amount of deformation can be reduced accordingly.

本発明の第1の実施形態を示す平面図。The top view which shows the 1st Embodiment of this invention. 同実施形態を示す断面図。Sectional drawing which shows the same embodiment. 同実施形態の蛇腹変形時の断面形状の特性を示す説明図。Explanatory drawing which shows the characteristic of the cross-sectional shape at the time of a bellows deformation | transformation of the embodiment. 同実施形態の変形量と荷重との関係を示すグラフ。The graph which shows the relationship between the deformation of the same embodiment, and a load. 本発明の第2の実施形態を示す断面図。Sectional drawing which shows the 2nd Embodiment of this invention. 従来形態の蛇腹変形時の断面形状の特性を示す説明図。Explanatory drawing which shows the characteristic of the cross-sectional shape at the time of a bellows deformation | transformation of a prior art form.

符号の説明Explanation of symbols

C1,C2,C11,C12…第1中空部、C3,C4,C13,C14…第2中空部、11…サイドメンバ、13,30…クラッシュボックス(車両用衝撃吸収具)、16…バンパリインホース、21,31…本体部、22,23,32,33…リブ、24,34…フランジ。   C1, C2, C11, C12 ... 1st hollow part, C3, C4, C13, C14 ... 2nd hollow part, 11 ... Side member, 13, 30 ... Crash box (vehicle shock absorber), 16 ... Bumper in Hose, 21, 31 ... main body, 22, 23, 32, 33 ... rib, 24, 34 ... flange.

Claims (4)

軸圧縮荷重を蛇腹変形で吸収して衝撃エネルギーを吸収する押出材からなる車両用衝撃吸収具において、
四角筒状の本体部と、該本体部に接続され互いに交差する一対の内側のリブとを備え、該両リブにより前記本体部内に一の対角方向に並設される2つの第1中空部及び他の対角方向に並設される2つの第2中空部が区画形成された一定断面形状を有し、
前記リブが前記本体部と接続する部位は湾曲形状に成形されており、前記第1中空部において前記リブが前記本体部と接続する部位の曲率半径及び肉厚を、前記第2中空部において前記リブが前記本体部と接続する部位の曲率半径及び肉厚よりも大きく設定し、且つ、
前記両リブが交差する部位は湾曲形状に成形されており、前記第1中空部において前記両リブが交差する部位の曲率半径及び肉厚を、前記第2中空部において前記両リブが交差する部位の曲率半径及び肉厚よりも大きく設定し、且つ、
前記本体部の角部をなす部位は湾曲形状に成形されており、前記第1中空部において前記本体部の角部をなす部位の曲率半径を、前記第2中空部において前記本体部の角部をなす部位の曲率半径よりも大きく設定し、且つ、
前記第2中空部において前記本体部の角部をなす部位に対向して、外向きのフランジが前記両リブの一方のリブと平行に突設されていることを特徴とする車両用衝撃吸収具。
In a vehicle shock absorber made of an extruded material that absorbs impact energy by absorbing axial compression load by bellows deformation,
Two first hollow portions provided with a rectangular tube-shaped main body portion and a pair of inner ribs connected to the main body portion and intersecting each other, and arranged in a diagonal direction in the main body portion by the two ribs And having a constant cross-sectional shape in which two second hollow portions arranged in parallel in the other diagonal direction are partitioned,
The portion where the rib connects to the main body is formed in a curved shape, and the radius of curvature and the thickness of the portion where the rib connects to the main body in the first hollow portion are set in the second hollow portion. The rib is set to be larger than the radius of curvature and thickness of the portion connected to the main body, and
The part where the two ribs intersect is formed in a curved shape, and the radius of curvature and the thickness of the part where the two ribs intersect in the first hollow part, the part where the two ribs intersect in the second hollow part Greater than the radius of curvature and wall thickness of
The portion that forms the corner of the main body is formed in a curved shape, and the radius of curvature of the portion that forms the corner of the main body in the first hollow portion is the corner of the main body in the second hollow portion. And set larger than the radius of curvature of the part forming
A vehicle shock absorber characterized in that an outwardly facing flange projects in parallel with one of the ribs so as to face a portion forming a corner of the main body in the second hollow portion. .
請求項1に記載の車両用衝撃吸収具において、
前記第2中空部において前記フランジの前記本体部と接続する部位の曲率半径及び肉厚を、前記第2中空部において前記本体部の角部をなす部位の曲率半径及び肉厚よりも大きく設定したことを特徴とする車両用衝撃吸収具。
The vehicle impact absorber according to claim 1,
The radius of curvature and the thickness of the portion of the second hollow portion connected to the main body portion of the flange are set to be larger than the radius of curvature and the thickness of the portion of the second hollow portion forming the corner portion of the main body portion. A vehicle shock absorber.
請求項1又は2に記載の車両用衝撃吸収具において、
蛇腹変形時、前記本体部内に一の対角方向に並設される前記両第1中空部の断面形状全体は凸変形し、他の対角方向に並設される前記両第2中空部の断面形状全体は凹変形することを特徴とする車両用衝撃吸収具。
The vehicle impact absorber according to claim 1 or 2,
When the bellows is deformed, the entire cross-sectional shape of the first hollow portions arranged in one diagonal direction in the main body portion is convexly deformed, and the second hollow portions arranged in parallel in the other diagonal direction are deformed. A shock absorber for a vehicle, wherein the entire cross-sectional shape is deformed concavely .
車両の幅方向に延びるバンパリインホースの両端部において、該バンパリインホースと車両の前後方向に延びる一対のサイドメンバとの間にそれぞれ介在される一対のクラッシュボックスを備えた車両用バンパ装置において、
前記クラッシュボックスとして、請求項1〜3のいずれか一項に記載の車両用衝撃吸収具を備えたことを特徴とする車両用バンパ装置。
Bumper device for vehicle comprising a pair of crash boxes respectively interposed between the bumper inhose and a pair of side members extending in the front-rear direction of the vehicle at both ends of the bumper inhose extending in the width direction of the vehicle In
A vehicular bumper device comprising the vehicular shock absorber according to any one of claims 1 to 3 as the crash box.
JP2008135819A 2008-05-23 2008-05-23 Vehicle shock absorber and vehicle bumper device Expired - Fee Related JP5254662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135819A JP5254662B2 (en) 2008-05-23 2008-05-23 Vehicle shock absorber and vehicle bumper device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135819A JP5254662B2 (en) 2008-05-23 2008-05-23 Vehicle shock absorber and vehicle bumper device

Publications (2)

Publication Number Publication Date
JP2009280145A JP2009280145A (en) 2009-12-03
JP5254662B2 true JP5254662B2 (en) 2013-08-07

Family

ID=41451076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135819A Expired - Fee Related JP5254662B2 (en) 2008-05-23 2008-05-23 Vehicle shock absorber and vehicle bumper device

Country Status (1)

Country Link
JP (1) JP5254662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105196937A (en) * 2014-06-03 2015-12-30 现代自动车株式会社 Crash Box For Vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735252U (en) * 1993-12-14 1995-06-27 アイシン軽金属株式会社 Car frame structure
JPH08216916A (en) * 1995-02-15 1996-08-27 Nippon Light Metal Co Ltd Shock absorbing frame made of extrusion-molded aluminum material excellent in shock absorbing property
JP3470659B2 (en) * 1999-11-10 2003-11-25 日本軽金属株式会社 Shock absorbing member and jig for molding it
JP4423761B2 (en) * 2000-07-03 2010-03-03 日本軽金属株式会社 Bumpy stay
JP4285896B2 (en) * 2000-09-14 2009-06-24 株式会社神戸製鋼所 Energy absorbing member for automobile frame structure made of extruded aluminum alloy material with excellent axial crushing characteristics
JP2005170232A (en) * 2003-12-11 2005-06-30 Mitsubishi Alum Co Ltd Shock absorbing member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105196937A (en) * 2014-06-03 2015-12-30 现代自动车株式会社 Crash Box For Vehicle

Also Published As

Publication number Publication date
JP2009280145A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5659185B2 (en) Shock absorbing member for vehicle
US9266484B2 (en) Crush box
JP2010125884A (en) Front vehicle body structure
US20120139273A1 (en) Crash box of bumper for vehicle
JP2010149771A (en) Impact absorbing member for vehicle
JP2007038756A (en) Bumper beam for vehicle
JP6070656B2 (en) Shock absorption box for vehicles
EP4041619A1 (en) A vehicle side structure
JP6254448B2 (en) Bumper beam for vehicles
JP5486251B2 (en) Vehicle shock absorber and vehicle bumper device
JP2006335241A (en) Bumper stay and bumper device
JP5053762B2 (en) Bumper device for vehicle
JP5686586B2 (en) Reinforcement structure in automobile body frame
JP5235007B2 (en) Crash box
JP5803819B2 (en) Vehicle front structure
JP5254662B2 (en) Vehicle shock absorber and vehicle bumper device
JP5875449B2 (en) Bumper member for vehicles
JP5729864B2 (en) Van Paste
JP4689300B2 (en) Shock absorbing member for vehicle
JP4198000B2 (en) Lateral collapse type bumper stay and bumper structure
KR20120118276A (en) The crash box used a car
JP6517603B2 (en) Shock absorbing member
WO2012153792A1 (en) Energy absorption member
JP5638969B2 (en) Van Paste
JP6687179B1 (en) Automotive frame members and electric vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Ref document number: 5254662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees