JP5253083B2 - OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD - Google Patents
OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD Download PDFInfo
- Publication number
- JP5253083B2 JP5253083B2 JP2008267114A JP2008267114A JP5253083B2 JP 5253083 B2 JP5253083 B2 JP 5253083B2 JP 2008267114 A JP2008267114 A JP 2008267114A JP 2008267114 A JP2008267114 A JP 2008267114A JP 5253083 B2 JP5253083 B2 JP 5253083B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- hole group
- substrate
- optical transmission
- optical waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
- Structure Of Printed Boards (AREA)
Description
本発明は、光信号を伝送するための光伝送基板およびこれを備える光モジュール、ならびに光伝送基板の製造方法に関するものである。 The present invention relates to an optical transmission board for transmitting an optical signal, an optical module including the same, and a method for manufacturing the optical transmission board.
近年、コンピュータの情報処理能力の向上化にともなって、マイクロプロセッサとして使用される半導体大規模集積回路素子(LSI,VLSI)等の集積回路(IC)では、トランジスタの集積度が高められており、ICの動作速度は、クロック周波数でGHzのレベルまで達している。それに伴い、電気素子間を電気的に接続する電気配線についても高密度化および微細化が要求されている。 In recent years, with the improvement of information processing capability of computers, in an integrated circuit (IC) such as a semiconductor large scale integrated circuit element (LSI, VLSI) used as a microprocessor, the degree of integration of transistors has been increased. The operating speed of the IC has reached the GHz level at the clock frequency. Accordingly, there is a demand for higher density and finer electrical wiring that electrically connects electrical elements.
ところが従来から主流である、電気配線のみで信号伝送が行われるプリント配線基板等の従来の配線基板においては、電気信号のクロストークおよび伝搬損失が生じやすいといった問題点があることから、高密度化および微細化の限界が近づいてきているとされ、これに替わるものとして、電気配線の他に光配線が形成された光伝送基板が広く知られるようになっている。 However, conventional wiring boards such as printed wiring boards, which have been the mainstream in the past, and that transmit signals only with electrical wiring, have the problem that electrical signal crosstalk and propagation loss are likely to occur. It is said that the limit of miniaturization is approaching, and as an alternative to this, an optical transmission board in which optical wiring is formed in addition to electric wiring is widely known.
光伝送基板は、それに実装される半導体素子同士の信号のやりとりを、表層または内層に形成された光導波路などの光配線に光信号を伝送することによって行うというものである。光伝送基板には、半導体素子の他、電気信号から光信号または光信号から電気信号に変換する光電変換素子がそれら半導体素子の近くに実装され、光電変換素子により光配線と電気配線との間で信号の変換が行われる。 The optical transmission board performs signal exchange between semiconductor elements mounted on the optical transmission board by transmitting an optical signal to an optical wiring such as an optical waveguide formed on a surface layer or an inner layer. In addition to semiconductor elements, photoelectric conversion elements that convert electrical signals into optical signals or optical signals into electrical signals are mounted near the semiconductor elements on the optical transmission board. The signal is converted at.
このような光伝送基板においては、回路基板の表面などに形成される光導波路のように、光を基板に対して略平行に伝送させるだけでなく、例えば、光を基板の厚み方向にも伝送させることで、光信号についても電気信号と同様に三次元的な伝送をおこなう光伝送技術が知られている。このような光配線は、通常は多数設けられ、光配線の接続部においてはそれら多数の光配線の接続が同時に行われる。 In such an optical transmission board, not only light is transmitted substantially parallel to the board, such as an optical waveguide formed on the surface of a circuit board, but for example, light is also transmitted in the thickness direction of the board. By doing so, an optical transmission technique for performing three-dimensional transmission of an optical signal as well as an electrical signal is known. A large number of such optical wirings are usually provided, and these optical wirings are connected at the same time at the connecting portion of the optical wiring.
例えば、特許文献1には、マザーボード基板上にパッケージ基板(光伝送基板に対応)が実装され、さらにそのパッケージ基板上に実装される光半導体素子と、マザーボード基板上に形成された光導波路Wとを光接続する構成において、パッケージ基板の表裏面を貫通する光伝送路Vとマザーボードに形成された光導波路Wの出射光を光路変換し光伝送路Vに結合する光路変換体と、光伝送路Vの端部に設けられたマイクロレンズとを備える、光伝送基板およびそれを用いた光モジュールの従来例が開示されている(マザーボード基板、パッケージ基板および光半導体素子の組立て体が光モジュールに対応)。
しかしながら、特許文献1に開示されているような従来の光伝送基板では、工業的にはビルドアップ工法等の積層基板が好んで用いられるために、基板厚み方向に光伝送路を設けるには、後加工により基板に貫通孔を設けた後、その貫通孔に光伝送路となる導光部を挿入することとなるが、このような積層基板の厚み方向への光伝送路の作製においては、後加工の精度が光学的に要求される精度にくらべて現実的に高くない傾向にあることから、光伝送路の配置が複数間でばらつきやすいために、複数の光伝送路間で光信号の強度を均一にすることが難しいので光伝送品質が不安定になりやすいという問題点もあった。 However, in the conventional optical transmission substrate as disclosed in Patent Document 1, since a laminated substrate such as a build-up method is preferably used industrially, in order to provide an optical transmission path in the substrate thickness direction, After providing a through hole in the substrate by post-processing, a light guide part that becomes an optical transmission path will be inserted into the through hole, but in the production of such an optical transmission path in the thickness direction of the laminated substrate, Since the accuracy of post-processing tends not to be practically high compared to the optically required accuracy, the arrangement of optical transmission lines is likely to vary among multiple optical signals. Since it is difficult to make the intensity uniform, there is a problem that the optical transmission quality tends to become unstable.
すなわち、特許文献1に開示されるような従来の光伝送基板では、基板厚み方向に複数の光伝送路が形成されたパッケージ基板とマザーボード基板との間で複数の光接続をする場合に、良好な光接続をすることが難しいので安定な光伝送品質を確保しにくいという問題点があった。 That is, the conventional optical transmission board as disclosed in Patent Document 1 is good when a plurality of optical connections are made between a package board having a plurality of optical transmission paths formed in the board thickness direction and the motherboard board. Since it is difficult to make a reliable optical connection, there is a problem that it is difficult to ensure stable optical transmission quality.
本発明は以上のような従来の技術における課題を解決すべく案出されたものであり、その目的は、簡単な構成で基板厚み方向に良好な光接続をすることができ、複数の光伝送路における光伝送品質が均一かつ良好な光伝送基板およびそれを用いた光モジュールならびに光伝送基板の製造方法を提供することにある。 The present invention has been devised to solve the above-described problems in the prior art, and the object is to provide a good optical connection in the thickness direction of the substrate with a simple configuration, and a plurality of optical transmissions. An object of the present invention is to provide an optical transmission board having uniform and good optical transmission quality on the road, an optical module using the same, and a method for manufacturing the optical transmission board.
本発明の光伝送基板は、表裏面を貫通する貫通孔が列状に設けられた第1貫通孔群と、表層または内層に形成される電気配線とを有する基板と、前記表裏面のいずれかまたは両方に前記上下面のいずれかが接合され、上下面を貫通するする貫通孔が列状に設けられた第2貫通孔群であって前記第1貫通孔群のそれぞれの延長部位でありかつ前記第1貫通孔群よりもそれぞれの幅が狭い第2貫通孔群を有する導光部と、前記第1貫通孔群および前記第2貫通孔群のそれぞれの内部に連続して設けられた、感光性材料からなる、複数列の光導波路と、を含む。
An optical transmission board according to the present invention includes a substrate having a first through hole group in which through holes penetrating the front and back surfaces are provided in a row, and an electric wiring formed on a surface layer or an inner layer, and either of the front and back surfaces Or a second through hole group in which either of the upper and lower surfaces are joined to each other, and through holes penetrating the upper and lower surfaces are provided in a row, each extending part of the first through hole group; A light guide unit having a second through hole group that is narrower than the first through hole group, and continuously provided in each of the first through hole group and the second through hole group; A plurality of optical waveguides made of a photosensitive material .
また、本発明の光伝送基板は、前記基板はビルドアップ配線基板であり、前記導光部は前記ビルドアップ配線基板よりも体積の小さい。 In the optical transmission board of the present invention, the board is a build-up wiring board, and the light guide unit has a smaller volume than the build-up wiring board.
また、本発明の光伝送基板は、上記各構成において、前記光導波路は、コア部と、前記コア部の周囲に設けられ、前記コア部よりも屈折率の低い光導波路の第1のクラッド部とを有し、前記光導波路の近傍側の前記基板と前記導光部との隙間を埋める第2のクラッド部をさらに含む。 In the optical transmission board according to the present invention, in each of the above configurations, the optical waveguide is provided around a core portion and the core portion, and the first cladding portion of the optical waveguide having a lower refractive index than the core portion. And a second clad portion that fills the gap between the light guide portion and the substrate near the optical waveguide.
また、本発明の光伝送基板は、上記各構成において、前記導光部の前記接合面の反対面に設けられるガイド穴をさらに含む。 Moreover, the optical transmission board | substrate of this invention further contains the guide hole provided in the surface opposite to the said joint surface of the said light guide part in said each structure.
本発明の光モジュールは、上記各構成のいずれかの光伝送基板と、表層または内層に形成される他の光導波路と、前記他の光導波路の端部に設けられ、光路を変換して前記光伝送基板の前記光導波路の一端に結合する光路変換体とを有する他の光伝送基板と、前記光伝送基板の前記光導波路の他端に結合する光半導体素子と、を含む。 The optical module of the present invention is provided at any one of the above-described optical transmission boards, other optical waveguides formed on a surface layer or an inner layer, and end portions of the other optical waveguides, Another optical transmission board having an optical path changer coupled to one end of the optical waveguide of the optical transmission board, and an optical semiconductor element coupled to the other end of the optical waveguide of the optical transmission board.
本発明の光伝送基板の製造方法は、表層または内層に電気配線が形成された基板に、表裏面を貫通する貫通孔が列状に設けられた第1貫通孔群を形成する工程Aと、上下面を貫通する貫通孔が列状に設けられた第2貫通孔群が前記第1貫通孔群よりも体積の小さい孔径で予め形成された導光部の前記第2貫通孔群と前記第1貫通孔群とが端部同士がそれぞれ重なるように位置あわせして、前記第1貫通孔群が形成された前記基板に前記導光部を接合する工程Bと、前記導光部が接合された前記基板の前記第1貫通孔群および前記第2貫通孔群に光導波路のクラッド部となるクラッド部材を注入する工程Cと、前記クラッド部材が注入された前記第1貫通孔群および前記第2貫通孔群の中央に前記クラッド部よりも径の小さい第3貫通孔群を設け、前記第3貫通孔群に光導波路のコア部となるコア部材を注入する工程Dと、を含む。 The method for manufacturing an optical transmission board according to the present invention includes a step A for forming a first through hole group in which through holes penetrating the front and back surfaces are formed in a row on a substrate having an electrical wiring formed on a surface layer or an inner layer; A second through hole group in which through holes penetrating the upper and lower surfaces are provided in a row is formed in advance with the second through hole group of the light guide section and the second through hole group having a smaller diameter than the first through hole group. The first light-transmitting portion group is aligned so that the end portions overlap each other, and the light guide portion is bonded to the substrate on which the first through-hole group is formed, and the light guide portion is bonded. A step C of injecting a clad member to be a clad portion of an optical waveguide into the first through hole group and the second through hole group of the substrate; the first through hole group into which the clad member is injected; A third through hole group having a diameter smaller than that of the cladding portion is provided at the center of the two through hole group. , And a step D of injecting a core member comprising a core portion of the optical waveguide to the third through-hole group.
本発明の光伝送基板によれば、第1貫通孔群と、前記第1貫通孔群のそれぞれの延長部位でありかつ前記第1貫通孔群よりもそれぞれの幅が狭い第2貫通孔群を有することから、導光部に設けられる第2貫通孔群の各貫通孔の位置精度にくらべて基板に設けられる第1貫通孔群の各貫通孔の位置精度が低くても、第1貫通孔群の各貫通孔の孔径が第2貫通孔群の対応する各貫通孔の孔径よりも大きくなっていることにより、位置精度の誤差を吸収して、それぞれの孔がひと続きの貫通孔を構成するように作用するので、基板の厚み方向に伝送する光導波路を基板表面または基板裏面から延長して他の光伝送基板の光導波路に結合させる場合において、基板側の光導波路と延長部である導光部側の光導波路との位置あわせ誤差による接続損失を複数間で平均的に小さくすることができるので、簡単な構成で基板厚み方向に良好な光接続をすることができ、複数の光伝送路における光伝送品質が均一かつ良好なものとなる。 According to the optical transmission board of the present invention, the first through-hole group and the second through-hole group that is an extended portion of each of the first through-hole groups and each of which is narrower than the first through-hole group. Therefore, even if the position accuracy of each through hole of the first through hole group provided in the substrate is lower than the position accuracy of each through hole of the second through hole group provided in the light guide portion, the first through hole The hole diameter of each through-hole of the group is larger than the hole diameter of each corresponding through-hole of the second through-hole group, so that errors in positional accuracy are absorbed and each hole constitutes a continuous through-hole. When the optical waveguide that transmits in the thickness direction of the substrate is extended from the front surface or the back surface of the substrate and coupled to the optical waveguide of another optical transmission substrate, the optical waveguide on the substrate side and the extension portion Connection loss due to alignment errors with the optical waveguide on the light guide side It is possible to average small between several, substrate thickness direction can be a good optical connection, the optical transmission quality of a plurality of optical transmission paths are uniform and favorable ones with a simple configuration.
また、本発明の光伝送基板によれば、前記基板はビルドアップ配線基板であり、前記導光部は前記ビルドアップ配線基板よりも体積の小さいときには、ビルドアップ配線基板は基板厚み方向への孔加工精度がプレーナな加工精度よりも低いために位置ずれ誤差が生じやすいが、導光部が介在することにより導光部がその誤差を緩和して改善する働きをするとともに、基板よりも導光部のサイズを小さくすることにより射出成形等で精密加工されたものを効率よく量産することができるので、全体として光伝送品質が良好なものを効率良く量産することができるものとなる。 According to the optical transmission board of the present invention, the board is a build-up wiring board, and the build-up wiring board has a hole in the board thickness direction when the light guide portion has a smaller volume than the build-up wiring board. Misalignment errors are likely to occur because the processing accuracy is lower than the planar processing accuracy, but the light guide unit works to mitigate and improve the error by interposing the light guide unit, and also guides light more than the substrate. By reducing the size of the part, it is possible to efficiently mass-produce what has been precisely processed by injection molding or the like, and therefore, it is possible to efficiently mass-produce those having good optical transmission quality as a whole.
また、本発明の光伝送基板によれば、前記光導波路は、コア部と、前記コア部の周囲に設けられ、前記コア部よりも屈折率の低い光導波路の第1のクラッド部とを有し、前記光導波路の近傍側の前記基板と前記導光部との隙間を埋める第2のクラッド部をさらに含むときには、導光部に設けられる第2貫通孔群が正確なテンプレートの役割をしてそれらの中央にコア部が設けられることにより、コア部を精密に配置することが光接続の損失が絶対的に小さくなりかつ複数間で均一なものとなる。また、基板に反り等の変形が若干あっても導光部と基板との間に生じる隙間をクラッド部材が埋めていることにより、光導波路からの光の漏洩をなくすことができ、また温度変動があっても構造的な変形を抑制する働きをするので品質がより安定なものとなる。 According to the optical transmission board of the present invention, the optical waveguide has a core portion and a first cladding portion of the optical waveguide provided around the core portion and having a refractive index lower than that of the core portion. When the second clad portion that fills the gap between the substrate near the optical waveguide and the light guide portion is further included, the second through hole group provided in the light guide portion serves as an accurate template. Since the core portions are provided in the center of them, the precise arrangement of the core portions makes the optical connection loss absolutely small and uniform among a plurality of them. In addition, even if the substrate is slightly warped or otherwise deformed, the clad member fills the gap formed between the light guide unit and the substrate, so that light leakage from the optical waveguide can be eliminated, and temperature fluctuations can be avoided. Even if there is, it works to suppress structural deformation, so the quality becomes more stable.
また、本発明の光伝送基板は、前記導光部の前記接合面の反対面に設けられるガイド穴をさらに含むときには、この光伝送基板を他の光伝送基板に実装し、他の光伝送基板の光導波路との間で光結合する際の案内用の穴として機能するため、他の光伝送基板に光伝送する場合において、簡単な構成で基板厚み方向に良好な光接続をすることができ、複数の光伝送路における光伝送品質が均一かつ良好なものとなる。 Further, when the optical transmission board of the present invention further includes a guide hole provided on the opposite surface of the joint surface of the light guide unit, the optical transmission board is mounted on another optical transmission board, and the other optical transmission board is provided. Since it functions as a guide hole when optically coupling with other optical waveguides, it is possible to make a good optical connection in the substrate thickness direction with a simple configuration when transmitting light to another optical transmission substrate. The optical transmission quality in the plurality of optical transmission lines is uniform and good.
本発明の光モジュールは、上記各構成のいずれかの光伝送基板と、表層または内層に形成される他の光導波路と、前記他の光導波路の端部に設けられ、光路を変換して前記光伝送基板の前記光導波路の一端に結合する光路変換体とを有する他の光伝送基板と、前記光伝送基板の前記光導波路の他端に結合する光半導体素子とを含むことから、導光部に設けられる光導波路が、光伝送基板から他の光伝送基板までを繋ぐ延長部の光導波路として機能し、しかもそれら複数の光導波路における光伝送品質が均一かつ良好なので、基板厚み方向に略平行に配置される複数の光伝送基板間を光接続する光閉じ込め構造を簡単な実装工程で提供することができ、しかもそれら複数の光伝送基板間の光伝送品質を良好なものとすることができるものとなる。 The optical module of the present invention is provided at any one of the above-described optical transmission boards, other optical waveguides formed on a surface layer or an inner layer, and end portions of the other optical waveguides, Since it includes another optical transmission substrate having an optical path changer coupled to one end of the optical waveguide of the optical transmission substrate, and an optical semiconductor element coupled to the other end of the optical waveguide of the optical transmission substrate, the light guide The optical waveguide provided in the section functions as an optical waveguide of the extension that connects the optical transmission board to other optical transmission boards, and the optical transmission quality in these multiple optical waveguides is uniform and good, so it is almost in the thickness direction of the board. It is possible to provide an optical confinement structure for optically connecting a plurality of optical transmission boards arranged in parallel with a simple mounting process, and to improve the optical transmission quality between the plurality of optical transmission boards. Can be
また、本発明の光モジュールは、前記他の光伝送基板は、前記光路変換体を囲む領域に金属膜が形成されているときには、光伝送基板を他の光伝送基板に実装する際に金属膜が視認性の良いマーカとしての機能をはたすため、それら光伝送基板間の光接続を行いながら実装することが簡単にできるものとなる。 In the optical module of the present invention, when the metal film is formed on the other optical transmission board in a region surrounding the optical path changer, the metal film is mounted when the optical transmission board is mounted on the other optical transmission board. However, since it functions as a marker with good visibility, it can be easily mounted while optically connecting these optical transmission boards.
本発明の光伝送基板の製造方法は、第1貫通孔群を形成する工程Aと、第2貫通孔群が前記第1貫通孔群よりも体積の小さい孔径で予め形成された導光部の前記第2貫通孔群と前記第1貫通孔群とが端部同士で重なるように位置あわせして、前記第1貫通孔群が形成された前記基板に前記導光部を接合する工程Bと、前記導光部が接合された前記基板の前記第1貫通孔群および前記第2貫通孔群に光導波路のクラッド部となるクラッド部材を注入する工程Cと、前記クラッド部材が注入された前記第1貫通孔群および前記第2貫通孔群の中央に前記クラッド部よりも径の小さい第3貫通孔群を設け、前記第3貫通孔群に光導波路のコア部となるコア部材を注入する工程Dと、を含むことから、精密に孔が形成された第2貫通孔群を基準に光導波路のクラッド部およびコア部が形成されるため、第1貫通孔群の孔の位置精度が低くても基板および導光部を貫通する光導波路を比較的精度良く作製することができるので、基板の製造過程を複雑化することなく全体として簡単な工程で比較的精度良く安定に製造することができる工程を提供することができるものとなる。 The method for manufacturing an optical transmission board according to the present invention includes a step A for forming a first through hole group, and a light guide unit in which the second through hole group is formed in advance with a smaller hole diameter than the first through hole group. Aligning the second through-hole group and the first through-hole group so as to overlap each other, and joining the light guide unit to the substrate on which the first through-hole group is formed; A step C of injecting a clad member to be a clad portion of the optical waveguide into the first through hole group and the second through hole group of the substrate to which the light guide unit is bonded; and the clad member is injected. A third through hole group having a diameter smaller than that of the clad portion is provided at the center of the first through hole group and the second through hole group, and a core member serving as a core portion of the optical waveguide is injected into the third through hole group. Step D is included, so that the light is guided on the basis of the second through hole group in which the holes are precisely formed. Since the clad portion and the core portion of the path are formed, the optical waveguide that penetrates the substrate and the light guide portion can be manufactured with relatively high accuracy even if the positional accuracy of the holes of the first through hole group is low. Thus, it is possible to provide a process that can be stably manufactured with relatively high accuracy by a simple process as a whole without complicating the manufacturing process.
以下、本発明の光伝送基板について、図面を参照しつつ説明する。 The optical transmission board of the present invention will be described below with reference to the drawings.
図1は、本発明の光伝送基板としてのパッケージ基板の実施の形態の一例を示す部分断面図である。図2は、図1に示すパッケージ基板における複数の光導波路を含む領域を示す断面図である。図3は、本発明の光モジュールの実施の形態の一例を示す斜視図であり、(a)は光モジュールの全体斜視図、(b)は光モジュールを構成するパッケージ基板を、他の光伝送基板であるボード基板上に実装する前の様子を示す斜視図および(c)はパッケージ基板をボード基板上に実装したときの様子を示す拡大斜視図である。図4は、嵌合ピンを有するパッケージ基板を示す拡大斜視図である。図5は導光部を示す拡大斜視図である。 FIG. 1 is a partial cross-sectional view showing an example of an embodiment of a package substrate as an optical transmission substrate of the present invention. 2 is a cross-sectional view showing a region including a plurality of optical waveguides in the package substrate shown in FIG. FIG. 3 is a perspective view showing an example of an embodiment of the optical module of the present invention, where (a) is an overall perspective view of the optical module, and (b) is a package substrate constituting the optical module, and other optical transmissions. The perspective view which shows a mode before mounting on the board board | substrate which is a board | substrate, (c) is an expansion perspective view which shows a mode when a package board | substrate is mounted on a board board | substrate. FIG. 4 is an enlarged perspective view showing a package substrate having fitting pins. FIG. 5 is an enlarged perspective view showing the light guide.
図1〜5において、1は基板、11は表面、12は裏面、13は第1貫通孔群、2は光導波路、21はコア部、22は第1のクラッド部、23は第2のクラッド部、24は他の光導波路、3は突出部、31は光経路、32は突出部のクラッド部、33は縁部、4は導光部、41は上面、42は下面、43は第2貫通孔群、5は電気配線、6は光伝送基板としてのパッケージ基板、7は光半導体素子、8は接合部、および9は他の光伝送基板としてのボード基板、10は光路変換体、Mは光モジュールである。 1 to 5, 1 is a substrate, 11 is a front surface, 12 is a back surface, 13 is a first through hole group, 2 is an optical waveguide, 21 is a core portion, 22 is a first cladding portion, and 23 is a second cladding. , 24 is another optical waveguide, 3 is a protruding portion, 31 is an optical path, 32 is a cladding portion of the protruding portion, 33 is an edge portion, 4 is a light guide portion, 41 is an upper surface, 42 is a lower surface, and 43 is a second Through hole group, 5 is electrical wiring, 6 is a package substrate as an optical transmission substrate, 7 is an optical semiconductor element, 8 is a joint portion, 9 is a board substrate as another optical transmission substrate, 10 is an optical path changer, M Is an optical module.
図1および図2に断面図で示す本発明の光伝送基板としてのパッケージ基板6の実施の形態の一例は、表面11から裏面12にかけて貫通する貫通孔が列状に設けられた第1貫通孔群13と、表層または内層(この例において表層)に形成される電気配線5とを有する基板1と、上面41から下面42にかけて貫通する貫通孔が列状に設けられた第2貫通孔群43であって第1貫通孔群13のそれぞれの延長部位でありかつ第1貫通孔群13のそれぞれの幅w1,w2,w3よりも狭い幅d1,d2,d3である第2貫通孔群43を有し、表面11および裏面12のいずれかまたは両方に上面41および下面42のいずれかが接合される導光部4と、第1貫通孔群13および第2貫通孔群43の内部に連続して設けられた複数列の光導波路2とを含む構成である。なお、貫通孔の幅は、例えば、貫通孔が円柱状であるときは、その円の直径をいう。 An example of an embodiment of a package substrate 6 as an optical transmission substrate of the present invention shown in cross-sectional views in FIGS. 1 and 2 is a first through hole in which through holes penetrating from the front surface 11 to the back surface 12 are provided in a row. A substrate 1 having a group 13 and an electric wiring 5 formed on a surface layer or an inner layer (surface layer in this example), and a second through hole group 43 in which through holes penetrating from the upper surface 41 to the lower surface 42 are provided in a row. The second through-hole groups 43 that are the extended portions of the first through-hole group 13 and have the widths d1, d2, and d3 narrower than the respective widths w1, w2, and w3 of the first through-hole group 13 are The light guide part 4 to which either the upper surface 41 or the lower surface 42 is joined to either or both of the front surface 11 and the rear surface 12, and the first through-hole group 13 and the second through-hole group 43. Multiple rows of optical waveguides 2 It is configured to include a. Note that the width of the through hole refers to the diameter of the circle when the through hole is cylindrical, for example.
図1および図2に示すパッケージ基板6は、好ましい構成として、基板1はビルドアップ配線基板とし、導光部4は基板1よりも小さくする。ビルドアップ配線基板は、複数層から成る積層体で構成され、表層や内層に電気回路パターンが印刷され、各層間は必要な部位においてスルーホール導体により電気的に接続される(図示せず)。光導波路2は、コア部21と、コア部21の周囲に設けられ、コア部21よりも屈折率の低い光導波路2のクラッド部22とを有し、光導波路2の近傍側の基板1と導光部4との隙間を埋めるクラッド部23をさらに含むものとする。導光部4の接合面の反対面(この例において下面42)にガイド穴(図1、図2おいては図示せず)を設ける。基板1において、導光部4が接合される面の反対面、すなわち表面11には突出部3が設けられ、突出部3にも光導波路2が形成される。 The package substrate 6 shown in FIGS. 1 and 2 has a preferred configuration in which the substrate 1 is a build-up wiring substrate and the light guide portion 4 is smaller than the substrate 1. The build-up wiring board is composed of a laminate composed of a plurality of layers, and an electric circuit pattern is printed on a surface layer or an inner layer, and each layer is electrically connected by a through-hole conductor at a necessary portion (not shown). The optical waveguide 2 includes a core portion 21 and a cladding portion 22 of the optical waveguide 2 that is provided around the core portion 21 and has a refractive index lower than that of the core portion 21. The clad part 23 which fills the gap with the light guide part 4 is further included. A guide hole (not shown in FIGS. 1 and 2) is provided on the opposite surface (the lower surface 42 in this example) of the light guide 4. In the substrate 1, the protruding portion 3 is provided on the surface 11 opposite to the surface to which the light guide portion 4 is joined, that is, the surface 11, and the optical waveguide 2 is also formed on the protruding portion 3.
図1および図2に示すパッケージ基板6の製造方法は、次の通りとすればよい。 The manufacturing method of the package substrate 6 shown in FIGS. 1 and 2 may be as follows.
最初の工程Aにおいて、表層に電気配線5が形成された基板1に、表面11から裏面12にかけて貫通する貫通孔が列状に設けられた第1貫通孔群13を形成する。 In the first step A, the first through-hole group 13 is formed in the substrate 1 having the electrical wiring 5 formed on the surface layer, and through-holes penetrating from the front surface 11 to the back surface 12 are provided in a row.
次の工程Bにおいて、上面41から下面42にかけて貫通する貫通孔が列状に設けられた第2貫通孔群43が第1貫通孔群13よりも体積の小さい孔径で予め形成された導光部4の第2貫通孔群43と第1貫通孔群13とが端部同士で重なるように位置あわせして、第1貫通孔群13が形成された基板1に導光部4を接合する。 In the next step B, the second through hole group 43 in which through holes penetrating from the upper surface 41 to the lower surface 42 are provided in a row is formed in advance with a hole diameter having a smaller volume than the first through hole group 13. The second through-hole group 43 and the first through-hole group 13 are aligned so that the end portions overlap each other, and the light guide unit 4 is joined to the substrate 1 on which the first through-hole group 13 is formed.
次の工程Cにおいて、導光部4が接合された基板1の第1貫通孔群13および第2貫通孔群43に光導波路2のクラッド部22となるクラッド部材を注入し硬化する。 In the next step C, a clad member to be the clad part 22 of the optical waveguide 2 is injected into the first through hole group 13 and the second through hole group 43 of the substrate 1 to which the light guide part 4 is bonded, and cured.
次の工程Dにおいて、クラッド部材が注入された第1貫通孔群13および第2貫通孔群43の中央にクラッド部22よりも径の小さい第3貫通孔群を設け、第3貫通孔群に光導波路2のコア部21となるコア部材を注入し硬化する。 In the next step D, a third through hole group having a diameter smaller than that of the clad portion 22 is provided at the center of the first through hole group 13 and the second through hole group 43 into which the clad member has been injected. A core member to be the core portion 21 of the optical waveguide 2 is injected and cured.
図1および図2に示す、パッケージ基板6によれば、上記構成にすることから、導光部4に設けられる第2貫通孔群43の各貫通孔の位置精度にくらべて基板1に設けられる第1貫通孔群13の各貫通孔の位置精度が低くても、第1貫通孔群13の各貫通孔の孔径w1,w2,w3が第2貫通孔群43の対応する各貫通孔の孔径d1,d2,d3よりも大きくなっていることにより、位置精度の誤差を吸収して、それぞれの孔がひと続きの貫通孔を構成するように作用するので、基板1の厚み方向に伝送する光導波路2を基板表面11または基板裏面12から延長して他の光伝送基板(図3におけるボード基板9)の光導波路に結合させる場合において、基板1側の光導波路2と延長部である導光部4側の光導波路2との位置あわせ誤差による接続損失を複数間で平均的に小さくすることができるので、簡単な構成で基板1の厚み方向に良好な光接続をすることができ、複数の光伝送路における光伝送品質が均一かつ良好なものとなる。 Since the package substrate 6 shown in FIGS. 1 and 2 has the above-described configuration, the package substrate 6 is provided on the substrate 1 in comparison with the positional accuracy of each through hole of the second through hole group 43 provided in the light guide unit 4. Even if the position accuracy of each through hole of the first through hole group 13 is low, the hole diameters w1, w2, and w3 of each through hole of the first through hole group 13 are the hole diameters of the corresponding through holes of the second through hole group 43. Since it is larger than d1, d2, and d3, it absorbs errors in positional accuracy and acts so that each hole constitutes a continuous through hole. In the case where the waveguide 2 is extended from the substrate front surface 11 or the substrate back surface 12 and coupled to the optical waveguide of another optical transmission substrate (board substrate 9 in FIG. 3), the optical waveguide 2 on the substrate 1 side and the light guide that is an extension portion. Due to an alignment error with the optical waveguide 2 on the side of the section 4 Since the connection loss can be reduced on average among a plurality of units, a good optical connection can be made in the thickness direction of the substrate 1 with a simple configuration, and the optical transmission quality in the plurality of optical transmission lines is uniform and good. It will be a thing.
また、ビルドアップ配線基板は基板厚み方向への孔加工精度がプレーナな加工精度よりも低いために位置ずれ誤差が生じやすいが、導光部4が介在することにより導光部4がその誤差を緩和して改善する働きをするとともに、導光部4は基板1よりもサイズを小さくすることにより射出成形等で精密加工されたものを効率よく量産することができるので、全体として光伝送品質が良好なものを効率良く量産することができるものとなる。 In addition, since the build-up wiring board has a lower hole processing accuracy in the substrate thickness direction than the planar processing accuracy, a misalignment error is likely to occur. The light guide 4 can be mass-produced efficiently by means of injection molding or the like by reducing the size of the light guide 4 while reducing the size of the substrate 1, so that the optical transmission quality as a whole is improved. Good products can be mass-produced efficiently.
また、導光部4に設けられる第2貫通孔群43が正確なテンプレートの役割をしてそれらの中央にコア部21が設けられることにより、コア部21を精密に配置することができるので、光接続の損失が絶対的に小さくなりかつ複数間で均一なものとなる。また、基板にそり等の変形が若干あっても導光部4と基板1との間に生じる隙間をクラッド部材が埋められてクラッド部23が設けられることにより、光導波路2からの光の漏洩をなくすことができ、また温度変動があっても構造的な変形を抑制する働きをするので品質がより安定なものとなる。 In addition, since the second through hole group 43 provided in the light guide part 4 serves as an accurate template and the core part 21 is provided in the center thereof, the core part 21 can be precisely arranged. The optical connection loss is absolutely small and uniform among the plurality. Further, even if the substrate is slightly warped or the like, the gap formed between the light guide portion 4 and the substrate 1 is filled with the clad member and the clad portion 23 is provided, so that light leaks from the optical waveguide 2. In addition, even if there is a temperature fluctuation, it functions to suppress structural deformation, so that the quality becomes more stable.
また、パッケージ基板6をボード基板9に実装し(図3および後記を参照)、ボード基板9の光導波路との間で光結合する際の案内用の穴として機能するため、ボード基板9に光伝送する場合において、簡単な構成で基板1の厚み方向に良好な光接続をすることができ、複数の光導波路における光伝送品質が均一かつ良好なものとなる。 Further, the package substrate 6 is mounted on the board substrate 9 (see FIG. 3 and the following description), and functions as a guide hole when optically coupling with the optical waveguide of the board substrate 9. In the case of transmission, a good optical connection can be made in the thickness direction of the substrate 1 with a simple configuration, and the optical transmission quality in the plurality of optical waveguides is uniform and good.
また、上記構成の製造方法をとることにより、精密に孔が形成された第2貫通孔群43を基準に光導波路2のクラッド部22およびコア部21が形成されるため、第1貫通孔群13の孔の位置精度が低くても基板1および導光部4を貫通する光導波路2を比較的精度良く作製することができるので、基板1の製造過程を複雑化することなく全体として簡単な工程で比較的精度良く安定に製造することができる工程を提供することができるものとなる。 Moreover, since the clad part 22 and the core part 21 of the optical waveguide 2 are formed on the basis of the second through hole group 43 in which the holes are precisely formed by employing the manufacturing method having the above configuration, the first through hole group Since the optical waveguide 2 penetrating the substrate 1 and the light guide portion 4 can be manufactured with relatively high accuracy even if the position accuracy of the holes 13 is low, the manufacturing process of the substrate 1 is simple as a whole without complicating the manufacturing process. It is possible to provide a process that can be stably manufactured with relatively high accuracy in the process.
図1および図2に示すパッケージ基板6は、さらに詳細には、各構成要素を以下のようにするとよい。 In more detail, the package substrate 6 shown in FIGS. 1 and 2 may be configured as follows.
(基板1)
基板1としては、例えば、セラミックス、ガラスエポキシ樹脂などの樹脂材料からなるプリント基板を用いればよい。なかでも、光導波路2や突出部3を形成する樹脂との相性という面から、光導波路2や突出部3を形成する樹脂と同じ樹脂基板を用いるのが好ましく、機械的強度が大きく、熱による基板の反りに対して効果的な防止が可能となるため、両面に同じ厚さの樹脂絶縁層を形成した対称層構造を有する基板が望ましい。基板1の厚みとしては、0.4〜2mmとすることができる。
(Substrate 1)
As the substrate 1, for example, a printed substrate made of a resin material such as ceramics or glass epoxy resin may be used. Especially, it is preferable to use the same resin substrate as the resin that forms the optical waveguide 2 and the protruding portion 3 from the viewpoint of compatibility with the resin that forms the optical waveguide 2 and the protruding portion 3. A substrate having a symmetric layer structure in which a resin insulating layer having the same thickness is formed on both sides is desirable because the substrate can be effectively prevented from warping. The thickness of the substrate 1 can be 0.4 to 2 mm.
また、基板1として、多層配線基板を用いるのが好ましい。ここで、多層配線基板とは、電気配線層と絶縁層とが交互に複数積層されたものであればよく、例えば、コア基板と、配線基板表裏面側に形成されたビルドアップ層とからなる基板も含まれる。基板1は、外部との電気的接続を行うための接続部位(例えば、素子実装用パッド、ソルダレジスト層など)を有することが好ましい。なお、基板1において、基板1の表面11とは突出部3が設けられる側を、基板1の裏面12とは突出部3が設けられる側の反対側の主面をいう。 In addition, it is preferable to use a multilayer wiring board as the substrate 1. Here, the multilayer wiring board may be any one in which a plurality of electrical wiring layers and insulating layers are alternately laminated, and includes, for example, a core board and a buildup layer formed on the front and back sides of the wiring board. A substrate is also included. The substrate 1 preferably has a connection portion (for example, an element mounting pad, a solder resist layer, etc.) for electrical connection with the outside. In addition, in the board | substrate 1, the surface 11 of the board | substrate 1 means the side in which the protrusion part 3 is provided, and the back surface 12 of the board | substrate 1 means the main surface on the opposite side to the side in which the protrusion part 3 is provided.
(光導波路2)
光導波路2は、基板1、突出部3および導光部4の内部に設けられ、表面11から下面42まで光を伝送させる部位を構成する。光導波路2は、光伝送方向に対する断面が円形を有する。その場合、光導波路2の直径は約50〜200μmである。
(Optical waveguide 2)
The optical waveguide 2 is provided inside the substrate 1, the projecting portion 3, and the light guide portion 4, and constitutes a portion that transmits light from the front surface 11 to the lower surface 42. The optical waveguide 2 has a circular cross section with respect to the optical transmission direction. In that case, the diameter of the optical waveguide 2 is about 50 to 200 μm.
光導波路2は、中心部に屈折率の高いコア部21と、コア部21の周囲に設けられ、コア部21よりも屈折率の低いクラッド部22と、を有することが好ましい。このような構造をとることにより、光導波路2内において十分な光閉じ込め効果が得られる。 The optical waveguide 2 preferably includes a core portion 21 having a high refractive index at the center and a clad portion 22 provided around the core portion 21 and having a refractive index lower than that of the core portion 21. By taking such a structure, a sufficient light confinement effect can be obtained in the optical waveguide 2.
なお、コア部21の直径は約35〜100μmである。 In addition, the diameter of the core part 21 is about 35-100 micrometers.
光導波路2としては、光を照射すると屈折率が低下するフォトブリーチング現象を生じるポリシラン、あるいは光を照射した部分が現像により除去できる感光性のアクリル系樹脂、エポキシ樹脂等を用いて形成することができる。例えば、フォトブリーチング現象を利用する場合は、基板1に貫通孔を設けたのち、貫通孔にポリシランを充填し、加熱硬化させた後、フォトマスク(光伝送孔より小さい径の円形パターンの遮光部を具備する)を介して紫外光を照射して紫外光照射部の屈折率を低下させ、最後にポストベークを行うことにより、コア部21およびクラッド部22を有する光導波路2を形成する。この方法では、コアとクラッドの屈折率差を得るために露光部と未露光部に分ける必要があるが、露光する厚みが厚いと露光時の光が広がるため充分な屈折率差を得ることが難しくなる。 The optical waveguide 2 is formed using polysilane which causes a photo bleaching phenomenon in which the refractive index decreases when irradiated with light, or a photosensitive acrylic resin, epoxy resin, or the like that can be removed by developing the irradiated portion. Can do. For example, when the photo bleaching phenomenon is used, a through hole is provided in the substrate 1, and after filling the through hole with polysilane and heat-curing, a photomask (light shielding of a circular pattern having a smaller diameter than the light transmission hole) is performed. The optical waveguide 2 having the core portion 21 and the clad portion 22 is formed by lowering the refractive index of the ultraviolet light irradiation portion and finally performing post-baking. In this method, in order to obtain the refractive index difference between the core and the clad, it is necessary to divide into an exposed part and an unexposed part. However, if the exposure thickness is thick, the light at the time of exposure spreads, so that a sufficient refractive index difference can be obtained. It becomes difficult.
紫外線硬化型のアクリル系樹脂、エポキシ系樹脂などの感光性材料を用いる場合は、基板1に貫通孔を設けたのち、クラッドとなる感光性ポリマー材料を導光部4の下面42側から充填する。基板1上で光導波路2の上方には、光半導体素子を実装することができるが、その際、素子実装部のソルダレジスト開口部(不図示)を材料充填時の流れ出し防止ダムとして使用することにより、充填樹脂が広範囲に基板上に広がることを防止することが出来る。その後、フォトマスクを使用して縁部33として必要な面積を露光し、プレベーク・現像・ポストベークを行って硬化させる。その後、ドリル、レーザなどにより穿孔した部分(光伝送孔中心部)に、最初に充填した材料より屈折率の高いコア材料をクラッドと同じく基板1の裏面12側から充填する。その際も、素子実装部のソルダレジスト開口部(不図示)を材料充填時の流れ出し防止ダムとして使用することにより、充填樹脂が広範囲に基板上に広がることを防止することが出来る。その後、フォトマスクを使用して必要な面積を露光し、プレベーク・現像・ポストベークを行って硬化させる。コア材料をコア部21や光経路31となる光伝送孔中心部にのみ限って充填できる場合は上述のマスク露光等は必要としないが、非常に小さな孔に充填する必要があるため、必要な箇所のみを露光して作製しやすいという利点がある。最後に突出部として必要な厚みとなるように表面を研磨する。以上により、コア部21およびクラッド部22を有する光導波路2と、光経路31と突出部クラッド32を有する突出部3を一度に形成することができる。 When a photosensitive material such as an ultraviolet curable acrylic resin or epoxy resin is used, a through hole is provided in the substrate 1 and then the photosensitive polymer material to be the cladding is filled from the lower surface 42 side of the light guide 4. . An optical semiconductor element can be mounted on the substrate 1 and above the optical waveguide 2. At this time, a solder resist opening (not shown) of the element mounting part is used as a flow-out prevention dam when filling the material. Thus, it is possible to prevent the filling resin from spreading on the substrate in a wide range. Thereafter, a necessary area as the edge portion 33 is exposed using a photomask, and cured by performing pre-baking, developing, and post-baking. After that, a core material having a higher refractive index than that of the initially filled material is filled from the back surface 12 side of the substrate 1 into the portion drilled by a drill, a laser, or the like (the center portion of the light transmission hole). Also in this case, by using a solder resist opening (not shown) of the element mounting portion as a flow-out prevention dam at the time of material filling, it is possible to prevent the filling resin from spreading on the substrate in a wide range. Thereafter, a necessary area is exposed using a photomask and cured by pre-baking / developing / post-baking. When the core material can be filled only in the core portion 21 and the optical transmission hole central portion to be the optical path 31, the above-described mask exposure is not necessary, but it is necessary to fill a very small hole. There is an advantage that it is easy to produce by exposing only a portion. Finally, the surface is polished so as to have a thickness necessary for the protruding portion. As described above, the optical waveguide 2 having the core portion 21 and the cladding portion 22 and the protruding portion 3 having the optical path 31 and the protruding portion cladding 32 can be formed at a time.
光伝送路がエポキシ樹脂から構成され、基板1としてガラスエポキシ基板を用いるような、ともにエポキシ系材料(エポキシ基を有する高分子材料をいう)を用いる場合、基板1と光伝送路とが、エポキシ基同士で水素結合することから、密着性が良く、剥がれなどの不良が抑制される。 When the optical transmission path is made of an epoxy resin and a glass epoxy substrate is used as the substrate 1 and both are made of an epoxy material (referred to as a polymer material having an epoxy group), the substrate 1 and the optical transmission path are made of epoxy. Since hydrogen bonding is performed between groups, adhesion is good and defects such as peeling are suppressed.
前述の貫通孔の形成には、通常のプリント基板の穿孔工程に使用されるドリル、レーザなどが好適に使用される。そして、一方の主面から他方の主面まで基板1を貫通させることにより貫通孔は形成される。なお、基板1に設ける貫通孔は断面を円形とすることが望ましく、直径は50〜200μmとすることが望ましい。 For the formation of the above-described through holes, a drill, a laser, or the like used in a normal printed circuit board drilling process is preferably used. And a through-hole is formed by letting the board | substrate 1 penetrate from one main surface to the other main surface. The through hole provided in the substrate 1 preferably has a circular cross section, and the diameter is preferably 50 to 200 μm.
(突出部3)
突出部3は、図1および2に示すように、基板1上に突出するように設けられる。突出部3の厚みは10〜100μmである。
(Protrusion 3)
As shown in FIGS. 1 and 2, the protrusion 3 is provided so as to protrude on the substrate 1. The thickness of the protrusion part 3 is 10-100 micrometers.
突出部3は、基板1から突出しているため視認性が良く外部の部品を実装する際にマーカとしての役割を果たす。突出部3は、フォトプロセスによって高精度に形成することができるが、その場合、嵌合部品としての役割も果たし、実装位置決めを行う事が出来るので調芯を行うこと無く高効率な光伝送を可能とする。また、実装時に光学経路間の距離を短縮することも可能であり、光学損失を低減させる事が出来る。凸部の高さが十分にある場合には光学部品間を結合させることも可能であるし、隙間を有する場合も素子実装後にアンダーフィルを行う際の厚みが薄いため気泡の巻き込みや異物混入などを防ぐこともできる。 Since the protruding portion 3 protrudes from the substrate 1, it has good visibility and serves as a marker when mounting external components. The protruding portion 3 can be formed with high accuracy by a photo process. In this case, the protruding portion 3 also serves as a fitting part and can perform mounting positioning so that highly efficient optical transmission can be performed without alignment. Make it possible. Further, the distance between the optical paths can be shortened at the time of mounting, and the optical loss can be reduced. If the height of the convex part is sufficient, it is possible to connect the optical parts, and even if there is a gap, the thickness when the underfill is performed after mounting the element is thin, so bubbles are involved or foreign matter is mixed in. Can also be prevented.
突出部3は、光経路31を有する。光経路31は、光伝送基板6の外部と光導波路2とを光学的に結合する。光経路31は、光導波路2と同様に光の伝送が可能な透明樹脂によって構成されている。材料は光導波路2と同様のものから構成される。光経路31は突出部3の屈折率分布のうち、屈折率の高い部位(いわゆるコア部)をいう。突出部3のうち光経路31以外の部位は、光経路31の屈折率よりも低い屈折率を有するクラッド部32となる。図1および図2においては、光経路31以外の部位はクラッド部32である。 The protrusion 3 has an optical path 31. The optical path 31 optically couples the outside of the optical transmission board 6 and the optical waveguide 2. The optical path 31 is made of a transparent resin capable of transmitting light in the same manner as the optical waveguide 2. The material is the same as that of the optical waveguide 2. The optical path 31 refers to a portion having a high refractive index (so-called core portion) in the refractive index distribution of the protruding portion 3. A portion of the protruding portion 3 other than the optical path 31 is a clad portion 32 having a refractive index lower than the refractive index of the optical path 31. In FIGS. 1 and 2, the part other than the optical path 31 is a clad portion 32.
なお、光経路31の直径は約35〜100μmである。 The diameter of the optical path 31 is about 35 to 100 μm.
光経路31は、光導波路2のコア部21と対応するように設けられる。具体的には、光伝送基板6を、上面から透視した場合、光経路31と光導波路2のコア部21とが重なりあうように設けられる。また、光経路31の直径とコア部21との直径とは等しいことが好ましい。 The optical path 31 is provided so as to correspond to the core portion 21 of the optical waveguide 2. Specifically, when the optical transmission board 6 is seen through from above, the optical path 31 and the core portion 21 of the optical waveguide 2 are provided so as to overlap each other. Moreover, it is preferable that the diameter of the optical path 31 and the diameter of the core part 21 are equal.
突出部3は、縁部33を有する。縁部33とは、突出部3において基板1の第2の主面12と接している部位をいう。縁部33は、例えば、フォトリソグラフィによって基板1上に設けられる。特に縁部33としてエポキシ樹脂を用い、基板1としてガラスエポキシ基板を用いるような、ともにエポキシ系材料(エポキシ基を有する高分子材料をいう)を用いる場合、基板1と縁部33とが、エポキシ基同士で水素結合することから、密着性が良く、剥がれなどの不良が抑制される。このように、縁部33が基板1と密着していることにより、縁部33が、光導波路2と突出部3とから構成される光伝送路を保持するために、長期にわたり使用しても、基板1から光伝送路が剥がれにくくなり、長期にわたって低損失な光伝送をおこなうことができる。 The protrusion 3 has an edge 33. The edge portion 33 refers to a portion in contact with the second main surface 12 of the substrate 1 in the protruding portion 3. The edge portion 33 is provided on the substrate 1 by, for example, photolithography. In particular, when an epoxy material (referred to as a polymer material having an epoxy group) is used, such as an epoxy resin as the edge 33 and a glass epoxy substrate as the substrate 1, the substrate 1 and the edge 33 are made of epoxy. Since hydrogen bonding is performed between groups, adhesion is good and defects such as peeling are suppressed. As described above, since the edge 33 is in close contact with the substrate 1, the edge 33 can be used over a long period of time in order to hold the optical transmission path composed of the optical waveguide 2 and the protrusion 3. The optical transmission line is not easily peeled off from the substrate 1, and low-loss optical transmission can be performed over a long period of time.
縁部33の長さは約1〜1000μmである。なお、縁部33の長さとは、光導波路2の外周縁部と第2の主面12との境界から縁部33の端までの長さをいう(図1のaの長さ)。 The length of the edge 33 is about 1-1000 μm. In addition, the length of the edge part 33 means the length from the boundary between the outer peripheral edge part of the optical waveguide 2 and the second main surface 12 to the end of the edge part 33 (the length of a in FIG. 1).
次に、図3に示す本発明の光モジュールの実施の形態の一例としての光モジュールMは、図1および図2に示すパッケージ基板6と、表層または内層に略平行に形成される光導波路24と、光導波路24の端部に設けられ、光路を約90度変換してパッケージ基板6の光導波路2の一端に結合する光路変換体10とを有するボード基板9と、パッケージ基板6の光導波路2の他端に結合する光半導体素子7とを含む構成である。 Next, an optical module M as an example of an embodiment of the optical module of the present invention shown in FIG. 3 is an optical waveguide 24 formed substantially parallel to the surface layer or the inner layer of the package substrate 6 shown in FIGS. And a board substrate 9 having an optical path changer 10 provided at an end of the optical waveguide 24 and converting the optical path by about 90 degrees and coupled to one end of the optical waveguide 2 of the package substrate 6, and the optical waveguide of the package substrate 6 2 and an optical semiconductor element 7 coupled to the other end.
また、上記構成において、好ましい構成として光路変換体10を囲む領域に金(Au)等の金属膜が形成される。なお、前記金属膜および光路変換体を上面視した場合、金属膜の領域が長円状であることが好ましい。このような形状であることで、領域のかどに応力が集中することを低減できるため、金属膜が光路変換体10から剥がれにくくなる。 In the above configuration, a metal film such as gold (Au) is formed in a region surrounding the optical path changer 10 as a preferable configuration. In addition, when the metal film and the optical path changer are viewed from above, the metal film region is preferably oval. With such a shape, it is possible to reduce the concentration of stress at the corners of the region, so that the metal film is difficult to peel off from the optical path changer 10.
図3に示す光モジュールによれば、導光部4に設けられる光導波路2が、パッケージ基板6からボード基板9までを繋ぐ延長部の光導波路2として機能し、しかもそれら複数の光導波路2における光伝送品質が均一かつ良好なので、基板1の厚み方向に略平行に配置されるパッケージ基板6およびボード基板9との間を光接続する光閉じ込め構造を簡単な実装工程で提供することができ、しかもパッケージ基板6およびボード基板9の間の光伝送品質を良好なものとすることができるものとなる。 According to the optical module shown in FIG. 3, the optical waveguide 2 provided in the light guide unit 4 functions as the optical waveguide 2 of the extension part that connects the package substrate 6 to the board substrate 9. Since the optical transmission quality is uniform and good, it is possible to provide an optical confinement structure for optically connecting between the package substrate 6 and the board substrate 9 arranged substantially parallel to the thickness direction of the substrate 1 by a simple mounting process. In addition, the optical transmission quality between the package substrate 6 and the board substrate 9 can be improved.
また、パッケージ基板6をボード基板9に実装する際に金属膜は視認性の良いマーカとしての機能をはたすため、それらパッケージ基板6をボード基板9に対して光接続を行いながら実装することが簡単にできるものとなる。 Further, when the package substrate 6 is mounted on the board substrate 9, the metal film functions as a marker with good visibility, so that it is easy to mount the package substrate 6 while optically connecting to the board substrate 9. It can be made.
したがって、本発明によれば、簡単な構成で基板厚み方向に良好な光接続をすることができ、複数の光伝送路における光伝送品質が均一かつ良好な光伝送基板およびそれを用いた光モジュールならびに光伝送基板の製造方法を提供することができる。 Therefore, according to the present invention, it is possible to make a good optical connection in the substrate thickness direction with a simple configuration, and an optical transmission board having uniform and good optical transmission quality in a plurality of optical transmission lines, and an optical module using the same In addition, a method for manufacturing an optical transmission board can be provided.
(光伝送基板(パッケージ基板6)の作製)
基板1として、ビルドアップ基板であるCPCore(登録商標)を使用した。基板1の表面に素子実装用の配線パターン、裏面にBGAパターンを形成した。素子実装配線パターンは、VCSEL、PDをフリップチップできるものとし、直近にドリルで250μmピッチ,12チャンネルのφ0.15mm貫通孔(第1貫通孔群13)を形成した。
(Production of optical transmission substrate (package substrate 6))
As the substrate 1, CPCore (registered trademark) which is a build-up substrate was used. A wiring pattern for element mounting was formed on the front surface of the substrate 1, and a BGA pattern was formed on the back surface. The element mounting wiring pattern is such that VCSEL and PD can be flip-chiped, and a through hole (first through hole group 13) with a diameter of 250 μm and 12 channels of φ0.15 mm is formed by a drill.
導光部4の基材としてMTコネクタを利用した。ファイバを挿入していないMTコネクタの先端を切断し、2.4×6.3×0.35mmの板状の両端にφ0.7mmの位置決め用嵌合穴(ガイド穴)と、この嵌合穴に挟まれるようにφ0.125mm×12の光Via用穴(第2貫通孔群43)と、をもつ位置決め部品である導光部4を作製した(図5参照)。 An MT connector was used as the base material of the light guide unit 4. Cut the tip of the MT connector where no fiber is inserted, and insert it into a 2.4 x 6.3 x 0.35 mm plate-shaped end with a φ0.7 mm positioning fitting hole (guide hole) and this pin The light guide part 4 which is a positioning component having an optical via hole (second through hole group 43) of φ0.125 mm × 12 was produced (see FIG. 5).
基板1と導光部4の位置合わせには、ワイヤを用いて、第1貫通孔群13および第2貫通孔群43の両端にワイヤを通し、接着剤を塗布して基板1と導光部4とを硬化させた後、ワイヤを抜き取り、基板1と導光部4とを接着させた。 For alignment between the substrate 1 and the light guide unit 4, wires are used to pass through the both ends of the first through hole group 13 and the second through hole group 43, and an adhesive is applied to the substrate 1 and the light guide unit. After curing 4, the wire was pulled out and the substrate 1 and the light guide 4 were bonded together.
第1貫通孔群13および第2貫通孔群43に光導波路2を形成した。まず、基板1の素子実装面からディスペンサでクラッドとなる屈折率1.531のUV硬化型透明エポキシ樹脂を充填した。貫通孔の直近にある素子実装用の電気配線を露出させるため、フォトマスクを用いて露光・現像をして、不要部の樹脂を除去した。次に、3rd-YAGレーザを用いて、導光部4側から基板1側へコアとなる貫通孔を形成した。なお、このように導光部4側から基板1側へ貫通孔を形成することにより、形成において第2貫通孔群の側からレーザを照射することで、幅の広い第1貫通孔群の側からレーザを照射した場合よりも、レーザの出射位置が限定され、貫通孔をより精密に作製することができた。 The optical waveguide 2 was formed in the first through hole group 13 and the second through hole group 43. First, a UV curable transparent epoxy resin having a refractive index of 1.531 that is clad with a dispenser was filled from the element mounting surface of the substrate 1. In order to expose the electrical wiring for mounting the device in the immediate vicinity of the through hole, exposure and development were performed using a photomask to remove unnecessary resin. Next, a through hole serving as a core was formed from the light guide 4 side to the substrate 1 side using a 3 rd -YAG laser. In addition, by forming a through-hole from the light guide 4 side to the substrate 1 side in this way, by irradiating a laser from the second through-hole group side in the formation, the wide first through-hole group side As compared with the case where the laser was irradiated from the laser beam, the emission position of the laser was limited, and the through hole could be manufactured more precisely.
コア径の設計は、送信側は光導波路と結合することからφ50μm、受信側はPDの受光径φ70μmとした。次に、コアとなる屈折率1.593のUV硬化型透明エポキシ樹脂を充填し、クラッドと同様に形成した。最後に表面を研磨し、コア/クラッド構造の同軸光Viaを形成した。なお、コア用に設けられた貫通孔の直径は、送信側が59μm、受信側が77μmであった。 The core diameter was designed to be φ50 μm on the transmitting side because it is coupled with the optical waveguide, and the light receiving diameter of the PD was φ70 μm on the receiving side. Next, the core was filled with a UV curable transparent epoxy resin having a refractive index of 1.593 and formed in the same manner as the clad. Finally, the surface was polished to form coaxial light Via having a core / cladding structure. The diameter of the through hole provided for the core was 59 μm on the transmitting side and 77 μm on the receiving side.
次に、屈折率1.593のUV硬化型透明樹脂をコア用穴に充填し、パターニングを行った。最後に表面を研磨して、約1mmの長さの光導波路2(同軸型光Via)をパッケージ基板6に完成させた。 Next, a UV curable transparent resin having a refractive index of 1.593 was filled in the core hole and patterned. Finally, the surface was polished, and the optical waveguide 2 (coaxial optical Via) having a length of about 1 mm was completed on the package substrate 6.
作製した同軸光Viaの挿入損失を測定した。入射側光ファイバにGI-50/125MMFを使用し、受光側には送信用にはGI-50/125MMF、受信用にはGI-62.5/125MMFを使用した結果、損失は送信側が2.3dB、受信側が1.4dBであった。 The insertion loss of the produced coaxial light Via was measured. As a result of using GI-50 / 125MMF for the input side optical fiber, GI-50 / 125MMF for transmission on the light receiving side, and GI-62.5 / 125MMF for receiving, the loss is 2.3dB on the transmission side and reception The side was 1.4dB.
(光モジュールの作製)
他の光導波路24とミラーといった光配線をもつボード基板(他の光伝送基板)に用いられる基板は、サイズ100×100×0.8mmの CPCore(登録商標)を基板とした。
(Production of optical module)
A substrate used for a board substrate (another optical transmission substrate) having optical wiring such as another optical waveguide 24 and a mirror is a CPCore (registered trademark) having a size of 100 × 100 × 0.8 mm.
他の光導波路24はボード基板9の基板上に直接形成した。他の光導波路24の材料にはUV硬化型透明エポキシ樹脂を用いた。屈折率はコアが1.615,クラッドが1.593、非屈折率差Δn=1.4%,NA=0.27である。 The other optical waveguide 24 was formed directly on the substrate of the board substrate 9. As the material of the other optical waveguide 24, a UV curable transparent epoxy resin was used. The refractive index is 1.615 for the core, 1.593 for the cladding, non-refractive index difference Δn = 1.4%, and NA = 0.27.
他の光導波路24の作製は、まず、下部クラッドとなる透明エポキシ樹脂をスピンコートにより塗布し、プリベーク・露光・現像・ポストベークにより形成した。同様の方法で、コア、上部クラッドを形成し、光導波路を作製した。コアだけでなくクラッドもパターニングを行うことで、基板の表面の任意の場所に光導波路を形成した。 The other optical waveguide 24 was prepared by first applying a transparent epoxy resin to be a lower clad by spin coating, and pre-baking / exposure / development / post-baking. In the same manner, a core and an upper clad were formed, and an optical waveguide was produced. By patterning not only the core but also the clad, an optical waveguide was formed at an arbitrary location on the surface of the substrate.
他の光導波路24のコアは、サイズが50×50μm、ピッチが250μmである。基板厚みは0.8mm、下部クラッドの厚みは15μm、上部クラッドの厚みは20μmである。 The core of the other optical waveguide 24 has a size of 50 × 50 μm and a pitch of 250 μm. The substrate thickness is 0.8 mm, the lower clad thickness is 15 μm, and the upper clad thickness is 20 μm.
850nm VCSELとGI-50/125MMFを用いてカットバック法により測定した光導波路の伝搬損失は、0.12dB/cm2であった。 The propagation loss of the optical waveguide measured by the cutback method using 850 nm VCSEL and GI-50 / 125MMF was 0.12 dB / cm 2 .
光導波路パターンは曲率半径R=10mmの90度曲がりを2箇所に配置し、全長10cmとした。パッケージ実装用のBGA実装部は6箇所設けた。今回は、上下に各4本の直線光導波路と左上と右下を結ぶ8本の曲線光導波路の計16本の光配線を設けた。 The optical waveguide pattern had 90 ° bends with a radius of curvature R = 10 mm in two places, and the total length was 10 cm. Six BGA mounting parts for package mounting were provided. This time, a total of 16 optical wires were installed, each consisting of four linear optical waveguides on the top and bottom, and eight curved optical waveguides connecting the upper left and lower right.
他の光導波路24の端部には光路変換体10として45度ミラーを作製した。ミラーは先端が45度のブレードを用いて、垂直面と45度面を他の光導波路24内部に形成した。次に、45度斜面にAuを2000Å蒸着して、反射膜を形成した。最後に厚み20μmのブレードを用いてダイシングにより垂直面を切り出した。 A 45-degree mirror was fabricated as an optical path changer 10 at the end of another optical waveguide 24. The mirror used a blade with a 45 ° tip, and a vertical plane and a 45 ° plane were formed inside another optical waveguide 24. Next, 2000 mm of Au was vapor-deposited on the 45 ° slope to form a reflective film. Finally, a vertical surface was cut out by dicing using a blade having a thickness of 20 μm.
光結合効率を上げるために、ダイシングにより切り出した空間に光閉じ込め構造として第2のクラッド部23を作製した。光閉じ込め構造には他の光導波路24と同じコアとクラッドの材料を使用した。ミラーの45度面と他の光導波路24の垂直端面の間に光導波路コアを延長させて形成し、コア周辺をクラッド材で埋めて光閉じ込め構造とした。 In order to increase the optical coupling efficiency, a second cladding part 23 was produced as a light confinement structure in a space cut out by dicing. For the optical confinement structure, the same core and clad material as those of the other optical waveguides 24 were used. An optical waveguide core was formed to extend between the 45 degree plane of the mirror and the vertical end face of the other optical waveguide 24, and the periphery of the core was filled with a clad material to form an optical confinement structure.
ミラーと光導波路端部間を測定した場合、開放されたミラーの場合は損失が送信側3.5dB、受信側2.8dBであるのに対し、光閉じ込め構造により送信側2.1dB、受信側1.5dBとなり、約1.3dBの損失改善が確認できた。曲り光導波路を含めて両端に閉じ込め構造のミラーを形成したボードの挿入損失は5.5dBであった。 When the distance between the mirror and the end of the optical waveguide is measured, the loss is 3.5 dB on the transmission side and 2.8 dB on the reception side in the case of an open mirror, whereas it becomes 2.1 dB on the transmission side and 1.5 dB on the reception side due to the optical confinement structure. The loss improvement of about 1.3 dB was confirmed. The insertion loss of the board in which the confined mirrors were formed at both ends including the bent optical waveguide was 5.5 dB.
最後に、パッケージの位置決め部品と嵌合させるための嵌合ピンを厚膜用樹脂であるSU-8を使用して形成した。厚み200μm、φ697μmの嵌合ピンを、光導波路のミラー線上の両端に2箇所形成した。具体的には、厚膜用樹脂をスピンコートし、プリベークして仮硬化させ、フォトマスクを用いて露光し、現像したのちポストベークすることにより嵌合ピンを形成した(図4参照)。 Finally, a fitting pin for fitting with a positioning component of the package was formed using SU-8 which is a thick film resin. Two fitting pins having a thickness of 200 μm and φ697 μm were formed at both ends on the mirror line of the optical waveguide. Specifically, a thick film resin was spin-coated, pre-baked and temporarily cured, exposed using a photomask, developed, and post-baked to form a fitting pin (see FIG. 4).
パッケージ基板6にメタルマスクを用いて、ソルダーペースト塗布、ソルダーボール振込みを行い、リフロー炉によりボール取り付けを行った。光閉じ込め部に封止材を塗布した後に、ボード基板9上の嵌合ピンと、導光部4のガイド穴を嵌合させ、実装治具を用いてリフロー実装を行った。 Using a metal mask for the package substrate 6, solder paste application and solder ball transfer were performed, and the balls were attached by a reflow furnace. After applying the sealing material to the light confinement portion, the fitting pin on the board substrate 9 and the guide hole of the light guide portion 4 were fitted, and reflow mounting was performed using a mounting jig.
以上により、光モジュールを作製するとともに、光伝送基板6とボード基板9とを電気的に接合させるとともに光接続を実現できた。 As described above, the optical module was manufactured, the optical transmission board 6 and the board board 9 were electrically joined, and the optical connection was realized.
1 基板
11 基板1の表面
12 基板1の裏面
13 第1貫通孔群
2 光導波路
21 コア部
22 光導波路2のクラッド部(第1のクラッド部)
23 基板1と導光部4との間に設けられた光導波路2のクラッド部(第2のクラッド部)
24 他の光導波路(ボード基板9上に形成される光導波路)
3 突出部
31 光経路
32 突出部のクラッド部
33 縁部
4 導光部
41 導光部4の上面
42 導光部4の下面
43 第2貫通孔群
5 電気配線
6 光伝送基板としてのパッケージ基板
7 光半導体素子
8 接合部
9 他の光伝送基板としてのボード基板
10 光路変換体
M 光モジュール
DESCRIPTION OF SYMBOLS 1 Board | substrate 11 The surface 12 of the board | substrate 1 The back surface 13 of the board | substrate 1 The 1st through-hole group 2 Optical waveguide 21 Core part 22 The clad part (1st clad part) of the optical waveguide 2
23 Clad part of optical waveguide 2 provided between substrate 1 and light guide part 4 (second clad part)
24 Other optical waveguides (optical waveguides formed on the board substrate 9)
DESCRIPTION OF SYMBOLS 3 Projection part 31 Optical path 32 Clad part 33 of a projection part Edge part 4 Light guide part 41 Upper surface 42 of the light guide part 4 Lower surface 43 of the light guide part 4 2nd through-hole group 5 Electrical wiring 6 Package board as an optical transmission board 7 Optical Semiconductor Element 8 Joint 9 Board Board as Other Optical Transmission Board 10 Optical Path Changer M Optical Module
Claims (6)
前記表裏面のいずれかまたは両方に前記上下面のいずれかが接合され、上下面を貫通するする貫通孔が列状に設けられた第2貫通孔群であって前記第1貫通孔群のそれぞれの延長部位でありかつ前記第1貫通孔群よりもそれぞれの幅が狭い第2貫通孔群を有する導光部と、
前記第1貫通孔群および前記第2貫通孔群のそれぞれの内部に連続して設けられた、感光性材料からなる、複数列の光導波路と、を含む光伝送基板。 A substrate having a first through-hole group in which through-holes penetrating the front and back surfaces are provided in a row, and electrical wiring formed on the surface layer or the inner layer;
Each of the first through hole groups is a second through hole group in which either of the upper and lower surfaces are joined to either or both of the front and back surfaces, and through holes penetrating the upper and lower surfaces are provided in a row. A light guide portion having a second through-hole group that is an extended portion of the first through-hole group and each of which is narrower than the first through-hole group;
An optical transmission board comprising: a plurality of rows of optical waveguides made of a photosensitive material , provided continuously in each of the first through hole group and the second through hole group.
表層または内層に形成される他の光導波路と、前記他の光導波路の端部に設けられ、光路を変換して前記光伝送基板の前記光導波路の一端に結合する光路変換体とを有する他の光伝送基板と、
前記光伝送基板の前記光導波路の他端に結合する光半導体素子と、
を含む光モジュール。 An optical transmission board according to any one of claims 1 to 4,
Other having another optical waveguide formed on the surface layer or the inner layer and an optical path changer provided at an end of the other optical waveguide and converting an optical path to be coupled to one end of the optical waveguide of the optical transmission board An optical transmission board,
An optical semiconductor element coupled to the other end of the optical waveguide of the optical transmission board;
Including optical module.
上下面を貫通する貫通孔が列状に設けられた第2貫通孔群が前記第1貫通孔群よりも体積の小さい孔径で予め形成された導光部の前記第2貫通孔群と前記第1貫通孔群とが端部同士がそれぞれ重なるように位置あわせして、前記第1貫通孔群が形成された前記基板に前記導光部を接合する工程Bと、
前記導光部が接合された前記基板の前記第1貫通孔群および前記第2貫通孔群に光導波
路のクラッド部となるクラッド部材を注入する工程Cと、
前記クラッド部材が注入された前記第1貫通孔群および前記第2貫通孔群の中央に前記クラッド部よりも径の小さい第3貫通孔群を設け、前記第3貫通孔群に光導波路のコア部となるコア部材を注入する工程Dと、
を含む光伝送基板の製造方法。 Forming a first through hole group in which through holes penetrating the front and back surfaces are formed in a row on a substrate having an electrical wiring formed on a surface layer or an inner layer; and
A second through hole group in which through holes penetrating the upper and lower surfaces are provided in a row is formed in advance with the second through hole group of the light guide section and the second through hole group having a smaller diameter than the first through hole group. A step B in which the first through-hole group is aligned so that the end portions overlap each other, and the light guide unit is joined to the substrate on which the first through-hole group is formed;
Injecting a clad member to be a clad part of an optical waveguide into the first through hole group and the second through hole group of the substrate to which the light guide part is bonded; and
A third through hole group having a diameter smaller than that of the clad portion is provided in the center of the first through hole group and the second through hole group into which the clad member is injected, and an optical waveguide core is provided in the third through hole group. A step D of injecting a core member to be a part;
A method of manufacturing an optical transmission board including:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008267114A JP5253083B2 (en) | 2008-10-16 | 2008-10-16 | OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008267114A JP5253083B2 (en) | 2008-10-16 | 2008-10-16 | OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010096941A JP2010096941A (en) | 2010-04-30 |
JP5253083B2 true JP5253083B2 (en) | 2013-07-31 |
Family
ID=42258675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008267114A Expired - Fee Related JP5253083B2 (en) | 2008-10-16 | 2008-10-16 | OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5253083B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5367635B2 (en) * | 2010-05-07 | 2013-12-11 | 日本特殊陶業株式会社 | Manufacturing method of wiring board with optical waveguide |
US9057827B2 (en) | 2010-08-31 | 2015-06-16 | Kyocera Corporation | Optical transmission structure and method for manufacturing the same, and optical transmission module |
US9360638B2 (en) | 2010-08-31 | 2016-06-07 | Kyocera Corporation | Optical transmission body, method for manufacturing the same, and optical transmission module |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005338704A (en) * | 2004-05-31 | 2005-12-08 | Shinko Electric Ind Co Ltd | Wiring board with optical coupling function, its manufacturing method and optical coupling system |
JP4252968B2 (en) * | 2005-03-31 | 2009-04-08 | 古河電気工業株式会社 | Manufacturing method of optical waveguide unit |
-
2008
- 2008-10-16 JP JP2008267114A patent/JP5253083B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010096941A (en) | 2010-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4260650B2 (en) | Photoelectric composite substrate and manufacturing method thereof | |
JP5281075B2 (en) | Composite optical transmission board and optical module | |
JP5014855B2 (en) | Opto-electric integrated wiring board, manufacturing method thereof, and opto-electric integrated wiring system | |
JP2012208305A (en) | Optoelectric hybrid substrate and manufacturing method thereof | |
JP2006259730A (en) | Apparatus and method for coupling optical element | |
JP5230324B2 (en) | OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD | |
JP5328095B2 (en) | Optical transmission board, opto-electronic hybrid board, optical module, and optoelectric circuit system | |
JP5253083B2 (en) | OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD | |
KR101525253B1 (en) | Method of manufacturing optical waveguide device | |
JP2007004043A (en) | Wiring board, module using wiring board, and module assembly | |
JP2012189950A (en) | Opto-electric hybrid board and manufacturing method therefor | |
JP2006351718A (en) | Optical element and optical module using it | |
JP4321267B2 (en) | Photoelectric composite device, optical waveguide used in the device, and mounting structure of photoelectric composite device | |
JP5349192B2 (en) | Optical wiring structure and optical module having the same | |
JP2008158388A (en) | Opto-electrical circuit board, optical module, and opto-electrical circuit system | |
JP5029343B2 (en) | Optical substrate manufacturing method | |
JP5144357B2 (en) | Composite optical transmission board and optical module | |
JP2005115190A (en) | Opto-electric composite wiring board and laminated optical waveguide structure | |
JP2008134492A (en) | Optical transmission system and optical module equipped with same | |
JP5149759B2 (en) | Manufacturing method of wiring board with optical waveguide | |
JP4525467B2 (en) | Optical waveguide device, manufacturing method thereof, and optical information processing device | |
JP5136142B2 (en) | Optical substrate manufacturing method | |
JP5279931B2 (en) | Composite optical transmission board and optical module | |
JP5300396B2 (en) | Optical path changer and optical transmission board having the same | |
Oda et al. | Optical connection between optical via hole in BGA package and optical waveguide on board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5253083 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |