JP5254098B2 - 製氷機 - Google Patents

製氷機 Download PDF

Info

Publication number
JP5254098B2
JP5254098B2 JP2009070865A JP2009070865A JP5254098B2 JP 5254098 B2 JP5254098 B2 JP 5254098B2 JP 2009070865 A JP2009070865 A JP 2009070865A JP 2009070865 A JP2009070865 A JP 2009070865A JP 5254098 B2 JP5254098 B2 JP 5254098B2
Authority
JP
Japan
Prior art keywords
water
ice making
accumulator
storage tank
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009070865A
Other languages
English (en)
Other versions
JP2010223491A (ja
Inventor
雅司 稲田
輝道 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2009070865A priority Critical patent/JP5254098B2/ja
Publication of JP2010223491A publication Critical patent/JP2010223491A/ja
Application granted granted Critical
Publication of JP5254098B2 publication Critical patent/JP5254098B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

この発明は、冷凍回路にアキュムレータを有する製氷機に関するものである。
例えば図5に示すように、製氷室16に下向きに開口するよう多数設けた製氷小室16aに対して製氷水を水皿18から噴射供給して、氷塊を連続的に製造する噴射式の製氷機構14を備えた製氷機11が広く実施に供されている。製氷機構14は、貯氷室の上部に設置されており、製氷運転において製氷室16を蒸発器EPで冷却することで製氷室16に氷塊を生成し、除氷運転において氷塊を製氷室16から落下させて貯氷室に貯留するようになっている。蒸発器EPを備える冷凍回路80は、製氷運転において、圧縮機CMで圧縮された気化冷媒が凝縮器CDで熱を奪われて凝縮液化し、膨張弁EVで圧力低下した液化冷媒が蒸発器EPで膨張気化するのに伴い製氷室16から熱を奪うことで、製氷室16を冷却するようになっている。なお、冷凍回路80では、蒸発器EPから気化冷媒が圧縮機CMに戻り、冷媒が該回路80内を循環するようになっている。また、冷凍回路80には、蒸発器EPから圧縮機CMへの帰還経路にアキュムレータ82が設けられ、蒸発器EPから圧縮機CMへ戻る冷媒を気液分離することで、気化冷媒のみを圧縮機CMに戻して圧縮機CMでの冷媒の噛み込み等を防止している(例えば、特許文献1参照)。
特開平10−197121号公報
前記製氷機11では、製氷運転において、蒸発器EPにより冷却された製氷室16における製氷小室16aの壁面側から供給された製氷水の氷結が始まり、氷結部分に供給された製氷水が氷結部分の上で更に氷結することで、次第に成長する。すなわち、製氷機11では、氷塊における製氷小室16aの壁面近傍が製氷運転開始当初から冷却されているので過度に冷却された状態にあり、水皿18の噴射孔18aに臨む氷塊の中央下側が製氷運転終了直前に生成されるので、製氷小室16aに接する部分と中央下側部分とで温度差が生じている。また、製氷機11では、製氷運転においてアキュムレータ82に冷たい冷媒が流入するので、アキュムレータ82自体が冷却されて、アキュムレータ82と蒸発器EPとを接続する銅等の熱伝導率に優れた金属からなる冷媒配管84を介して蒸発器EPが更に冷却される。すなわち、製氷室16は、蒸発器EPからの冷却だけでなく、冷却されたアキュムレータ82の影響を受けて過度に冷却されることがある。このため、除氷運転において、蒸発器EPにホットガスを流通して製氷室16を加熱すると、製氷小室16aの壁面近傍部分と中央下側部分との大きな温度差に起因して氷塊にクラックが生じ易い。そして、氷塊にクラックが生じると、製氷室16から離脱して貯氷室に落下した際に、氷塊が割れたり、クラックにより白濁する等、氷塊の商品価値を損なってしまう問題がある。
すなわち本発明は、従来の技術に係る製氷機に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、氷塊におけるクラックの発生を防止し得る製氷機を提供することを目的とする。
前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明の製氷機は、
製氷運転において氷塊を製造する製氷機構の製氷部と、冷凍回路を構成し、製氷運転において製氷部を冷却する蒸発器と、前記冷凍回路における蒸発器から圧縮機への冷媒の帰還経路に設けられ、冷媒を気液分離するアキュムレータとを備えた製氷機において、
製氷運転において前記製氷部に配設された温度測定手段で測定した該製氷部の温度が設定温度以下の場合に、前記アキュムレータを加温する加温手段を設けたことを特徴とする。
請求項1に係る発明によれば、冷媒配管を介してアキュムレータによって蒸発器を冷却することを回避でき、製氷運転において、蒸発器とアキュムレータとが相乗して製氷部を冷却することによる製氷部の過度の冷却を防止することができる。すなわち、製氷部に生成される氷塊の部位による温度差を小さくできるので、除氷運転において製氷部の加熱により離氷する際に、氷塊にクラックが発生し難くなる。また、製氷部が設定温度以下になる過度の冷却が生じ易い段階においてのみに加温手段によってアキュムレータを加温することで、通常の冷却段階を阻害することを回避し得る。
請求項2に係る発明では、前記加温手段は、給水源から供給された水を貯留する貯水タンクと、該貯水タンクから導出して該貯水タンクに戻るように連通する循環配管に設けられ、前記アキュムレータに熱交換可能に接触する伝熱部と、貯水タンクの水を前記循環配管に循環させる供給ポンプとを備えたことを要旨とする。
請求項2に係る発明によれば、供給ポンプの駆動または停止により伝熱部からのアキュムレータの加温または加温停止を簡単に制御できるので、製氷運転の段階に合わせてアキュムレータを適切に加温し得る。
請求項3に係る発明では、前記貯水タンクには、給水源に連通する供給管が接続されると共に該貯水タンクから水を排出する配水管が接続されて、該供給管に介挿された供給弁を開閉して該給水源から水が供給または供給停止される一方、該配水管に介挿された配水弁を開閉して貯水タンクから水を排出または排出停止するよう構成され、
前記貯水タンクに設けた水温検知手段が、0℃より高く設定された設定水温まで該貯水タンクに貯留された水が低下したことを検知すると、前記配水弁を開放して貯水タンクから水を排出し、前記供給弁を開放して貯水タンクに給水源から水を供給するよう構成したことを要旨とする。
請求項3に係る発明によれば、貯水タンクに貯留した製氷水の温度を水温検知手段で監視して、貯水タンクから製氷水を排出する一方、製氷水を供給することで、貯水タンクでの製氷水の凍結を防止でき、伝熱部によりアキュムレータを効率よく加温できるように製氷水の温度を維持できる。
請求項4に係る発明では、前記冷凍回路における蒸発器からアキュムレータへの冷媒の流通経路には、他の冷媒の流通経路より熱伝導率が低い材質からなる伝熱抑制部が設けられることを要旨とする。
請求項4に係る発明によれば、伝熱抑制部によってアキュムレータおよび蒸発器間の熱伝導を抑制できるので、製氷部の過度の冷却をより適切に抑制できる。
本発明に係る製氷機によれば、氷塊におけるクラックの発生を防止し得る。
本発明の好適な実施例1に係る製氷機を示す概略説明図である。 実施例1の製氷機において、アキュムレータを加温する制御の流れを示すフローチャート図である。 実施例2の製氷機を示す概略説明図である。 実施例2の製氷機において、アキュムレータを加温する制御の流れを示すフローチャート図である。 従来の製氷機を示す概略説明図である。
次に、本発明に係る製氷機につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。なお、説明の便宜上、図5に示した製氷機11の構成要素と同一の要素については、同一の符号を使用して詳細な説明は省略する。
実施例1に係る製氷機10は、矩形状の箱体を本体とし、氷塊を製造する製氷機構14と、この製氷機構14を冷却または加温する冷凍回路30とを備えている(図1参照)。製氷機10には、箱体の内部を仕切り壁で区切って貯氷室と機械室とが設けられている。製氷機構14は、貯氷室の上部に配置されて、下方に開口する製氷小室16aを多数備えた製氷室(製氷部)16と、この製氷室16の下側に配設され、製氷小室16aの開口に対応配置された噴射孔18aを有する水皿18とを備えている。また、製氷機構14は、水皿18の下方に設けられ、製氷水を貯留する製氷水タンク20と、この製氷水タンク20から水皿18に製氷水を圧送する製氷水ポンプPMとを備えている。製氷機10は、製氷水を外部給水源(給水源)から製氷水タンク20に供給する給水手段22を備え、除氷運転において製氷水タンク20に対して次回の製氷に用いる製氷水を所定量供給するようになっている。製氷機構14では、製氷運転において、製氷水ポンプPMによって圧送した製氷水を水皿18の噴射孔18aから製氷小室16aに噴射供給すると共に、製氷小室16aで氷結せずに流下した製氷水を製氷水タンク20に回収して、製氷室16に向けて再度供給される。更に、製氷室16の上面には、冷凍回路30の一部を構成する蒸発器EPが蛇行配置され、製氷室16は、蒸発器EPによって製氷運転において冷却される一方、除氷運転において加熱される。
前記製氷機構14は、製氷室16にサーミスタ等の温度測定手段TAが設けられ、この温度測定手段TAによる製氷室16の温度測定結果に基づいて製氷完了度が判定されて製氷運転から除氷運転に切り替えが行われ、製氷室16の温度測定結果に基づいて離氷が判定されて除氷運転から製氷運転に切り替えられる。ここで、実施例1の製氷機10では、温度測定手段TAで製氷室16の温度を所定時間毎に測定することで、製氷運転を開始してから製氷室16に付与された累積冷却量を算出し、この累積冷却量を設定値と比較して、累積冷却量が設定値を越えると製氷運転を完了するようになっている。なお、設定値は、製氷小室16aに最適な大きさの氷塊を形成するのに必要な冷却総量であり、製氷機10の冷却能力や設置環境等に応じて予め設定されている。
図1に示すように、前記冷凍回路30は、圧縮機CM、冷却ファンFMにより冷却される凝縮器CD、膨張弁EV、蒸発器EPおよびアキュムレータ40等の機器を冷媒配管32で接続して構成されている。冷凍回路30では、圧縮機CMで圧縮された気化冷媒を凝縮器CDで凝縮液化した後、膨張弁EVで減圧した冷媒を蒸発器EPに流入してここで膨張して蒸発させ、蒸発器EPからアキュムレータ40を介して気液分離した気化冷媒が圧縮機CMに戻るようになっている。なお、冷凍回路30には、膨張弁EVと蒸発器EPとを接続する冷媒配管32が、アキュムレータ40と圧縮機CMとを接続する冷媒配管32と接触する配管接触部30aが設けられ、配管接触部30aで互いに熱交換することで、蒸発器EPへ向かう冷媒を冷却すると共に圧縮機CMに向かう冷媒を昇温している。また、実施例1の冷凍回路30では、冷媒配管32として銅管が用いられている。
前記冷凍回路30は、除氷運転時に、凝縮器CDおよび膨張弁EVを介さず圧縮機CMから冷媒(ホットガス)を蒸発器EPに直接供給するバイパス回路を備えている。このバイパス回路は、圧縮機CMの吐出側と蒸発器EPの吸込み側とを連結するバイパス管36と、このバイパス管36の途中に配設され、制御手段(図示せず)により開閉制御されるホットガス弁HVと、このホットガス弁HVの上流側でバイパス管36に介挿され、冷媒を乾燥するドライヤDとから構成される。そして、製氷機10は、製氷運転においてホットガス弁HVを閉成して膨張弁EVを介して蒸発器EPに冷媒を導入することで、蒸発器EPで気化する冷媒の気化熱により製氷室16を冷却し、除氷運転においてホットガス弁HVを開放して蒸発器EPに圧縮機CMからホットガスを直接導入することで、高温のホットガスにより製氷室16を加熱するようになっている。
前記製氷機10では、圧縮機CM、凝縮器CD、冷却ファンFM、膨張弁EVが機械室に設置される一方、蒸発器EPおよびアキュムレータ40が貯氷室に設置されている。すなわち、製氷機10において、蒸発器EPとアキュムレータ40とが同一の区画の中で比較的近接して配置されており、蒸発器EPから圧縮機CMに向かう冷媒の帰還経路においてアキュムレータ40が蒸発器EP側に偏倚して配置される。アキュムレータ40は、 蒸発器EPに連通する冷媒配管32(特に区別する場合には、流入側冷媒配管32A)に接続する端部(蒸発器EP側の接続端)から圧縮機CMに連通する冷媒配管32に接続する端部(圧縮機CM側の接続端)に向かうにつれて上方傾斜する傾斜姿勢で貯氷室に設置されている。アキュムレータ40は、中空の筒状体40aを本体とし、流入側冷媒配管32Aが筒状体40aの傾斜下端から該筒状体40aの内部に挿入されて、流入側冷媒配管32Aの流入口が筒状体40aの内部に臨んでいる。また、アキュムレータ40は、筒状体40aの傾斜上端に圧縮機CM側の冷媒配管32が接続されている。なお、アキュムレータ40の筒状体40aは、空気や合成樹脂等(不良導体)と比べて熱伝導率がよいステンレス等の金属(良導体)製である。
前記製氷機10には、アキュムレータ40を製氷運転において加温する加温手段50が設けられている。実施例1の加温手段50は、水道等の外部給水源から供給された製氷水(水)を貯留する貯水タンク52と、この貯水タンク52から導出して再び貯水タンク52に戻るように連通する循環配管54に設けられ、アキュムレータ40に対して熱交換可能に接触する伝熱部56と、貯水タンク52の製氷水を循環配管54に循環させる供給ポンプ58とを備えている。貯水タンク52には、外部給水源に連通する供給管60が接続されており、この供給管60に介挿された供給弁61を開閉することで、貯水タンク52に対して製氷水が外部給水源から供給または供給停止される。また、貯水タンク52には、配水管62が接続されており、この配水管62に介挿された配水弁63を開閉することで、貯水タンクから製氷水が外部に排出または排出停止される。
前記循環配管54は、吸入端が貯水タンク52の底または側面底側に接続すると共に、吐出端が貯水タンク52の内方に臨ませて設けられている。実施例1の伝熱部56は、アキュムレータ40の外郭を構成している筒状体40aに接触するように延在させて設けた循環配管54の一部分であって、少なくともアキュムレータ40に接する部位が銅やステンレス等の良導体で構成されている。ここで、伝熱部56は、アキュムレータ40の筒状体40aの周面に螺旋状に周回させても、周面に蛇行状または直線状に延在させてもよく、伝熱部56を流通する製氷水によってアキュムレータ40を加温するようになっている。供給ポンプ58は、循環配管54の途中に介挿されており、供給ポンプ58を駆動することで、貯水タンク52から循環配管54に製氷水を吸い込み、伝熱部56を流通して貯水タンク52に吐出された製氷水を貯水タンク52から吸い込んで循環配管54に再び流通させる。
実施例1の加温手段50は、給水手段22と構成部材を兼用している。循環配管54には、図示しない制御手段の制御下に管路を切り替え可能な切替弁64が供給ポンプ58の吐出側に介挿されており、切替弁64の吐出側の一方に循環配管54における伝熱部56側が接続される一方、切替弁64の吐出側の他方に給水管24が接続されている。製氷機10では、製氷運転において切替弁64を一方に切り替えることで、伝熱部56を通って製氷水が循環配管54および貯水タンク52を循環するようになっている。また、製氷機10では、除氷運転において切替弁64を他方に切り替えることで、供給ポンプ58によって貯水タンク52から給水管24に製氷水が送り込まれる。そして、製氷機10では、製氷水タンク20の上方に臨む給水管24の吐出端から製氷水が製氷水タンク20に供給されて、該製氷水が次回の製氷運転において用いられる製氷水として貯留される。このように、供給ポンプ58は、貯水タンク52から給水管24を介して製氷水タンク20に製氷水を圧送する手段としても兼用されている。また、貯水タンク52は、給水手段22において製氷水を一時貯留するリザーバタンクとして機能し、外部給水源の水圧が低い場合や製氷水タンク20への製氷水の供給量が多い場合等に給水時間を短縮化できる。
実施例1の加温手段50は、製氷運転が開始されてから製氷完了度の比較による製氷完了判定がなされる前に、製氷室16が設定温度(例えば−20℃)以下となった場合に、切替弁64を伝熱部56側に切り替えたもとで供給ポンプ58を駆動して伝熱部56によりアキュムレータ40を加温するようになっている(図2参照)。加温手段50は、伝熱部56によってアキュムレータ40を加温している際に、製氷室16の温度が設定温度より高くなると、供給ポンプ58を停止して伝熱部56への製氷水の供給を停止してアキュムレータ40に対する加温をやめる。そして、加温手段50は、製氷完了判定がなされる前に、製氷室16が設定温度以下に再びなると、供給ポンプ58を駆動して伝熱部56によるアキュムレータ40の加温を再開するよう制御される。加温手段50は、製氷完了判定により製氷運転を停止すると、供給ポンプ58を停止して伝熱部56からのアキュムレータ40の加温を停止すると共に、切替弁64を給水管24側に切り替えて、貯水タンク52から製氷水タンク20に製氷水を供給する給水手段22に切り替わる。なお、加温手段50は、製氷運転が開始されてから製氷完了判定される前に、製氷室16が設定温度を下回らないときは、伝熱部56によりアキュムレータ40を加温しない。
実施例の製氷機10では、製氷運転の開始と同時に、供給弁61が開放されて除氷運転で製氷水タンク20に製氷水を供給して水位低下した貯水タンク52に対して製氷水が供給される。また、製氷機10は、製氷運転において配水弁63を適宜タイミングで開放して製氷水を貯水タンク52から排出する一方、供給弁61を開放して製氷水を貯水タンクに供給するよう構成されて、貯水タンク52での製氷水の凍結を防止したり、伝熱部56によりアキュムレータ40を効率よく加温できるように製氷水の温度を維持している。ここで、配水弁63による排出のタイミングは、貯水タンク52に設けた水温検知手段(図示せず)による製氷水の温度検知結果や加温手段50によってアキュムレータ40の加温を開始してからの経過時間等を指標にして決定される。
前記冷凍回路30では、蒸発器EPから圧縮機CMへの冷媒の帰還経路においてアキュムレータ40と蒸発器EPとの間に位置させて、伝熱抑制部34が設けられている。伝熱抑制部34は、他の冷媒の流通経路(アキュムレータ40から圧縮機CMへの冷媒の帰還経路、圧縮機CMから凝縮器CDへの冷媒の流通経路、凝縮器CDから膨張弁EVへの冷媒の流通経路、膨張弁EVから蒸発器EPへの冷媒の流通経路等)を構成する冷媒配管32より熱伝導率が低い材質から形成されている。また、伝熱抑制部34は、アキュムレータ40および蒸発器EP間の冷媒の流通経路の全部または一部(実施例1)を構成する管状体であって、冷媒配管32、アキュムレータ40または蒸発器EPに接続されて、冷媒の流通経路を画成している。伝熱抑制部34は、他の冷媒の流通経路を構成する銅製の冷媒配管32に対して、銅より熱伝導率が低い例えばステンレスが採用されている。
〔実施例1の作用〕
次に、実施例1に係る製氷機10の作用について説明する。製氷機10では、製氷運転において、蒸発器EPによって冷却された製氷室16の各製氷小室16aに対して水皿18の噴射孔18aから製氷水が供給されて、各製氷小室16aで製氷水が氷結して氷塊が徐々に成長する。また、製氷機10では、製氷運転において、蒸発器EPで膨張気化した冷媒が流入側冷媒配管32Aを介してアキュムレータ40に流入し、流入した冷媒に含まれる液相部分が筒状体40aの傾斜下部に貯まり、気相部分だけが圧縮機CM側の冷媒配管32を介して圧縮機CMに返送される。ここで、アキュムレータ40は、蒸発器EPから流入した冷媒によって冷却されて次第に温度低下する。
前記製氷機10は、蒸発器EPによって冷却された製氷室16の温度が設定温度以下になったことを温度測定手段TAが検知すると、切替弁64を伝熱部56側に切り替えたもとで供給ポンプ58を駆動することで、加温手段50の伝熱部56に貯水タンク52から製氷水を流通させる(図2参照)。これにより、アキュムレータ40は、伝熱部56を流通する製氷水と熱交換して加温されると共に、アキュムレータ40に熱を奪われた製氷水は冷却される。冷凍回路30では、加温手段50の伝熱部56に加温されてアキュムレータ40の冷却を阻むことができる。そして、冷凍回路30では、流入側冷媒配管32Aを介してアキュムレータ40によって蒸発器EPを冷却することを回避でき、蒸発器EPとアキュムレータ40とが相乗して製氷室16を冷却することを防止することができる。すなわち、製氷機10では、製氷運転において、製氷室16における過度の冷却を防止することができる。なお、製氷機10は、製氷室16の温度が設定温度以下になったことを温度測定手段TAが検知するまで、加温手段50によるアキュムレータ40の加温が停止されたままである(図2の加温手段OFF)。また、製氷機10は、加温手段50によるアキュムレータ40の加温の最中に、製氷室16の温度が設定温度より高くなったことを温度測定手段TAが検知すると、加温手段50によるアキュムレータ40の加温を停止する。
前記加温手段50は、製氷室16の温度に応じて供給ポンプ58を駆動または停止することで、アキュムレータ40を加温または加温停止することができる。すなわち、製氷運転の初期段階においては、アキュムレータ40が除氷運転で流通したホットガスで温められているので、アキュムレータ40を温める必要性が低い。そして、製氷運転の終盤において、アキュムレータ40が流通する冷媒により冷却されると共に、製氷室16が蒸発器EPによりある程度冷却された段階になると、アキュムレータ40からの冷却が製氷室16に加わることで過度の冷却に繋がるので、製氷室16の温度を指標にして加温手段50で加温開始することで、製氷室16の過度の冷却を適切に抑制できる。このように、実施例1の加温手段50によれば、製氷室16の通常の冷却を阻害することなく、過度の冷却だけを抑制することができる。
前記冷凍回路30では、アキュムレータ40と蒸発器EPとの間に冷媒配管32より熱伝導率の低い伝熱抑制部34が設けられているので、製氷運転においてアキュムレータ40と蒸発器EPとの間の熱の移動を伝熱抑制部34で抑制することができる。従って、製氷運転において、アキュムレータ40により蒸発器EPを冷却することをより好適に回避でき、製氷室16の過度の冷却を適切に防止し得る。
前記アキュムレータ40は、加温手段50の伝熱部56によって昇温されることで、筒状体40aの傾斜下部に滞留した液化冷媒が揮発して、この気化冷媒が圧縮機CM側に接続した冷媒配管32を介して圧縮機CMに返送される。すなわち、製氷機10では、アキュムレータ40で分離した液化冷媒を、製氷運転において該アキュムレータ40に留めることを最小限にして圧縮機CMに返送できるので、冷凍回路30の冷媒不足を回避し得る。
前記製氷機10では、製氷完了度が設定値に達すると、加温手段50によってアキュムレータ40を加温していた場合には加温を停止して、製氷運転から除氷運転に切り替えられる。製氷機10は、除氷運転においてホットガス弁HVが開放されて蒸発器EPにホットガスが供給されて製氷室16が加熱される。なお、除氷運転において、加温手段50は、供給ポンプ58が停止されてアキュムレータ40の加温が停止される。製氷機10では、加温手段50によるアキュムレータ40の加温によって製氷室16における過度の冷却が抑制されているので、製氷小室16aに生成された氷塊において製氷小室16aに接して製氷開始当初に氷結した部分と中央部の製氷終了間際に氷結した部分との温度差を小さくし得る。すなわち、氷塊の部位で氷結度合いの差が小さいので、除氷運転において氷塊の製氷小室16aに接する部分が加熱されても、氷塊に温度差に起因してクラック等の欠陥が生じ難い。このように、実施例の製氷機10で製造される氷塊は、製氷室16から離脱して貯氷室へ案内される際に割れたり、欠けたりする不都合を回避し得る。また欠陥に起因する氷塊の白濁も回避できる。従って、実施例の製氷機10で得られる氷塊は、形状および大きさが揃っていて透明度が高いので、商品価値が高い。
前記製氷機10では、除氷運転において、蒸発器EPに圧縮機CMから直接供給されたホットガスが流入側冷媒配管32Aを介してアキュムレータ40に流入し、圧縮機CM側の冷媒配管32を介して圧縮機CMに返送される。そして、アキュムレータ40では、筒状体40a全体がホットガスで昇温されて、筒状体40aの傾斜下部に滞留した液化冷媒が揮発して、圧縮機CM側の冷媒配管32を介して圧縮機CMに返送される。これにより、冷凍回路30では、アキュムレータ40に冷媒が過剰に滞留することを抑制して、該回路30における冷媒不足を回避している。
前記加温手段50では、製氷運転において製氷水として用いる水を媒体としてアキュムレータ40を加温している。このため、製氷水は、アキュムレータ40との熱交換によって冷却されるので、製氷水タンク20に供給する製氷水を予め冷却しておくことができる。予め冷却された製氷水を用いることで、製氷運転において製氷室16に供給した製氷水の氷結の開始が早くなり、製氷運転にかかる時間を短縮化でき、製氷効率を向上することができる。
図3は、実施例2に係る製氷機12を示す概略構成図である。実施例2の製氷機12では、製氷水タンク20へ製氷水を供給する給水手段42の給水源側に実施例2の加温手段70が設けられ、この加温手段70は、実施例1の加温手段50と同様にアキュムレータ40を加温する媒体として製氷水が用いられている。なお、実施例2の製氷機12の構成において、実施例1と同様の構成については同一の符号を付して説明を省略する。
実施例2の加温手段70は、アキュムレータ40の外郭に熱交換可能に接触する第1伝熱部72と、貯水タンク52に貯留された製氷水に浸漬される第2伝熱部74と、第1伝熱部72および第2伝熱部74の間に設けられて、第1伝熱部72および第2伝熱部74の間の熱伝導を橋渡しする第3伝熱部76を備えている。実施例2の加温手段70においても、貯水タンク52がアキュムレータ40の近傍に配置されている。なお、貯水タンク52の配置としては、少なくともアキュムレータ40が設置される区画(貯氷室)と同じ区画内が好ましい。
前記貯水タンク52には、外部給水源に連通する供給管60が接続されると共に、製氷水タンク20に供給する製氷水を貯留する給水タンク44に連通する配水管62が接続されている。供給管60には、図示しない制御手段の制御下に管路を開閉可能な供給弁61が介挿されており、この供給弁61を開放することで外部給水源から製氷水を貯水タンク52に供給し得るようになっている。実施例では、貯水タンク52より下方に給水タンク44が配置されている。配水管62には、制御手段の制御下に管路を開閉可能な配水弁63が介挿されて、この配水弁63を開放することで貯水タンク52から給水タンク44に製氷水を流下供給し得るようになっている。給水タンク44には、吐出端を製氷水タンク20に臨ませた給水管46が連通接続され、この給水管46に介挿された給水弁47を開閉することで、製氷水タンク20に対して給水タンク44から製氷水を供給または供給停止するよう構成される。給水タンク44は、オーバーフロー部48を備え、該オーバーフロー部48によって所定水位を越えて貯水タンク52から供給された製氷水を排出するようになっている。
前記加温手段70では、第1〜第3伝熱部72,74,76が熱伝導率の良好なステンレス等の良導体で夫々形成されている。第1伝熱部72は、アキュムレータ40の外郭を構成する筒状部40aに一端が接続された板状体であって、アキュムレータ40から貯水タンク52へ向けて突出するよう設置されており、アキュムレータ40と熱交換可能に構成されている。第2伝熱部74は、一端が貯水タンク52の内部に臨むように設置された板状体であって、当該一端部位が貯水タンク52に貯留された製氷水に浸漬するよう構成されて、製氷水と熱交換可能になっている。また、第2伝熱部74は、他端が貯水タンク52からアキュムレータ40に向けて突出しており、アキュムレータ40側の他端が第1伝熱部72に接触しないように所定間隔離間して配置されている。
前記第3伝熱部76は、第1伝熱部72における貯水タンク52側の端部(他端)と第2伝熱部74におけるアキュムレータ40側の端部(他端)との間に設けられた板状体であって、第1伝熱部72と第2伝熱部74の間の空間部に対してモータや流体圧シリンダ等の駆動部78によって進退移動可能に構成されている。第3伝熱部76は、駆動部78により空間部に位置して第1伝熱部72および第2伝熱部74の両方に接触する接触位置と、空間部から退避して第1伝熱部72および第2伝熱部74の少なくとも一方(実施例2では第1伝熱部72および第2伝熱部74の両方から離間)と離間する非接触位置との間を変位するよう構成される。すなわち、第3伝熱部76が接触位置となることで、第1伝熱部72および第2伝熱部74が第3伝熱部76を介して連結し、アキュムレータ40と貯水タンク52の製氷水との間でこれら伝熱部72,74,76を介して熱交換が許容される。これに対して、第3伝熱部76が非接触位置となることで、第1伝熱部72および第2伝熱部74は離間して、アキュムレータ40と貯水タンク52の製氷水との熱交換は遮断される。
実施例2の加温手段70は、実施例1と同様に製氷室16に設けた温度測定手段TAで測定した製氷運転における製氷室16の温度に応じてアキュムレータ40を加温または加温停止するよう構成される(図4参照)。加温手段70は、製氷運転が開始されてから製氷完了判定される前に、製氷室が設定温度(例えば−20℃)以下になった場合に、駆動部78によって第3伝熱部76が接触位置に位置するよう移動される(加温手段:ON)。これにより、加温手段70では、第3伝熱部76により第1伝熱部72および第2伝熱部74を連結して、第1〜第3伝熱部72,74,74を介して製氷水とアキュムレータ40との間で熱交換可能として、アキュムレータ40を加温する。加温手段70は、製氷完了判定により製氷運転を停止すると、駆動部78によって第3伝熱部76を空間部から非接触位置に退避させて、第1伝熱部72と第2伝熱部74との間を空間部で遮断してアキュムレータ40の加温を停止(加温手段:OFF)するよう構成される。なお、加温手段70は、互いに連なった伝熱部72,74,76によってアキュムレータ40を加温している際に、製氷室16の温度が設定温度を越えると、駆動部78によって第3伝熱部76を非接触位置に退避させてアキュムレータ40に対する加温をやめる。また、加温手段70は、製氷運転が開始されてから製氷完了判定される前に、製氷室16が設定温度以下とならないときはアキュムレータ40を加温しない。更に、駆動部78は、除氷運転において第3伝熱部76を非接触位置に維持するように設定されており、除氷運転においてアキュムレータ40に流入したホットガスにより液化冷媒が高温となり、伝熱部72,74,76を介して貯水タンク52の製氷水が加熱されてしまうのを防ぐためである。
前記加温手段70は、貯水タンク52に貯留された製氷水の温度を測定する水温検知手段TBを有し、製氷運転において水温検知手段TBの温度測定結果に基づいて配水弁63および供給弁61が開閉制御される。加温手段70は、製氷運転において水温検知手段TBが設定水温を検知するまで配水弁63および供給弁61の閉成状態を維持するようになっている(図4参照)。また、加温手段70は、第3伝熱部76が接触位置(加温手段70:ON)にあって伝熱部72,74,76を介するアキュムレータ40との熱交換により製氷水が温度低下して水温検知手段TBが設定水温を検知した際に、配水弁63を開放して貯水タンク52の製氷水を給水タンク44に排出するよう構成される。この際、駆動部78によって第3伝熱部76が接触位置から非接触位置に移動されて、製氷水とアキュムレータ40との熱交換が遮断される。更に、加温手段70は、配水弁63を開放してから所定時間の経過あるいは貯水タンク52に設けたフロートスイッチ等の水位検知手段による製氷水の下限水位の検出(実施例2)などを契機にして、配水弁63を閉成すると共に供給弁61を開放して外部給水源から貯水タンク52に製氷水を供給するようになっている。なお、供給弁61は、該供給弁61を開放してから所定時間の経過あるいは貯水タンク52に設けたフロートスイッチ等の水位検知手段による製氷水の上限水位の検出(実施例2)などを契機にして閉成される。ここで、設定水温は、0℃より高く設定されて、例えば1℃〜3℃程度に設定される。
実施例2の製氷機12では、外気温等の外的要因によって製氷運転における該運転を開始してから完了するまでの製氷時間が変動し、1回の製氷運転においてアキュムレータ40に貯まる冷媒の量も変わる。すなわち、1回の製氷運転において、貯水タンク52から給水タンク44に流下する製氷水の総量が変動するが、給水タンク44に設けたオーバーフロー部48から余剰な製氷水を排出できるので、貯水タンク52の温度低下した製氷水を排出できないことに起因するアキュムレータ40の加温不足を回避し得る。
実施例2の製氷機12によっても、加温手段70によるアキュムレータ40の加温によって、製氷運転において製氷室16の過度の冷却を抑制でき、また実施例1で説明した加温手段50と同様の作用効果が得られる。実施例2の製氷機12は、貯水タンク52に貯留した製氷水の温度を水温検知手段TBで監視して、貯水タンク52から製氷水を排出する一方、製氷水を供給することで、貯水タンク52での製氷水の凍結を防止でき、伝熱部72,74,76によりアキュムレータ40を効率よく加温できるように製氷水の温度を維持できる。
(変更例)
本願は前述した実施例の構成に限定されるものではなく、その他の構成を適宜に採用することができる。
(1)実施例では、製氷機として、オープンセル式の製氷機構を採用した場合で説明したが、これに限定されるものではなく、製氷小室を下方から開閉する水皿を有する、所謂クロースドセル式の製氷機構、あるいは製氷板の製氷面に製氷水を流下供給する流下式の製氷機構等、各種の機構を採用し得る。
(2)実施例では、加温手段として、内部を流通する冷媒により冷却されるアキュムレータより高い温度を有する熱源(製氷水)と、アキュムレータと熱源との間で熱伝導を橋渡しする伝熱部とから構成する例を挙げたが、熱源自体をアキュムレータの外郭に直接接触させる構成も採用し得る。例えば、膨張弁から蒸発器に接続する冷媒配管をアキュムレータの外郭に接触するように設け、該冷媒配管に流通する比較的温度の高い冷媒を熱源として、アキュムレータを加温してもよい。また、加温手段として、アキュムレータにヒータを設け、ヒータによりアキュムレータを加温してもよい。更に、熱伝導の良好なステンレス等、その他各種の金属材料からアキュムレータおよび貯水タンクを形成し、該アキュムレータと貯水タンクとを直接接触させることで、アキュムレータと次回製氷用の製氷水との熱交換を行なう構成を採用することができる。この場合は、アキュムレータおよび貯水タンクが伝熱部として機能する。
(3)実施例1および2では、減圧手段として膨張弁を用いた場合で説明したが、これに限定されるものでなく、キャピラリーチューブ等、その他の手段を採用し得る。
(4)実施例では、製氷室または貯水タンクの製氷水の温度を指標にして、加温手段によってアキュムレータを加温または加温停止する例を挙げたが、製氷運転の開始と同時あるいは開始から所定時間経過後に加温手段によるアキュムレータの加温を行うようにしてもよい。
(5)製氷機は、温度測定手段が製氷完了温度を検知したタイミングや、温度測定手段が製氷完了温度を検知してから所定時間経過したタイミングで製氷が完了したと判定してもよい。
(6)製氷機は、除氷運転において貯水タンクから製氷水を製氷水タンクに供給している最中または供給後に、貯水タンクの水量が減少した適宜タイミングで供給弁を開放して、外部給水源から貯水タンクに製氷水を供給してもよい。
(7)実施例2で説明した貯水タンクの水温に応じて水を貯水タンクから排出および貯水タンクに供給する構成を、実施例1の構成に適用することも可能である。
(8)実施例では、製氷水タンクに製氷水を供給する給水手段と加温手段の一部構成を兼用したが、給水手段と加温手段とを独立して設けてもよい。
14 製氷機構,16 製氷室(製氷部),30 冷凍回路,34 伝熱抑制部,
40 アキュムレータ,50 加温手段,52 貯水タンク,54 循環配管,
56 伝熱部,58 供給ポンプ,60 供給管,61 供給弁,62 配水管,
63 配水弁,70 加温手段,CM 圧縮機,EP 蒸発器,TA 温度測定手段,
TB 水温検知手段

Claims (4)

  1. 製氷運転において氷塊を製造する製氷機構(14)の製氷部(16)と、冷凍回路(30)を構成し、製氷運転において製氷部(16)を冷却する蒸発器(EP)と、前記冷凍回路(30)における蒸発器(EP)から圧縮機(CM)への冷媒の帰還経路に設けられ、冷媒を気液分離するアキュムレータ(40)とを備えた製氷機において、
    製氷運転において前記製氷部(16)に配設された温度測定手段(TA)で測定した該製氷部(16)の温度が設定温度以下の場合に、前記アキュムレータ(40)を加温する加温手段(50,70)を設けた
    ことを特徴とする製氷機。
  2. 前記加温手段(50)は、給水源から供給された水を貯留する貯水タンク(52)と、該貯水タンク(52)から導出して該貯水タンク(52)に戻るように連通する循環配管(54)に設けられ、前記アキュムレータ(40)に熱交換可能に接触する伝熱部(56)と、貯水タンク(52)の水を前記循環配管(54)に循環させる供給ポンプ(58)とを備えた請求項1記載の製氷機。
  3. 前記貯水タンク(52)には、給水源に連通する供給管(60)が接続されると共に該貯水タンク(52)から水を排出する配水管(62)が接続されて、該供給管(60)に介挿された供給弁(61)を開閉して該給水源から水が供給または供給停止される一方、該配水管(62)に介挿された配水弁(63)を開閉して貯水タンク(52)から水を排出または排出停止するよう構成され、
    前記貯水タンク(52)に設けた水温検知手段(TB)が、0℃より高く設定された設定水温まで該貯水タンク(52)に貯留された水が低下したことを検知すると、前記配水弁(63)を開放して貯水タンク(52)から水を排出し、前記供給弁(61)を開放して貯水タンク(52)に給水源から水を供給するよう構成した請求項2記載の製氷機。
  4. 前記冷凍回路(20)における蒸発器(EP)からアキュムレータ(40)への冷媒の流通経路には、他の冷媒の流通経路より熱伝導率が低い材質からなる伝熱抑制部(34)が設けられる請求項1〜3の何れか一項に記載の製氷機。
JP2009070865A 2009-03-23 2009-03-23 製氷機 Expired - Fee Related JP5254098B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070865A JP5254098B2 (ja) 2009-03-23 2009-03-23 製氷機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070865A JP5254098B2 (ja) 2009-03-23 2009-03-23 製氷機

Publications (2)

Publication Number Publication Date
JP2010223491A JP2010223491A (ja) 2010-10-07
JP5254098B2 true JP5254098B2 (ja) 2013-08-07

Family

ID=43040865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070865A Expired - Fee Related JP5254098B2 (ja) 2009-03-23 2009-03-23 製氷機

Country Status (1)

Country Link
JP (1) JP5254098B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110926076A (zh) * 2018-09-18 2020-03-27 浙江冰欧新能源科技有限公司 一种利用热回收脱冰装置的节能制冰机
KR102213188B1 (ko) * 2018-11-20 2021-02-04 이주원 제빙기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754975U (ja) * 1980-09-16 1982-03-31
JPH0820155B2 (ja) * 1987-04-13 1996-03-04 松下冷機株式会社 製氷機
JPH0854164A (ja) * 1994-08-12 1996-02-27 Toshiba Corp 自動製氷装置
JPH0933150A (ja) * 1995-07-19 1997-02-07 Sanyo Electric Co Ltd 製氷装置
JP2003194444A (ja) * 2001-12-26 2003-07-09 Hoshizaki Electric Co Ltd 自動製氷機

Also Published As

Publication number Publication date
JP2010223491A (ja) 2010-10-07

Similar Documents

Publication Publication Date Title
KR20180087436A (ko) 탄화수소 냉매를 위한 이중-회로 증발기를 갖는 제빙기
KR100711653B1 (ko) 냉장고
KR20130020571A (ko) 냉장고
JP5591678B2 (ja) 貯蔵庫
JP5178771B2 (ja) 冷凍冷蔵庫
KR20230044385A (ko) 얼음 정수기
JP4954684B2 (ja) 自動製氷機の運転方法
JP5254098B2 (ja) 製氷機
KR200377788Y1 (ko) 음용수 냉각장치
JP2006010181A (ja) 自動製氷機の除氷運転方法
JP6767097B2 (ja) 製氷機
JP5253944B2 (ja) 自動製氷機
JP5052201B2 (ja) 自動製氷機および自動製氷機の運転方法
JP5448482B2 (ja) 自動製氷機
KR101094804B1 (ko) 정수기
KR101470958B1 (ko) 수공냉 통합식 제빙기
JP7174552B2 (ja) 自動製氷機
JP3412677B2 (ja) 自動製氷機の運転方法
JP2001004255A (ja) 自動製氷機およびその運転方法
JP2006183925A (ja) 自動製氷機の除氷運転方法
JP2024054948A (ja) 製氷機
KR970000500B1 (ko) 축열시스템
KR20150132969A (ko) 제빙기 및 그 제어 방법
KR20200120383A (ko) 급속 제빙기
JP5642471B2 (ja) 自動製氷機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees