JP2006012874A - Cooling device of semiconductor element - Google Patents

Cooling device of semiconductor element Download PDF

Info

Publication number
JP2006012874A
JP2006012874A JP2004183277A JP2004183277A JP2006012874A JP 2006012874 A JP2006012874 A JP 2006012874A JP 2004183277 A JP2004183277 A JP 2004183277A JP 2004183277 A JP2004183277 A JP 2004183277A JP 2006012874 A JP2006012874 A JP 2006012874A
Authority
JP
Japan
Prior art keywords
heat
cooling
heat exchanger
heat pipe
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004183277A
Other languages
Japanese (ja)
Inventor
Masao Nakano
雅夫 中野
Akira Ikeda
明 池田
Hiromasa Ashitani
博正 芦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004183277A priority Critical patent/JP2006012874A/en
Publication of JP2006012874A publication Critical patent/JP2006012874A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies

Abstract

<P>PROBLEM TO BE SOLVED: To provide the cooling device of a semiconductor element by which the heat of a plurality of semiconductor elements are moved to the cooling device of a refrigerant circulation type by heat pipes, and much heat can efficiently be radiated since there is a limit to the cooling of a plurality of the semiconductor elements of high heat generation in combination of a heatsink and a fan as in a conventional case. <P>SOLUTION: Cooling plates 3 and heat pipes 4 are installed in a plurality of the semiconductor elements 1 of high heat generation for cooling them. A heat exchanger 5, a radiator 7 and a pump 8 are connected by piping, and the heat pipes 4 are thermally connected to the heat exchanger 5 of the cooling device where a refrigerant circulates. The heat of a plurality of the semiconductor elements 1 can efficiently be radiated. Since the respective heat pipes 4 are independent, they can easily be handled. Thus, the highly reliable cooling device of the semiconductor element 1 can be obtained which does not adversely affect the other semiconductor element 2 even if it breaks down. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子装置において高発熱となる半導体素子の冷却装置に関し、特に複数の半導体素子に繋いだ複数のヒートパイプと、冷媒を用いた冷却回路とを連結した、効率が高くて取り扱いが容易な半導体素子の冷却装置に関するものである。   TECHNICAL FIELD The present invention relates to a cooling device for a semiconductor element that generates high heat in an electronic device, and in particular, a plurality of heat pipes connected to a plurality of semiconductor elements and a cooling circuit using a refrigerant are connected with high efficiency and easy to handle. The present invention relates to a semiconductor device cooling apparatus.

従来、この種の放熱装置としては空冷式のものがある(例えば、特許文献1参照)。   Conventionally, as this type of heat dissipation device, there is an air-cooling type (see, for example, Patent Document 1).

図7は、従来のサーバの断面図である。図7において、PCサーバ101は、筐体108内にフレッシュエアを導入するための吸気口109、排気口110と、排気口110の近傍に設けられた冷却ファン111と、冷却ファン111によって筐体108内に導入されるフレッシュエアを、エアの流れの上流側の領域、つまり上流域にある基板104上の発熱部品102と、下流側の領域、つまり下流域にある発熱部品103とに分散して供給できるように、偏風部112を有するダクトケース113とを具備する。これにより、上流域にある発熱部品102は、吸気口109の下段から吸気されたフレッシュエアによって冷却され、一方、下流域にある発熱部品103は、吸気口109の上段から吸気された、発熱部品102に触れていないフレッシュエアによって冷却される。同図のように、発熱量の小さい半導体の素子の冷却ではファン冷却器でも十分冷却されていた。   FIG. 7 is a cross-sectional view of a conventional server. In FIG. 7, the PC server 101 includes an intake port 109 and an exhaust port 110 for introducing fresh air into the housing 108, a cooling fan 111 provided in the vicinity of the exhaust port 110, and the cooling fan 111. The fresh air introduced into 108 is dispersed into the heat generating component 102 on the substrate 104 in the upstream region of the air flow, that is, the upstream region, and the heat generating component 103 in the downstream region, that is, the downstream region. And a duct case 113 having a draft portion 112. Thus, the heat generating component 102 in the upstream area is cooled by the fresh air sucked from the lower stage of the intake port 109, while the heat generating component 103 in the downstream area is sucked from the upper stage of the intake port 109. Cooled by fresh air not touching 102. As shown in the figure, the cooling of the semiconductor element with a small calorific value was sufficiently cooled by the fan cooler.

また、発熱部品の熱をヒートパイプにより伝達して外部に放出するものがある(例えば、特許文献2参照)。   In addition, there is one that transmits heat of a heat generating component through a heat pipe and releases it to the outside (see, for example, Patent Document 2).

図8は、従来のコンピュータの一部破断した斜視図である。図8において、コンピュータ201は筐体206内部の熱を電源204の吹き出し部209から外部に放出するように送風する電源ファンを備え、中央演算処理装置202などの発熱部品の熱を、電源ファンの下流に設けられたヒートシンク212までヒートパイプ205により伝達して放出し、電源ファンからの風によりコンピュータ201の外部に放出する。
特開2001−189584号公報 特開2000−250660号公報
FIG. 8 is a partially broken perspective view of a conventional computer. In FIG. 8, a computer 201 includes a power supply fan that blows heat inside the housing 206 so as to be released to the outside from the blowing unit 209 of the power supply 204, and the heat of a heat-generating component such as the central processing unit 202 is transmitted to the power supply fan. The heat pipe 205 transmits the heat sink 212 to the heat sink 212 provided on the downstream side, and the air is discharged from the power supply fan to the outside of the computer 201.
JP 2001-189484 A JP 2000-250660 A

従来のように、ヒートシンクとファンの組み合わせや、その上にヒートパイプを利用した構成では、冷却を空冷式に依存する以上は高発熱の半導体素子の冷却に対して冷却能力的に限界に近づいて来ていた。   As in the past, the combination of a heat sink and a fan, and a configuration using a heat pipe on top of it, approaching the limit in terms of cooling capacity for cooling a semiconductor element with high heat generation, as long as it depends on the air cooling system for cooling. was already arrived.

本発明はこのような従来の課題を解決するものであり、複数のヒートパイプと冷媒循環式の冷却回路を組み合わせて効率良く放熱でき、取り扱いが容易な冷却装置を提供することを目的とするものである。   SUMMARY OF THE INVENTION The present invention solves such a conventional problem, and an object of the present invention is to provide a cooling device that can efficiently dissipate heat and can be easily handled by combining a plurality of heat pipes and a refrigerant circulation cooling circuit. It is.

この課題を解決するために、請求項1にかかる発明の半導体素子の冷却装置は、基板に設けられ、発熱体である複数の半導体素子と、前記半導体素子を冷却するためにそれぞれに設けられた冷却板と、前記冷却板とピートパイプで繋がれた熱交換器とを備え、前記熱交換器と、ファンにより冷却される放熱器と、ポンプとを配管で接続して内部に冷媒が循環する冷却回路を構成したもので、この構成によりそれぞれの半導体素子の熱を効率良く放熱でき、またそれぞれのヒートパイプが独立しているため取り扱いが容易であり、故障
しても他の半導体素子に影響を与えない信頼性の高い冷却装置が得られる。
In order to solve this problem, a semiconductor device cooling device according to a first aspect of the present invention is provided on a substrate, and is provided to each of a plurality of semiconductor devices which are heating elements and to cool the semiconductor devices. A cooling plate and a heat exchanger connected to the cooling plate by a peat pipe are provided, and the heat exchanger, a radiator cooled by a fan, and a pump are connected by piping to circulate the refrigerant inside. Constructs a cooling circuit, which can efficiently dissipate the heat of each semiconductor element, and because each heat pipe is independent, it is easy to handle, and even if it fails, it affects other semiconductor elements A highly reliable cooling device that does not give the heat resistance is obtained.

また、請求項2の発明は、冷却板を銅材で構成し、前記冷却板にヒートパイプの形状に相当する穴を設け、ヒートパイプを前記穴にグリースといっしょに挿入したもので、それぞれのヒートパイプは冷却板からの取り外しが容易になるとともに、接合部の熱伝導性を向上できる。   In the invention of claim 2, the cooling plate is made of a copper material, a hole corresponding to the shape of the heat pipe is provided in the cooling plate, and the heat pipe is inserted into the hole together with grease. The heat pipe can be easily detached from the cooling plate and can improve the thermal conductivity of the joint.

また、請求項3の発明は、熱交換器に、冷媒を流す内部空間と、ヒートパイプの形状に相当する穴とを個別に設け、前記ヒートパイプを前記穴にグリースと共に挿入したもので、それぞれのヒートパイプは熱交換器からの取り外しが容易になるとともに、接合部の熱伝導性を向上できる。   In the invention of claim 3, the heat exchanger is provided with an internal space through which the refrigerant flows and a hole corresponding to the shape of the heat pipe, and the heat pipe is inserted into the hole together with grease. The heat pipe can be easily removed from the heat exchanger and can improve the thermal conductivity of the joint.

また、請求項4の発明は、冷却板にヒートパイプの形状に相当する穴を設け、ヒートパイプを圧入勘合したもので、さらに伝熱性能を向上することができる。   In the invention of claim 4, a hole corresponding to the shape of the heat pipe is provided in the cooling plate, and the heat pipe is press-fitted into the cooling plate, and the heat transfer performance can be further improved.

また、請求項5の発明は、熱交換器の内部空間にヒートパイプを挿入し、前記ヒートパイプを前記熱交換器に気密的に固定したもので、それぞれのヒートパイプ4が直接冷媒と熱交換するために効率が良い。   In the invention of claim 5, a heat pipe is inserted into the internal space of the heat exchanger, and the heat pipe is hermetically fixed to the heat exchanger, and each heat pipe 4 directly exchanges heat with the refrigerant. Efficient to do.

また、請求項6の発明は、熱交換器の内部空間内に挿入されたヒートパイプにフィンを形成したもので、伝熱面積が増えることにより熱交換効率がさらに向上する。   In the invention of claim 6, fins are formed on the heat pipe inserted into the internal space of the heat exchanger, and the heat exchange efficiency is further improved by increasing the heat transfer area.

また、請求項7の発明は、熱交換器の内部空間に、連通穴を設けた仕切り板を設けて複数の仕切り空間を形成し、前記仕切り空間にヒートパイプをそれぞれ挿入して気密的に固定したもので、熱交換器の強度が強くなり、コストの廉価な材料からの製造が可能となる。   According to the invention of claim 7, a partition plate provided with communication holes is provided in the internal space of the heat exchanger to form a plurality of partition spaces, and heat pipes are respectively inserted into the partition spaces to be hermetically fixed. As a result, the strength of the heat exchanger is increased, and it is possible to manufacture from a low-cost material.

また、請求項8の発明は、冷却回路に使用される冷媒が、熱交換器の内部空間で2相状態となるもので、熱交換器内の温度を均一に保つことができるため、多くの半導体素子をほぼ同じ温度に冷却することが可能となる。   In the invention of claim 8, since the refrigerant used in the cooling circuit is in a two-phase state in the internal space of the heat exchanger, and the temperature in the heat exchanger can be kept uniform, The semiconductor element can be cooled to substantially the same temperature.

また、請求項9の発明は、放熱器とポンプと熱交換器とをその順番で接続し、前記放熱器と前記ポンプとは前記熱交換器よりも下に配設し、前記放熱器は上部に冷媒の入口を設けて下部に出口を設けたもので、冷媒の蒸気が発生した場合のガス噛みによるポンプ性能の低下を避けることができ、信頼性の高い構成を得ることができる。   The invention of claim 9 connects a radiator, a pump, and a heat exchanger in that order, and the radiator and the pump are disposed below the heat exchanger, and the radiator is an upper part. A refrigerant inlet is provided in the lower part and an outlet is provided in the lower part, so that it is possible to avoid a decrease in pump performance due to gas biting when refrigerant vapor is generated, and to obtain a highly reliable configuration.

以上のように、本発明の半導体素子の冷却装置は、発熱体である複数の半導体素子を冷却するために設けたそれぞれのヒートパイプと、熱交換器、放熱器およびポンプを繋ぎ冷媒が循環する冷却回路とを熱的に連結したもので、この構成によりそれぞれの半導体素子の熱を効率良く放熱でき、またそれぞれのヒートパイプが独立しているため取り扱いが容易であり、故障しても他の半導体素子に影響を与えない信頼性の高い冷却装置が得られる。   As described above, the semiconductor element cooling apparatus according to the present invention connects each heat pipe provided to cool a plurality of semiconductor elements, which are heating elements, with a heat exchanger, a radiator, and a pump to circulate the refrigerant. This is a thermal connection with the cooling circuit. With this configuration, the heat of each semiconductor element can be efficiently dissipated, and each heat pipe is independent, so it is easy to handle. A highly reliable cooling device that does not affect the semiconductor element can be obtained.

また、請求項10の発明は、熱交換器の冷媒の出口は下部に設けたもので、液冷媒が流れるようにして循環効率の低下を防ぐことができる。   In the invention of claim 10, the refrigerant outlet of the heat exchanger is provided in the lower part, and the circulation efficiency can be prevented from decreasing by allowing the liquid refrigerant to flow.

以下に、本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における半導体の冷却装置の模式図で、複数の基板(サーバ)が枠体に収められた状態を示す。図1において、複数の半導体素子1がサーバ枠体内の6台の基板2に設置されている。高発熱体である半導体素子1を冷却するための冷却板3がそれぞれの半導体素子1の上に熱的に密着して設置されている。それぞれの冷却板3にはヒートパイプ4が接合されており、それぞれのヒートパイプ4の他端は熱交換器5の内部空間9に挿入されて熱交換器5に気密的にろう付け接合されている。熱交換器5は、ファン6で冷却される放熱器7とポンプ8とともに配管で接続されて冷却回路を構成し、冷却回路内には冷媒が封入されている。
(Embodiment 1)
FIG. 1 is a schematic diagram of a semiconductor cooling device according to Embodiment 1 of the present invention, and shows a state where a plurality of substrates (servers) are housed in a frame. In FIG. 1, a plurality of semiconductor elements 1 are installed on six substrates 2 in a server frame. A cooling plate 3 for cooling the semiconductor element 1 that is a high heating element is disposed on each semiconductor element 1 in close thermal contact. A heat pipe 4 is joined to each cooling plate 3, and the other end of each heat pipe 4 is inserted into the internal space 9 of the heat exchanger 5 and airtightly brazed to the heat exchanger 5. Yes. The heat exchanger 5 is connected by a pipe together with a radiator 7 cooled by a fan 6 and a pump 8 to form a cooling circuit, and a refrigerant is sealed in the cooling circuit.

かかる構成によれば、サーバ枠体内に設置されたそれぞれの高発熱半導体素子1の熱が冷却板3に伝わり、冷却板3に接合されたヒートパイプ4により熱交換器5に集められる。熱交換器5に集められた熱は熱交換器内の冷媒と熱交換を行い、ポンプ8により放熱器7に送られ、ファン6により放熱することができる。なお、ポンプ8は放熱器7の後に配設することにより、冷媒が凝縮されてガス噛みのない効率がよい運転ができる。   According to this configuration, the heat of each highly heat-generating semiconductor element 1 installed in the server frame is transmitted to the cooling plate 3 and collected in the heat exchanger 5 by the heat pipe 4 joined to the cooling plate 3. The heat collected in the heat exchanger 5 exchanges heat with the refrigerant in the heat exchanger, is sent to the radiator 7 by the pump 8, and can be radiated by the fan 6. The pump 8 is disposed after the radiator 7 so that the refrigerant is condensed and an efficient operation without gas biting can be performed.

また、この構成によればそれぞれの高発熱な半導体素子の冷却はそれぞれのヒートパイプで独立して行われるため、取り扱いが容易であり、1つのヒートパイプが故障しても他の半導体素子の冷却に影響を及ぼさないため、信頼性の高いシステムを得ることができる。   Also, according to this configuration, each high heat-generating semiconductor element is cooled independently by each heat pipe, so that it is easy to handle and even if one heat pipe fails, the other semiconductor elements can be cooled. Therefore, a highly reliable system can be obtained.

図2は本発明の実施の形態1における冷却板3とヒートパイプの接合断面図である。図2において、冷却板3は熱伝導率の良い銅材で構成されており、ヒートパイプ形状に相当する穴があけられ、その穴にヒートパイプ4がグリースと共に挿入されて密接に接合されている。この構成によれば、それぞれのヒートパイプは取り外しが容易であり、冷却装置のサーバ枠体への設置、取り外しが容易にできる。また、接合部にはグリースが介在しているため熱伝導の良い構成となっている。   FIG. 2 is a cross-sectional view of joining of the cooling plate 3 and the heat pipe in Embodiment 1 of the present invention. In FIG. 2, the cooling plate 3 is made of a copper material having good thermal conductivity, and a hole corresponding to a heat pipe shape is formed, and the heat pipe 4 is inserted together with grease into the hole and closely joined. . According to this configuration, each heat pipe can be easily removed, and the cooling device can be easily installed and removed from the server frame. Moreover, since grease is interposed in the joint portion, the structure has good heat conduction.

接合部にグリースを用いているが、さらに伝熱性能を向上するために圧入勘合を行っても良い。   Although grease is used for the joint, press fitting may be performed to further improve the heat transfer performance.

図3(a)は本発明の実施の形態1における熱交換器の断面図で、図3(b)は同じく熱交換器の平面図である。図3において、熱交換器5に内部空間9と複数のヒートパイプ4との接合穴が構成されている。その接合穴にヒートパイプ4がグリースと共に挿入されて密接している。この構成によればそれぞれのヒートパイプは熱交換器5からの取り外しが容易となり、冷却装置のサーバ枠体への設置、取り外しが容易にできる。また、接合部にはグリースが介在しているため熱伝導の良い構成となっている。   Fig.3 (a) is sectional drawing of the heat exchanger in Embodiment 1 of this invention, FIG.3 (b) is a top view of a heat exchanger similarly. In FIG. 3, the heat exchanger 5 is formed with joint holes between the internal space 9 and the plurality of heat pipes 4. The heat pipe 4 is inserted into the joint hole together with grease so as to be in close contact. According to this configuration, each heat pipe can be easily detached from the heat exchanger 5, and the cooling device can be easily installed and removed from the server frame. Moreover, since grease is interposed in the joint portion, the structure has good heat conduction.

冷却回路内を循環する冷媒には、水などの液体であれば特に限定するものではないが、HFC冷媒、アンモニアやプロパン等の自然冷媒を使用して、ヒートパイプ4との熱交換時に冷媒が2相状態になるように構成すれば、冷媒の潜熱による熱交換となって熱交換器5内の温度を均一に保つことができるため、多くの半導体素子をほぼ同じ温度に冷却することが可能となる。この場合には、ヒートパイプ4が常に液冷媒に接触するように構成することが望ましい。また、熱交換器5の冷媒の出口は、循環効率が低下しないために液冷媒が流れるように下部の設けることが望ましい。   The refrigerant circulating in the cooling circuit is not particularly limited as long as it is a liquid such as water, but a natural refrigerant such as HFC refrigerant or ammonia or propane is used, and the refrigerant is used during heat exchange with the heat pipe 4. If it is configured to be in a two-phase state, the temperature in the heat exchanger 5 can be kept uniform by heat exchange due to the latent heat of the refrigerant, so that many semiconductor elements can be cooled to substantially the same temperature It becomes. In this case, it is desirable that the heat pipe 4 is always in contact with the liquid refrigerant. Moreover, it is desirable to provide the outlet of the refrigerant of the heat exchanger 5 so that the liquid refrigerant flows so that the circulation efficiency does not decrease.

図4は、本発明の実施の形態1における半導体素子の冷却装置の設置模式図である。図4において、基板2や冷却板3、および熱交換器5の設置されている枠体の下方に、放熱器7およびポンプ8が設置されている枠体が設置されている。また、熱交換器5からの出口配管は、放熱器7の上部の配管に繋がり、放熱器7の下部に出口配管が設置されてポン
プ8に繋がっている。
FIG. 4 is an installation schematic diagram of the cooling device for the semiconductor element in the first embodiment of the present invention. In FIG. 4, a frame body in which the radiator 7 and the pump 8 are installed is installed below the frame body in which the substrate 2, the cooling plate 3, and the heat exchanger 5 are installed. The outlet pipe from the heat exchanger 5 is connected to the upper pipe of the radiator 7, and the outlet pipe is installed at the lower part of the radiator 7 to connect to the pump 8.

この構成によれば、冷却回路内に冷媒の蒸気が発生した場合、熱交換器5の内部空間9内に蒸気が溜まり、下方の放熱器7およびポンプ8には液冷媒が流れる。また、停止時にもポンプに冷媒が溜まるため、ガス噛みによるポンプ性能の低下を避けることができ、信頼性の高い構成を得ることができる。   According to this structure, when the vapor | steam of a refrigerant | coolant generate | occur | produces in a cooling circuit, a vapor | steam accumulates in the internal space 9 of the heat exchanger 5, and a liquid refrigerant flows into the heat radiator 7 and the pump 8 below. In addition, since the refrigerant accumulates in the pump even when stopped, it is possible to avoid a decrease in pump performance due to gas biting and to obtain a highly reliable configuration.

(実施の形態2)
図5は本発明の実施の形態2における熱交換器の断面図である。図5において、熱交換器5の内部空間9に複数のヒートパイプ4が挿入され、気密的にろう付け固定されている。また、挿入されたそれぞれのヒートパイプの先端に複数のフィン10が形成されている。この構成によれば、それぞれのヒートパイプ4が直接冷媒と熱交換するために効率が良いとともに、ヒートパイプ4に取り付けられたフィンにより、より効率の良い熱交換ができる。
(Embodiment 2)
FIG. 5 is a cross-sectional view of a heat exchanger according to Embodiment 2 of the present invention. In FIG. 5, a plurality of heat pipes 4 are inserted into the internal space 9 of the heat exchanger 5 and are airtightly brazed and fixed. A plurality of fins 10 are formed at the tip of each inserted heat pipe. According to this configuration, each heat pipe 4 directly exchanges heat with the refrigerant, so that the efficiency is high, and more efficient heat exchange can be performed by the fins attached to the heat pipe 4.

(実施の形態3)
図6は本発明の実施の形態3における熱交換器の断面図である。図6において、熱交換器5の内部空間9に連通穴11を設けた仕切り板10を複数個設置し、それぞれの仕切り空間にヒートパイプを差し込み熱交換器5にろう付け固定した構成となっている。この構成によれば仕切り板で区切られている為、熱交換器の強度が強くなり、コストの廉価なパイプからの構成が可能となる。
(Embodiment 3)
FIG. 6 is a cross-sectional view of a heat exchanger according to Embodiment 3 of the present invention. In FIG. 6, a plurality of partition plates 10 provided with communication holes 11 are installed in the internal space 9 of the heat exchanger 5, heat pipes are inserted into the respective partition spaces, and the heat exchanger 5 is brazed and fixed. Yes. According to this structure, since it is divided by the partition plate, the strength of the heat exchanger is increased, and a structure from a low-cost pipe is possible.

本発明の実施の形態1における半導体素子の冷却装置の模式図Schematic diagram of a semiconductor element cooling device according to the first embodiment of the present invention. 本発明の実施の形態1における冷却板とヒートパイプの接合断面図Cross-sectional view of joining of cooling plate and heat pipe in Embodiment 1 of the present invention 本発明の実施の形態1における熱交換器の断面図Sectional drawing of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1における半導体素子の冷却装置の設置模式図Schematic installation of a cooling device for a semiconductor element in Embodiment 1 of the present invention 本発明の実施の形態2における熱交換器の断面図Sectional drawing of the heat exchanger in Embodiment 2 of this invention 本発明の実施の形態3における熱交換器の断面図Sectional drawing of the heat exchanger in Embodiment 3 of this invention 従来のサーバの断面図Cross-sectional view of a conventional server 従来のコンピュータの一部破断した斜視図Partially broken perspective view of a conventional computer

符号の説明Explanation of symbols

1 半導体素子
2 基板
3 冷却板
4 ヒートパイプ
5 熱交換器
6 ファン
7 放熱器
8 ポンプ
9 内部空間
10 フィン
11 連通穴
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Board | substrate 3 Cooling plate 4 Heat pipe 5 Heat exchanger 6 Fan 7 Radiator 8 Pump 9 Internal space 10 Fin 11 Communication hole

Claims (10)

基板に設けられ、発熱体である複数の半導体素子と、前記半導体素子を冷却するためにそれぞれに設けられた冷却板と、前記冷却板とヒートパイプで繋がれた熱交換器とを備え、前記熱交換器と、ファンにより冷却される放熱器と、ポンプとを配管で接続して内部に冷媒が循環する冷却回路を構成したことを特徴とする半導体素子の冷却装置。 A plurality of semiconductor elements which are provided on the substrate and are heating elements; a cooling plate provided for cooling each of the semiconductor elements; and a heat exchanger connected to the cooling plate by a heat pipe, A semiconductor device cooling apparatus comprising a cooling circuit in which a heat exchanger, a radiator cooled by a fan, and a pump are connected by piping to circulate refrigerant therein. 冷却板を銅材で構成し、前記冷却板にヒートパイプの形状に相当する穴を設け、ヒートパイプを前記穴にグリースといっしょに挿入したことを特徴とする請求項1記載の半導体素子の冷却装置。 2. The cooling of a semiconductor device according to claim 1, wherein the cooling plate is made of a copper material, a hole corresponding to the shape of a heat pipe is provided in the cooling plate, and the heat pipe is inserted into the hole together with grease. apparatus. 熱交換器に、冷媒を流す内部空間と、ヒートパイプの形状に相当する穴とを個別に設け、前記ヒートパイプを前記穴にグリースと共に挿入したことを特徴とする請求項1記載の半導体素子の冷却装置。 2. The semiconductor element according to claim 1, wherein an internal space through which a refrigerant flows and a hole corresponding to a shape of a heat pipe are individually provided in the heat exchanger, and the heat pipe is inserted into the hole together with grease. Cooling system. 冷却板にヒートパイプの形状に相当する穴を設け、ヒートパイプを圧入勘合したことを特徴とする請求項1記載の半導体素子の冷却装置。 2. A cooling device for a semiconductor device according to claim 1, wherein a hole corresponding to the shape of the heat pipe is provided in the cooling plate, and the heat pipe is press-fitted into the cooling plate. 熱交換器の内部空間にヒートパイプを挿入し、前記ヒートパイプを前記熱交換器に気密的に固定したことを特徴とする請求項1記載の半導体素子の冷却装置。 2. The cooling device for a semiconductor device according to claim 1, wherein a heat pipe is inserted into an internal space of the heat exchanger, and the heat pipe is hermetically fixed to the heat exchanger. 熱交換器の内部空間内に挿入されたヒートパイプにフィンを形成したことを特徴とする請求項5記載の半導体素子の冷却装置。 6. The semiconductor device cooling apparatus according to claim 5, wherein fins are formed on a heat pipe inserted into the internal space of the heat exchanger. 熱交換器の内部空間に、連通穴を設けた仕切り板を設けて複数の仕切り空間を形成し、前記仕切り空間にヒートパイプをそれぞれ挿入して気密的に固定したことを特徴とする請求項1記載の半導体素子の冷却装置。 2. A partition plate provided with communication holes is provided in the internal space of the heat exchanger to form a plurality of partition spaces, and heat pipes are respectively inserted into the partition spaces and are hermetically fixed. The cooling device of a semiconductor element of description. 冷却回路に使用される冷媒は、熱交換器の内部空間で2相状態となることを特徴とする請求項1記載の半導体素子の冷却装置。 The cooling device for a semiconductor element according to claim 1, wherein the refrigerant used in the cooling circuit is in a two-phase state in the internal space of the heat exchanger. 放熱器とポンプと熱交換器とをその順番で接続し、前記放熱器と前記ポンプとは前記熱交換器よりも下に配設し、前記放熱器は上部に冷媒の入口を設けて下部に出口を設けたことを特徴とする請求項1記載の半導体素子の冷却装置。 A radiator, a pump, and a heat exchanger are connected in that order, and the radiator and the pump are arranged below the heat exchanger, and the radiator is provided with a refrigerant inlet at the top and at the bottom. The cooling device for a semiconductor device according to claim 1, wherein an outlet is provided. 熱交換器の冷媒の出口は下部に設けたことを特徴とする請求項1記載の半導体素子の冷却装置。 2. The cooling device for a semiconductor element according to claim 1, wherein the refrigerant outlet of the heat exchanger is provided at a lower portion.
JP2004183277A 2004-06-22 2004-06-22 Cooling device of semiconductor element Pending JP2006012874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183277A JP2006012874A (en) 2004-06-22 2004-06-22 Cooling device of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183277A JP2006012874A (en) 2004-06-22 2004-06-22 Cooling device of semiconductor element

Publications (1)

Publication Number Publication Date
JP2006012874A true JP2006012874A (en) 2006-01-12

Family

ID=35779789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183277A Pending JP2006012874A (en) 2004-06-22 2004-06-22 Cooling device of semiconductor element

Country Status (1)

Country Link
JP (1) JP2006012874A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273774A (en) * 2006-03-31 2007-10-18 Fuji Electric Systems Co Ltd Capacitor cooling structure and power converter
KR100823989B1 (en) 2007-05-04 2008-04-22 빛샘전자주식회사 Cooling apparatus and train drived electric power including the same
US7529089B2 (en) * 2007-03-16 2009-05-05 Cooler Master Co., Ltd Heat-dissipating device connected in series to water-cooling circulation system
JPWO2012059975A1 (en) * 2010-11-01 2014-05-12 富士通株式会社 Loop heat pipe and electronic device using the same
CN104930889A (en) * 2014-03-19 2015-09-23 海尔集团公司 Heat exchanger and semi-conductor wine cabinet
CN107664454A (en) * 2016-07-29 2018-02-06 双鸿科技股份有限公司 The electronic installation of this loop hot-pipe of loop hot-pipe and application
WO2018066206A1 (en) * 2016-10-06 2018-04-12 株式会社デンソー Machine temperature control device
JP7306250B2 (en) 2019-12-11 2023-07-11 富士通株式会社 Base station and device cooling method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273774A (en) * 2006-03-31 2007-10-18 Fuji Electric Systems Co Ltd Capacitor cooling structure and power converter
US7529089B2 (en) * 2007-03-16 2009-05-05 Cooler Master Co., Ltd Heat-dissipating device connected in series to water-cooling circulation system
KR100823989B1 (en) 2007-05-04 2008-04-22 빛샘전자주식회사 Cooling apparatus and train drived electric power including the same
JPWO2012059975A1 (en) * 2010-11-01 2014-05-12 富士通株式会社 Loop heat pipe and electronic device using the same
JP5556897B2 (en) * 2010-11-01 2014-07-23 富士通株式会社 Loop heat pipe and electronic device using the same
US9696096B2 (en) 2010-11-01 2017-07-04 Fujitsu Limited Loop heat pipe and electronic equipment using the same
CN104930889B (en) * 2014-03-19 2017-01-25 海尔集团公司 Heat exchanger and semi-conductor wine cabinet
CN104930889A (en) * 2014-03-19 2015-09-23 海尔集团公司 Heat exchanger and semi-conductor wine cabinet
CN107664454A (en) * 2016-07-29 2018-02-06 双鸿科技股份有限公司 The electronic installation of this loop hot-pipe of loop hot-pipe and application
WO2018066206A1 (en) * 2016-10-06 2018-04-12 株式会社デンソー Machine temperature control device
CN109716051A (en) * 2016-10-06 2019-05-03 株式会社电装 Device temperature regulating device
CN109716051B (en) * 2016-10-06 2020-06-12 株式会社电装 Equipment temperature adjusting device
DE112017005113B4 (en) 2016-10-06 2021-07-08 Denso Corporation Machine temperature control device
JP7306250B2 (en) 2019-12-11 2023-07-11 富士通株式会社 Base station and device cooling method

Similar Documents

Publication Publication Date Title
KR100817267B1 (en) Cooling jacket
US20060021737A1 (en) Liquid cooling device
US7926553B2 (en) Cooling system for electronic devices, in particular, computers
WO2017148050A1 (en) Cooling device for data centre machine cabinet, machine cabinet, and cooling system
WO2013069226A1 (en) Cooling device for cooling rack-type server, and data center provided with same
JP2009527897A5 (en)
JP2009527897A (en) Cooling system
TW201724959A (en) Thermoelectric cooling module and heat dissipation apparatus including the same
TW201251591A (en) Computer case
JP2010122887A (en) Server device
TW201334679A (en) Heat dissipating module
JP2008060515A (en) Cooling device for electronic control device
KR100939992B1 (en) Cooling Apparatus, and Electric-Electronic Equipment with the Cooling Apparatus
JP2010067660A (en) Electronic device and component for the same
US20130301214A1 (en) Electronic unit having a housing in which heat generating components are disposed
US20110192572A1 (en) Heat exchanger
JP2006012874A (en) Cooling device of semiconductor element
TWM609021U (en) Liquid cooling heat dissipation device and liquid cooling heat dissipation system with the same
WO2024066705A1 (en) Heat dissipation system and power apparatus
US20130213602A1 (en) Cooling system and method for cooling a heat generating unit
JP2007208154A (en) Cooling device for electronic equipment
CN215529706U (en) Heat sink device
JP2008106958A (en) Heat exchanger
CN212211802U (en) Microwave equipment with novel heat radiation structure
TWM628154U (en) Air-liquid dual cooling radiator for memory modules