JP5252781B2 - Capacitor cooling structure and power conversion device - Google Patents

Capacitor cooling structure and power conversion device Download PDF

Info

Publication number
JP5252781B2
JP5252781B2 JP2006098319A JP2006098319A JP5252781B2 JP 5252781 B2 JP5252781 B2 JP 5252781B2 JP 2006098319 A JP2006098319 A JP 2006098319A JP 2006098319 A JP2006098319 A JP 2006098319A JP 5252781 B2 JP5252781 B2 JP 5252781B2
Authority
JP
Japan
Prior art keywords
capacitor
heat
cooling fin
liquid cooling
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006098319A
Other languages
Japanese (ja)
Other versions
JP2007273774A (en
Inventor
直人 義則
洋一 相川
幸二 大谷
秀明 一橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006098319A priority Critical patent/JP5252781B2/en
Publication of JP2007273774A publication Critical patent/JP2007273774A/en
Application granted granted Critical
Publication of JP5252781B2 publication Critical patent/JP5252781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Power Conversion In General (AREA)

Description

本発明は、主に電力変換装置の主回路コンデンサを冷却するためのコンデンサ冷却構造及びこのコンデンサ冷却構造を有する電力変換装置に関し、特に密閉構造の電力変換装置に適したコンデンサ冷却構造及び電力変換装置に関する。   The present invention relates to a capacitor cooling structure for mainly cooling a main circuit capacitor of a power converter and a power converter having the capacitor cooling structure, and more particularly to a capacitor cooling structure and a power converter suitable for a sealed power converter. About.

電力の直流−直流変換、直流−交流変換などを行う電力変換装置においては、直流電力を平滑にするために複数のコンデンサが使用されている。このコンデンサは、小スペースで容量を確保するために電解コンデンサが多く用いられているが、電解コンデンサは内部抵抗が大きく、充放電電流による発熱量が大きい。そして、この電解コンデンサの発熱は最終的に装置内部に放熱されるので、装置内部の温度上昇の要因となっている。また、電解コンデンサはその内部温度が高くなるほど寿命が短くなるため、短期間で交換するか、あるいは長寿命化を図るために必要以上に大きくしなければならない。   In power converters that perform DC-DC conversion, DC-AC conversion, and the like of power, a plurality of capacitors are used to smooth DC power. As this capacitor, an electrolytic capacitor is often used in order to secure a capacity in a small space, but the electrolytic capacitor has a large internal resistance and a large amount of heat generated by a charge / discharge current. And since the heat generated by the electrolytic capacitor is finally radiated to the inside of the apparatus, it causes a temperature rise inside the apparatus. In addition, since the lifetime of an electrolytic capacitor increases as its internal temperature increases, it must be replaced in a short period of time or increased more than necessary in order to extend its lifetime.

そこで、上記のような電力変換装置に使用されるコンデンサを良好に冷却できるとともに、実装密度を向上させたコンデンサ冷却構造が提案されている(例えば、特許文献1参照)。このコンデンサ冷却構造は、複数のコンデンサを長辺と短辺を有する断面楕円形に形成するとともに、各コンデンサを長辺側が対向するように配置し、隣り合うコンデンサの長辺側と短辺側との間に取り付け部材を挟み込んだコンデンサ取り付け構造を有するものである。   Thus, a capacitor cooling structure has been proposed in which the capacitor used in the power conversion device as described above can be cooled well and the mounting density is improved (see, for example, Patent Document 1). In this capacitor cooling structure, a plurality of capacitors are formed in an elliptical cross section having a long side and a short side, and the capacitors are arranged so that the long sides face each other, and the long side and the short side of adjacent capacitors A capacitor mounting structure in which a mounting member is sandwiched between them.

具体的には、複数のコンデンサの間に高熱伝導率の用品(ヒートパイプなど)からなる取り付け部材を挟み込み、この取り付け部材をヒートシンクに熱的に接続してコンデンサの冷却性能を向上させるものである。ヒートシンクの材料としては銅あるいはアルミニウムが使用され、冷却冷媒としては空気、水、などが用いられる。
特開2006−12948号公報
Specifically, an attachment member made of a high thermal conductivity product (such as a heat pipe) is sandwiched between a plurality of capacitors, and the attachment member is thermally connected to a heat sink to improve the cooling performance of the capacitor. . Copper or aluminum is used as the material of the heat sink, and air, water, or the like is used as the cooling refrigerant.
JP 2006-12948 A

しかしながら、上記のような従来のコンデンサ冷却構造では、コンデンサに発生した熱の伝導部材としてコンデンサの取り付け部材を利用しているので、コンデンサの形状及び取り付け構造に制限があるとともに、密閉構造の電力変換装置に用いた場合には装置内部に放熱された熱が外部に伝達されにくく、内部温度が上昇し、効率的な冷却ができないという問題点がある。   However, in the conventional capacitor cooling structure as described above, the capacitor mounting member is used as a conductive member for heat generated in the capacitor, so that there is a limitation on the shape and mounting structure of the capacitor, and the power conversion of the sealed structure When used in the apparatus, there is a problem that heat radiated inside the apparatus is hardly transmitted to the outside, the internal temperature rises, and efficient cooling cannot be performed.

本発明は、このような点に鑑みてなされたものであり、コンデンサの形状及び取り付け構造の自由度が高く、密閉構造の電力変換装置でも装置内部の温度の上昇を抑制でき、安価かつ簡易な構成で効率的なコンデンサの冷却を行うことができるコンデンサ冷却構造及び電力変換装置を提供することを目的とする。   The present invention has been made in view of such points, and has a high degree of freedom in the shape and mounting structure of the capacitor, and can suppress an increase in the temperature inside the device even in a sealed power converter, and is inexpensive and simple. It is an object of the present invention to provide a capacitor cooling structure and a power conversion device that can efficiently cool a capacitor with a configuration.

本発明では上記課題を解決するために、密閉構造の電力変換装置を構成するコンデンサと半導体素子とを備え、前記コンデンサの冷却を行うコンデンサ冷却構造において、前記電力変換装置内で熱移動させる伝熱部材と、冷却液により前記半導体素子が冷却される、前記電力変換装置内に配される液冷却フィンとを有し、前記液冷却フィンを周囲温度よりも低い温度にし、前記コンデンサに発生した熱を前記伝熱部材により前記液冷却フィンに移動させることにより、前記半導体素子の発熱とともに前記液冷却フィンにおいて前記コンデンサを周囲温度よりも低い温度に冷却することを特徴とするコンデンサ冷却構造が提供される。
In the present invention, in order to solve the above-described problem, a heat transfer in which heat is transferred in the power conversion device in the capacitor cooling structure including a capacitor and a semiconductor element that constitute a sealed power conversion device and cooling the capacitor. A member and a liquid cooling fin disposed in the power converter in which the semiconductor element is cooled by the cooling liquid, the liquid cooling fin is set to a temperature lower than an ambient temperature , and heat generated in the capacitor By moving the heat transfer member to the liquid cooling fin, the capacitor cooling structure is provided that cools the capacitor to a temperature lower than the ambient temperature in the liquid cooling fin together with the heat generation of the semiconductor element. The

このようなコンデンサ冷却構造によれば、コンデンサの取り付けに関係のない伝熱部材を用いてコンデンサに発生した熱を液冷却フィンに熱移動させているので、コンデンサの形状及び取り付け構造の自由度が高く、密閉構造の電力変換装置に用いた場合でも装置内部の温度の上昇を抑制でき、安価かつ簡易な構成で効率的なコンデンサの冷却を行うことができる。   According to such a capacitor cooling structure, heat generated in the capacitor is thermally transferred to the liquid cooling fin using a heat transfer member that is not related to capacitor mounting, so that the degree of freedom of the shape of the capacitor and the mounting structure is reduced. Even when used in a power converter having a closed structure, it is possible to suppress an increase in temperature inside the apparatus and to efficiently cool a capacitor with an inexpensive and simple configuration.

また、本発明では上記課題を解決するために、コンデンサと半導体素子とを備え、前記コンデンサの冷却を行う密閉構造の電力変換装置において、前記電力変換装置内で熱移動させる伝熱部材と、冷却液により前記半導体素子が冷却される、前記電力変換装置内に配される液冷却フィンとを有し、前記液冷却フィンを周囲温度よりも低い温度にし、前記コンデンサに発生した熱を前記伝熱部材により前記液冷却フィンに移動させることにより、前記半導体素子の発熱とともに前記液冷却フィンにおいて前記コンデンサを周囲温度よりも低い温度に冷却するコンデンサ冷却構造を有することを特徴とする電力変換装置が提供される。
Further, in the present invention, in order to solve the above-described problem, in a sealed power converter that includes a capacitor and a semiconductor element and that cools the capacitor, a heat transfer member that moves heat in the power converter, A liquid cooling fin disposed in the power conversion device, wherein the semiconductor element is cooled by the liquid, the liquid cooling fin is set to a temperature lower than an ambient temperature , and heat generated in the capacitor is transferred to the heat transfer Provided is a power converter having a capacitor cooling structure in which the capacitor is cooled to a temperature lower than an ambient temperature in the liquid cooling fin along with heat generation of the semiconductor element by being moved to the liquid cooling fin by a member. Is done.

このような電力変換装置によれば、コンデンサの取り付けに関係のない伝熱部材を用いてコンデンサに発生した熱を液冷却フィンに熱移動させているので、コンデンサの形状及び取り付け構造の自由度が高く、装置内部の温度の上昇を抑制でき、安価かつ簡易な構成で効率的なコンデンサの冷却を行うことができる。   According to such a power conversion device, heat generated in the capacitor is thermally transferred to the liquid cooling fin using a heat transfer member that is not related to capacitor attachment, so that the shape of the capacitor and the degree of freedom of the attachment structure are increased. High, it is possible to suppress an increase in temperature inside the apparatus, and it is possible to efficiently cool the capacitor with an inexpensive and simple configuration.

本発明のコンデンサ冷却構造及び電力変換装置は、コンデンサの取り付けに関係のない伝熱部材を用いてコンデンサに発生した熱を液冷却フィンに熱移動させているので、コンデンサの形状及び取り付け構造の自由度が高く、密閉構造の電力変換装置でも装置内部の温度の上昇を抑制でき、安価かつ簡易な構成で効率的なコンデンサの冷却を行うことができるという利点がある。   In the capacitor cooling structure and the power conversion device of the present invention, heat generated in the capacitor is thermally transferred to the liquid cooling fin using a heat transfer member not related to the capacitor mounting, so that the capacitor shape and mounting structure are free. Even in a power converter with a sealed structure, there is an advantage that the temperature rise inside the apparatus can be suppressed, and the condenser can be efficiently cooled with an inexpensive and simple configuration.

以下、本発明の実施の形態のコンデンサ冷却構造を図面を参照して説明する。実施の形態では、コンバータやインバータなどの密閉構造の電力変換装置における電解コンデンサの冷却構造を示し、また各図で同一構成要素には同一符号を付して説明する。   Hereinafter, a capacitor cooling structure according to an embodiment of the present invention will be described with reference to the drawings. In the embodiment, a cooling structure of an electrolytic capacitor in a sealed power converter such as a converter or an inverter is shown, and the same components are denoted by the same reference numerals in each drawing.

図1は本発明の第1の実施の形態のコンデンサ冷却構造を示す側面図である。電力変換用の半導体素子1は液冷却フィン2に接続され、液冷却フィン2には冷却液が通る配管3が貫通している。また、熱移動させる伝熱部材としてヒートパイプ4を有しており、平滑用のコンデンサ5の外装ケースがこのヒートパイプ4で液冷却フィン2と熱的に接続されている。   FIG. 1 is a side view showing a capacitor cooling structure according to a first embodiment of the present invention. The semiconductor element 1 for power conversion is connected to a liquid cooling fin 2, and a pipe 3 through which the cooling liquid passes is passed through the liquid cooling fin 2. Further, the heat pipe 4 is provided as a heat transfer member for heat transfer, and the outer case of the smoothing capacitor 5 is thermally connected to the liquid cooling fin 2 by the heat pipe 4.

上記液冷却フィン2は、内部を貫通する配管3に冷却液(冷媒)を通流させて、表面に実装した半導体素子を冷却するものであり、コンデンサ5の温度よりも低くなるように設計されている。そして、その温度差によりコンデンサ5の熱を安価なヒートパイプ4を介して効率良く液冷却フィン2に伝熱することができる。   The liquid cooling fin 2 cools the semiconductor element mounted on the surface by allowing a coolant (refrigerant) to flow through the pipe 3 penetrating the interior, and is designed to be lower than the temperature of the capacitor 5. ing. And the heat of the capacitor | condenser 5 can be efficiently transmitted to the liquid cooling fin 2 via the cheap heat pipe 4 with the temperature difference.

本実施の形態では、液冷却フィン2の下側にコンデンサ5を設置し、このコンデンサ5と半導体素子1の液冷却フィン2とを棒状のヒートパイプ4により熱的に接続している。このため、コンデンサ5に発生した熱はヒートパイプ4により効率良く液冷却フィン2に移動し、これによりコンデンサ5が冷却される。   In the present embodiment, a capacitor 5 is installed below the liquid cooling fin 2, and the capacitor 5 and the liquid cooling fin 2 of the semiconductor element 1 are thermally connected by a rod-shaped heat pipe 4. For this reason, the heat generated in the condenser 5 is efficiently transferred to the liquid cooling fins 2 by the heat pipe 4, thereby cooling the condenser 5.

すなわち、コンデンサ5では内部抵抗とリップル電流により損失が発生するが、この損失による発熱は外装ケースに取り付けたヒートパイプ4で受熱され、このときヒートパイプ4内部の冷媒が気化する。この気化した冷媒はヒートパイプ4の上部に移動し、その熱を液冷却フィン2内の配管3を通る冷却液に放熱することで冷却されて再び液化する。この液化したヒートパイプ4内部の冷媒は下部のコンデンサ5側に戻り、再度コンデンサ5の熱により気化し、液冷却フィン2に熱を移動させる。この熱移動の繰り返しにより、コンデンサ5が冷却される。   That is, loss occurs due to the internal resistance and ripple current in the capacitor 5, and heat generated by this loss is received by the heat pipe 4 attached to the exterior case, and at this time, the refrigerant inside the heat pipe 4 is vaporized. This vaporized refrigerant moves to the upper part of the heat pipe 4 and is cooled and liquefied again by dissipating the heat to the coolant passing through the pipe 3 in the liquid cooling fin 2. The liquefied refrigerant in the heat pipe 4 returns to the lower condenser 5 side, vaporizes again by the heat of the condenser 5, and moves the heat to the liquid cooling fins 2. By repeating this heat transfer, the capacitor 5 is cooled.

ここで、コンデンサ5の温度は、液冷却フィン2の温度にヒートパイプ4の受熱部と放熱部の温度勾配を加えた温度となる。したがって、配管3内の冷却液の通流により液冷却フィン2の温度を周囲温度よりも十分に低くすれば、コンデンサ5の温度も周囲温度より低くすることができ、コンデンサ5の外装ケース表面から周囲空間に放熱される熱量を低減させることができる。   Here, the temperature of the capacitor 5 is a temperature obtained by adding the temperature gradient of the heat receiving portion and the heat radiating portion of the heat pipe 4 to the temperature of the liquid cooling fin 2. Therefore, if the temperature of the liquid cooling fin 2 is sufficiently lower than the ambient temperature by the flow of the coolant in the pipe 3, the temperature of the capacitor 5 can also be lower than the ambient temperature. The amount of heat radiated to the surrounding space can be reduced.

また、一般に電力変換用の半導体素子1の損失が数100W程度であるのに対し、コンデンサ5の損失は数Wから数10W程度である。このため、コンデンサ5の熱を液冷却フィン2に放熱しても、液冷却フィン2の冷却性能に影響を与えることはない。   In general, the loss of the semiconductor element 1 for power conversion is about several hundred W, whereas the loss of the capacitor 5 is about several W to several tens W. For this reason, even if the heat of the capacitor 5 is radiated to the liquid cooling fin 2, the cooling performance of the liquid cooling fin 2 is not affected.

このように、本実施の形態のコンデンサ冷却構造では、コンデンサ5内部で発生した熱をヒートパイプ4により効率良く液冷却フィン2に移動させて放熱させることができ、コンデンサ5の放熱量の低減及びコンデンサ5の温度上昇を抑制することができる。液冷却フィン2は半導体素子1を冷却するためのものであり、コンデンサ5の温度よりも低くなるように冷却設計することができ、その温度差によりコンデンサ5の熱を液冷却フィン2に移動させることができる。   As described above, in the capacitor cooling structure of the present embodiment, the heat generated in the capacitor 5 can be efficiently transferred to the liquid cooling fin 2 by the heat pipe 4 to be dissipated, thereby reducing the heat dissipation amount of the capacitor 5 and The temperature rise of the capacitor 5 can be suppressed. The liquid cooling fin 2 is for cooling the semiconductor element 1 and can be designed to be cooler than the temperature of the capacitor 5, and the heat of the capacitor 5 is transferred to the liquid cooling fin 2 due to the temperature difference. be able to.

また、コンデンサ5の取り付けに関係のない安価なヒートパイプ4を用いてコンデンサ5に発生した熱を液冷却フィン2に熱移動させているので、コンデンサ5の形状及び取り付け構造の自由度が高く、安価かつ簡易な構成で効率的なコンデンサ5の冷却を行うことができる。さらに、密閉構造の電力変換装置に用いた場合でも、装置外部から液冷却フィン2の内部の配管3に冷却液を供給できるので、装置内部の温度の上昇を抑制することができる。   Moreover, since the heat generated in the capacitor 5 is thermally transferred to the liquid cooling fin 2 using an inexpensive heat pipe 4 that is not related to the attachment of the capacitor 5, the shape of the capacitor 5 and the degree of freedom of the attachment structure are high. The capacitor 5 can be efficiently cooled with an inexpensive and simple configuration. Furthermore, even when used in a power converter having a sealed structure, the coolant can be supplied from the outside of the device to the pipe 3 inside the liquid cooling fin 2, so that an increase in temperature inside the device can be suppressed.

なお、液冷却フィン2側のヒートパイプ4の取り付け位置は、冷却液の配管3を挟んで半導体素子1の反対側にするのが好ましい。また、ヒートパイプ4は図示のようにコの字型にする必要はなく、棒状であってもL字型であっても良い。   The mounting position of the heat pipe 4 on the liquid cooling fin 2 side is preferably on the opposite side of the semiconductor element 1 with the cooling liquid pipe 3 interposed therebetween. Further, the heat pipe 4 does not have to be U-shaped as illustrated, and may be rod-shaped or L-shaped.

図2は本発明の第2の実施の形態のコンデンサ冷却構造を示す側面図である。本実施の形態では、液冷却フィン2の横側にコンデンサ5を設置している。他は、図1に示す第1の実施の形態と同様である。   FIG. 2 is a side view showing a capacitor cooling structure according to the second embodiment of the present invention. In the present embodiment, the capacitor 5 is installed on the side of the liquid cooling fin 2. Others are the same as those of the first embodiment shown in FIG.

このような構成のコンデンサ冷却構造において、ヒートパイプ4の放熱部を受熱部よりも高い位置にすることができれば、液冷却フィン2とコンデンサ5の実装位置についての制限は排除することができる。   In the capacitor cooling structure having such a configuration, if the heat radiating portion of the heat pipe 4 can be positioned higher than the heat receiving portion, the restriction on the mounting positions of the liquid cooling fins 2 and the capacitors 5 can be eliminated.

図3は本発明の第3の実施の形態のコンデンサ冷却構造を示す側面図である。本実施の形態では、コンデンサ5の表面を銅あるいはアルミニウムなどの高熱伝導率の熱伝導性部材6で覆い、この熱伝導性部材6と液冷却フィン2とをヒートパイプ4で熱的に接続している。   FIG. 3 is a side view showing a capacitor cooling structure according to the third embodiment of the present invention. In the present embodiment, the surface of the capacitor 5 is covered with a heat conductive member 6 having a high thermal conductivity such as copper or aluminum, and the heat conductive member 6 and the liquid cooling fin 2 are thermally connected by the heat pipe 4. ing.

このような構成のコンデンサ冷却構造においては、熱伝導性部材6によりコンデンサ5の熱を集熱して液冷却フィン2に移動させることができる。また、コンデンサ5と液冷却フィン2とを電気的に絶縁する必要がある場合は、コンデンサ5の表面に電気的絶縁シートを巻き、その上に熱伝導性部材6を巻けば良い。   In the capacitor cooling structure having such a configuration, the heat of the capacitor 5 can be collected by the heat conductive member 6 and moved to the liquid cooling fin 2. Further, when it is necessary to electrically insulate the capacitor 5 and the liquid cooling fin 2, an electrically insulating sheet may be wound around the surface of the capacitor 5, and a heat conductive member 6 may be wound thereon.

図4は本発明の第4の実施の形態のコンデンサ冷却構造を示す斜視図である。本実施の形態は特に複数のコンデンサを冷却する場合に適したコンデンサ冷却構造であり、複数のコンデンサ5を高熱伝導率の樹脂からなる熱伝導性モールド材7でモールドし、モールドした熱伝導性モールド材7の外皮にヒートパイプ4の片端部を取り付け、ヒートパイプ4の他方の端部を液冷却フィン2と熱的に接続している。   FIG. 4 is a perspective view showing a capacitor cooling structure according to the fourth embodiment of the present invention. This embodiment is a capacitor cooling structure particularly suitable for cooling a plurality of capacitors. The plurality of capacitors 5 are molded with a heat conductive molding material 7 made of a resin having a high thermal conductivity, and the heat conductive mold is molded. One end of the heat pipe 4 is attached to the outer skin of the material 7, and the other end of the heat pipe 4 is thermally connected to the liquid cooling fin 2.

このような構成のコンデンサ冷却構造においては、複数のコンデンサ5を効率良く冷却することができ、またコンデンサ5の設置スペースも小さくすることができる。なお、図示していないが図1〜図3に示す実施の形態と同様、ヒートパイプ4は内部を通る冷却液により冷却される構造となっている。   In the capacitor cooling structure having such a configuration, the plurality of capacitors 5 can be efficiently cooled, and the installation space for the capacitors 5 can be reduced. Although not shown, the heat pipe 4 is structured to be cooled by a coolant passing through the inside, as in the embodiment shown in FIGS.

図5は本発明の第5の実施の形態のコンデンサ冷却構造を示す斜視図である。本実施の形態も図4に示す第4の実施の形態と同様、複数のコンデンサを冷却する場合に適したコンデンサ冷却構造であり、図5に示すように、複数のコンデンサ5の間に銅あるいはアルミニウムなどの高熱伝導率の集熱部材8を挟み込み、複数のコンデンサ5とこの集熱部材8とを熱伝導性モールド材7でモールドし、集熱部材8を液冷却フィン2とヒートパイプ4で熱的に接続している。   FIG. 5 is a perspective view showing a capacitor cooling structure according to a fifth embodiment of the present invention. Similar to the fourth embodiment shown in FIG. 4, this embodiment is also a capacitor cooling structure suitable for cooling a plurality of capacitors. As shown in FIG. A heat collecting member 8 having high thermal conductivity such as aluminum is sandwiched, a plurality of capacitors 5 and the heat collecting member 8 are molded with a heat conductive molding material 7, and the heat collecting member 8 is formed with the liquid cooling fin 2 and the heat pipe 4. Thermally connected.

このような構成のコンデンサ冷却構造においては、集熱部材8により複数のコンデンサ5を効率良く冷却することができ、コンデンサ5の設置スペースも小さくすることができるとともに、熱伝導性モールド材7に絶縁性材料を用いることで、コンデンサ5とヒートパイプ4の絶縁を確保することができる。なお、本実施の形態においても図1〜図3に示す実施の形態と同様、ヒートパイプ4は内部を通る冷却液により冷却される構造となっている。   In the capacitor cooling structure having such a configuration, the plurality of capacitors 5 can be efficiently cooled by the heat collecting member 8, the installation space for the capacitors 5 can be reduced, and the heat conductive mold material 7 is insulated. By using a conductive material, insulation between the capacitor 5 and the heat pipe 4 can be ensured. In this embodiment as well, the heat pipe 4 is structured to be cooled by the coolant passing through the inside, as in the embodiment shown in FIGS.

図6は図5に示す第5の実施の形態のコンデンサ冷却構造における集熱部材8の構成例を示す斜視図である。同図の(A)はコンデンサ5の間に挟みこまれた平板状の集熱板8aを有するものを示し、また(B),(C)は断面楕円形の筒状の集熱板8b,8cを有するものを示しており、(B)の集熱板8bは一端側が開口した形状となっている。集熱部材8はこれらの構成に限定されることなく、他の形状であっても良い。   FIG. 6 is a perspective view showing a configuration example of the heat collecting member 8 in the condenser cooling structure of the fifth embodiment shown in FIG. (A) of the figure shows what has a flat plate-like heat collecting plate 8a sandwiched between capacitors 5, and (B) and (C) are cylindrical heat collecting plates 8b having an elliptical cross section. 8B, the heat collecting plate 8b of (B) has a shape with one end opened. The heat collecting member 8 is not limited to these configurations, and may have other shapes.

以上、本発明の各実施の形態について説明したが、上述の各実施の形態のコンデンサ冷却構造を有するコンバータなどの電力変換装置においては、コンデンサ5の熱が電力変換用の半導体素子(スイッチング素子)を冷却するための液冷却フィン2内部を通る冷却液に放熱され、コンデンサ5の表面からの放熱を低減することができ、装置内部の温度上昇を抑制することができる。   Although the embodiments of the present invention have been described above, in the power conversion device such as the converter having the capacitor cooling structure of each of the above-described embodiments, the heat of the capacitor 5 is a semiconductor element for power conversion (switching element). The heat is radiated to the coolant passing through the liquid cooling fins 2 for cooling the heat, so that the heat radiation from the surface of the capacitor 5 can be reduced, and the temperature rise inside the device can be suppressed.

なお、上述の各実施の形態におけるコンデンサ5は、電解コンデンサだけでなく、金属ケースに収容されたフィルムコンデンサ、もしくは樹脂モールドされたコンデンサであっても良い。   The capacitor 5 in each of the above-described embodiments may be not only an electrolytic capacitor but also a film capacitor housed in a metal case or a resin molded capacitor.

本発明の第1の実施の形態のコンデンサ冷却構造を示す側面図である。It is a side view which shows the capacitor | condenser cooling structure of the 1st Embodiment of this invention. 本発明の第2の実施の形態のコンデンサ冷却構造を示す側面図である。It is a side view which shows the capacitor | condenser cooling structure of the 2nd Embodiment of this invention. 本発明の第3の実施の形態のコンデンサ冷却構造を示す側面図である。It is a side view which shows the capacitor | condenser cooling structure of the 3rd Embodiment of this invention. 本発明の第4の実施の形態のコンデンサ冷却構造を示す斜視図である。It is a perspective view which shows the capacitor | condenser cooling structure of the 4th Embodiment of this invention. 本発明の第5の実施の形態のコンデンサ冷却構造を示す斜視図である。It is a perspective view which shows the capacitor | condenser cooling structure of the 5th Embodiment of this invention. 図5に示す第5の実施の形態のコンデンサ冷却構造における集熱部材の構成例を示す斜視図である。It is a perspective view which shows the structural example of the heat collecting member in the capacitor | condenser cooling structure of 5th Embodiment shown in FIG.

符号の説明Explanation of symbols

1 半導体素子
2 液冷却フィン
3 配管
4 ヒートパイプ
5 コンデンサ
6 熱伝導性部材
7 熱伝導性モールド材
8 集熱部材
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Liquid cooling fin 3 Piping 4 Heat pipe 5 Capacitor 6 Thermal conductive member 7 Thermal conductive molding material 8 Heat collecting member

Claims (6)

密閉構造の電力変換装置を構成するコンデンサと半導体素子とを備え、前記コンデンサの冷却を行うコンデンサ冷却構造において、
前記電力変換装置内で熱移動させる伝熱部材と、冷却液により前記半導体素子が冷却される、前記電力変換装置内に配される液冷却フィンとを有し、前記液冷却フィンを周囲温度よりも低い温度にし、前記コンデンサに発生した熱を前記伝熱部材により前記液冷却フィンに移動させることにより、前記半導体素子の発熱とともに前記液冷却フィンにおいて前記コンデンサを周囲温度よりも低い温度に冷却することを特徴とするコンデンサ冷却構造。
In a capacitor cooling structure that includes a capacitor and a semiconductor element constituting a sealed structure power converter, and cools the capacitor,
A heat transfer member for heat transfer in the power conversion device; and a liquid cooling fin disposed in the power conversion device in which the semiconductor element is cooled by a cooling liquid. And the heat generated in the capacitor is moved to the liquid cooling fin by the heat transfer member to cool the capacitor to a temperature lower than the ambient temperature in the liquid cooling fin along with the heat generation of the semiconductor element. Capacitor cooling structure characterized by that.
前記コンデンサの外装ケースと前記液冷却フィンとを前記伝熱部材で熱的に接続したことを特徴とする請求項1記載のコンデンサ冷却構造。   2. The capacitor cooling structure according to claim 1, wherein the outer case of the capacitor and the liquid cooling fin are thermally connected by the heat transfer member. 前記コンデンサの表面を熱伝導性部材で覆い、前記熱伝導性部材と前記液冷却フィンとを前記伝熱部材で熱的に接続したことを特徴とする請求項1記載のコンデンサ冷却構造。   2. The capacitor cooling structure according to claim 1, wherein a surface of the capacitor is covered with a heat conductive member, and the heat conductive member and the liquid cooling fin are thermally connected by the heat transfer member. 前記コンデンサを熱伝導性モールド材でモールドし、モールドした前記熱伝導性モールド材の外皮に前記伝熱部材の片端部を取り付け、前記伝熱部材の他方の端部を前記液冷却フィンと熱的に接続したことを特徴とする請求項1記載のコンデンサ冷却構造。   The capacitor is molded with a heat conductive mold material, one end of the heat transfer member is attached to the outer skin of the molded heat conductive mold material, and the other end of the heat transfer member is thermally connected to the liquid cooling fin. The capacitor cooling structure according to claim 1, wherein the capacitor cooling structure is connected to the capacitor. 複数の前記コンデンサの間に集熱部材を挟み込み、前記複数のコンデンサと前記集熱部材とを熱伝導性モールド材でモールドし、前記集熱部材を前記液冷却フィンと前記伝熱部材で熱的に接続したことを特徴とする請求項1記載のコンデンサ冷却構造。   A heat collecting member is sandwiched between the plurality of capacitors, the plurality of capacitors and the heat collecting member are molded with a heat conductive molding material, and the heat collecting member is thermally formed with the liquid cooling fin and the heat transfer member. The capacitor cooling structure according to claim 1, wherein the capacitor cooling structure is connected to the capacitor. コンデンサと半導体素子とを備え、前記コンデンサの冷却を行う密閉構造の電力変換装置において、
前記電力変換装置内で熱移動させる伝熱部材と、冷却液により前記半導体素子が冷却される、前記電力変換装置内に配される液冷却フィンとを有し、前記液冷却フィンを周囲温度よりも低い温度にし、前記コンデンサに発生した熱を前記伝熱部材により前記液冷却フィンに移動させることにより、前記半導体素子の発熱とともに前記液冷却フィンにおいて前記コンデンサを周囲温度よりも低い温度に冷却するコンデンサ冷却構造を有することを特徴とする電力変換装置。
In a power converter having a sealed structure that includes a capacitor and a semiconductor element, and cools the capacitor,
A heat transfer member for heat transfer in the power conversion device; and a liquid cooling fin disposed in the power conversion device in which the semiconductor element is cooled by a cooling liquid. And the heat generated in the capacitor is moved to the liquid cooling fin by the heat transfer member to cool the capacitor to a temperature lower than the ambient temperature in the liquid cooling fin along with the heat generation of the semiconductor element. A power converter having a condenser cooling structure.
JP2006098319A 2006-03-31 2006-03-31 Capacitor cooling structure and power conversion device Active JP5252781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098319A JP5252781B2 (en) 2006-03-31 2006-03-31 Capacitor cooling structure and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098319A JP5252781B2 (en) 2006-03-31 2006-03-31 Capacitor cooling structure and power conversion device

Publications (2)

Publication Number Publication Date
JP2007273774A JP2007273774A (en) 2007-10-18
JP5252781B2 true JP5252781B2 (en) 2013-07-31

Family

ID=38676253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098319A Active JP5252781B2 (en) 2006-03-31 2006-03-31 Capacitor cooling structure and power conversion device

Country Status (1)

Country Link
JP (1) JP5252781B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326334B2 (en) * 2008-04-16 2013-10-30 株式会社デンソー Power control unit
DE102008028400A1 (en) 2008-06-17 2009-12-24 Behr Gmbh & Co. Kg Device for cooling a vehicle battery
JP4983959B2 (en) 2010-04-27 2012-07-25 株式会社デンソー Switching power supply
CN102930979B (en) * 2011-08-13 2016-05-11 广东顺容电气有限公司 A kind of capacitor
US9030822B2 (en) 2011-08-15 2015-05-12 Lear Corporation Power module cooling system
JP2013146179A (en) * 2011-12-13 2013-07-25 Denso Corp Electric power conversion apparatus
US9076593B2 (en) 2011-12-29 2015-07-07 Lear Corporation Heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US8971041B2 (en) 2012-03-29 2015-03-03 Lear Corporation Coldplate for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US8971038B2 (en) 2012-05-22 2015-03-03 Lear Corporation Coldplate for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US8902582B2 (en) 2012-05-22 2014-12-02 Lear Corporation Coldplate for use with a transformer in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
KR101477623B1 (en) * 2013-04-22 2014-12-30 송암시스콤 주식회사 Apparatus for cooling inverter system
US9615490B2 (en) 2014-05-15 2017-04-04 Lear Corporation Coldplate with integrated DC link capacitor for cooling thereof
US9362040B2 (en) 2014-05-15 2016-06-07 Lear Corporation Coldplate with integrated electrical components for cooling thereof
JP6992327B2 (en) * 2017-08-29 2022-01-13 富士電機株式会社 Inverter device
JP7163542B2 (en) * 2018-06-12 2022-11-01 株式会社指月電機製作所 capacitor
CN109003811A (en) * 2018-08-13 2018-12-14 桂林电力电容器有限责任公司 A kind of box high-voltage power capacitor
US10923287B1 (en) 2019-08-06 2021-02-16 GM Global Technology Operations LLC Vascular cooled capacitor assembly and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152199A (en) * 1981-03-14 1982-09-20 Tokyo Shibaura Electric Co Heat sink device
KR920005988B1 (en) * 1988-08-31 1992-07-25 가부시기가이샤 히다찌세이사꾸쇼 Inverter device
JP2000277377A (en) * 1999-03-29 2000-10-06 Nichicon Corp Dry metallized film capacitor
JP4044265B2 (en) * 2000-05-16 2008-02-06 三菱電機株式会社 Power module
JP2006012874A (en) * 2004-06-22 2006-01-12 Matsushita Electric Ind Co Ltd Cooling device of semiconductor element
JP4527462B2 (en) * 2004-07-23 2010-08-18 双信電機株式会社 Electronic components

Also Published As

Publication number Publication date
JP2007273774A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5252781B2 (en) Capacitor cooling structure and power conversion device
JP4402602B2 (en) Capacitor cooling structure and power conversion device
JP5714077B2 (en) Cooling device for connecting conductor and power conversion device using the same
JP6049752B2 (en) Newly structured bus bar
JP2018536273A (en) Power battery pack and electric vehicle having the same
JP7208124B2 (en) Power converter and motor-integrated power converter
JP2010060164A (en) Heat pipe type heat sink
JP2007165620A (en) Semiconductor cooling structure
JP7074486B2 (en) Secondary battery module
JP5664472B2 (en) Power converter
JP2007173372A (en) Power converter
JP2013138113A (en) Cooling structure
CN110557927A (en) Heat sink and method of manufacturing a heat sink
JP6286541B2 (en) Power module device and power conversion device
JP5070877B2 (en) Semiconductor power converter
JP5976235B1 (en) Power converter
JP4446811B2 (en) Capacitor mounting structure of power converter
JP7366082B2 (en) power converter
JP6961047B1 (en) Power converter
JP3850319B2 (en) Semiconductor cooling device for vehicle
JP2000223323A (en) Stationary induction apparatus
JP4385747B2 (en) Mounting structure of semiconductor device
US20190029144A1 (en) Cooling device for a power converter
JP2013089768A (en) Semiconductor module
JP2004087553A (en) Power converter device for for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120625

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Ref document number: 5252781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250