JP5136142B2 - Optical substrate manufacturing method - Google Patents
Optical substrate manufacturing method Download PDFInfo
- Publication number
- JP5136142B2 JP5136142B2 JP2008073177A JP2008073177A JP5136142B2 JP 5136142 B2 JP5136142 B2 JP 5136142B2 JP 2008073177 A JP2008073177 A JP 2008073177A JP 2008073177 A JP2008073177 A JP 2008073177A JP 5136142 B2 JP5136142 B2 JP 5136142B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating resin
- optical
- resin layer
- wiring
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Description
本発明は電気配線及び光配線を有する光基板の製造方法に関する。 The present invention relates to a method of manufacturing an optical board having electric wiring and optical interconnection.
電子機器においては、従来、電気配線を主として用いてきた。しかしながら、情報処理装置の高性能化の要求に対応するため、近年では高周波伝送が必要となってきており、高周波信号を伝送する手段として、光配線による伝送も検討が行われている。光配線による伝送を簡便に組み込む方法の一つとしては、光基板を用いることが挙げられる。光基板とは、光配線、光を電気に変換する素子、素子を制御するための電源ユニット、素子のコントロールユニット等をひとまとめにした、電子基板へ簡便に搭載できる部品のことである。光基板による伝送において重要なことは、光損失を低減することと、従来の電子基板への光配線の組み込みを簡便に行うこと、光配線の組み込みに使用する光基板を簡便且つ低コストで作製できることである。こうした光基板については、現在、様々な検討が行われている。 Conventionally, electrical wiring has been mainly used in electronic devices. However, in order to meet the demand for higher performance of information processing apparatuses, high-frequency transmission has become necessary in recent years, and transmission using optical wiring is also being studied as means for transmitting high-frequency signals. One method for easily incorporating transmission by optical wiring is to use an optical substrate. An optical substrate is a component that can be easily mounted on an electronic substrate, which includes an optical wiring, an element that converts light into electricity, a power supply unit for controlling the element, a control unit for the element, and the like. What is important in transmission by optical substrates is to reduce optical loss, to easily install optical wiring into conventional electronic substrates, and to manufacture optical substrates used for optical wiring integration at low cost. It can be done. Various studies are currently being conducted on such optical substrates.
光は広がり角を持って大気中を伝播する。このため、大気中の伝播距離が長いと光が受光部の大きさよりも広がるために、光伝播損失は増加してしまう。こうした光損失を低減するためには、各部品をできる限り接近させて配置する必要がある。また、これを解決する手段として、同屈折率を持つ樹脂材料(マッチングオイル等)を接続部分に使用する方法が一般的に知られている。 Light propagates in the atmosphere with a divergence angle. For this reason, if the propagation distance in the atmosphere is long, the light spreads larger than the size of the light receiving portion, and thus the light propagation loss increases. In order to reduce such light loss, it is necessary to arrange the components as close as possible. As a means for solving this problem, a method of using a resin material (matching oil or the like) having the same refractive index as a connecting portion is generally known.
従来使用されている電子基板は、電気伝送のロスを低減するために様々な工夫が施されている。また、従来使用されている素子の大部分は、電気により動作することを前提に設計されている。このことから、従来の電子基板へ簡便に光基板を組み込むことで、電子基板、電子素子の技術を有効に活用することができる。 Conventionally used electronic boards have been devised in various ways to reduce electrical transmission loss. In addition, most of the conventionally used elements are designed on the assumption that they operate by electricity. Therefore, the technology of the electronic substrate and the electronic element can be effectively utilized by simply incorporating the optical substrate into the conventional electronic substrate.
電子基板と組み合わせて用いる光モジュールとしては、電気信号から光信号、光信号から電気信号への変換を行うために、受発光素子、光配線(光導波路、光ファイバ等)、電気配線が用いられたものが既に公表されている。例としては、基板上にクラッド部、コア部をそれぞれ形成し、さらに、受発光素子をクラッド層上に設置した構造のものが挙げられる(特許文献1)。他の例として、溝を用いて光ファイバを横ずれしないように設置するものもある(特許文献2)。 As an optical module used in combination with an electronic substrate, a light emitting / receiving element, an optical wiring (optical waveguide, optical fiber, etc.), and an electrical wiring are used to convert an electrical signal into an optical signal and from an optical signal into an electrical signal. Have already been published. As an example, a structure in which a clad portion and a core portion are formed on a substrate and a light emitting / receiving element is further provided on the clad layer can be cited (Patent Document 1). As another example, there is one that uses a groove so that an optical fiber is not laterally displaced (Patent Document 2).
上記例の課題としては、基板内部で配線を形成することが非常に困難であることが考えられる。また、基板上に配線層が設けられていないため、コントロールIC等を同一光基板上の受発光素子に近い位置に設置し、高周波伝送で伝送ロスを小さくすることは困難である。さらに、基板内部に光配線(クラッド、コア等)や受発光素子を埋め込む形状の場合には、基板形成に非常に手間や時間がかかり、また、埋め込みを行った場合、光配線や受発光素子を容易に取り外せないことが問題として挙げられる。 As a problem of the above example, it can be considered that it is very difficult to form wiring inside the substrate. In addition, since no wiring layer is provided on the substrate, it is difficult to reduce the transmission loss by high-frequency transmission by installing a control IC or the like near the light emitting / receiving element on the same optical substrate. Further, in the case of a shape in which an optical wiring (clad, core, etc.) or a light emitting / receiving element is embedded in the substrate, it takes much time and time to form the substrate. The problem is that it cannot be easily removed.
一方、基板に貫通孔や凹部を形成し、受発光素子の埋め込み、凹部への光配線の配置を行っている例も挙げられる。この例は、基板を配置する凹部を形成することで、位置合わせを簡便に行っている。また、コネクタ接続により下部電子基板へも電気的に接続できる構造となっている(特許文献3)。 On the other hand, there is an example in which through holes and recesses are formed in the substrate, the light emitting and receiving elements are embedded, and optical wiring is arranged in the recesses. In this example, the alignment is simply performed by forming a recess in which the substrate is disposed. Moreover, it has the structure which can be electrically connected also to a lower electronic substrate by connector connection (patent document 3).
この例の課題としては、基板の材質としてシリコンやガラスを用い、さらに、貫通孔や凹部の溝形状を形成する必要があるため、基板の作製は非常に困難で、かつコストもかかることが挙げられる。また、基材全体の厚みが必要以上に厚くなってしまう恐れもある。 The problem with this example is that it is necessary to use silicon or glass as the material of the substrate and to form a groove shape of a through hole or a recess, so that it is very difficult and costly to produce the substrate. It is done. Moreover, there exists a possibility that the thickness of the whole base material may become thicker than necessary.
本発明は、上記のような従来技術の問題点を考慮して行われたもので、受発光素子と光配線を光学的に精度良く、且つ、容易に位置合わせできることを課題とする。また、上記課題の解決を、簡便、且つ、安価な光基板の作製方法により実現することを目的とする。 The present invention has been made in consideration of the above-described problems of the prior art, and an object of the present invention is to be able to optically accurately and easily align the light emitting / receiving element and the optical wiring. It is another object of the present invention to provide a simple and inexpensive method for manufacturing an optical substrate.
本発明において上記課題を解決するために、請求項1に関する発明は、電気配線が一方の面に配置された絶縁樹脂層と、受発光部を絶縁樹脂層側に向けて配置した受発光素子と、受発光素子と光学的に接続する位置に配置された光配線からなる光基板の前記絶縁樹脂層の一部が除去された溝部に前記光配線が配置され、絶縁樹脂層の電気配線を有する側の表面と、光配線の受発光部側の表面が同一平面にある光基板において、
金属層上の絶縁樹脂層を加工して溝部を形成する工程と、
支持基材に絶縁樹脂面を対向させて貼り合わせる工程と、
前記金属層を加工して、前記溝部における金属層の除去と、電気配線ならびに受発光素子接続部の形成を行う工程と、
前記絶縁樹脂層の溝部に光配線を配置する工程と、
受発光素子の受発光面を光配線の受発光部に向け、絶縁樹脂層と光配線の両上に実装する工程と
を備えることを特徴とする光基板の製造方法である。
In order to solve the above-mentioned problem in the present invention, an invention relating to claim 1 is directed to an insulating resin layer in which electrical wiring is arranged on one surface, and a light emitting / receiving element in which a light emitting / receiving portion is arranged toward the insulating resin layer. The optical wiring is disposed in the groove part from which the insulating resin layer of the optical substrate made of the optical wiring disposed at a position optically connected to the light receiving and emitting element is removed, and has an electrical wiring of the insulating resin layer In the optical substrate in which the surface on the side and the surface on the light receiving and emitting part side of the optical wiring are in the same plane,
Processing the insulating resin layer on the metal layer to form a groove,
A process of attaching the insulating resin surface to the supporting base material so as to face each other;
Processing the metal layer to remove the metal layer in the groove, and to form an electrical wiring and a light receiving and emitting element connection portion;
Placing optical wiring in the groove of the insulating resin layer;
A method for manufacturing an optical substrate, comprising: a step of mounting a light receiving / emitting surface of a light receiving / emitting element on both of an insulating resin layer and an optical wiring with a light receiving / emitting portion of the optical wiring facing.
請求項2の発明は、電気配線が一方の面に配置された絶縁樹脂層と、受発光部を絶縁樹脂層側に向けて配置した受発光素子と、受発光素子と光学的に接続する位置に配置された光配線からなる光基板の前記絶縁樹脂層の一部が除去された溝部に前記光配線が配置され、絶縁樹脂層の電気配線を有する側の表面と、光配線の受発光部側の表面が同一平面にある光基板において、
金属層上の絶縁樹脂層を加工して溝部を形成する工程と、
支持基材に絶縁樹脂面を対向させて貼り合わせる工程と、
前記金属層を加工して、前記溝部における金属層の除去と、電気配線ならびに受発光素子接続部の形成を行う工程と、
前記絶縁樹脂層の溝部に光配線を配置する工程と、
受発光素子の受発光面を光配線の受発光部に向け、絶縁樹脂層と光配線の両上に実装する工程と、
前記支持基材を除去する工程と
を備えることを特徴とする光基板の製造方法である。
According to a second aspect of the present invention, there is provided an insulating resin layer in which electric wiring is arranged on one surface, a light emitting / receiving element arranged with the light emitting / receiving portion facing the insulating resin layer side, and a position optically connected to the light emitting / receiving element. The optical wiring is arranged in the groove part from which the part of the insulating resin layer of the optical substrate formed of the optical wiring is removed, the surface of the insulating resin layer on the side having the electric wiring, and the light receiving and emitting part of the optical wiring In an optical substrate whose side surface is in the same plane,
Processing the insulating resin layer on the metal layer to form a groove,
A process of attaching the insulating resin surface to the supporting base material so as to face each other;
Processing the metal layer to remove the metal layer in the groove, and to form an electrical wiring and a light receiving and emitting element connection portion;
Placing optical wiring in the groove of the insulating resin layer;
Mounting the light emitting / receiving surface of the light emitting / receiving element on both of the insulating resin layer and the optical wiring with the light emitting / receiving portion of the optical wiring facing;
A method for manufacturing an optical substrate, characterized in that it comprises a step of removing the supporting substrate.
請求項3の発明は、電気配線が一方の面に配置された絶縁樹脂層と、受発光部を絶縁樹脂層側に向けて配置した受発光素子と、受発光素子と光学的に接続する位置に配置された光配線からなる光基板の前記絶縁樹脂層の一部が除去された溝部に前記光配線が配置され、絶縁樹脂層の電気配線を有する側の表面と、光配線の受発光部側の表面が同一平面にある光基板において、
金属層上の絶縁樹脂層を加工して溝部を形成する工程と、
支持基材に絶縁樹脂面を対向させて貼り合わせる工程と、
前記金属層を加工して、前記溝部における金属層の除去と、電気配線ならびに受発光素子接続部の形成を行う工程と、
前記絶縁樹脂層の溝部に光配線を配置する工程と、
受発光素子の受発光面を光配線の受発光部に向け、絶縁樹脂層と光配線の両上に実装する工程と
少なくとも光基板の一部をモールド樹脂で覆う工程と、
前記支持基材を除去する工程と
を備えることを特徴とする光基板の製造方法である。
According to a third aspect of the present invention, there is provided an insulating resin layer in which electrical wiring is arranged on one surface, a light emitting / receiving element arranged with the light emitting / receiving section facing the insulating resin layer, and a position optically connected to the light receiving / emitting element. The optical wiring is arranged in the groove part from which the part of the insulating resin layer of the optical substrate formed of the optical wiring is removed, the surface of the insulating resin layer on the side having the electric wiring, and the light receiving and emitting part of the optical wiring In an optical substrate whose side surface is in the same plane,
Processing the insulating resin layer on the metal layer to form a groove,
A process of attaching the insulating resin surface to the supporting base material so as to face each other;
Processing the metal layer to remove the metal layer in the groove, and to form an electrical wiring and a light receiving and emitting element connection portion;
Placing optical wiring in the groove of the insulating resin layer;
Directing the light emitting / receiving surface of the light emitting / receiving element toward the light emitting / receiving portion of the optical wiring, mounting on both the insulating resin layer and the optical wiring, and covering at least a part of the optical substrate with a mold resin;
A method for manufacturing an optical substrate, characterized in that it comprises a step of removing the supporting substrate.
請求項4の発明は、電気配線が一方の面に配置された絶縁樹脂層と、受発光部を絶縁樹脂層側に向けて配置した受発光素子と、受発光素子と光学的に接続する位置に配置された光配線からなる光基板の前記絶縁樹脂層の一部が除去された溝部に前記光配線が配置され、絶縁樹脂層の電気配線を有する側の表面と、光配線の受発光部側の表面が同一平面にある光基板において、
金属層上の絶縁樹脂層を加工して溝部を形成する工程と、支持基材に絶縁樹脂面を対向させて貼り合わせる工程と、
前記金属層を加工して、前記溝部における金属層の除去と、電気配線ならびに受発光素子接続部の形成を行う工程と、
前記絶縁樹脂層の溝部にダミーフィルムを配置する工程と、
受発光素子の受発光面をダミーフィルム側に向け、絶縁樹脂層とダミーフィルムの両上に実装する工程と、
前記支持基材の少なくともダミーフィルムをモールド樹脂で覆う工程と、
前記支持基材を除去する工程と、
前記ダミーフィルムを除去する工程と、
前記絶縁樹脂層の溝部に光配線を配置する工程と
を備えることを特徴とする光基板の製造方法である。
According to a fourth aspect of the present invention, there is provided an insulating resin layer in which electrical wiring is disposed on one surface, a light emitting / receiving element in which the light emitting / receiving portion is disposed toward the insulating resin layer, and a position that is optically connected to the light receiving / emitting element. The optical wiring is arranged in the groove part from which the part of the insulating resin layer of the optical substrate formed of the optical wiring is removed, the surface of the insulating resin layer on the side having the electric wiring, and the light receiving and emitting part of the optical wiring In an optical substrate whose side surface is in the same plane,
A step of processing the insulating resin layer on the metal layer to form a groove portion, a step of bonding the insulating resin surface to the support base material,
Processing the metal layer to remove the metal layer in the groove, and to form an electrical wiring and a light receiving and emitting element connection portion;
Placing a dummy film in the groove of the insulating resin layer;
The step of mounting the light emitting / receiving surface of the light emitting / receiving element on both the insulating resin layer and the dummy film, facing the dummy film side,
Covering at least the dummy film of the support substrate with a mold resin;
Removing the support substrate;
Removing the dummy film;
A method for manufacturing an optical substrate, characterized in that it comprises the step of arranging the optical wiring in the groove of the insulating resin layer.
本発明は次のような効果がある。
第1に、本発明では絶縁樹脂層の電気配線を有する側の表面と、光配線の受発光部側の表面が同一平面になるような配置をとる。これにより、受発光素子は、光配線と絶縁樹脂層からなる平面上に平行に実装できる。また、絶縁樹脂層と光配線の厚さを同一にした場合(図1(a))には、光基板の下面が平坦な構造となるため、平坦な電子基板に対して、光基板の実装を容易に行うことができる。また、この光基板においては、光配線と受発光素子が近接する構造となるため、接続部の光損失を減少させる効果がある。
The present invention has the following effects.
1stly, in this invention, arrangement | positioning is taken so that the surface of the side which has the electrical wiring of an insulating resin layer and the surface of the light-receiving / emitting part side of an optical wiring may become the same plane. Thus, the light emitting / receiving element can be mounted in parallel on a plane composed of the optical wiring and the insulating resin layer. In addition, when the thickness of the insulating resin layer and the optical wiring is the same (FIG. 1A), since the lower surface of the optical substrate has a flat structure, the optical substrate is mounted on the flat electronic substrate. Can be easily performed. In addition, since this optical substrate has a structure in which the optical wiring and the light emitting / receiving element are close to each other, there is an effect of reducing the optical loss of the connection portion.
第2に、絶縁樹脂に光導波路形状に沿った溝を形成することで、光配線を配置する位置が決まり、光導波路と受発光素子の光学的位置決めが行いやすい利点がある。この構造により、低コストで光配線の位置決めを行うことができる。 Secondly, by forming a groove along the shape of the optical waveguide in the insulating resin, there is an advantage that the position where the optical wiring is arranged is determined, and the optical positioning of the optical waveguide and the light emitting / receiving element is easy. With this structure, the optical wiring can be positioned at low cost.
第3に、絶縁樹脂層に感光性樹脂を用いた場合には、感光性樹脂のフォトリソグラフィーによるパターニングにより、光導波路形状に沿った溝を形成することができる。この場合、位置合わせのための絶縁樹脂層の溝を、低コストで簡便に形成することができる。また、この絶縁樹脂層を形成することにより、光配線を高精度に位置決めし配置することができる。 Third, when a photosensitive resin is used for the insulating resin layer, a groove along the shape of the optical waveguide can be formed by patterning the photosensitive resin by photolithography. In this case, the groove of the insulating resin layer for alignment can be easily formed at low cost. Also, by forming this insulating resin layer, the optical wiring can be positioned and arranged with high accuracy.
第4に、光配線と受発光素子との間に、樹脂を充填することによって、光配線上と受発光素子を安定して配置することができる。また、透明で光配線のクラッド層と同じ屈折率を持つ樹脂を充填する場合には、光配線と屈折率の間の接続損失を低減させる効果を持たせることができる。 Fourth, by filling the resin between the optical wiring and the light receiving / emitting element, the light receiving / emitting element can be stably disposed on the optical wiring. In addition, in the case of filling a resin that is transparent and has the same refractive index as that of the cladding layer of the optical wiring, an effect of reducing the connection loss between the optical wiring and the refractive index can be provided.
第5に、絶縁樹脂層の厚さを光配線の厚さと同一にした場合、支持基材上で光基板の製造を行うことで、光基板の下面は平坦な構造となる。この場合、平坦な電子基板に対し、光基板下面の実装を簡便に行える。 Fifth, when the thickness of the insulating resin layer is the same as the thickness of the optical wiring, the bottom surface of the optical substrate has a flat structure by manufacturing the optical substrate on the support base material. In this case, it is possible to easily mount the lower surface of the optical substrate on the flat electronic substrate.
<光基板>
本発明における光基板の断面図を図1(a)、(b)に、その平面図を図1(c)に示した。本発明の光基板では、絶縁樹脂基板上に受発光素子を有しており、この受発光素子は、光配線と絶縁樹脂の両上部に実装されている。光配線の光の入出射部分は、受発光素子の受発光部位に光学的に位置合わせされている。
<Optical substrate>
1A and 1B are sectional views of the optical substrate in the present invention, and FIG. 1C is a plan view thereof. The optical substrate of the present invention has a light emitting / receiving element on an insulating resin substrate, and the light receiving / emitting element is mounted on both the optical wiring and the insulating resin. The light incident / exit portion of the optical wiring is optically aligned with the light emitting / receiving portion of the light emitting / receiving element.
絶縁樹脂11は、光配線を配置する部分、及び光基板の上下の導通をとる部分をパターニングしてある。絶縁樹脂層は、任意の有機材料及び無機材料を用いることができる。具体的には、アクリル樹脂、シリコーン材料、シリコンウエハ、金属材料、ガラス材料、積層板材料等が使用できるが、特に、感光性樹脂で構成されていることが望ましい。これは、後述のように、感光性を利用したパターニングを行うことで、光配線配置部位を簡便に除去することができ、また、光配線を位置精度良く実装できるためである。感光性樹脂の例としては、感光性ポリイミド樹脂、感光性アクリル樹脂、感光性エポキシ樹脂、またはこれらを重合させた感光性エポキシアクリレート樹脂などを用いることができる。 The insulating resin 11 is patterned at the portion where the optical wiring is disposed and the portion where the optical substrate is vertically connected. Arbitrary organic materials and inorganic materials can be used for the insulating resin layer. Specifically, an acrylic resin, a silicone material, a silicon wafer, a metal material, a glass material, a laminated plate material, or the like can be used, and it is particularly desirable that the photosensitive resin is used. This is because, as will be described later, by performing patterning using photosensitivity, the optical wiring placement site can be easily removed, and the optical wiring can be mounted with high positional accuracy. As an example of the photosensitive resin, a photosensitive polyimide resin, a photosensitive acrylic resin, a photosensitive epoxy resin, or a photosensitive epoxy acrylate resin obtained by polymerizing these can be used.
絶縁樹脂層と光配線の配置位置については、絶縁樹脂層の電気配線を有する側の表面が、光配線の受発光部側の表面と同一平面上に配置されることを必要とする。これを満たす1つ目の方法としては、図1(a)に示すように、同一膜厚の絶縁樹脂と光配線を用いる方法がある。この場合、例えば、光配線の厚さが100μmである場合には、絶縁樹脂層の厚さは100μmとする。
2つ目の方法としては、図1(b)に示すように、絶縁樹脂と異なる厚さを持った光配線を用いる方法がある。この場合、光配線の厚さは絶縁樹脂層より厚くても薄くても良い。
Regarding the arrangement position of the insulating resin layer and the optical wiring, it is necessary that the surface of the insulating resin layer on the side having the electric wiring is arranged on the same plane as the surface of the optical wiring on the side of the light receiving and emitting part. As a first method for satisfying this, there is a method using an insulating resin and an optical wiring having the same film thickness as shown in FIG. In this case, for example, when the thickness of the optical wiring is 100 μm, the thickness of the insulating resin layer is set to 100 μm.
As the second method, there is a method using an optical wiring having a thickness different from that of the insulating resin, as shown in FIG. In this case, the thickness of the optical wiring may be thicker or thinner than the insulating resin layer.
光配線としては、コアと、コアの外周を覆うクラッドで構成される一般的な光配線、光導波路を用いることができる。光ファイバ等も用いることができ、光配線を配置する溝の数は1本には限らない。多本数の光配線を集めた構造の物も含まれる。材質としては、カーボネート系、エポキシ系、アクリル系、イミド系、ウレタン系、ノルボルネン系などの高分子材料及び石英などの無機材料も含まれる。また、伝送モードとしては、シングルモード、マルチモード、シングルマルチ混合配線などの構成をとることができる。 As the optical wiring, a general optical wiring or optical waveguide composed of a core and a clad covering the outer periphery of the core can be used. An optical fiber or the like can also be used, and the number of grooves in which the optical wiring is arranged is not limited to one. The thing of the structure which collected many optical wiring is also included. Examples of the material include polymeric materials such as carbonate-based, epoxy-based, acrylic-based, imide-based, urethane-based, norbornene-based materials, and inorganic materials such as quartz. Further, the transmission mode can be configured as a single mode, a multimode, a single multi mixed wiring, or the like.
光路変換に関しては、ミラー構造やミラー部品により行う。図1に示す光基板においては、ミラー構造を用いている。これは、配線端部を45°にカットすることで光を90°光路変換させている。このような構造の他に、ミラー面に金属層を形成することや、光配線とは別に光路変換するための部品を置くこともできる。 The optical path conversion is performed by a mirror structure or mirror parts. The optical substrate shown in FIG. 1 uses a mirror structure. In this case, light is converted by 90 ° light path by cutting the end of the wiring at 45 °. In addition to such a structure, a metal layer can be formed on the mirror surface, or components for optical path conversion can be placed separately from the optical wiring.
受発光素子は光配線と光学的に接続するために、受発光面を絶縁樹脂層側に向けて配置される。また、受発光素子は光配線と絶縁樹脂層の両上に設置し、受発光面の少なくとも一部を、光配線と光学的に接続される位置に設置した構造となる。受発光素子には、単チャンネルもしくは複数チャンネルの光素子を用いることができる。具体的には、端面発光型LD(レーザダイオード)、面発光型LD、面発光型PD(フォトダイオード)などを用いることができる。電極は、素子の受発光面と同一面のもの、反対面のもの、共に使用可能である。受発光素子の実装は、図1に示したような裏面電極の作製によるワイヤボンディング実装が可能であり、その他にも半田バンプによるフリップチップ実装が可能である。 In order to optically connect the light emitting / receiving element to the optical wiring, the light receiving / emitting element is disposed with the light emitting / receiving surface facing the insulating resin layer side. Further, the light emitting / receiving element is installed on both the optical wiring and the insulating resin layer, and at least a part of the light receiving / emitting surface is installed at a position optically connected to the optical wiring. As the light emitting / receiving element, a single channel or a plurality of channels of optical elements can be used. Specifically, an edge-emitting LD (laser diode), a surface-emitting LD, a surface-emitting PD (photodiode), or the like can be used. The electrode can be used both on the same surface as the light receiving and emitting surface of the device and on the opposite surface. The light emitting / receiving element can be mounted by wire bonding by manufacturing a back electrode as shown in FIG. 1, or by flip chip mounting by solder bumps.
この他に必要に応じて、光基板上に受発光素子のコントロールIC等のICチップを実装することもできる。コントロールチップの実装にはワイヤボンディング、フリップチップ等の実装方法をとることができる。 In addition, if necessary, an IC chip such as a control IC for the light emitting / receiving element can be mounted on the optical substrate. The control chip can be mounted by wire bonding, flip chip, or the like.
電気配線配置側の絶縁樹脂層上に、受発光素子のコントロールIC等の素子を配置することで、ICチップの近傍で光配線を用いることができ、且つ、光電変換された電気信号を基板内部を通さずにICと接続することもできるので、電気配線による高周波信号の損失を抑えることができる。 By arranging elements such as the control IC of the light emitting / receiving element on the insulating resin layer on the electric wiring arrangement side, optical wiring can be used in the vicinity of the IC chip, and the photoelectrically converted electric signal is transmitted inside the substrate. Since it can be connected to the IC without passing through, it is possible to suppress the loss of the high-frequency signal due to the electrical wiring.
また、必要に応じて、受発光素子の受発光面と光配線の入出力面との間に、透明樹脂を充填することができる。充填樹脂としては、一般に用いられる高分子材料を用いることができる。具体的には、エポキシ材料、アクリル材料、イミド材料、ウレタン材料、シリコーン材料、無機フィラー混入有機材料などが使用できるがこれに限定されるものではない。また、界面の屈折率差をなくすために、充填樹脂として、クラッド材と同じ屈折率を持った材料を使用することができる。この場合、光配線と受発光素子との接続部分での光学損失を抑えることができる。また、接続部位の強度向上により、環境信頼性の高い光基板とすることができる。 If necessary, a transparent resin can be filled between the light emitting / receiving surface of the light emitting / receiving element and the input / output surface of the optical wiring. As the filling resin, a generally used polymer material can be used. Specifically, an epoxy material, an acrylic material, an imide material, a urethane material, a silicone material, an organic material mixed with an inorganic filler, or the like can be used, but is not limited thereto. Further, in order to eliminate the difference in refractive index at the interface, a material having the same refractive index as that of the cladding material can be used as the filling resin. In this case, optical loss at the connection portion between the optical wiring and the light emitting / receiving element can be suppressed. In addition, an optical substrate with high environmental reliability can be obtained by improving the strength of the connection site.
本発明の光基板は、多量の情報の入出力を伴う電子機器、あるいは光部品に有効である。光基板を搭載した具体例としては、ノートパソコンや業務用大型コンピュータを含む様々な計算機、家庭用ゲーム機、録画再生機、テレビ、ルーターなどの用いることが考えられる。これらの用途は、ノイズを受けずに効率的に信号の送受信が可能となるため有効である。また、光基板を搭載する光部品の具体例としては、光インターコネクション(光電気配線板)、光コネクタ、光コネクタ、光カプラ、光結合器、光スプリッタ、あるいは光送受信機などの光部品にも搭載することで、同様の効果を期待することができる。 The optical substrate of the present invention is effective for electronic devices or optical components that involve a large amount of information input / output. As specific examples of mounting an optical substrate, it is conceivable to use various computers including a notebook computer and a large business computer, a home game machine, a recording / reproducing machine, a television, a router, and the like. These applications are effective because signals can be efficiently transmitted and received without receiving noise. Specific examples of optical components on which optical substrates are mounted include optical interconnections (optical electrical wiring boards), optical connectors, optical connectors, optical couplers, optical couplers, optical splitters, and optical components such as optical transceivers. The same effect can be expected by installing.
<光基板の製造方法>
次に、本発明の光基板の製造方法について説明する。以下の説明では、特に絶縁樹脂層に感光性樹脂を用いた場合について説明する。
<Optical substrate manufacturing method>
Next, the manufacturing method of the optical board | substrate of this invention is demonstrated. In the following description, a case where a photosensitive resin is used for the insulating resin layer will be described.
まず、絶縁樹脂層8と銅箔層7を張り合わせたフィルムを用いる(図2(a))。絶縁樹脂層をフォトリソグラフィーによりパターニングし、光配線設置部分や上下の導通をとる部分を除去する(図2(b))。絶縁樹脂層に用いる感光性樹脂としては、感光性ポリイミド樹脂、感光性アクリル樹脂、感光性エポキシ樹脂、またこれらを重合させた感光性エポキシアクリレート樹脂などを用いることができる。フォトリソグラフィー工程としては、マスクパターンを用いた露光と、それに続く現像工程を行う。 First, the film which bonded the insulating resin layer 8 and the copper foil layer 7 is used (FIG. 2 (a)). The insulating resin layer is patterned by photolithography to remove the portion where the optical wiring is installed and the upper and lower conductive portions (FIG. 2B). As the photosensitive resin used for the insulating resin layer, a photosensitive polyimide resin, a photosensitive acrylic resin, a photosensitive epoxy resin, a photosensitive epoxy acrylate resin obtained by polymerizing these, or the like can be used. As the photolithography process, exposure using a mask pattern and subsequent development process are performed.
次に、絶縁樹脂面を支持基材10に張り合わせる(図2(c))。張り合わせには一般的なラミネート方法を用いることができる。支持基材としては一般に用いられている有機材料、無機材料などが用いることができる。具体的には、カーボネート材料、エポキシ材料、アクリル材料、イミド材料、ウレタン材料、シリコーン材料、無機フィラー混入有機材料などが使用できるが、これに限定されるものではない。また、支持基材上に紫外線剥離型の粘着層を設けることもできる。 Next, the insulating resin surface is bonded to the support substrate 10 (FIG. 2C). A general laminating method can be used for bonding. As the support substrate, generally used organic materials, inorganic materials, and the like can be used. Specifically, a carbonate material, an epoxy material, an acrylic material, an imide material, a urethane material, a silicone material, an organic material mixed with an inorganic filler, and the like can be used. However, the material is not limited thereto. Further, an ultraviolet peelable pressure-sensitive adhesive layer can be provided on the support substrate.
本発明では、絶縁樹脂層と光配線の配置位置は、絶縁樹脂層の電気配線を有する側の表面が、光配線の受発光部側の表面と同一平面上に配置されることを必要とするが、絶縁樹脂層の厚さを、光配線の厚さと同一にした場合(図1(a))、絶縁樹脂層の上下面は光配線の上下面と同一平面となるため、支持基材は平坦な形状のものを用いればよい。一方、絶縁樹脂の厚さが光配線の厚さと異なる場合(図1(b))、支持基材は、光配線の厚さを考慮した形状にする必要がある。 In the present invention, the arrangement position of the insulating resin layer and the optical wiring requires that the surface of the insulating resin layer on the side having the electric wiring is arranged on the same plane as the surface of the optical wiring on the light emitting / receiving portion side. However, when the thickness of the insulating resin layer is the same as that of the optical wiring (FIG. 1A), the upper and lower surfaces of the insulating resin layer are flush with the upper and lower surfaces of the optical wiring. A flat shape may be used. On the other hand, when the thickness of the insulating resin is different from the thickness of the optical wiring (FIG. 1B), the supporting base material needs to be shaped in consideration of the thickness of the optical wiring.
上記のいずれの場合においても、絶縁樹脂層の電気配線を有する側の表面は、光配線の受発光部側の表面と同一平面となる。このため、受発光素子は光配線と絶縁樹脂層の両上に、およそ水平な状態で配置することができる。また、この構造では光配線と受発光素子間の受発光部位の距離が近くなるために、光学的な接続精度も向上すると考えられる。 In any of the above cases, the surface of the insulating resin layer on the side having the electric wiring is flush with the surface of the optical wiring on the side of the light emitting / receiving section. For this reason, the light emitting / receiving element can be arranged in a substantially horizontal state on both the optical wiring and the insulating resin layer. Further, in this structure, the distance between the light receiving and emitting portions between the optical wiring and the light receiving and emitting elements is reduced, so that it is considered that the optical connection accuracy is also improved.
支持基材を用いることで、絶縁樹脂層は保持固定される。このため、絶縁樹脂層の膜厚が薄い場合でも、安定して光基板を実装することができる。また、絶縁樹脂層の厚さを光配線の厚さと同一にした場合には、光基板作製工程を支持基材上で行うことによって、光基板下面を容易に平坦化させることができる。 The insulating resin layer is held and fixed by using the support base material. For this reason, even when the thickness of the insulating resin layer is thin, the optical substrate can be stably mounted. Further, when the thickness of the insulating resin layer is the same as the thickness of the optical wiring, the lower surface of the optical substrate can be easily flattened by performing the optical substrate manufacturing process on the supporting base material.
次に、銅箔をパターニングし、配線パターンや実装用パッドを形成する(図2(d))。銅箔のパターニング方法としては、こうちの金属加工方法を用いることが可能である。具体的には、配線パターン、実装用パットパターンに合わせてレジストパターンを形成し、エッチングによって配線パターンを形成する。また、必要に応じてニッケル、金めっきやソルダレジスト印刷を行っても良い。 Next, the copper foil is patterned to form a wiring pattern and a mounting pad (FIG. 2D). This metal processing method can be used as a copper foil patterning method. Specifically, a resist pattern is formed in accordance with the wiring pattern and the mounting pad pattern, and the wiring pattern is formed by etching. Moreover, you may perform nickel, gold plating, and soldering resist printing as needed.
また、前述のように必要に応じて受発光素子のコントロールチップを実装しても良い。この場合は、パターニングされた銅箔上に受発光素子のコントロールチップやその他素子を搭載することができる。コントロールチップの実装は、ワイヤボンディング、フリップチップ実装、コネクタ実装などの方法を取ることができる。 Further, as described above, a control chip of the light emitting / receiving element may be mounted as necessary. In this case, a control chip of a light emitting / receiving element and other elements can be mounted on the patterned copper foil. The control chip can be mounted by wire bonding, flip chip mounting, connector mounting, or the like.
次に、パターニングを行い、不要部分を除去した絶縁樹脂層上の光配線設置部位に光配線を実装する(図2(e))。このとき、絶縁樹脂層の溝パターンによって光配線の位置合わせがなされるため、配置が容易である。 Next, patterning is performed, and the optical wiring is mounted on the optical wiring installation site on the insulating resin layer from which unnecessary portions have been removed (FIG. 2E). At this time, since the optical wiring is aligned by the groove pattern of the insulating resin layer, the arrangement is easy.
次に、光配線の入出力面に直接接合する形で受発光素子を実装する(図2(f))。受発光素子と電気配線との実装は、受発光素子に裏面電極を形成してワイヤボンディングを行う法や、貫通電極を形成する方法を取ることができる。またこのとき、必要に応じて受発光素子と光配線の間隙に樹脂を充填してもよい(図2(g))。この樹脂の充填により、受発光素子と光配線の接続部位での光学損失を低減することが可能である。 Next, the light emitting / receiving element is mounted so as to be directly bonded to the input / output surface of the optical wiring (FIG. 2F). The light emitting / receiving element and the electric wiring can be mounted by a method of forming a back electrode on the light emitting / receiving element and performing wire bonding, or a method of forming a through electrode. At this time, a resin may be filled in the gap between the light emitting / receiving element and the optical wiring as required (FIG. 2G). By filling the resin, it is possible to reduce the optical loss at the connection portion between the light emitting / receiving element and the optical wiring.
必要に応じて、基板全体もしくは任意の場所をモールド樹脂によりモールドすることもできる。モールドを行う場合には最後に支持基材を剥離して本発明の光基板とすることができる(図2(h))。なお、支持基材に紫外線剥離型の粘着層を設けた場合には、紫外線照射により支持基材を剥離することができる。 If necessary, the entire substrate or an arbitrary place can be molded with a molding resin. In the case of performing molding, the supporting base material can be finally peeled to obtain the optical substrate of the present invention (FIG. 2 (h)). In addition, when an ultraviolet peeling type pressure-sensitive adhesive layer is provided on the supporting substrate, the supporting substrate can be peeled off by irradiation with ultraviolet rays.
モールドを行う場合には、モールド時に光配線の替わりにダミーフィルム13を用いることができる(図3(f))。この場合には、光配線の替わりに光配線と同じ膜厚、大きさのダミーフィルムを設置し、支持基材をモールド樹脂で覆う。あるいは、図1(b)のように光配線の膜厚と絶縁樹脂層の膜厚が異なる場合には、光配線の膜厚に一致させたダミーフィルムを用いることで、平坦な支持基材を用いて容易に光配線の表面(受発光部側)と絶縁樹脂層表面を同一平面とすることができる。 In the case of molding, a dummy film 13 can be used instead of the optical wiring at the time of molding (FIG. 3 (f)). In this case, a dummy film having the same film thickness and size as the optical wiring is installed instead of the optical wiring, and the supporting base material is covered with the mold resin. Alternatively, when the film thickness of the optical wiring and the film thickness of the insulating resin layer are different as shown in FIG. 1B, a flat support substrate can be formed by using a dummy film that matches the film thickness of the optical wiring. By using it easily, the surface of the optical wiring (on the side of the light emitting / receiving portion) and the surface of the insulating resin layer can be made flush.
ダミーフィルムの材料としては、カーボネート材料、エポキシ材料、アクリル材料、イミド材料、ウレタン材料、シリコーン材料、無機フィラー混入有機材料などが使用できるが、これに限定されるものではない。ダミーフィルムはモールド時に加熱工程を通すため、同加熱工程に耐え得るフィルムを使用するのが望ましい。また、ダミーフィルム上下面に耐熱粘着層を設けることで、モールド樹脂の染み込みを防ぐこともできる。 As the material of the dummy film, carbonate material, epoxy material, acrylic material, imide material, urethane material, silicone material, organic material mixed with inorganic filler, and the like can be used, but are not limited thereto. Since the dummy film is subjected to a heating process at the time of molding, it is desirable to use a film that can withstand the heating process. Further, by providing a heat-resistant adhesive layer on the upper and lower surfaces of the dummy film, it is possible to prevent penetration of the mold resin.
光基板をモールドする場合には、受発光素子とダミーフィルムの間に、透明で且つクラッド層と屈折率が同じ樹脂を充填することが望ましい。これは、前述のようにモールド樹脂が受発光素子と光配線の接続部に入り込むのを防ぎ、受発光素子と光配線の接続部での光学損失を低減させることができるためである。同様に、ダミーフィルムを用いる場合には、受発光素子とダミーフィルムの間に透明な樹脂を充填してもよい。 When the optical substrate is molded, it is desirable to fill a transparent resin having the same refractive index as that of the cladding layer between the light emitting / receiving element and the dummy film. This is because, as described above, the mold resin can be prevented from entering the connecting portion between the light emitting / receiving element and the optical wiring, and the optical loss at the connecting portion between the light receiving / emitting element and the optical wiring can be reduced. Similarly, when a dummy film is used, a transparent resin may be filled between the light emitting / receiving element and the dummy film.
次に、光基板の任意の場所をモールドし、支持基材及びダミーフィルムを剥離する(図3(i))。支持基材をモールド樹脂で覆うことにより、ダミーフィルムを剥離した箇所が光配線設置部分として形成される。支持基材に紫外線硬化型の粘着層を設けた場合には、前述のように紫外線照射により、支持基材を剥離することができる。 Next, an arbitrary place of the optical substrate is molded, and the supporting base material and the dummy film are peeled off (FIG. 3 (i)). By covering the supporting base material with the mold resin, a portion where the dummy film is peeled off is formed as an optical wiring installation portion. When an ultraviolet curable pressure-sensitive adhesive layer is provided on the support substrate, the support substrate can be peeled off by ultraviolet irradiation as described above.
以上の工程により、光配線以外の部分が実装された電気回路パッケージが製造される。電気回路パッケージは、平面視において、略四角形に形成することができる。したがって、絶縁基板として、公知のロール・ツー・ロール方式の製造装置に適応できる材質からなるものを選択すれば、電気回路パッケージを大量に製造することができる。つまり、光配線部分を除いた電気回路パッケージを前段階として製造することにより、光基板を生産性良く製造することが可能となる。 Through the above steps, an electric circuit package on which parts other than the optical wiring are mounted is manufactured. The electric circuit package can be formed in a substantially rectangular shape in plan view. Therefore, if an insulating substrate made of a material that can be applied to a known roll-to-roll manufacturing apparatus is selected, a large number of electric circuit packages can be manufactured. That is, it is possible to manufacture the optical substrate with high productivity by manufacturing the electrical circuit package excluding the optical wiring portion as a previous stage.
最後にダミーフィルムを除去した箇所に光配線をそれぞれはめ込んで接合することで、本発明の光基板を製造することができる(図3(j))。本製造方法では、絶縁樹脂層のパターン及びモールド樹脂によって、光配線の配置部分が溝状の開口部となるので、光配線と受発光素子との接続、光配線同士の接続が容易であり、精度良く実装することができる。またこの方法においては、光配線の実装より前にモールドを行うために、モールド形成の高温工程による光導波路の破損を防ぐことができる。 Finally, the optical substrate of the present invention can be manufactured by fitting and joining the optical wirings to the locations where the dummy film is removed (FIG. 3 (j)). In this manufacturing method, the arrangement part of the optical wiring becomes a groove-shaped opening by the pattern of the insulating resin layer and the mold resin, so that the connection between the optical wiring and the light emitting / receiving element, the connection between the optical wirings is easy, Can be mounted with high accuracy. Further, in this method, since the molding is performed before the optical wiring is mounted, the optical waveguide can be prevented from being damaged due to the high-temperature process of forming the mold.
以下に本発明の実施例をもって説明するが、本発明がそれらに限定解釈されるもので はない。また、以下の記載では、光基板の光導波路を1層として説明するが、必ずしも1層である必要はない。また、以下の実施例では光導波路をマルチモードとして説明するが、必ずしもマルチモードである必要はない。 Examples of the present invention will be described below, but the present invention is not construed as being limited thereto. In the following description, the optical waveguide of the optical substrate is described as one layer, but it is not always necessary to have one layer. In the following embodiments, the optical waveguide is described as multimode, but it is not necessarily required to be multimode.
<実施例1>
まず感光性絶縁材料として、ビスフェノールA型エポキシアクリレート(リポキシVR−90:昭和高分子)52重量部と無水フタル酸15重量部をプロピレングリコールモノメチルエーテルアセテート溶媒中で110℃30分攪拌してアルカリ現像型感光性絶縁樹脂ワニス原料を調製した。更に、前記アルカリ現像型感光性絶縁樹脂ワニス原料を50重量部、脂環式エポキシ類化合物(EHPE3150:ダイセル化学)17重量部、光硬化型エポキシ樹脂(サイクロマーM100:ダイセル化学)30重量部、光開始剤(LucirinTPO:BASF)3重量部に、プロピレングリコールモノメチルエーテルアセテート溶剤を加えて連続式横型サンドミルにて約3時間分散し、アルカリ現像型感光性絶縁樹脂ワニスを調製した。
<Example 1>
First, as a photosensitive insulating material, 52 parts by weight of bisphenol A type epoxy acrylate (Lipoxy VR-90: Showa High Polymer) and 15 parts by weight of phthalic anhydride are stirred in a propylene glycol monomethyl ether acetate solvent at 110 ° C. for 30 minutes for alkali development. Type photosensitive insulating resin varnish raw material was prepared. Furthermore, 50 parts by weight of the alkali-developable photosensitive insulating resin varnish raw material, 17 parts by weight of an alicyclic epoxy compound (EHPE3150: Daicel Chemical), 30 parts by weight of a photocurable epoxy resin (Cyclomer M100: Daicel Chemical), Propylene glycol monomethyl ether acetate solvent was added to 3 parts by weight of a photoinitiator (LucirinTPO: BASF) and dispersed in a continuous horizontal sand mill for about 3 hours to prepare an alkali development type photosensitive insulating resin varnish.
次に銅箔上に前記アルカリ現像型感光性絶縁樹脂ワニスをスリットコーターにて塗布し、70℃、20分乾燥して、光導波路フィルムと同一の膜厚となるよう約50μm厚の半硬化状態の感光性絶縁樹脂層8を形成し、片側銅箔付き感光性絶縁樹脂を製造した(図2(a))。 Next, the alkali-developable photosensitive insulating resin varnish is applied on a copper foil with a slit coater, dried at 70 ° C. for 20 minutes, and a semi-cured state of about 50 μm thickness so as to have the same film thickness as the optical waveguide film. The photosensitive insulating resin layer 8 was formed to produce a photosensitive insulating resin with one side copper foil (FIG. 2A).
次に感光性絶縁樹脂層8にフォトマスクを密着させ、超高圧水銀灯により500mJ/cm2で露光、紫外線硬化させた。その後約5%有機アミン系アルカリ水溶液にて現像、水洗し、90℃オーブンで十分乾燥させることで、パターニングされた絶縁樹脂層8を得た(図2(b))。 Next, a photomask was brought into close contact with the photosensitive insulating resin layer 8, and was exposed to an ultrahigh pressure mercury lamp at 500 mJ / cm 2 and cured with ultraviolet rays. Thereafter, development with about 5% organic amine alkali aqueous solution, washing with water, and sufficient drying in a 90 ° C. oven were performed to obtain a patterned insulating resin layer 8 (FIG. 2B).
次に、絶縁樹脂層8を支持基材10(PET:東洋インキ製)にラミネートした(図2(c))。 Next, the insulating resin layer 8 was laminated on the support base material 10 (PET: manufactured by Toyo Ink) (FIG. 2C).
次に、銅箔7上にエッチングレジストパターンを形成し、銅箔をエッチングすることで、パターニングされた銅箔7を得た(図2(d))。 Next, an etching resist pattern was formed on the copper foil 7, and the copper foil was etched to obtain a patterned copper foil 7 (FIG. 2D).
次に、パターニングにより絶縁樹脂が除去された支持基材上に光導波路フィルム1(マルチモードエポキシ系光導波路フィルム:NTT−AT製)を設置した(図2(e))。設置位置合わせは、絶縁樹脂層8の外形を利用した突き当て位置合わせを行った。 Next, the optical waveguide film 1 (multimode epoxy optical waveguide film: manufactured by NTT-AT) was placed on the support substrate from which the insulating resin was removed by patterning (FIG. 2 (e)). The installation position alignment performed abutment alignment using the outer shape of the insulating resin layer 8.
銅箔7上にコントロールチップ6(VCSEL(面発光ダイオード)ドライバーチップ:HELX AG製)を実装し、ワイヤボンディングにより電気接続を行った(図2(f))。 A control chip 6 (VCSEL (surface emitting diode) driver chip: manufactured by HELX AG) was mounted on the copper foil 7, and electrical connection was performed by wire bonding (FIG. 2 (f)).
次に、銅箔7上および光導波路フィルム1上に屈折率整合材料9(エポキシ系接着剤:NTT−AT製)を用いて、発光素子2(4ch VCSEL:ULM製)を実装し、ワイヤボンディングにより電気的に接続した(図2(f))。この際、光導波路フィルム1の光入力位置と発光素子2の光出力位置が合うようにアライメントを行い、屈折率整合材料9周辺を500mJ/cm2の紫外線露光により硬化した。 Next, the light emitting element 2 (4ch VCSEL: made by ULM) is mounted on the copper foil 7 and the optical waveguide film 1 using the refractive index matching material 9 (epoxy adhesive: manufactured by NTT-AT), and wire bonding is performed. (Fig. 2 (f)). At this time, alignment was performed so that the light input position of the optical waveguide film 1 and the light output position of the light emitting element 2 were matched, and the periphery of the refractive index matching material 9 was cured by UV exposure of 500 mJ / cm 2 .
次に、絶縁樹脂層全面と光配線の一部を、モールド樹脂で覆った(図2(g))。 Next, the entire surface of the insulating resin layer and a part of the optical wiring were covered with a mold resin (FIG. 2G).
次に、支持基材10を剥離し、光基板を製造した(図2(h))。 Next, the support substrate 10 was peeled off to produce an optical substrate (FIG. 2 (h)).
光学特性評価の結果、各チャンネルで0.9〜1.1mWの安定した光出力を確認することができた。 As a result of the optical characteristic evaluation, a stable light output of 0.9 to 1.1 mW could be confirmed in each channel.
<実施例2>
まず実施例1と同様に、アルカリ現像型感光性絶縁樹脂ワニスを調製した。
<Example 2>
First, in the same manner as in Example 1, an alkali development type photosensitive insulating resin varnish was prepared.
次に実施例1と同様に、片側銅箔付き感光性絶縁樹脂8を製造した(図3(a))。 Next, the photosensitive insulating resin 8 with a one-sided copper foil was manufactured similarly to Example 1 (FIG. 3 (a)).
次に、感光性絶縁樹脂層8にフォトマスクを密着させ、超高圧水銀灯により500mJ/cm2で露光、紫外線硬化させた。その後約5%有機アミン系アルカリ水溶液にて現像、水洗し、90℃オーブンで十分乾燥させることで、パターニングされた絶縁樹脂層8を得た(図3(b))。 Next, a photomask was brought into close contact with the photosensitive insulating resin layer 8, and was exposed to ultraviolet light at 500 mJ / cm 2 with an ultra-high pressure mercury lamp, and was cured with ultraviolet rays. Thereafter, development with about 5% organic amine alkali aqueous solution, washing with water, and sufficient drying in a 90 ° C. oven were performed to obtain a patterned insulating resin layer 8 (FIG. 3B).
次に、絶縁樹脂層8を支持基材10(PET:東洋インキ製)にラミネートした(図3(c))。 Next, the insulating resin layer 8 was laminated on the support base material 10 (PET: manufactured by Toyo Ink) (FIG. 3C).
次に、銅箔7上にエッチングレジストパターンを形成し、銅箔をエッチングすることで、パターニングされた銅箔7を得た(図3(d))。 Next, an etching resist pattern was formed on the copper foil 7, and the copper foil was etched to obtain a patterned copper foil 7 (FIG. 3D).
次に、パターニングされた銅箔7上にソルダレジスト11を塗工した(図3(e))。続いて、コントロールチップ配置部位に金鍍金12を施した。 Next, a solder resist 11 was applied on the patterned copper foil 7 (FIG. 3E). Subsequently, a gold plating 12 was applied to the control chip placement site.
次に、パターニングにより絶縁樹脂が除去された支持基材上に絶縁樹脂層と同一の膜厚(50μm)の光導波路ダミーフィルム13(ポリイミドフィルム:デュポン製)を設置した(図3(f))。設置位置合わせは、絶縁樹脂層8の外形を利用した突き当て位置合わせを行った。 Next, an optical waveguide dummy film 13 (polyimide film: made by DuPont) having the same film thickness (50 μm) as the insulating resin layer was placed on the support substrate from which the insulating resin was removed by patterning (FIG. 3F). . The installation position alignment performed abutment alignment using the outer shape of the insulating resin layer 8.
次に、銅箔7上にコントロールチップ6(VCSELドライバーチップ:HELIX AG製)を実装した(図3(g))。この際、コントロールチップの電機接続には半田バンプ14を使用した。 Next, a control chip 6 (VCSEL driver chip: manufactured by HELIX AG) was mounted on the copper foil 7 (FIG. 3G). At this time, solder bumps 14 were used for electrical connection of the control chip.
次に、銅箔7上および光導波路ダミーフィルム13上に屈折率整合材料9(エポキシ系接着剤:NTT−AT製)を用いて、発光素子2(4ch VCSEL:ULM製)を実装し、ワイヤボンディングにより電気的に接続した(図3(g))。この際、光導波路フィルム1の光入力位置と発光素子2の光出力位置が合うようにアライメントを行い、屈折率整合材料9周辺を500mJ/cm2の紫外線露光により硬化した。 Next, the light emitting element 2 (4ch VCSEL: made by ULM) is mounted on the copper foil 7 and the optical waveguide dummy film 13 using the refractive index matching material 9 (epoxy adhesive: manufactured by NTT-AT), and the wire Electrical connection was made by bonding (FIG. 3G). At this time, alignment was performed so that the light input position of the optical waveguide film 1 and the light output position of the light emitting element 2 were matched, and the periphery of the refractive index matching material 9 was cured by UV exposure of 500 mJ / cm 2 .
次に、全体をモールド樹脂5によりモールドした(図3(h))。 Next, the whole was molded with the mold resin 5 (FIG. 3H).
次に、支持基材10および光導波路ダミーフィルム14を剥離した(図3(i))。 Next, the support base material 10 and the optical waveguide dummy film 14 were peeled off (FIG. 3 (i)).
次に、光導波路ダミーフィルムを剥離した場所に、光導波路フィルム1(マルチモードエポキシ系光導波路フィルム:NTT−AT製)を設置した(図3(j))。設置位置合わせは、絶縁樹脂層8の外形を利用した突き当て位置合わせを行った。 Next, the optical waveguide film 1 (multimode epoxy optical waveguide film: manufactured by NTT-AT) was installed at the place where the optical waveguide dummy film was peeled off (FIG. 3 (j)). The installation position alignment performed abutment alignment using the outer shape of the insulating resin layer 8.
光学特性評価の結果、各チャンネルで0.9〜1.1mWの安定した光出力を確認することができた。 As a result of the optical characteristic evaluation, a stable light output of 0.9 to 1.1 mW could be confirmed in each channel.
1 光導波路フィルム
2 受発光素子(VCSEL)
3 ワイヤボンディング
4 裏面電極
5 モールド樹脂
6 コントロールIC
7 銅箔層
8 絶縁樹脂層
9 屈折率整合材料(透明樹脂)
10 支持基材
11 ソルダレジスト
12 金鍍金層
13 ダミーフィルム
14 半田バンプ
DESCRIPTION OF SYMBOLS 1 Optical waveguide film 2 Light receiving / emitting element (VCSEL)
3 Wire bonding 4 Back electrode 5 Mold resin 6 Control IC
7 Copper foil layer 8 Insulating resin layer 9 Refractive index matching material (transparent resin)
DESCRIPTION OF SYMBOLS 10 Support base material 11 Solder resist 12 Gold plating layer 13 Dummy film 14 Solder bump
Claims (4)
金属層上の絶縁樹脂層を加工して溝部を形成する工程と、
支持基材に絶縁樹脂面を対向させて貼り合わせる工程と、
前記金属層を加工して、前記溝部における金属層の除去と、電気配線ならびに受発光素子接続部の形成を行う工程と、
前記絶縁樹脂層の溝部に光配線を配置する工程と、
受発光素子の受発光面を光配線の受発光部に向け、絶縁樹脂層と光配線の両上に実装する工程と
を備えることを特徴とする光基板の製造方法。 From the insulating resin layer in which the electrical wiring is arranged on one surface, the light emitting / receiving element arranged with the light emitting / receiving portion facing the insulating resin layer side, and the optical wiring arranged in a position optically connected to the light emitting / receiving element The optical wiring is disposed in the groove portion from which a part of the insulating resin layer of the optical substrate is removed, and the surface of the insulating resin layer on the side having the electric wiring and the surface of the optical wiring on the side of the light receiving and emitting part are in the same plane. In an optical substrate,
Processing the insulating resin layer on the metal layer to form a groove,
A process of attaching the insulating resin surface to the supporting base material so as to face each other;
Processing the metal layer to remove the metal layer in the groove, and to form an electrical wiring and a light receiving and emitting element connection portion;
Placing optical wiring in the groove of the insulating resin layer;
A method of manufacturing an optical substrate comprising: a step of mounting the light receiving / emitting surface of the light emitting / receiving element on both the insulating resin layer and the optical wiring with the light receiving / emitting surface of the optical wiring facing.
金属層上の絶縁樹脂層を加工して溝部を形成する工程と、
支持基材に絶縁樹脂面を対向させて貼り合わせる工程と、
前記金属層を加工して、前記溝部における金属層の除去と、電気配線ならびに受発光素子接続部の形成を行う工程と、
前記絶縁樹脂層の溝部に光配線を配置する工程と、
受発光素子の受発光面を光配線の受発光部に向け、絶縁樹脂層と光配線の両上に実装する工程と、
前記支持基材を除去する工程と
を備えることを特徴とする光基板の製造方法。 From the insulating resin layer in which the electrical wiring is arranged on one surface, the light emitting / receiving element arranged with the light emitting / receiving portion facing the insulating resin layer side, and the optical wiring arranged in a position optically connected to the light emitting / receiving element The optical wiring is disposed in the groove portion from which a part of the insulating resin layer of the optical substrate is removed, and the surface of the insulating resin layer on the side having the electric wiring and the surface of the optical wiring on the side of the light receiving and emitting part are in the same plane. In an optical substrate,
Processing the insulating resin layer on the metal layer to form a groove,
A process of attaching the insulating resin surface to the supporting base material so as to face each other;
Processing the metal layer to remove the metal layer in the groove, and to form an electrical wiring and a light receiving and emitting element connection portion;
Placing optical wiring in the groove of the insulating resin layer;
Mounting the light emitting / receiving surface of the light emitting / receiving element on both of the insulating resin layer and the optical wiring with the light emitting / receiving portion of the optical wiring facing;
The method of manufacturing an optical substrate, characterized in that it comprises a step of removing the supporting substrate.
金属層上の絶縁樹脂層を加工して溝部を形成する工程と、
支持基材に絶縁樹脂面を対向させて貼り合わせる工程と、
前記金属層を加工して、前記溝部における金属層の除去と、電気配線ならびに受発光素子接続部の形成を行う工程と、
前記絶縁樹脂層の溝部に光配線を配置する工程と、
受発光素子の受発光面を光配線の受発光部に向け、絶縁樹脂層と光配線の両上に実装する工程と
少なくとも光基板の一部をモールド樹脂で覆う工程と、
前記支持基材を除去する工程と
を備えることを特徴とする光基板の製造方法。 From the insulating resin layer in which the electrical wiring is arranged on one surface, the light emitting / receiving element arranged with the light emitting / receiving portion facing the insulating resin layer side, and the optical wiring arranged in a position optically connected to the light emitting / receiving element The optical wiring is disposed in the groove portion from which a part of the insulating resin layer of the optical substrate is removed, and the surface of the insulating resin layer on the side having the electric wiring and the surface of the optical wiring on the side of the light receiving and emitting part are in the same plane. In an optical substrate,
Processing the insulating resin layer on the metal layer to form a groove,
A process of attaching the insulating resin surface to the supporting base material so as to face each other;
Processing the metal layer to remove the metal layer in the groove, and to form an electrical wiring and a light receiving and emitting element connection portion;
Placing optical wiring in the groove of the insulating resin layer;
Directing the light emitting / receiving surface of the light emitting / receiving element toward the light emitting / receiving portion of the optical wiring, mounting on both the insulating resin layer and the optical wiring, and covering at least a part of the optical substrate with a mold resin;
The method of manufacturing an optical substrate, characterized in that it comprises a step of removing the supporting substrate.
金属層上の絶縁樹脂層を加工して溝部を形成する工程と、支持基材に絶縁樹脂面を対向させて貼り合わせる工程と、
前記金属層を加工して、前記溝部における金属層の除去と、電気配線ならびに受発光素子接続部の形成を行う工程と、
前記絶縁樹脂層の溝部にダミーフィルムを配置する工程と、
受発光素子の受発光面をダミーフィルム側に向け、絶縁樹脂層とダミーフィルムの両上に実装する工程と、
前記支持基材の少なくともダミーフィルムをモールド樹脂で覆う工程と、
前記支持基材を除去する工程と、
前記ダミーフィルムを除去する工程と、
前記絶縁樹脂層の溝部に光配線を配置する工程と
を備えることを特徴とする光基板の製造方法。 From the insulating resin layer in which the electrical wiring is arranged on one surface, the light emitting / receiving element arranged with the light emitting / receiving portion facing the insulating resin layer side, and the optical wiring arranged in a position optically connected to the light emitting / receiving element The optical wiring is disposed in the groove portion from which a part of the insulating resin layer of the optical substrate is removed, and the surface of the insulating resin layer on the side having the electric wiring and the surface of the optical wiring on the side of the light receiving and emitting part are in the same plane. In an optical substrate,
A step of processing the insulating resin layer on the metal layer to form a groove portion, a step of bonding the insulating resin surface to the support base material,
Processing the metal layer to remove the metal layer in the groove, and to form an electrical wiring and a light receiving and emitting element connection portion;
Placing a dummy film in the groove of the insulating resin layer;
The step of mounting the light emitting / receiving surface of the light emitting / receiving element on both the insulating resin layer and the dummy film, facing the dummy film side,
Covering at least the dummy film of the support substrate with a mold resin;
Removing the support substrate;
Removing the dummy film;
The method of manufacturing an optical substrate, characterized in that it comprises the step of arranging the optical wiring in the groove of the insulating resin layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008073177A JP5136142B2 (en) | 2008-03-21 | 2008-03-21 | Optical substrate manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008073177A JP5136142B2 (en) | 2008-03-21 | 2008-03-21 | Optical substrate manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009229662A JP2009229662A (en) | 2009-10-08 |
JP5136142B2 true JP5136142B2 (en) | 2013-02-06 |
Family
ID=41245157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008073177A Expired - Fee Related JP5136142B2 (en) | 2008-03-21 | 2008-03-21 | Optical substrate manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5136142B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2011138856A1 (en) * | 2010-05-06 | 2013-07-22 | 住友ベークライト株式会社 | Optical device and method of manufacturing optical device |
JP6246879B1 (en) | 2016-09-20 | 2017-12-13 | 株式会社東芝 | Optical semiconductor module and manufacturing method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004069824A (en) * | 2002-08-02 | 2004-03-04 | Toppan Printing Co Ltd | Optical wiring board |
JP2007101571A (en) * | 2005-09-30 | 2007-04-19 | Mitsumi Electric Co Ltd | Optical cable and transceiver subassembly |
-
2008
- 2008-03-21 JP JP2008073177A patent/JP5136142B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009229662A (en) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5283703B2 (en) | Printed circuit board element and manufacturing method thereof | |
JP4260650B2 (en) | Photoelectric composite substrate and manufacturing method thereof | |
JP2011113039A (en) | Optical waveguide device and method of manufacturing the same | |
JP5692581B2 (en) | Photoelectric conversion module and method for manufacturing photoelectric conversion module | |
JP2011237503A (en) | Photoelectric composite substrate and method of manufacturing the same | |
JP5029343B2 (en) | Optical substrate manufacturing method | |
JP5328095B2 (en) | Optical transmission board, opto-electronic hybrid board, optical module, and optoelectric circuit system | |
JP2010097169A (en) | Photoelectric module, optical substrate and method of manufacturing photoelectric module | |
US20120237159A1 (en) | Opto-electric hybrid board and manufacturing method therefor | |
JP2014122929A (en) | Optical waveguide device and manufacturing method therefor | |
JP5136142B2 (en) | Optical substrate manufacturing method | |
JP5076860B2 (en) | Optical substrate manufacturing method | |
JP5349192B2 (en) | Optical wiring structure and optical module having the same | |
JP5076869B2 (en) | Optical substrate manufacturing method | |
JP4339198B2 (en) | Manufacturing method of optical module | |
JP2012088634A (en) | Optical waveguide device and method for manufacturing the same | |
JP2013228467A (en) | Opto-electric hybrid flexible print circuit board and manufacturing method thereof | |
JP5104039B2 (en) | Optical substrate manufacturing method | |
JP5380903B2 (en) | Optical substrate manufacturing method | |
JP5477576B2 (en) | Optical substrate manufacturing method | |
JP4935936B2 (en) | Photoelectric wiring member | |
JP5387240B2 (en) | Optical substrate and manufacturing method thereof | |
JP5034553B2 (en) | OPTICAL SUBSTRATE, ITS MANUFACTURING METHOD, OPTICAL COMPONENT AND ELECTRONIC DEVICE HAVING OPTICAL SUBSTRATE | |
JP5076831B2 (en) | Optical substrate and manufacturing method thereof | |
JP5316389B2 (en) | Photoelectric composite substrate, photoelectric composite substrate, and method of manufacturing photoelectric composite substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121029 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151122 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |