JP5245567B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5245567B2
JP5245567B2 JP2008163443A JP2008163443A JP5245567B2 JP 5245567 B2 JP5245567 B2 JP 5245567B2 JP 2008163443 A JP2008163443 A JP 2008163443A JP 2008163443 A JP2008163443 A JP 2008163443A JP 5245567 B2 JP5245567 B2 JP 5245567B2
Authority
JP
Japan
Prior art keywords
fuel
ammonia
fuel cell
mixed
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008163443A
Other languages
English (en)
Other versions
JP2010003637A (ja
Inventor
治通 中西
英一 有川
和也 内笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008163443A priority Critical patent/JP5245567B2/ja
Publication of JP2010003637A publication Critical patent/JP2010003637A/ja
Application granted granted Critical
Publication of JP5245567B2 publication Critical patent/JP5245567B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

この発明は、燃料電池システムに関し、より詳細には、燃料を燃料電池に循環させる燃料電池システムに関する。
従来、例えば特許文献1に記載されているように、メタノールと水との混合液を燃料として供給しつつ、燃料電池に循環させた燃料電池装置が知られている。この燃料電池は、プロトン交換性の電解質層と、その両側にそれぞれ接するように形成されたアノード極とカソード極とを有している。また、この燃料電池装置は、アノード極に、燃料を循環して供給する循環路を有し、循環路には、メタノールまたは水を供給する供給タンクが接続されている。
特許文献1の燃料電池を運転すると、それぞれの供給タンクからメタノールおよび水が供給され、循環路において混合液となる。この混合液が、燃料電池のアノード極に供給される。そして、混合液は、電気化学反応に供され、未反応燃料や反応生成物とともに、循環路に排出される。排出された混合液は、循環路において、メタノール又は水の供給を受けて濃度が調整された後、再度、燃料として燃料電池に供給される。したがって、特許文献1の燃料電池装置によれば、燃料の有効利用を図ることができる。再供給に際し、排出混合液は、循環路に配置された燃料貯留部に一時貯蔵され、循環路を流れる混合液の流量が調整されている。
特開2003−331885号公報 特開2006−244961号公報 特開2006−244960号公報
ところで、燃料電池として、特許文献1のようなプロトンを伝導体とするものの他に、水酸化物イオンを伝導体とするアルカリ型燃料電池が知られている。アルカリ型燃料電池の電気化学反応においては、カソード極で酸素と水とから水酸化物イオンが生成され、水酸化物イオンが電解質を透過してアノード極に達し、アノード極で水酸化物イオンと燃料中の水素とが反応して水が生成される。生成された水は、アノード極側から電解質中を透過してカソード極に到達するものを除き、未反応の燃料等と共にアノード極から排出されることとなる。
したがって、アルカリ型燃料電池に燃料を循環して供給する場合、循環路を流れる混合液中の生成水量が経時的に増加する。このため、循環路を流れる混合液中の燃料濃度が次第に低下するとともに、混合液の体積増加により循環路の圧力が高圧となることが考えられる。
特許文献1では、循環路に燃料または水を供給して濃度を調整しつつ燃料を循環する。このようなシステムをアルカリ型燃料電池に適用した場合、アノード極での生成水量が経時的に増加するため、燃料又は水の供給により濃度を調整しようとすると、循環路を流れる混合液の量は増大し、循環路の圧力が高圧となってしまう。したがって、特許文献1のシステムを適用するだけでは、循環路中の燃料濃度および圧力を適正に維持することが困難であった。
この発明は、上述のような課題を解決するためになされたもので、燃料の有効利用を図りつつ、燃料電池に供給される混合液の燃料濃度および圧力を維持することができる燃料電池システムを提供することを目的とする。
第1の発明は、上記の目的を達成するため、燃料電池システムであって、
溶媒と、溶媒に可溶な燃料とを含む混合液で運転可能なアルカリ型燃料電池と、
前記アルカリ型燃料電池から排出される混合液を貯留する燃料貯留部と、
前記アルカリ型燃料電池と前記燃料貯留部との間に、前記燃料貯留部内の混合液を循環するための循環路と、
前記燃料貯留部内の混合液または水を外部に排出するための排出手段と、
前記燃料貯留部に、前記燃料貯留部内の混合液よりも濃度の高い燃料を供給する燃料供給手段と、
前記燃料貯留部内の混合液の液面の高さが予め定めた第1基準値以上の場合に前記排出手段を開き、前記排出手段を開いた後、前記燃料貯留部内の混合液の液面の高さが前記第1基準値よりも低い第2基準値以下となった場合に前記排出手段を閉じる排出制御手段と、を備え、
前記混合液はアンモニア水溶液であり、
前記燃料供給手段は、前記排出手段の設置箇所よりも低い箇所から燃料としてのアンモニアを気体状態で供給することを特徴とする。
また、第の発明は、第1の発明において、
前記排出手段を開いた後、前記燃料貯留部内の混合液の液面の高さが前記第2基準値以上前記第1基準値以下の第3基準値以下となった場合に、前記燃料供給手段を作動して燃料供給を行う作動手段を備えることを特徴とする。
第1の発明によれば、アルカリ型燃料電池から排出される混合液を燃料貯留部に貯留し、アルカリ型燃料電池に循環させることができる。このため、燃料の有効利用を図ることができる。また、第1の発明によれば、燃料貯留部に設けられた排出手段によって、燃料貯留部混合液を排出できる。これにより、燃料貯留部内の圧力増加を抑制できる。
加えて、第1の発明によれば、燃料貯留部内の混合液の液面の高さが予め定めた第1基準値以上となった場合に、排出手段を開くことができる。燃料電池システムを連続稼動すると、燃料貯留部内の混合液の液面が経時的に上昇する。混合液の液面が上昇すると燃料貯留部内の圧力が高圧になってしまう。このため、予め定めた第1基準値以上となった場合に、排出手段を開き燃料貯留部から混合液を排出する。したがって、燃料貯留部内の混合液の圧力が高圧になる前に、圧力抑制ができる。
更に、第1の発明によれば、排出手段を開いた後、燃料貯留部内の混合液の液面の高さが第1基準値よりも小さい第2基準値以下となった場合に、排出手段を閉じることができる。排出手段を開いている間は、燃料貯留部から混合液が排出され続ける。このため、第1の発明によって、第1基準値よりも小さい第2基準値以下となった場合に、排出手段を閉じる。こうすることで、燃料貯留部からの混合液の排出を停止でき、混合液量を所望の液量にすることができる。
また更に、第1の発明によれば、排出手段の設置箇所よりも低い箇所から燃料としてのアンモニアを気体状態で供給することができるので、アンモニア水溶液の体積増加を抑えつつ該水溶液中のアンモニア濃度を回復させることができる。
第2の発明によれば、排出手段を開いた後、燃料貯留部内の液面の高さが第2基準値以上第1基準値以下の第3基準値以下となった場合に、燃料供給手段を作動して燃料供給を行うことができる。ここで、排出手段が開かれるのは、燃料貯留部内の液面の高さが上昇した場合であり、この場合燃料貯留部内の燃料濃度が薄くなっていると考えられる。このため、第2の発明により、第3基準値以下となった場合に、燃料貯留部に燃料を供給する。こうすることで、燃料貯留部内の混合液の燃料濃度を回復させることができる。また、第3基準値は、第2基準値以上第1基準値以下の値である。したがって、第2の発明によれば、燃料低濃度の混合液の液量が所望の液量となったところで、効率的に燃料高濃度に回復できる。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。
実施の形態1.
[実施の形態1の構成]
図1は、この発明の実施の形態1の燃料電池システムについて説明するための模式図である。図1に示す燃料電池システムは、例えば車両等の移動体に搭載されて用いられる。図1に示す燃料電池システムは、陰イオンを伝導体とするアルカリ型の燃料電池2を有している。燃料電池2はアニオン交換膜である電解質膜10を有している。電解質膜10の両側にはそれぞれ、アノード触媒層12とカソード触媒層14とが形成されている。アノード触媒層12とカソード触媒層14の両外側には、一対の拡散層16、18が配置され、電解質膜10と、アノード触媒層12とカソード触媒層14とは、両側の拡散層16、18により挟持されている。アノード触媒層12側の拡散層16の外側には集電板20が配置され、集電板20の外側に、溶媒に溶かした燃料を流通させるための燃料流路22が形成されている。カソード触媒層14側の拡散層18の外側には集電板24が配置され、集電板24の外側に、酸素(空気)を流通させるための空気流路26が形成されている。集電板20、24の端子には外部回路28が接続している。
燃料流路22の燃料導入口30と燃料排出口32には、それぞれ流路34と流路36とが接続されている。流路34と流路36とは、燃料タンク38を介して接続されている。流路34は、燃料タンク38と燃料導入口30とを接続し、燃料流路22に燃料を注入させる。この際、燃料は、所定の圧力に調整されて燃料流路22に注入される。流路36は、燃料タンク38と燃料排出口32とを接続し、燃料流路22から排出された燃料を燃料タンク38に導入する。こうすることで、燃料は、燃料電池2と燃料タンク38との間で循環される。
燃料タンク38の側面には、排出弁40が接続されている。排出弁40は、開くことにより、燃料タンク38に貯留された燃料を外部に排出することができる。また、燃料タンク38の内部空間の上方には、水位センサ42が配置されている。水位センサ42は、燃料タンク38の内部に貯留された液体の水位が水位センサ42の配置位置まで達したときに出力を発することができるセンサである。
燃料タンク38の上流には、燃料供給路44が接続されている。燃料供給路44には、アンモニアボンベ46が接続されている。アンモニアボンベ46は、燃料としてのアンモニア(NH)を10気圧程度に圧縮した状態で液体として貯蔵している。アンモニアボンベ46には、供給弁48が取り付けられている。供給弁48が開弁されることにより、燃料供給路44に気体状態のアンモニアを供給することができる。なお、アンモニアの供給に際しては、供給弁48の下流に配置されたレギュレータ(図示せず)によって所定の供給圧となるように調整される。
本実施の形態1の燃料電池システムは、ECU(Electronic Control Unit)50を更に備えている。ECU50には、排出弁40、水位センサ42および供給弁48が接続されている。ECU50は、水位センサ42から発せられた出力を受けて所定の制御信号を発して排出弁40を開く排出弁作動スイッチとしての機能を有する。ECU50は、供給弁48を開く供給弁作動スイッチとしての機能を同時に有する。
[実施の形態1の特徴]
以下、図2〜図4を参照して、本実施の形態1の燃料電池システムの特徴を時系列的に説明する。なお、図2〜4においては、説明の都合上、燃料タンク38周辺は側面図とし、燃料電池2は簡略化して図示する。
図2は、本実施の形態1の燃料電池システムのシステム作動直後の状態を説明するための図である。システムを作動させると、燃料タンク38内のアンモニア水溶液が燃料電池2に注入される。具体的には、アンモニア水溶液が、燃料タンク38から流路34、燃料導入口30を経由して燃料流路22に注入される。アンモニア水溶液中は、燃料流路22を流れ、アノード触媒層12と接する。この際、アノード触媒層12の機能により、アンモニア水溶液中のアンモニウムイオン(NH4+)中の水素と、電解質膜10を通過してアノード触媒層12に到達した水酸化物イオン(OH)とが反応する。この結果、アノード触媒層12では、水(HO)と窒素(N)とが生成される。すなわち、アノード触媒層12において、アンモニウムイオンが消費され、水と窒素とが生成される反応が起こる。
アノード触媒層12で生成された水の一部は、電解質膜10を透過してカソード触媒層14に到達し、他の一部は燃料流路22を流れる。つまり、アノード触媒層12と接した後のアンモニア水溶液は、未反応の残アンモニア水溶液、生成水および窒素を含む気液混合液となっている。気液混合液は、燃料流路22を流れ、燃料排出口32、流路36を経由して燃料タンク38に流入する。なお、気液混合液は、流路36を流れる際に、気液分離機(図示せず)を通過し、窒素が外部に排出される。したがって、燃料タンク38に流入するのは、未反応の残アンモニア水溶液と生成水とを含む、濃度の薄いアンモニア水溶液となる。
燃料電池2から排出されたアンモニア濃度の薄いアンモニア水溶液は、流路36を介して次々に燃料タンク38に流入し、燃料タンク38内のアンモニア水溶液と混合する。燃料タンク38内で混合されたアンモニア水溶液は、再び流路34、燃料導入口30を経由して燃料流路22に注入される。このように、燃料としてのアンモニア水溶液は、循環利用され、これによりアンモニア水溶液の有効利用を図ることができる。以下、このように循環するアンモニア水溶液を「混合アンモニア水溶液」と称す。
上記のように、混合アンモニア水溶液には、燃料電池2から排出される生成水が混入する。このため、燃料電池2の運転を続けると、生成水の分だけ燃料タンク38内の混合アンモニア水溶液体積が経時的に増加する。その結果、燃料タンク38内の混合アンモニア水溶液の水位は、経時的に上昇する。
図3は、図2の状態からこのシステムの運転を続けた後の状態を説明するための図である。上記のようにシステムの運転時間がある程度長くなると、混合アンモニア水溶液の水位は次第に上昇する。そして、更にシステムの運転時間が長くなると、混合アンモニア水溶液の水位は、水位センサ42の配置位置の第1水位(第1基準値)まで達し、燃料タンク38内がほぼ一杯となった状態になる。そこで、混合アンモニア水溶液の水位がこの第1水位まで達したときに、排出弁40を開く。この結果、混合アンモニア水溶液は、燃料タンク38の外部に排出されることとなる。
図4は、図3の状態から所定時間経過後の状態を説明するための図である。排出弁40を開き続けると、混合アンモニア水溶液は、燃料タンク38の外部に排出され続ける。この結果、混合アンモニア水溶液の水位は低下し、排出弁40が設置されている位置の第2水位(第2基準値)まで低下する。この第2水位にまで達すると、燃料タンク38内の混合アンモニア水溶液は、それ以上は外部に排出されない状態となる。そこで、混合アンモニア水溶液の水位がこの第2水位まで低下したときに、排出弁40を閉じる。この結果、混合アンモニア水溶液の排出が停止される。更に、排出弁40を閉弁するタイミングで、供給弁48を開く。供給弁48を開くことで、アンモニアボンベ46から燃料供給路44を経由して、アンモニアが燃料タンク38に供給される。アンモニアガスは、燃料タンク38内の混合アンモニア水溶液内に噴射されつつ溶解する。
上記のように、排出弁40は、燃料タンク38内の混合アンモニア水溶液の水位が、第1水位まで達した状態で開弁され、その後、第2水位に減少するまで開かれる。この燃料電池システムは、この排出弁40の開弁時間を、燃料タンク38の容量、排出弁40から排出される単位時間当たりの混合アンモニア水溶液の排出量、アノード触媒層12におけるアンモニアの反応効率等から導き出し、予め、所定時間(T)として設定し、ECU50に記憶している。
供給弁48の開弁は、排出弁40の閉弁と同時に行われる。供給弁48は、混合アンモニア水溶液の濃度を、所望濃度(C)とするために必要な時間開弁すればよい。この燃料電池システムは、供給弁48の開弁時間を、所定時間(T)とする。
なお、アンモニア供給終了後の所望濃度(C)、所定時間(T)は、燃料電池2の運転時に排出される水溶液の温度や、燃料タンク38の容量、第2水位と第1水位との水位差等を考慮して設定することが好ましい。具体的には、排出水溶液の温度におけるアンモニアの飽和濃度(重量パーセント)を超えない濃度に設定することが好ましい。こうすることで、燃料タンク38内の混合アンモニア水溶液に、供給したアンモニアを確実に溶解させることができる。
図5は、アンモニア水溶液濃度(重量パーセント)と燃料電池の出力密度との関係を示す特性図である。なお、このアンモニア水溶液濃度は、20℃における飽和アンモニア水溶液のアンモニア濃度(34.2重量%)を基準としている。アンモニア水溶液は、9.4重量%未満の低濃度領域においては、濃度の増加と共に、出力密度が単調に増加する。また、9.4重量%〜29.4重量%の濃度領域においては、濃度に関わらず、最も出力密度が高くなる。29.4重量%よりも濃い高濃度領域においては、濃度の増加と共に、出力密度が単調減少する。すなわち、アンモニアは、9.4重量%〜29.4重量%という濃度領域で高出力密度となり、9.4重量%未満および29.4重量%より濃い領域では、低出力密度となる。
本実施の形態1では、例えば、所望濃度(C)を17.2重量%付近に設定する。この値は、燃料電池2の出力及び燃料タンク38の容量を考慮して設定された値である。これにより、アンモニア供給によりアンモニアの濃度が濃度(C)となった状態から、再び、燃料タンク38内の混合アンモニア水溶液の水位が第1水位まで達した時の混合アンモニア水溶液の濃度(C)は9.4重量%以上となる。
また、このアンモニア濃度(C)は、排出弁40を開弁後、閉弁する時の濃度、即ち、混合アンモニア水溶液が第2水位の状態にあり、かつアンモニア供給開始直前の濃度と一致する。従って、所定時間(T)は、燃料タンク38の第2水位における容積、アンモニア濃度(C)、所望のアンモニア濃度(C)、アンモニアボンベ46から供給される単位時間当たりのアンモニアの量等に基づいて設定することができる。このように設定された所定時間(T)は、予めECU50に記憶されている。
[実施の形態1の具体的処理]
図6は、本実施の形態のECU50での具体的処理を表すフローチャートである。図6に示すように、まず、ステップS1では、排出弁40を開く要求があるか否かが判定される。上述したように、混合アンモニア水溶液の水位は経時的に上昇する。そして、混合アンモニア水溶液の水位が、第1水位にまで達すると、水位センサ42は出力を発し、ECU50に入力される。つまり、水位センサ42の出力の有無で排出弁40を開く要求があるか否かが判定される。開弁要求がない場合には、以下の処理を実行することなくこのルーチンは終了される。一方、開弁要求があった場合には、ステップS2へ進み、排出弁40が開かれる。排出弁40はECU50からの制御信号によって開弁される。
続いて、ステップS3では、開弁後、所定時間(T)が経過したか否かが判定される。上述したように、所定時間(T)は、排出弁40を開弁した後、混合アンモニア水溶液の水位が第2水位にまで低下するまでの時間として設定され、予めECU50に記憶された時間である。ここで、所定時間(T)の経過が認められない場合には、ステップS2に戻る。一方、所定時間(T)が経過したと判定された場合は、ステップS4へ進み、排出弁40が閉弁される。排出弁40はECU50からの制御信号によって閉弁される。
続いて、ステップS5では、供給弁48が開弁される。供給弁48は、所定時間(T)の経過が認められた場合に発せられるECU50からの制御信号によって開弁される。これにより、燃料タンク38へのアンモニア供給が開始する。
続いて、ステップS6では、所定時間(T)が経過したか否かが判定される。上述したように、所定時間(T)は、供給弁48を開弁した後、混合アンモニア水溶液の濃度を所望濃度(C)とするために必要な時間として予め設定され、ECU50に記憶されている。所定時間(T)の経過が認められない場合には、ステップS5に戻り、アンモニア供給が継続される。一方、所定時間(T)が経過したと判定された場合は、ステップS7へ進み、供給弁48が閉弁される。供給弁48は、ECU50からの制御信号によって閉弁される。これにより、アンモニアの供給が終了される。このとき、燃料タンク38内のアンモニア濃度は、所望濃度(C)となっていると推測される。
上記ルーチンを行うことにより、燃料であるアンモニア水溶液の有効利用を図るに際して、生成水による燃料タンク38の圧力が高圧となることを抑制でき、同時に燃料タンク38内部の濃度を所望濃度に回復できる。これにより高出力密度を維持する運転を行うことができる。
なお、本実施の形態においては、燃料タンク38が第1の発明における「燃料貯留部」に、流路34および流路36が第1の発明における「循環路」に、排出弁40が第1の発明における「排出手段」に、燃料供給路44、アンモニアボンベ46および供給弁48が第1発明における「燃料供給手段」に、それぞれ相当する。また、ECU50がステップS1〜S2又はS3〜S4の処理を実行することにより第1の発明における「排出制御手段」が、ステップS5の処理を実行することにより第2の発明における「作動手段」が、それぞれ実現されている。
また、本実施の形態では、排出弁40を用いて燃料タンク38から混合液および水を外部に排出したが、排出弁40の代わりに、例えば水を選択的に透過するバーペーパレーション膜といった水分離手段を配置し、燃料タンク38から水のみを外部に排出してもよい。水分離手段を用いることによっても、燃料タンク38内の圧力増加を抑制できる。
また、本実施の形態では、水位センサ42からの信号によって排出弁40を開弁したが、水位センサ42は、フロート等の仕掛けを用いて排出弁40を開弁してもよい。つまり、燃料タンク38内部の水量を取得できるものであれば、水位センサ42の代わりに用いることができる。また、水位センサ42を用いずに、第2水位から第1水位に達するまでの大凡の時間を予めECU50に記憶させ、この経過時間に基づいて排出弁40を開弁してもよい。
また、本実施の形態では、混合アンモニア水溶液の水位が第2水位に達したときに、排出弁40を閉じ、同時に供給弁48を開く制御を実行したが、これらの制御タイミングは同時でなくともよい。すなわち、供給弁48を開くタイミングは、混合アンモニアの水位が第2水位と異なる第3水位(第3基準値)にあるときであってもよい。ただし、第3基準値は第1基準値以下の値である。つまり、燃料タンク38内の混合アンモニア水溶液の濃度を所望濃度(C)まで回復できるタイミングであれば、供給弁48の開閉タイミングは変形可能である。
なお、本実施の形態では、供給弁48の開弁を所定時間(T)行ったが、燃料タンク38に濃度センサを設け、濃度センサから直接取得した濃度に応じて供給弁48を閉弁してもよい。この場合、供給弁48は、直接取得した濃度で閉弁制御が実行される。具体的には、供給弁48を開弁後、濃度センサで取得した濃度の値が所望濃度(C)に達した時点で閉弁される。また、さらに、燃料電池2からの出力要求を別途取得し、この出力要求に応じて供給弁48を開弁する時間を変えてもよい。こうすることで、燃料電池2の負荷に応じた混合アンモニア水溶液の濃度調整が可能となる。
実施の形態1の燃料電池システムについて説明するための模式図である。 実施の形態1の燃料電池システムのシステム作動直後の状態を説明するための図である。 図2の状態から実施の形態1の燃料電池システムの運転を続けた後の状態を説明するための図である。 図3の状態から所定時間経過後の状態を説明するための図である。 アンモニア水溶液濃度と燃料電池の出力密度との関係を示す図である。 実施の形態1における具体的処理を表すフローチャートである。
符号の説明
2 燃料電池
22 燃料流路
30 燃料導入口
32 燃料排出口
34、36 流路
38 燃料タンク
40 排出弁
42 水位センサ
44 燃料供給路
46 アンモニアボンベ
48 供給弁
50 ECU

Claims (2)

  1. 溶媒と、溶媒に可溶な燃料とを含む混合液で運転可能なアルカリ型燃料電池と、
    前記アルカリ型燃料電池から排出される混合液を貯留する燃料貯留部と、
    前記アルカリ型燃料電池と前記燃料貯留部との間に、前記燃料貯留部内の混合液を循環するための循環路と、
    前記燃料貯留部内の混合液または水を外部に排出するための排出手段と、
    前記燃料貯留部に、前記燃料貯留部内の混合液よりも濃度の高い燃料を供給する燃料供給手段と、
    前記燃料貯留部内の混合液の液面の高さが予め定めた第1基準値以上の場合に前記排出手段を開き、前記排出手段を開いた後、前記燃料貯留部内の混合液の液面の高さが前記第1基準値よりも低い第2基準値以下となった場合に前記排出手段を閉じる排出制御手段と、を備え、
    前記混合液はアンモニア水溶液であり、
    前記燃料供給手段は、前記排出手段の設置箇所よりも低い箇所から燃料としてのアンモニアを気体状態で供給することを特徴とする燃料電池システム。
  2. 前記排出手段を開いた後、前記燃料貯留部内の混合液の液面の高さが前記第2基準値以上前記第1基準値以下の第3基準値以下となった場合に、前記燃料供給手段を作動して燃料供給を行う作動手段を備えることを特徴とする請求項1記載の燃料電池システム。
JP2008163443A 2008-06-23 2008-06-23 燃料電池システム Expired - Fee Related JP5245567B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163443A JP5245567B2 (ja) 2008-06-23 2008-06-23 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163443A JP5245567B2 (ja) 2008-06-23 2008-06-23 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010003637A JP2010003637A (ja) 2010-01-07
JP5245567B2 true JP5245567B2 (ja) 2013-07-24

Family

ID=41585182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163443A Expired - Fee Related JP5245567B2 (ja) 2008-06-23 2008-06-23 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5245567B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280225B2 (ja) * 2009-01-28 2013-09-04 ダイハツ工業株式会社 燃料電池システムおよび燃料供給方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886255B2 (ja) * 2005-09-16 2012-02-29 株式会社東芝 燃料電池装置
JP2007294227A (ja) * 2006-04-25 2007-11-08 Yamaha Motor Co Ltd 燃料電池システムおよびその運転方法

Also Published As

Publication number Publication date
JP2010003637A (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
US8221923B2 (en) Stop method for fuel cell system and fuel cell system
JP4644064B2 (ja) 燃料電池システム
EP2026398B1 (en) Fuel cell system and method for operating the same
JP5858138B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
US7709119B2 (en) Method for operating fuel cell
US20130084512A1 (en) Fuel battery system
JP2019129062A (ja) 燃料電池の制御装置及び制御方法
JP2006351270A (ja) 燃料電池
US20140234741A1 (en) Fuel cell apparatus
JP5098191B2 (ja) 燃料電池システム
JP2015164092A (ja) 燃料電池システム
JP5245567B2 (ja) 燃料電池システム
JP5872315B2 (ja) 燃料電池システムの起動方法および起動装置
JP5596744B2 (ja) 燃料電池システム
CN115386904A (zh) 水电解系统及水电解装置的起动方法
JP4564347B2 (ja) 燃料電池システム
JP3685136B2 (ja) 固体高分子型燃料電池
JP2009146656A (ja) 燃料電池システム
US20240105974A1 (en) Fuel cell system
JP7351481B2 (ja) 燃料電池システム
JP5325433B2 (ja) 燃料電池システム
JP5394191B2 (ja) 燃料電池システム
CN116936874A (zh) 燃料电池电堆快速活化方法
JP2013008575A (ja) 燃料電池システム
JP2021064550A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R151 Written notification of patent or utility model registration

Ref document number: 5245567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees