JP5251029B2 - Kernel drying method - Google Patents

Kernel drying method Download PDF

Info

Publication number
JP5251029B2
JP5251029B2 JP2007201933A JP2007201933A JP5251029B2 JP 5251029 B2 JP5251029 B2 JP 5251029B2 JP 2007201933 A JP2007201933 A JP 2007201933A JP 2007201933 A JP2007201933 A JP 2007201933A JP 5251029 B2 JP5251029 B2 JP 5251029B2
Authority
JP
Japan
Prior art keywords
grain
exhaust air
drying
air
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007201933A
Other languages
Japanese (ja)
Other versions
JP2009047315A (en
Inventor
栄治 西野
直樹 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2007201933A priority Critical patent/JP5251029B2/en
Publication of JP2009047315A publication Critical patent/JP2009047315A/en
Application granted granted Critical
Publication of JP5251029B2 publication Critical patent/JP5251029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、穀粒の乾燥方法に関するものである。 The present invention relates to a method for drying grain .

特許文献1には、排風を戻して熱風と合流させて乾燥する乾燥装置について記載されている。
特開2007−10247号公報
Patent Document 1 describes a drying apparatus that returns exhaust air and joins it with hot air to dry it.
JP 2007-10247 A

特許文献1においては、目標とする排風絶対湿度になるべく排風量を調節する内容について記載されているが、どのような排風絶対湿度を目標として乾燥を行なえば良いのかについて記載されていない。そのため、高速で乾燥し、かつ穀粒の胴割れを防止するという乾燥方法を継続して安定して行なうために改良の余地がある。   Patent Document 1 describes the content of adjusting the amount of exhaust air as much as possible to reach the target exhaust absolute humidity, but does not describe what exhaust air absolute humidity should be used for drying. Therefore, there is room for improvement in order to continuously and stably perform a drying method of drying at high speed and preventing cracking of the grain.

本発明は、上記課題を解決するために以下のような技術的手段を講じた。
すなわち、請求項1に係る発明は、穀粒に乾燥用熱風を作用させて乾燥する乾燥部と、
穀粒通過後の排風を前記乾燥用熱風に合流させる戻し手段とを備え、
穀粒に作用する前記乾燥用熱風と戻り排風との合流空気が、飽和水蒸気圧近傍であって当該飽和水蒸気圧を越えない程度に戻り排風を供給するものであって、
排風絶対湿度と穀粒水分値との対応関係を予め制御部の記憶部に記憶し、
戻り排風の量は乾燥中に検出する穀粒水分値に基づいて制御する穀粒乾燥方法とする。
In order to solve the above problems, the present invention has taken the following technical means.
That is, the invention according to claim 1 is a drying unit that dries hot air for drying on the grain ,
A return means for merging the exhaust air after passing through the grains with the hot air for drying,
The combined air of the hot air for drying and the return exhaust air acting on the grain supplies the return exhaust air near the saturated water vapor pressure and does not exceed the saturated water vapor pressure ,
Store the correspondence relationship between the absolute wind humidity and the grain moisture value in the storage unit of the control unit in advance,
The amount of return exhaust air is a grain drying method that is controlled based on the grain moisture value detected during drying .

請求項2に係る発明は、排風絶対湿度と穀粒の水分値の関係から設定する戻り排風の量を張込量の増減によって補正することを特徴とする請求項1記載の穀粒乾燥方法とする。 The invention according to claim 2, grain drying according to claim 1, wherein the correcting the amount of return exhaust air to set the relationship between the water content of the exhaust air absolute humidity and grain by Chokomi amount of increase or decrease The method .

請求項3に係る発明は、排風絶対湿度と穀粒の水分値の関係から設定する戻り排風量を外気温度の高低によって補正することを特徴とする請求項1記載の穀粒乾燥方法とする。 The invention according to claim 3 is the grain drying method according to claim 1, wherein the amount of return wind set based on the relationship between the absolute wind exhaust humidity and the moisture value of the grain is corrected by the level of the outside air temperature. .

請求項4に係る発明は、排風絶対湿度と穀粒の水分値の関係から設定する戻り排風量を乾燥速度によって補正することを特徴とする請求項1記載の穀粒乾燥方法とする。 The invention according to claim 4 is the grain drying method according to claim 1, wherein the return exhaust air amount set from the relationship between the exhaust wind absolute humidity and the moisture value of the grain is corrected by the drying speed .

請求項1の発明では、飽和水蒸気圧を超えて結露して穀粒が蒸れて品質が損なわない程度に、排風中に含まれる熱と水分を穀粒に与えることで、穀粒内部に多くの熱を供給すると共に、穀粒の表面から蒸発しようとする水分を穀粒から吸収した排風中の水分により穀粒の内部に抑止することで、穀粒内部の水分勾配を小さくすることができる。したがって、高速で乾燥させるものでありながら、穀粒の内部に亀裂等を起こし難くすることができる。 In the invention of claim 1, the saturated vapor pressure condensation beyond and grain is stuffy to the extent not to impair the quality, the heat and moisture contained in the exhaust air by giving the grains, grains inside many It is possible to reduce the water gradient inside the grain by supplying the heat of the grain and by suppressing the moisture that is going to evaporate from the surface of the grain to the inside of the grain by the moisture in the exhaust air that has been absorbed from the grain. it can. Therefore, it is possible to make cracks and the like difficult to occur inside the grain while being dried at high speed.

また、戻り排風量を乾燥中に検出する穀粒の水分値に対応して調節することで、排風の湿度を検出する湿度センサを必要とせず、コスト高にならず、また、適正な水分を穀粒に与えながら乾燥することができる。 In addition, by adjusting the amount of return exhaust air in accordance with the moisture content of the grains detected during drying, a humidity sensor that detects the exhaust air humidity is not required, and the cost is not increased. Can be dried while feeding to the grain .

請求項2から請求項4記載の発明においては、戻り排風量を乾燥中に検出する穀粒の水分値に対応して調節する制御を外気温度や張込穀粒量や乾燥速度によって補正するため、諸条件に適した排風量を戻すことができる。 In invention of Claim 2-4, in order to correct | amend the control which adjusts according to the water | moisture-content value of the grain which detects the amount of return exhaust air during drying according to outside temperature, the amount of tension grain, and a drying speed The amount of exhaust air suitable for various conditions can be returned.

本実施の形態を穀粒乾燥機に用いた場合について説明する。
図1は穀粒乾燥機の内部を説明する斜視図で、直方体形状の本体1の内部に上部から穀粒を貯留する貯留部2、貯留部2で貯留した穀粒を下方に流下しながら乾燥する乾燥部3、乾燥部3で乾燥した穀粒が集まる集穀部4とを設ける。そして貯留部2に張り込まれた穀粒は乾燥部3で乾燥されて集穀部4に供給され、再度貯留部2に供給され調質される構成のいわゆる循環式の穀粒乾燥機の構成である。
The case where this Embodiment is used for a grain dryer is demonstrated.
FIG. 1 is a perspective view for explaining the inside of a grain dryer, in which a grain storage unit 2 that stores grains from above in a rectangular parallelepiped main body 1 and drying while flowing down the grains stored in the storage unit 2. A drying unit 3 to be collected, and a cereal collecting unit 4 to collect the grains dried by the drying unit 3 are provided. And the grain stuck in the storage part 2 is dried by the drying part 3 and supplied to the cereal collecting part 4, and the structure of what is called a circulation type grain dryer of the structure supplied to the storage part 2 and tempered again. It is.

なお、本実施の形態では本体1の長手方向sを前後方向、短手方向tを左右方向と呼ぶ。
本体1の前後方向の前側でかつ乾燥部3に対向する左右中央位置に、スリット状の外気取り入れ口50を正面側に多数形成したバーナケース40を取り付け、該バーナケース40内には燃焼バーナ5を収容配置している。そして、燃焼バーナ5の燃焼盤面5dを本体1側と対向するよう燃焼バーナ5を載置している。
In the present embodiment, the longitudinal direction s of the main body 1 is referred to as the front-rear direction, and the short direction t is referred to as the left-right direction.
A burner case 40 having a large number of slit-like outside air intake ports 50 formed on the front side is attached to the front side in the front-rear direction of the main body 1 and in the middle of the left and right sides facing the drying unit 3. Is arranged. The combustion burner 5 is placed so that the combustion disc surface 5d of the combustion burner 5 faces the main body 1 side.

本体1の前後方向の後側には乾燥部3に対向する左右中央位置に排風ファン6を設ける。
また、本体1の前後方向の前側でバーナケース40に隣接する位置には穀粒を揚穀する昇降機7を設け、本体1の上部には移送螺旋(図示せず)を内装し、昇降機7で揚穀した穀粒を貯留部2に搬送する上部搬送装置8及び上部搬送装置8で搬送中の穀粒に混入する藁屑等の夾雑物を吸引除去する吸塵ファン9を設けている。
On the rear side in the front-rear direction of the main body 1, a wind exhaust fan 6 is provided at the left and right center position facing the drying unit 3.
Further, an elevator 7 for raising the grain is provided at a position adjacent to the burner case 40 on the front side in the front-rear direction of the main body 1, and a transfer spiral (not shown) is provided on the upper portion of the main body 1. An upper conveying device 8 that conveys the cerealed grains to the storage unit 2 and a dust suction fan 9 that sucks and removes foreign matters such as scum mixed in the grains being conveyed by the upper conveying device 8 are provided.

10は穀粒の水分を検出する水分計で、昇降機7に取り付け設定時間毎に揚穀中の穀粒のうちサンプル穀粒を取り込み単粒毎の電気抵抗値を検出することにより水分値を算出する。   10 is a moisture meter that detects the moisture of the grain. The moisture meter is attached to the elevator 7 and calculates the moisture value by taking in the sample grain from the grains being grained and detecting the electrical resistance value for each grain every set time. To do.

乾燥部3は、本体1の左右両側に燃焼バーナ5で生成した乾燥熱風が通過する熱風室11を設け、本体1の左右中央部に排風ファン6と連通する排風室12を設け、熱風室11と排風室12との間には穀粒流下通路13を設け、穀粒流下通路13の下端部には穀粒を集穀部4に繰り出すロータリバルブ14を設け、ロータリバルブ14の回転により貯留室2の穀粒が順次通過する構成である。   The drying unit 3 is provided with hot air chambers 11 through which dry hot air generated by the combustion burner 5 passes on both left and right sides of the main body 1, and is provided with exhaust air chambers 12 communicating with the exhaust fan 6 at the left and right central portions of the main body 1. A grain flow passage 13 is provided between the chamber 11 and the air discharge chamber 12, and a rotary valve 14 that feeds the grain to the grain collection unit 4 is provided at the lower end of the grain flow passage 13. Therefore, the grains in the storage chamber 2 pass through sequentially.

集穀部4には穀粒を昇降機7に搬送する下部螺旋15を設けている。
排風ファン6は断面円形のファン胴6a内部に、軸流式のファン羽根6bと、ファン羽根6bで発生させる排風に圧力を与える固定板6cとを内装し、排風ファン6の排風排出側には断面円形の排風ダクト20を連結している。
The cereal collection unit 4 is provided with a lower spiral 15 that conveys the grains to the elevator 7.
The exhaust fan 6 includes an axial flow type fan blade 6b and a fixed plate 6c that applies pressure to the exhaust air generated by the fan blade 6b inside the circular fan body 6a. A discharge duct 20 having a circular cross section is connected to the discharge side.

排風ダクト20内には排風を排風ダクト20外と排風供給ダクト21に排出する量の割合を調節する第一調節弁23を設けている。
排風ダクト20の上部には排風を本体1内側に供給するための断面方形の排風供給ダクト21を設け、排風供給ダクト21の排風入口には排風供給ダクト21内に供給される排風の量を調節する第二調節弁22を設けている。
In the exhaust duct 20, a first control valve 23 that adjusts the ratio of the amount of exhaust air discharged to the outside of the exhaust duct 20 and the exhaust air supply duct 21 is provided.
An exhaust air supply duct 21 having a square cross section for supplying exhaust air to the inside of the main body 1 is provided at the upper part of the exhaust air duct 20, and the exhaust air inlet of the exhaust air supply duct 21 is supplied into the exhaust air supply duct 21. A second control valve 22 is provided for adjusting the amount of exhausted air.

第一調節弁23と第二調節弁22は横軸心の回動軸23a及び回動軸22aでそれぞれ回動する構成とし、このうち回動軸23aには調節弁駆動モータ25を連結している。第一調節弁23と第二調節弁22とは連結ロッド24で連結し、第一調節弁23と第二調節弁22との回動動作が連動する構成としている。第二調節弁22が全閉位置gaにあって排風が排風供給ダクト21内に排出されない時には、第一調節弁23が全開位置faにあって排風を全て機外に排出される。   The first control valve 23 and the second control valve 22 are configured to be rotated by a horizontal axis pivot shaft 23a and a pivot shaft 22a, respectively, of which the control valve drive motor 25 is connected to the pivot shaft 23a. Yes. The 1st control valve 23 and the 2nd control valve 22 are connected with the connection rod 24, and it is set as the structure which the rotation operation of the 1st control valve 23 and the 2nd control valve 22 interlock | cooperates. When the second control valve 22 is in the fully closed position ga and exhaust air is not discharged into the exhaust air supply duct 21, the first control valve 23 is in the fully open position fa and all exhaust air is discharged outside the machine.

反対に第二調節弁22が全開位置gbにあって、排風が最も排風供給ダクト21内に最も多くの排風が排出される時には、第一調節弁23が最も排風の量を排風供給ダクト21側に排風を排出する閉位置fbに位置する。なお、第一調節弁23と第二調節弁22はそれぞれ無段階に開閉調節できる構成とし、排風供給ダクト21に排出する排風量を制御部Fで適宜調節している。   On the other hand, when the second control valve 22 is in the fully open position gb and the exhaust air is discharged most into the exhaust air supply duct 21, the first control valve 23 exhausts the most exhaust air. It is located at the closed position fb for discharging the exhaust air to the wind supply duct 21 side. In addition, the 1st control valve 23 and the 2nd control valve 22 are set as the structure which can be opened / closed steplessly, respectively, and the exhaust_gas | exhaustion amount discharged | emitted to the exhaust_gas | exhaustion supply duct 21 is adjusted with the control part F suitably.

上記のように、排風戻り量の演算によって、第一調節弁23の回動角度θが決定され、軸23aに組み込んだ角度検出センサ23bにて回動角度θが検出されるまで調節弁駆動モータ25を正逆転連動する構成としている。なお、第二調節弁22は、第一調節弁23に連動するものであるから、その回動角度は検出しない構成としているが、両調節弁を独立的に回動調節するように構成してもよくこの場合には夫々に角度検出センサおよび調節弁駆動モータを設けるものである。   As described above, the rotation angle θ of the first control valve 23 is determined by calculating the exhaust air return amount, and the adjustment valve is driven until the rotation angle θ is detected by the angle detection sensor 23b incorporated in the shaft 23a. The motor 25 is configured to be linked in the forward / reverse direction. Since the second control valve 22 is linked to the first control valve 23, the rotation angle of the second control valve 22 is not detected. However, the second control valve 22 is configured to independently rotate and adjust both control valves. In this case, an angle detection sensor and a control valve drive motor are provided.

第一調節弁23が最も排風の量を排風供給ダクト21側に排風を排出する閉位置fbにあるときに、排風ダクト20の下部の内周面20aと第一調節板23の該周縁23aとの間に設定間隔の隙間zができるよう第一調節弁23の回動軸23aから外周までの長さbを排風ダクト20の中心から内周面20aまでの長さより短くし、第一調節弁23の面積を排風ダクト20の開口面積より小さく構成している。jは第一調節弁23の回動軌跡である。   When the first control valve 23 is at the closed position fb for discharging the exhaust air to the exhaust air supply duct 21 side most, the lower inner peripheral surface 20a of the exhaust air duct 20 and the first adjustment plate 23 The length b from the rotating shaft 23a to the outer periphery of the first control valve 23 is shorter than the length from the center of the exhaust duct 20 to the inner peripheral surface 20a so that a gap z with a set interval is formed between the peripheral edge 23a. The area of the first control valve 23 is smaller than the opening area of the exhaust duct 20. j is a turning locus of the first control valve 23;

また、第一調節弁23がもっとも排風の量を排風供給ダクト21側に排風を排出する閉位置fbは、図4に示すように前下がり傾斜に位置する構成とし、第二調節弁22は後ろ下がり傾斜に位置する構成とすることで、排風を排風供給ダクト21内に案内し易くしている。   The closed position fb where the first control valve 23 discharges the most exhausted air to the exhaust air supply duct 21 side is configured to be located at a downward slope as shown in FIG. 22 is configured to be positioned at a rearward downward inclination, so that the exhausted air can be easily guided into the exhausted air supply duct 21.

排風供給ダクト21と本体1との間には排風供給ダクト21内を通過した排風を左右両側に分散する排風分散通路となる排風分散ケース26を排風ファン6の上部から左右両側に亘って設ける。排風分散ケース26の左右両端部と後述する熱風室内貫通通路を形成する戻りダクト27の後端部とを第一排風開口部mで連通する構成としている。   Between the exhaust air supply duct 21 and the main body 1, an exhaust air distribution case 26 serving as an exhaust air distribution passage that distributes the exhaust air that has passed through the exhaust air supply duct 21 to the left and right sides is provided from the top of the exhaust air fan 6 Provided on both sides. The left and right end portions of the exhaust wind dispersion case 26 and the rear end portion of a return duct 27 that forms a hot air chamber through-passage to be described later are configured to communicate with each other through a first exhaust wind opening m.

戻りダクト27は左右の熱風室11内前後方向に沿って備える筒形状の通路で、本実施の形態では断面形状で上部が尖った台形状に形成している。
本体1とバーナケース40の間には本体1内を通過して戻された排風が通過する第一戻し通路41と燃焼バーナ5で生成した熱風が通過する熱風通路42を内部に形成する熱排風通過ケース43を備えている。そして、戻りダクト27の一端と第一戻し通路41とを第二排風開口部pで連通する構成とすると共に、第一戻し通路41とバーナケース40の左右両側に形成する第二戻し通路44とを第三排風開口部rで連通する構成としている。バーナケース40の下方には塵埃貯留ケース45を形成している。塵埃貯留ケース45の左右両側の上端部に第四排風開口部dを形成して第二戻し通路44と連通する構成としている。
The return duct 27 is a cylindrical passage provided along the front-rear direction in the left and right hot air chambers 11 and is formed in a trapezoidal shape with a cross-sectional shape and a sharp upper portion in the present embodiment.
Between the main body 1 and the burner case 40, there is formed a first return passage 41 through which exhaust air returned through the main body 1 passes and a hot air passage 42 through which hot air generated by the combustion burner 5 passes. An exhaust passage case 43 is provided. And while setting it as the structure which connects the end of the return duct 27, and the 1st return path 41 with the 2nd ventilation opening part p, the 2nd return path 44 formed in the left-right both sides of the 1st return path 41 and the burner case 40 And the third exhaust opening r. A dust storage case 45 is formed below the burner case 40. A fourth exhaust opening d is formed at the upper left and right ends of the dust storage case 45 so as to communicate with the second return passage 44.

熱排風通過ケース43の構成について詳述する。
熱排風通過ケース43内の熱風通路42は、バーナケース40と第一熱風開口部cで連通する第一熱風通路46と、第一熱風通路46を通過した熱風を第二熱風開口部vから第三熱風開口部wを経て熱風室11に供給する第二熱風通路47とを設けている。
The configuration of the heat exhaust air passage case 43 will be described in detail.
The hot air passage 42 in the hot exhaust air passage case 43 includes a first hot air passage 46 communicating with the burner case 40 and the first hot air opening c, and hot air that has passed through the first hot air passage 46 from the second hot air opening v. A second hot air passage 47 that supplies the hot air chamber 11 through the third hot air opening w is provided.

第一戻し通路41と第二熱風通路47とは本体1の正面左右両側にあって上下二段に形成し、第一熱風通路46は左右中央側にあってバーナケース40に対向する位置に設けている。第一熱風開口部cは第一熱風通路46及びバーナケース40の中央部に形成している。   The first return passage 41 and the second hot air passage 47 are formed on the front left and right sides of the main body 1 and are formed in two upper and lower stages, and the first hot air passage 46 is provided at a position facing the burner case 40 on the left and right center side. ing. The first hot air opening c is formed at the center of the first hot air passage 46 and the burner case 40.

なお、本実施の形態では排風供給ダクト21から第二戻し通路44に至るまでの排風が通過する経路を総称して戻し通路と呼ぶ。
燃焼バーナ5の周囲について説明する。
In the present embodiment, a path through which the exhaust air from the exhaust air supply duct 21 to the second return passage 44 passes is collectively referred to as a return passage.
The surroundings of the combustion burner 5 will be described.

バーナケース40内にあって燃焼バーナ5の左右に隣接して設ける第二戻し通路44には排風を排出する第五排風開口部eを設ける。第五排風開口部eの位置は燃焼バーナ5の燃焼盤面位置kより本体1側に向かって設け、多数のスリット状に形成している。そして、第五排風開口部eは燃焼バーナ5の燃焼盤面5dと同様本体1側と対向するよう形成している。   A second return passage 44 provided in the burner case 40 and adjacent to the left and right of the combustion burner 5 is provided with a fifth exhaust opening e for exhausting exhaust air. The position of the fifth exhaust air opening e is provided from the combustion disk surface position k of the combustion burner 5 toward the main body 1 and is formed in a number of slit shapes. And the 5th exhaust wind opening e is formed so that the main body 1 side may be opposed like the combustion disk surface 5d of the combustion burner 5.

そして、第五排風開口部eから排出される排風と燃焼バーナ5で生成した熱風とを燃焼バーナ5の燃焼炎Q側に位置する熱排風混合部40aで混合され、混合された熱排風が熱風通路42、すなわち第一熱風通路46と第二熱風通路47の順に通過し、熱風室11に供給される構成である。   Then, the exhaust air discharged from the fifth exhaust air opening e and the hot air generated by the combustion burner 5 are mixed in the heat exhaust air mixing unit 40a located on the combustion flame Q side of the combustion burner 5 and mixed heat. The exhaust air passes through the hot air passage 42, that is, the first hot air passage 46 and the second hot air passage 47 in this order, and is supplied to the hot air chamber 11.

また、第五排風開口部eは図7及び図8に示すように、本体下側に向かっても多数のスリットが形成されている。
燃焼バーナ5の上方でかつ燃焼盤面位置kより本体1側には燃焼バーナ5の一次空気を吸引して燃焼バーナ5に供給するバーナファン5aを設け、燃焼炎Qの上方に位置することで暖気化して空気ダクト5bを介して燃焼バーナ5に送風できる構成としている。
Moreover, as shown in FIG.7 and FIG.8, many slits are formed in the 5th wind exhaust opening e toward the main body lower side.
A burner fan 5a that sucks the primary air of the combustion burner 5 and supplies it to the combustion burner 5 is provided above the combustion burner 5 and on the main body 1 side from the combustion disk surface position k. And the air can be blown to the combustion burner 5 through the air duct 5b.

70は風の流れの有無を検出する風検知板である。5cは燃焼バーナ5に燃焼を供給する燃焼ポンプである。
熱排風通過ケース43の側壁に燃焼炎Qの状態を確認するスリット状の燃焼炎確認用開口部43aを設け、燃焼炎の状態を確認できるだけでなく外気を導入できるため熱風が通過する熱排風通過ケース43の熱で側壁を熱くなり難くしている。
Reference numeral 70 denotes a wind detection plate that detects the presence or absence of a wind flow. A combustion pump 5 c supplies combustion to the combustion burner 5.
A slit-like combustion flame confirmation opening 43a for confirming the state of the combustion flame Q is provided on the side wall of the heat exhaust air passage case 43, so that not only the state of the combustion flame can be confirmed but also outside air can be introduced, so The side walls are not easily heated by the heat of the wind passage case 43.

次に燃焼バーナ5で生成した熱風が排風ファン6の吸引作用を受けて乾燥熱風として熱風室11から流下通路13の穀粒に作用した後、排風となって排風室12及び戻し通路を経て、熱風と混合して熱風室11に供給されるまでの過程について説明する。   Next, after the hot air generated in the combustion burner 5 receives the suction action of the exhaust fan 6 and acts as dry hot air on the grains in the downstream passage 13 from the hot air chamber 11, it becomes exhaust air and becomes the exhaust air chamber 12 and the return passage. The process until the hot air is mixed with the hot air and supplied to the hot air chamber 11 will be described.

燃焼バーナ5で生成した熱風はバーナケース40から第一熱風開口部cを通過し、第一熱風通路46から第二熱風開口部v、第二熱風通路47、第三熱風開口部wを通過して熱風室11に供給される。   The hot air generated by the combustion burner 5 passes from the burner case 40 through the first hot air opening c, and from the first hot air passage 46 through the second hot air opening v, the second hot air passage 47, and the third hot air opening w. And supplied to the hot air chamber 11.

熱風室11内の熱風は多数のスリット(図示省略)を形成する穀粒流下通路13を流下する穀粒内を通過し、穀粒に作用して水分を奪って排風室12に排出され、排風ファン6にて排風ダクト20に排風として排出される。   The hot air in the hot air chamber 11 passes through the grain flowing down the grain flow passage 13 that forms a large number of slits (not shown), acts on the grain, deprives the moisture, and is discharged into the exhaust air chamber 12. The exhaust fan 6 exhausts the exhaust duct 20 as exhaust air.

排風ダクト20内の排風は第一調節弁23及び第二調節弁22の開度の制御により適宜必要な排風量を戻し通路を経て再度熱風室11側に循環すべく排風供給ダクト21に供給される。   Exhaust air in the exhaust duct 20 is supplied to the exhaust air supply duct 21 so that a necessary exhaust air amount is appropriately circulated to the hot air chamber 11 side through the return passage by controlling the opening degree of the first control valve 23 and the second control valve 22. To be supplied.

排風供給ダクト21に供給された排風は排風分散ケース26で左右に分散され、第一排風開口部mから戻りダクト27に供給される。そして、戻りダクト27内の排風は第二排風開口部pから第一戻し通路41、第三排風開口部r、第二戻し通路44を経て第五排風開口部eから燃焼バーナ5の燃焼炎Qの側方から燃焼炎Qの噴出する方向と並行して排出され、燃焼バーナ盤面と対向する位置にある熱排風混合部40aで熱風と混合して第一熱風開口部cから第一熱風通路46に供給される。なお、第二戻し通路44の排風に含まれる塵埃は自重で落下して第四排風開口部dを通過して塵埃貯留ケース45に貯留される。   The exhaust air supplied to the exhaust air supply duct 21 is dispersed left and right by the exhaust air distribution case 26 and supplied to the return duct 27 from the first exhaust air opening m. The exhaust air in the return duct 27 passes through the second exhaust passage opening p, the first return passage 41, the third exhaust passage opening r, the second return passage 44, and the fifth exhaust passage opening e to the combustion burner 5. Is discharged from the side of the combustion flame Q in parallel with the direction in which the combustion flame Q is ejected, and mixed with hot air in the hot exhaust air mixing portion 40a located at the position facing the combustion burner board surface, from the first hot air opening c. It is supplied to the first hot air passage 46. The dust contained in the exhaust air from the second return passage 44 falls by its own weight, passes through the fourth exhaust air opening d, and is stored in the dust storage case 45.

次に本実施の形態の構成に伴う作用及び効果について説明する。
排風ファン20からの排風を熱風室11に供給することによって、燃焼バーナ5で供給する熱風に排風中の熱が加わり、熱風室11ひいては流下通路13の穀粒に作用させ得て短時間で穀温を上昇させることができる。そして、排風の戻し量を制御することによって穀粒流下通路13の穀粒に作用する乾燥熱風の絶対湿度を高くし、穀粒表面からの気化量を抑止することができる。
Next, operations and effects associated with the configuration of the present embodiment will be described.
By supplying the exhaust air from the exhaust fan 20 to the hot air chamber 11, the heat in the exhaust air is added to the hot air supplied by the combustion burner 5, and the hot air chamber 11, and hence the grains in the flow-down passage 13, can be made short. Grain temperature can be increased over time. And the absolute humidity of the dry hot air which acts on the grain of the grain flow down passage 13 can be increased by controlling the return amount of the exhaust air, and the amount of vaporization from the grain surface can be suppressed.

排風と混合した乾燥熱風を供給すると穀粒表面から蒸発しようとする気化量を高くなった穀粒表面の絶対湿度により抑止する一方、穀粒に作用する熱は主に穀温の上昇を促進し、穀粒内の水分流動性を高め、穀粒単位の内部と表面側との水分勾配を小さくでき、胴割れが少なく、かつ高速で乾燥作業を行なえる。   When dry hot air mixed with exhaust air is supplied, the amount of vaporization that evaporates from the grain surface is suppressed by the absolute humidity on the grain surface, while the heat acting on the grain mainly promotes the rise in grain temperature. In addition, the moisture fluidity in the grain can be improved, the moisture gradient between the inside and the surface side of the grain unit can be reduced, the cracking of the body can be reduced, and the drying operation can be performed at high speed.

また、本実施の形態では穀粒中の水分の気化を抑止するものとして、例えば特開平7−260351号に記載されているように別の加湿器を用いて穀粒に加湿するのではなく、穀粒から一旦除去した水分を戻して穀粒に与えるため、新たに加湿された加湿水分除去のための余分な燃焼が不要で燃料効率が良いものでありながら高速な乾燥を行なえる。   Moreover, in this Embodiment, as what suppresses the vaporization of the water | moisture content in a grain, it does not humidify a grain using another humidifier as described in Unexamined-Japanese-Patent No. 7-260351, for example, Since the moisture once removed from the grain is returned to the grain and given to the grain, it is possible to perform high-speed drying while eliminating the need for extra combustion for removing the newly-humidified humidified moisture and having good fuel efficiency.

また、第一調節弁23が最も排風の量を排風供給ダクト21側に排出する閉位置fbにあるときに、排風ダクト20の下側の内周面20aと第一調節板23の端部23bとの間に隙間zができるよう第一調節板23の面積を排風ダクト20の開口面積より小さく構成することで、排風に含まれる比較的大きな塵埃が排風ダクト20の隙間zから機外に排出され易くなり、排風供給ダクト21から第三戻し通路45に至るまでの排風循環通路内に塵埃が堆積し難くする事ができ、排風の通過を円滑にすることができる。また、排風供給ダクト21が排風ダクト20の上方にあるため、大きな塵埃が排風供給ダクト21に入り難くして機外に排出し易くすることができる。   Further, when the first control valve 23 is in the closed position fb where the amount of exhaust air is exhausted to the exhaust air supply duct 21 side, the lower inner peripheral surface 20a of the exhaust air duct 20 and the first adjustment plate 23 By configuring the area of the first adjustment plate 23 to be smaller than the opening area of the exhaust duct 20 so that a gap z is formed between the end 23 b and the exhaust duct 20, relatively large dust contained in the exhaust air can be removed. z is easily discharged out of the machine, dust can be made difficult to accumulate in the exhaust air circulation passage from the exhaust air supply duct 21 to the third return passage 45, and the exhaust air can be smoothly passed. Can do. Further, since the exhaust air supply duct 21 is located above the exhaust air duct 20, it is difficult for large dust to enter the exhaust air supply duct 21 and to be easily discharged outside the apparatus.

戻しダクト27を熱風室11内に設けることで、戻しダクト27内部の温度も高くなり、塵埃を含む高湿度の排風が戻しダクト27内部で結露して塵埃が付着したりするのを防止することができる。また、排風室12内に排風を通過する通路を設けると排風室12の空間が小さくなり排風ファン6の吸引力が低下するという欠点が生じるが、熱風室11内に備えることで本実施の形態によりそれを防止することができる。   By providing the return duct 27 in the hot air chamber 11, the temperature inside the return duct 27 is also increased, and high humidity exhaust air containing dust is prevented from condensing inside the return duct 27 and adhering dust. be able to. In addition, if a passage for passing the exhaust air is provided in the exhaust air chamber 12, the space of the exhaust air chamber 12 is reduced and the suction force of the exhaust air fan 6 is reduced. However, by providing it in the hot air chamber 11. This can be prevented by this embodiment.

熱風室11を本体1の左右両側に設け、排風室12を本体1の中央部に設けたことで、外気温度が低い場合において、排風と熱風が混合した高温高湿度の混合気体が排風として通過する排風室12内を結露し難くすることができる。   The hot air chambers 11 are provided on both the left and right sides of the main body 1 and the exhaust air chamber 12 is provided at the center of the main body 1 so that when the outside air temperature is low, a high-temperature and high-humidity mixture of exhaust air and hot air is discharged. It is possible to make it difficult for the inside of the exhaust chamber 12 passing as wind to condense.

戻しダクト27から第一熱風通路46に排風を供給するまでにバーナケース40に隣接する第二戻し通路44を経て第五排風開口部eから燃焼バーナ5の燃焼炎Qの側方において燃焼炎Qの噴出方向と並行状態で熱排風混合部40aに排風を排出することで、燃焼炎Qが乱流せず、安定した燃焼バーナ5の燃焼を行なうことができるものである。しかも燃焼バーナ5の燃焼側で排風を合流させるため、戻し排風量の変化による燃焼バーナ5周辺を通過する風の量の変化を小さくすることができ、燃焼炎Qの変化を小さくすることができる。そして、排風と熱風の混合を促進させることができる。そして、排風を燃焼バーナ5に直接晒さないことにより、塵埃や水分等の作用による燃焼バーナ5の劣化を防止することができる。   Before the exhaust air is supplied from the return duct 27 to the first hot air passage 46, combustion is performed from the fifth exhaust air opening e to the side of the combustion flame Q of the combustion burner 5 through the second return passage 44 adjacent to the burner case 40. By discharging the exhaust air to the heat exhaust air mixing unit 40a in parallel with the jet direction of the flame Q, the combustion flame Q does not flow turbulently and the combustion of the combustion burner 5 can be performed stably. In addition, since the exhaust air is merged on the combustion side of the combustion burner 5, the change in the amount of wind passing around the combustion burner 5 due to the change in the return exhaust air amount can be reduced, and the change in the combustion flame Q can be reduced. it can. And mixing of exhaust air and hot air can be promoted. Further, by not directly exposing the exhaust air to the combustion burner 5, it is possible to prevent the combustion burner 5 from being deteriorated due to the action of dust, moisture, or the like.

また、塵埃貯留ケース45に排風中の塵埃を多く落下堆積させることが可能になり、第一熱風通路46及び熱風室11に供給される塵埃の量を減少させることができる。戻し通路をバーナケース40に隣接して設けることで、排風の保温性を向上させることができる。   Further, a large amount of dust being exhausted can fall and accumulate in the dust storage case 45, and the amount of dust supplied to the first hot air passage 46 and the hot air chamber 11 can be reduced. By providing the return passage adjacent to the burner case 40, the heat retention of the exhaust air can be improved.

本実施の形態のように、外気を直接燃焼バーナ5で加熱して燃焼ガスに含まれた空気を乾燥対象物に供給する乾燥機においては、塵埃の含まれる排風を燃焼バーナ5の燃焼炎Qで加熱すると塵埃が燃焼し、該燃焼した塵埃が穀粒に供給されて穀粒の品質が低下する場合が生じていたが、本実施の形態により、塵埃の燃焼がされ難く穀粒の品質低下を防止することができる。   As in the present embodiment, in a dryer that directly heats the outside air with the combustion burner 5 and supplies the air contained in the combustion gas to the object to be dried, the exhaust air containing dust is discharged from the combustion flame of the combustion burner 5. Dust burns when heated by Q, and the burned dust is supplied to the grain and the quality of the grain has been reduced. According to this embodiment, the quality of the grain is difficult to burn dust. A decrease can be prevented.

次に、本実施の形態の乾燥制御について説明する。
図9は乾燥作業に伴う穀温の変化及び水分値の変化を示すグラフで、L1は本実施の形態の乾燥工程を示し、L2は従来の乾燥工程を示す。また、L3は本実施の形態の水分値の変化を示し、L4は従来の水分値の工程を示す。
Next, the drying control of this embodiment will be described.
FIG. 9 is a graph showing a change in grain temperature and a change in moisture value accompanying a drying operation, L1 shows the drying process of the present embodiment, and L2 shows a conventional drying process. L3 indicates a change in the moisture value of the present embodiment, and L4 indicates a conventional moisture value process.

L2は従来の乾燥工程で、燃焼バーナ5が燃焼量を一定にした場合のグラフであるが、燃焼を開始してから次第に穀温が上昇し、仕上げ水分に到達するまで穀温が略一定の傾きで上昇していることを示している。   L2 is a graph when the combustion burner 5 makes the combustion amount constant in the conventional drying process, but the grain temperature gradually rises after starting combustion, and the grain temperature is substantially constant until reaching the finish moisture. It shows that it is rising with a slope.

それに対して、L1の乾燥工程は以下の工程を行なう。
まず、燃焼バーナ5の燃焼開始後、所定時間(例えば張り込み穀粒が一循環する時間)においては第一調節板23を全開し、排風を略全量を機外に排出し、燃焼開始直後に多く発生する塵埃が再度戻し通路から熱風室11内に供給されることを防止する(乾燥初期全量機外排出工程A1)。
On the other hand, the drying process of L1 performs the following processes.
First, after the combustion of the combustion burner 5 is started, the first adjustment plate 23 is fully opened for a predetermined time (for example, the time during which the cereal grains circulate once), and the exhaust air is discharged almost entirely outside the apparatus. A large amount of generated dust is prevented from being supplied again from the return passage into the hot air chamber 11 (dry initial full amount outside-machine discharge step A1).

所定時間経過すると、戻す排風の割合が所定以上(例えば75%以上)の状態でしばらく一定にするよう第一調節板23と第二調節板22を調節し、排風ファン20から排出された排風の多くを戻し通路側に排出し、熱排風混合部40a内に供給される。そして、排風と燃焼バーナ5で発生した熱風と混合され、熱風室11から流下通路13の穀粒に供給される(乾燥初期全量戻し工程A2)。   When the predetermined time has elapsed, the first adjusting plate 23 and the second adjusting plate 22 are adjusted so that the ratio of the exhausted air to be returned remains constant for a while in a state of a predetermined value or more (for example, 75% or more). Most of the exhaust air is discharged to the return passage side and supplied into the heat exhaust air mixing unit 40a. And it is mixed with the exhaust air and the hot air generated in the combustion burner 5 and supplied from the hot air chamber 11 to the grains in the flow-down passage 13 (dry initial total amount returning step A2).

そのため、供給された熱により穀粒の表面から蒸発しようとする水分が、熱と共に供給された水分によって抑止され、水分が穀粒内部にとどまる。そして穀温は燃焼バーナで生成した熱に排風の熱がプラスされて穀粒に付与されることにより、多くの熱が与えられ穀温が急激に上昇する。   For this reason, moisture that evaporates from the surface of the grain by the supplied heat is suppressed by the moisture supplied together with the heat, and the moisture stays inside the grain. The grain temperature is given to the grain by adding the heat of the exhaust air to the heat generated by the combustion burner, so that a lot of heat is given and the grain temperature rises rapidly.

なお、この工程は外気温度によって戻し量が補正され、外気温が高くなるほど還戻す排風の割合を低くするよう第一調節板23と第二調節板22を調節している。また、この工程は全乾燥工程で最も多くの排風を戻す工程である。   In this step, the return amount is corrected by the outside air temperature, and the first adjusting plate 23 and the second adjusting plate 22 are adjusted so that the ratio of the exhaust air to be returned is lowered as the outside air temperature becomes higher. Moreover, this process is a process of returning the most exhausted air in the entire drying process.

その後、設定時間毎に水分計10で検出する穀粒水分値に応じた水分量を含む排風絶対湿度Haの排風を戻す調節を行なう(排風絶対湿度戻し工程A3)。そして、穀粒流下通路13内が飽和水蒸気圧を超えて結露しない程度に、すなわち飽和水蒸気圧未満でかつ飽和水蒸気圧近傍になる排風絶対湿度Haの排風を供給する。   Then, the adjustment which returns the exhaust wind of the exhaust wind absolute humidity Ha containing the moisture content according to the grain moisture value detected with the moisture meter 10 for every set time is performed (exhaust wind absolute humidity return process A3). And exhaust air of exhaust air absolute humidity Ha which is below the saturated water vapor pressure and close to the saturated water vapor pressure is supplied to such an extent that the inside of the grain flow passage 13 does not condense beyond the saturated water vapor pressure.

仕上げ水分値に近くなると、第一調節弁23と第二調節弁22は排風を順次機外に排出する割合を高くするよう調節制御することで、穀温を順次低下させ、設定水分に到達して乾燥作業終了した後の籾摺り工程を早く行なえるようにしている(仕上排出工程A4)。   When close to the finishing moisture value, the first control valve 23 and the second control valve 22 adjust and control to increase the rate at which the exhaust air is sequentially discharged outside the machine, thereby gradually reducing the grain temperature and reaching the set moisture. Thus, the hulling process after finishing the drying operation can be performed quickly (finishing discharge process A4).

ここで、穀粒を例に乾燥理論、すなわち、穀粒に水分と熱を与えるということを図11で説明すると、
従来の乾燥制御では図11の(A)に示すように、燃焼バーナ5で発生して穀粒に供給された乾燥熱風による乾燥熱量を100とすると、乾燥初期には主として穀粒内の水分が蒸発されるための熱量である気化熱量に消費され(例えば95)、残りは穀温の上昇に用いられる。すなわち、乾燥初期は穀粒の水分値が高いために供給された熱量の多くが水分の気化に用いられる。そのため、乾燥熱量を単純に増加させるだけでは穀粒表面側の乾燥が穀粒内部側より促進され、かえって穀粒中の水分勾配が高くなり胴割れがしやすくなってしまう。
Here, with the example of the grain, the drying theory, that is, giving moisture and heat to the grain will be described with reference to FIG.
In the conventional drying control, as shown in FIG. 11 (A), when the amount of drying heat generated by the combustion burner 5 and supplied to the kernel is 100, the moisture in the kernel is mainly in the initial stage of drying. It is consumed by the heat of vaporization, which is the amount of heat to be evaporated (for example, 95), and the rest is used for increasing the grain temperature. That is, since the moisture value of the grain is high at the initial stage of drying, most of the supplied heat is used for vaporization of moisture. Therefore, simply increasing the amount of drying heat promotes drying on the grain surface side from the inside of the grain, and on the contrary, the moisture gradient in the grain becomes high and it becomes easy to crack the trunk.

それに対し、本実施の形態の乾燥制御については、図11の(B)で示すように、乾燥初期に排風を戻して所定条件の乾燥熱風を生成することにより、胴割れし難く高速乾燥を可能にするものである。すなわち、燃焼バーナ5で発生した熱量を100とし、さらにこの乾燥熱風の熱量に排風中に含まれる排風の熱量50が加わるとすると、乾燥熱風に排風が合流した熱量全体は150となる。ここで新たな乾燥風の条件は絶対湿度が飽和水蒸気圧近傍でかつ該飽和水蒸気圧以下であることを知見している。   On the other hand, with respect to the drying control of the present embodiment, as shown in FIG. 11 (B), by returning the exhaust air at the initial stage of drying and generating dry hot air of a predetermined condition, it is difficult to crack the body at high speed. It is what makes it possible. That is, assuming that the amount of heat generated in the combustion burner 5 is 100, and the amount of heat of the exhaust air contained in the exhaust air is added to the amount of heat of the dry hot air, the total amount of heat that the exhaust air merges with the dry hot air is 150. . Here, it has been found that the new dry air condition is that the absolute humidity is close to and below the saturated water vapor pressure.

そして、新たな乾燥風が穀粒に作用すると熱量を与えられた穀粒中の水分が穀粒表面から気化しようとする一方で、絶対湿度が上記のように飽和水蒸気圧近傍でかつ飽和水蒸気圧以下に調整されることにより穀粒表面からの水分検出は抑止され、付与される熱量は穀粒内部に作用し、例えば気化熱量に用いられる熱量は従来の95より低い60となり、穀温上昇に用いられる熱量が90となる。そのため、穀温が急激に上昇するが穀粒中の水分移行が促進され水分勾配が急激に高くならず、胴割れが発生し難いものである。   And when a new dry wind acts on the grain, the moisture in the grain given the heat is going to vaporize from the grain surface, while the absolute humidity is near the saturated water vapor pressure and the saturated water vapor pressure as described above. By adjusting to the following, moisture detection from the grain surface is suppressed, and the amount of heat applied acts on the inside of the grain, for example, the amount of heat used for the heat of vaporization becomes 60 lower than the conventional 95, which increases the grain temperature. The amount of heat used is 90. Therefore, although the grain temperature rises rapidly, the moisture transfer in the grain is promoted, the moisture gradient does not rise rapidly, and the shell cracking hardly occurs.

そして、戻り排風の排風量を乾燥中に検出する穀粒の水分値に対応して調節することができるため、排風の湿度を検出する湿度センサ等を必要とせず、コスト高にならず、また、適正な水分、すなわち穀粒流下通路13が飽和水蒸気圧未満でかつ飽和水蒸気圧近傍を保つ程度の水分を乾燥対象物に与えながら乾燥することができる。   And since the amount of exhaust air of return exhaust air can be adjusted according to the moisture value of the grain detected during drying, a humidity sensor or the like for detecting the humidity of exhaust air is not required, and the cost is not increased. Moreover, it is possible to dry while giving appropriate moisture to the object to be dried, that is, moisture enough to keep the grain flow passage 13 below the saturated water vapor pressure and close to the saturated water vapor pressure.

以上に説明の新たな乾燥風の条件は、燃焼バーナ5による乾燥熱風と排風との合流によって得られることを知見している。すなわち、穀粒に作用する乾燥風は水分を吸収して排風となって排出されるが、この排風の絶対湿度に着目して排風戻し量を調整しようとする。   It has been found that the new dry air condition described above can be obtained by merging the dry hot air and the exhaust air by the combustion burner 5. That is, the dry wind acting on the grain absorbs moisture and is discharged as exhaust air, but the exhaust air return amount is adjusted by paying attention to the absolute humidity of the exhaust air.

ここで、図10のグラフに示すように排風絶対湿度は穀粒の水分値に略対応していることが試験により知見されている。すなわち、穀粒の水分値が高い程排風絶対湿度も高くなっている。これは、穀粒表面から気化しようとする水蒸気圧が高いため、それを抑止するためにその分多くの排風湿度を必要としているためであり、乾燥作業が進行し、穀粒水分値が下がるほど穀粒から気化する水分量が減り、穀粒中の水分を抑止するための水分量が少なくともよくなるためである。本実施例では、図10のグラフを制御部Fの記憶部MEに記憶しておき、検出水分値のデータに基づき必要とする排風絶対湿度の値を導き出す構成としている。   Here, as shown in the graph of FIG. 10, it has been found by tests that the exhaust wind absolute humidity substantially corresponds to the moisture value of the grain. That is, the higher the moisture value of the grain, the higher the exhaust wind absolute humidity. This is because the water vapor pressure to be vaporized from the surface of the grain is high, so that much exhaust air humidity is required to suppress it, and the drying operation proceeds and the grain moisture value decreases. This is because the amount of water vaporized from the grain decreases, and the amount of water for suppressing the moisture in the grain is at least improved. In the present embodiment, the graph of FIG. 10 is stored in the storage unit ME of the control unit F, and the required exhaust air absolute humidity value is derived based on the detected moisture value data.

飽和水蒸気を超えると結露して穀粒が蒸れて品質が損なわれる恐れがあるが、超えない程度に、排風中に含まれる熱と水分を穀粒に与えることで穀粒内部に多くの熱を供給すると共に、穀粒の表面から蒸発しようとする水分を排風中の水分により穀物対象物の内部に抑止する。穀粒内部に熱と供給すると内部水分の表面側の移行が促進されるため、穀粒内部の水分勾配を小さくすることができ、高速で乾燥させるものでありながら穀粒の内部が亀裂等を起こし難くすることができる。   If saturated steam is exceeded, condensation may cause the grain to be steamed and quality may be impaired, but to the extent that it does not exceed it, heat and moisture contained in the exhaust air are given to the grain, so much heat inside the grain. In addition, the moisture that is going to evaporate from the surface of the grain is suppressed inside the grain object by the moisture in the exhaust air. When heat is supplied to the inside of the grain, the surface moisture side transition is promoted, so that the moisture gradient inside the grain can be reduced and the inside of the grain is cracked while being dried at high speed. It can be made difficult to wake up.

次に調節弁の開度を調節するための制御例について代表数値を用いて説明する。
外気温度センサTAで検出された外気温が20℃で、外気湿度センサTHで検出された外気湿度が70%で制御部Fで演算された絶対湿度(Z)が13g/m3とする。そして、前述の図10で水分計10で検出した穀粒水分値に対応して設定されている制御目標とする排風(Y)の絶対湿度(U)が25g/m3である場合とする。そして、本実施例の排風ファン7の風量は1900kg/hで、穀粒乾燥機に供給された穀粒(籾)量を800kg、乾燥速度を示す乾減率(一時間あたりに乾燥される水分の割合)を1.2%/hとした場合、どの程度の割合の排風を熱風室13に戻すかを以下の式より求める。
Next, an example of control for adjusting the opening of the control valve will be described using representative numerical values.
The outside air temperature detected by the outside air temperature sensor TA is 20 ° C., the outside air humidity detected by the outside air humidity sensor TH is 70%, and the absolute humidity (Z) calculated by the control unit F is 13 g / m 3. Then, it is assumed that the absolute humidity (U) of the exhaust air (Y) as a control target set corresponding to the grain moisture value detected by the moisture meter 10 in FIG. 10 is 25 g / m 3. And the air volume of the exhaust fan 7 of a present Example is 1900 kg / h, the quantity of the grain (rice cake) supplied to the grain dryer is 800 kg, and the drying rate (it is dried per hour) which shows a drying rate. When the ratio of moisture) is 1.2% / h, how much of the exhaust air is returned to the hot air chamber 13 is obtained from the following equation.

絶対湿度(U)−絶対湿度(Z)=12(g/m3) …B1
外気が吸水できる最大吸水量は
12×1900/1000≒23(kg) …B2
そして、一時間あたりに穀粒から除去される水分量は
800(kg)×1.2(%/h)=9.6(kg/h) …B3
B2の式とB3の式より
23/(9.6+23)≒0.71 →71% …B4
すなわち、排風ファン7から排出される排風量の71%を熱風室11に戻すべく調節弁駆動モータ25を制御して第一調節弁23及び第二調節弁22を調節する。
すなわち、排風の戻し割合に見合う前記第一調節弁23の回動角度θを予め記憶部MEに記憶しておき、上記計算結果に基づく排風割合71%に対応するよう調節弁駆動モータ25を正・逆転連動する。
Absolute humidity (U)-Absolute humidity (Z) = 12 (g / m3) ... B1
The maximum amount of water that can be absorbed by outside air is 12 x 1900/1000 ≒ 23 (kg) ... B2
And the amount of water removed from the grain per hour is 800 (kg) × 1.2 (% / h) = 9.6 (kg / h)... B3
From the formula of B2 and the formula of B3, 23 / (9.6 + 23) ≈0.71 → 71%... B4
In other words, the control valve drive motor 25 is controlled to adjust the first control valve 23 and the second control valve 22 so that 71% of the exhausted air discharged from the exhaust fan 7 is returned to the hot air chamber 11.
That is, the rotation angle θ of the first control valve 23 corresponding to the return rate of the exhaust air is stored in the storage unit ME in advance, and the control valve drive motor 25 corresponds to the exhaust air rate 71% based on the calculation result. Are linked forward and backward.

前述の演算式についてさらに詳述すると、前記外気温度センサTAと前記外気湿度センサHAでそれぞれ検出された外気の温度と湿度から制御部(図示せず)で外気の絶対湿度(Z)を演算し、外気の絶対湿度(Z)と水分計10で検出された穀粒水分の条件から予め設定する排風の絶対湿度(U)との差異(増加水量)を外気が吸収できる最大の吸水量として演算する(式B1と式B2)。そして、一方では乾燥作業により穀粒から蒸発する蒸発水量(本実施の形態では前述の一時間あたりに穀粒から除去される水分量)を求め(式B3)、増加水量が乾燥作業による蒸発水量と合算された値に対する割合が、排風を戻す割合と考えるものである。   More specifically, the above-described calculation formula calculates the absolute humidity (Z) of the outside air by a control unit (not shown) from the temperature and humidity of the outside air detected by the outside temperature sensor TA and the outside air humidity sensor HA, respectively. The difference between the absolute humidity (Z) of the outside air and the absolute humidity (U) of the exhaust wind set in advance from the condition of the grain moisture detected by the moisture meter 10 is the maximum water absorption amount that the outside air can absorb. Calculate (Equation B1 and Equation B2). On the other hand, the amount of water evaporated from the grain by the drying operation (the amount of water removed from the grain per hour in the present embodiment) is obtained (formula B3), and the amount of increased water is the amount of water evaporated by the drying operation. The ratio to the sum of the values is considered as the ratio for returning the wind.

すなわち、前記式B4は
増加水量/(穀物から蒸発する水量+増加水量)
を示している。この式においては、いわゆる連続的に乾燥対象物に乾燥作用をなす乾燥機について特に有効である。
That is, the formula B4 is the amount of increased water / (the amount of water evaporated from the grain + the increased amount of water).
Is shown. This formula is particularly effective for a dryer that continuously performs a drying action on an object to be dried.

但し、本実施の形態のように穀粒を貯留部2と乾燥部3とを循環させて乾燥作用と調質作用(いわゆるテンパリング)を交互に行なう穀粒乾燥機においては、前述のように乾燥部で熱と水分を供給した穀粒が貯留部2に循環されると、供給する熱と水分が多すぎた場合に、穀粒内部の水分の移行より穀粒表面からの乾燥が進行し、穀粒の胴割れが増加する場合がある。   However, in this embodiment, in the grain dryer that alternately circulates the grain through the storage unit 2 and the drying unit 3 and alternately performs the drying action and the tempering action (so-called tempering), the grain is dried as described above. When the grain which supplied heat and moisture in the part is circulated to the storage part 2, when there is too much heat and moisture to be supplied, drying from the grain surface proceeds from the transfer of moisture inside the grain, Grain shell cracking may increase.

そこで、特に穀粒乾燥機の場合には式B4に変わって下記の式B5に基づいて乾燥制御を行なっても良い。
増加水量/(穀物から蒸発する水量+排風の絶対湿度(U)) …B5
23/(9.6+47.5)≒0.42 すなわち、42%の排風を戻すようにする。
Therefore, particularly in the case of a grain dryer, the drying control may be performed based on the following formula B5 instead of the formula B4.
Increased amount of water / (amount of water evaporating from cereal + absolute humidity of exhaust air (U)) ... B5
23 / (9.6 + 47.5) ≈0.42 That is, 42% exhaust air is returned.

なお、47.5(kg)とは前述の絶対湿度(U)の25g/m3と排風ファンの風量1900kg/hとから算出される。
47.5=25×1900/1000 …B6
テンパリング方式で乾燥を行なう循環型の乾燥機においては、貯留部2に停留している間の表面乾燥を抑制するために、式B5では貯留部2を通過する絶対湿度が設定する排風の絶対湿度になるように、単位時間あたりに穀物内を通過する風が持つ総水量を変更補正する。
Note that 47.5 (kg) is calculated from 25 g / m 3 of the absolute humidity (U) described above and the air volume of the exhaust fan 1900 kg / h.
47.5 = 25 × 1900/1000 ... B6
In the circulation type dryer that performs drying by the tempering method, in order to suppress the surface drying while stopping in the storage unit 2, the absolute airflow that is set by the absolute humidity that passes through the storage unit 2 is set in Formula B5. Change and correct the total amount of water that the wind that passes through the grain per unit time has so that it becomes humidity.

なお、第一調節弁23及び第二調節弁22が排風量の71%より多くの量を熱風室11に戻すよう調節された場合には、多くなればなるほど戻される水分量が多くなるため、穀粒から新たに水分を除去し難くなる。また、第一調節弁23及び第二調節弁22が排風量の71%より少ない量を熱風室11に戻した場合には熱風室11に戻される熱量が少なくなるため、穀粒の温度の上昇がし難くなり乾燥速度が遅くなる。   In addition, when the 1st control valve 23 and the 2nd control valve 22 are adjusted so that more than 71% of the amount of exhausted air may be returned to the hot air chamber 11, the more water is returned, the more water is returned. It becomes difficult to remove moisture from the grain. In addition, when the first control valve 23 and the second control valve 22 return an amount smaller than 71% of the exhausted air amount to the hot air chamber 11, the amount of heat returned to the hot air chamber 11 decreases, so that the temperature of the grain rises. It becomes difficult to peel off and the drying speed becomes slow.

本実施の形態の式から排風を戻す割合を調節することで、排風ファン6から排出された排風が帯びる熱、すなわち吸水力をできる限り適正に利用することで燃焼効率の良い乾燥作業を行うことができる。   By adjusting the ratio of returning the exhaust air from the equation of the present embodiment, the drying operation with good combustion efficiency can be performed by appropriately using the heat generated by the exhaust air discharged from the exhaust air fan 6, that is, the water absorption force as much as possible. It can be performed.

図12は前述の図10に基づく穀粒水分値と排風絶対湿度に基づいて設定する排風を戻す割合を補正することを示す図である。
補正する条件として外気温度と穀粒張込量を示している。すなわち、外気温度が高い程排風を戻す割合を低減させるよう補正する。そして曲線M1,M2,M3,M4,M5は張込量毎による排風戻し率の補正を示し、張込量が多いほど排風を戻す割合を低減させるよう補正する。
FIG. 12 is a diagram illustrating correction of the ratio of returning the exhaust air set based on the grain moisture value and exhaust air absolute humidity based on FIG. 10 described above.
The outside temperature and the amount of grain filling are shown as conditions for correction. That is, it correct | amends so that the ratio which returns exhaust air may be reduced, so that external temperature is high. Curves M1, M2, M3, M4, and M5 indicate correction of the exhaust wind return rate for each amount of tension, and the correction is performed so that the ratio of returning the exhaust wind is reduced as the amount of tension increases.

外気温度が高くなるほど穀粒の乾燥が促進するのでその分排風を戻す量を低減できる。また、張込量が多いほど最も上昇する穀温が高くなるためその分排風を戻す量を低減できる。   Since the drying of the grain is promoted as the outside air temperature becomes higher, it is possible to reduce the amount to return the exhaust air accordingly. Moreover, since the grain temperature which rises most is so high that there is much tension | tensile_strength, the amount which returns exhaust air by that amount can be reduced.

上記実施例では、排風戻し量として排風全量に対する戻し割合を導き出す手段として説明したが、排風戻し量を記憶手段に記憶しておき、当該排風戻し量を制御する形態でもよい。   In the above-described embodiment, the description has been given as means for deriving the return ratio with respect to the total exhaust air amount as the exhaust air return amount. However, the exhaust air return amount may be stored in the storage unit and the exhaust air return amount may be controlled.

また、本実施の形態では乾燥速度を示す乾減率を1.2%としたが、乾減率によって排風を戻す割合が変更される。
なお、本実施の形態では外気湿度センサHAから外気の絶対湿度を求めているが、外気湿度センサの代わりに外気温度基準による外気の絶対湿度を定めてこれを代用値としても良い。
In this embodiment, the drying rate indicating the drying rate is 1.2%, but the rate of returning the exhaust air is changed depending on the drying rate.
In this embodiment, the absolute humidity of the outside air is obtained from the outside air humidity sensor HA, but instead of the outside air humidity sensor, the absolute humidity of the outside air based on the outside air temperature reference may be determined and used as a substitute value.

本実施の形態では籾・麦・豆等の穀粒乾燥機について記載したが、そのほかに椎茸や材木や海産物等の自然から採取された物で、乾燥対象物の表面部分と内部中心部分に水分勾配を伴うものを乾燥対象物とする乾燥機の場合にも利用可能である。   In this embodiment, a grain dryer for straw, wheat, beans, etc. has been described, but in addition to this, it has been collected from nature such as shiitake mushrooms, timber and marine products, and moisture is applied to the surface portion and the inner central portion of the dried object. The present invention can also be used in the case of a dryer that uses an object with a gradient as an object to be dried.

穀粒乾燥機全体の内部を説明する斜視図The perspective view explaining the inside of the whole grain dryer 乾燥部と集穀部の構成を説明する斜視図The perspective view explaining the structure of a drying part and a grain collection part 乾燥部と集穀部の構成を説明する正面図Front view illustrating the configuration of the drying unit and the cereal collecting unit 第一調節弁と第二調節弁の連動構成を説明する排風ファンの側面図及び背面図Side view and rear view of exhaust fan for explaining interlocking configuration of first control valve and second control valve 排風供給ダクトと排風分散ケースと排風ファンを示した斜視図A perspective view showing an exhaust air supply duct, an exhaust air distribution case, and an exhaust fan バーナケース及び熱排風通過ケースの内部を説明する斜視図The perspective view explaining the inside of a burner case and a heat exhaust air passage case バーナケース内部を説明する側面図Side view explaining the inside of the burner case バーナケース内部を説明する斜視図The perspective view explaining the inside of a burner case 乾燥工程と穀温の関係を示すグラフGraph showing the relationship between drying process and grain temperature 排風絶対湿度と穀粒水分値との関係を示す図Diagram showing the relationship between absolute wind humidity and grain moisture value 穀粒に供給する熱について説明する図Diagram explaining the heat supplied to the grain 外気温度及び張込量による排風を還流する割合を変更することを示す図The figure which shows changing the ratio which recirculates the exhaust wind with outside air temperature and tension amount ブロック図Block Diagram

1 本体
5 燃焼バーナ
5a 燃焼バーナの燃焼盤面
6 排風ファン
11 熱風室
13 穀粒流下通路
20 排風ダクト
22 第二調節板
23 第一調節板
23a回動軸
24 ロッド
44 第二戻し通路
k 燃焼バーナの燃焼盤面位置
e 第五排風開口部
Q 燃焼炎
DESCRIPTION OF SYMBOLS 1 Main body 5 Combustion burner 5a Combustion disc surface 6 of combustion burner Exhaust fan 11 Hot air chamber 13 Grain flow passage 20 Exhaust duct 22 Second adjustment plate 23 First adjustment plate 23a Rotating shaft 24 Rod 44 Second return passage k Combustion Burner surface position e 5th exhaust opening Q Combustion flame

Claims (4)

穀粒に乾燥用熱風を作用させて乾燥する乾燥部と、
穀粒通過後の排風を前記乾燥用熱風に合流させる戻し手段とを備え、
穀粒に作用する前記乾燥用熱風と戻り排風との合流空気が、飽和水蒸気圧近傍であって当該飽和水蒸気圧を越えない程度に戻り排風を供給するものであって、
排風絶対湿度と穀粒水分値との対応関係を予め制御部の記憶部に記憶し、
戻り排風の量は乾燥中に検出する穀粒水分値に基づいて制御する穀粒乾燥方法
A drying section for drying the grain by applying hot air for drying;
A return means for merging the exhaust air after passing through the grains with the hot air for drying,
The combined air of the hot air for drying and the return exhaust air acting on the grain supplies the return exhaust air near the saturated water vapor pressure and does not exceed the saturated water vapor pressure ,
Store the correspondence relationship between the absolute wind humidity and the grain moisture value in the storage unit of the control unit in advance,
A grain drying method in which the amount of return exhaust air is controlled based on the grain moisture value detected during drying .
排風絶対湿度と穀粒の水分値の関係から設定する戻り排風の量を張込量の増減によって補正することを特徴とする請求項1記載の穀粒乾燥方法 The grain drying method according to claim 1 , wherein the amount of return exhaust air set from the relationship between the absolute wind exhaust humidity and the moisture value of the grain is corrected by increasing or decreasing the amount of tension . 排風絶対湿度と穀粒の水分値の関係から設定する戻り排風量を外気温度の高低によって補正することを特徴とする請求項1記載の穀粒乾燥方法 The grain drying method according to claim 1, wherein the return wind volume set based on the relationship between the absolute wind humidity and the moisture value of the grain is corrected by the level of the outside air temperature . 排風絶対湿度と穀粒の水分値の関係から設定する戻り排風量を乾燥速度によって補正することを特徴とする請求項1記載の穀粒乾燥方法 2. The grain drying method according to claim 1, wherein the amount of return wind set based on the relationship between the absolute wind humidity and the moisture value of the grain is corrected by the drying speed .
JP2007201933A 2007-07-20 2007-08-02 Kernel drying method Active JP5251029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201933A JP5251029B2 (en) 2007-07-20 2007-08-02 Kernel drying method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007189748 2007-07-20
JP2007189748 2007-07-20
JP2007201933A JP5251029B2 (en) 2007-07-20 2007-08-02 Kernel drying method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012140981A Division JP5729355B2 (en) 2007-07-20 2012-06-22 Drying equipment
JP2012223248A Division JP5573913B2 (en) 2007-07-20 2012-10-05 Crop dryer

Publications (2)

Publication Number Publication Date
JP2009047315A JP2009047315A (en) 2009-03-05
JP5251029B2 true JP5251029B2 (en) 2013-07-31

Family

ID=40499699

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2007201933A Active JP5251029B2 (en) 2007-07-20 2007-08-02 Kernel drying method
JP2012140981A Active JP5729355B2 (en) 2007-07-20 2012-06-22 Drying equipment
JP2012223248A Expired - Fee Related JP5573913B2 (en) 2007-07-20 2012-10-05 Crop dryer

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2012140981A Active JP5729355B2 (en) 2007-07-20 2012-06-22 Drying equipment
JP2012223248A Expired - Fee Related JP5573913B2 (en) 2007-07-20 2012-10-05 Crop dryer

Country Status (1)

Country Link
JP (3) JP5251029B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428530B2 (en) * 2009-05-25 2014-02-26 井関農機株式会社 Exhaust circulation type grain dryer
JP5370001B2 (en) * 2009-08-29 2013-12-18 井関農機株式会社 Grain dryer
JP5601054B2 (en) * 2010-07-05 2014-10-08 井関農機株式会社 Grain dryer
JP5750881B2 (en) * 2010-12-17 2015-07-22 井関農機株式会社 Grain dryer
JP6028930B2 (en) * 2013-08-23 2016-11-24 井関農機株式会社 Grain dryer
JP6123581B2 (en) * 2013-08-29 2017-05-10 井関農機株式会社 Crop dryer
CN111670330B (en) * 2017-11-01 2022-01-18 株式会社久保田 Drying machine and drying system
JP6821541B2 (en) * 2017-11-01 2021-01-27 株式会社クボタ Dryer
CN108444240B (en) * 2018-06-28 2023-08-04 佳木斯大学 Intelligent combined crop airing device and control method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464772U (en) * 1977-10-17 1979-05-08
JPS59200179A (en) * 1983-04-27 1984-11-13 株式会社 サタケ Automatic controller for hot air for cereal drier
JPS6196387A (en) * 1984-10-16 1986-05-15 井関農機株式会社 Drier
JPS61184379A (en) * 1985-02-12 1986-08-18 井関農機株式会社 Cereal grain drier
JPS61195266A (en) * 1985-02-22 1986-08-29 井関農機株式会社 Cereal grain drier
JPS62276390A (en) * 1986-05-22 1987-12-01 井関農機株式会社 Drying controller for cereal grain drier
JPS63315882A (en) * 1987-06-17 1988-12-23 井関農機株式会社 Drying controller for cereal drier
JPH068475Y2 (en) * 1987-07-10 1994-03-02 金子農機株式会社 Drying control device in grain dryer
JPH0726688U (en) * 1993-10-25 1995-05-19 恒續 岩本 Deodorization dryer
JP2004276438A (en) * 2003-03-17 2004-10-07 Taiheiyo Cement Corp Wood drying method
JP4694884B2 (en) * 2005-05-09 2011-06-08 焼津水産化学工業株式会社 Moisture removal method and moisture removal device
JP4379388B2 (en) * 2005-06-30 2009-12-09 井関農機株式会社 Grain dryer
JP5151289B2 (en) * 2007-07-20 2013-02-27 井関農機株式会社 Dryer
JP5310786B2 (en) * 2011-05-30 2013-10-09 井関農機株式会社 Dryer

Also Published As

Publication number Publication date
JP2012177548A (en) 2012-09-13
JP5729355B2 (en) 2015-06-03
JP5573913B2 (en) 2014-08-20
JP2013015317A (en) 2013-01-24
JP2009047315A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP5151289B2 (en) Dryer
JP5573913B2 (en) Crop dryer
JP5125419B2 (en) Drying equipment
JP2009024948A5 (en)
JP2010144969A (en) Exhaust air circulation type grain dryer
JP4379388B2 (en) Grain dryer
JP2007010247A5 (en)
JP5310786B2 (en) Dryer
JP5245317B2 (en) Agricultural dryer
JP2009036465A5 (en)
JP2009024955A (en) Dryer
JP4696940B2 (en) Grain dryer
JP2007205600A5 (en)
JP4737048B2 (en) Exhaust air reflux type grain dryer
JP5422965B2 (en) Exhaust air circulation type grain dryer
JP5267634B2 (en) Grain dryer
JP4992442B2 (en) Grain dryer
JP5796585B2 (en) Crop dryer
JP5040384B2 (en) Exhaust circulation type grain dryer
JP2008185311A5 (en)
JP2014149116A5 (en)
JP2009287830A (en) Grain dryer
JP5152283B2 (en) Grain dryer
US20070062059A1 (en) Deflector plate for kilns
JP5402950B2 (en) Grain dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3