JP5245306B2 - Degradation protection method for semiconductor device - Google Patents

Degradation protection method for semiconductor device Download PDF

Info

Publication number
JP5245306B2
JP5245306B2 JP2007181867A JP2007181867A JP5245306B2 JP 5245306 B2 JP5245306 B2 JP 5245306B2 JP 2007181867 A JP2007181867 A JP 2007181867A JP 2007181867 A JP2007181867 A JP 2007181867A JP 5245306 B2 JP5245306 B2 JP 5245306B2
Authority
JP
Japan
Prior art keywords
voltage drop
power
semiconductor
life
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007181867A
Other languages
Japanese (ja)
Other versions
JP2009022084A (en
Inventor
拡 田久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007181867A priority Critical patent/JP5245306B2/en
Publication of JP2009022084A publication Critical patent/JP2009022084A/en
Application granted granted Critical
Publication of JP5245306B2 publication Critical patent/JP5245306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

この発明は、パワー半導体素子を用いた電力変換装置、例えばインバータや無停電電源装置(UPS)などにおいて、パワーモジュールの劣化を検出してその破壊を未然に防止する保護方法に関する。   The present invention relates to a protection method for detecting deterioration of a power module and preventing its destruction in a power conversion device using a power semiconductor element, such as an inverter or an uninterruptible power supply (UPS).

インバータやUPSなどは、一般にブリッジ接続されたバイポーラトランジスタやMOS−FET,IGBT(絶縁ゲート型バイポーラトランジスタ)などのパワー半導体素子をスイッチングすることにより電力変換を行なっている。
このような変換装置の例として、単相ブリッジインバータの構成例を図3に示す。これは、上下直列に接続されたパワー半導体素子(IGBT)3a,3bおよびダイオード(FWD:還流ダイオード)4a,4bを交互にスイッチングすることで、負荷であるモータ5に電力を供給するものである。なお、1は直流電源、2はモジュール容器、2a〜2cは端子を示す。
Inverters, UPSs, and the like generally perform power conversion by switching power semiconductor elements such as bridge-connected bipolar transistors, MOS-FETs, and IGBTs (insulated gate bipolar transistors).
As an example of such a converter, a configuration example of a single-phase bridge inverter is shown in FIG. This supplies power to the motor 5 that is a load by alternately switching power semiconductor elements (IGBT) 3a and 3b and diodes (FWD: freewheeling diodes) 4a and 4b connected in series in the vertical direction. . Reference numeral 1 denotes a DC power source, 2 denotes a module container, and 2a to 2c denote terminals.

このような回路に適用されるパワー半導体素子は、接続や冷却を簡便にするために複数の素子(チップ)を1つのパッケージ(モジュール)に収納するのが一般的であり、半導体を内蔵したパッケージを通常パワーモジュールと呼ぶ。
ブリッジ回路を構成するために、直列接続された2つのIGBTを収納したモジュールの外観例を図4に、また、そのモジュール断面図を図5にそれぞれ示す。
A power semiconductor element applied to such a circuit generally stores a plurality of elements (chips) in one package (module) for easy connection and cooling. Is usually called a power module.
FIG. 4 shows an example of the appearance of a module containing two IGBTs connected in series to form a bridge circuit, and FIG. 5 shows a sectional view of the module.

図4に示すモジュール容器2には、直流電源1からの入力端子2a,2b、負荷への接続端子2cおよびオン,オフ信号を入力するためのゲート端子2dが設けられている。
図5に示すように、表面に回路パターン12a〜12cが形成されたセラミック製絶縁基板12の回路パターン面(上面側)に、半導体チップ3a,3bが半田などのろう材により固着されており、各回路パターン12a〜12cと各チップとはアルミニウムワイヤ9a,9bによってボンディング接続され、図3のような回路が構成される。
The module container 2 shown in FIG. 4 is provided with input terminals 2a and 2b from the DC power source 1, a connection terminal 2c to the load, and a gate terminal 2d for inputting an on / off signal.
As shown in FIG. 5, the semiconductor chips 3a and 3b are fixed to the circuit pattern surface (upper surface side) of the ceramic insulating substrate 12 having the circuit patterns 12a to 12c formed on the surface thereof by a brazing material such as solder. The circuit patterns 12a to 12c and the chips are bonded to each other by aluminum wires 9a and 9b, thereby forming a circuit as shown in FIG.

また、セラミック製絶縁基板12の裏面にもベタパターン12dが設けられており、銅合金のような放熱板11に半田などによりろう付けされる。半導体チップ3a,3bや配線パターン12a〜12cなどの電気回路側と放熱板11は、セラミック基板12で絶縁されているので、感電を防止する目的で放熱板11を接地しても良く、使い勝手の良い構成にされる。   A solid pattern 12d is also provided on the back surface of the ceramic insulating substrate 12, and is brazed to the heat radiating plate 11 such as a copper alloy with solder or the like. Since the electric circuit side such as the semiconductor chips 3a and 3b and the wiring patterns 12a to 12c and the heat sink 11 are insulated by the ceramic substrate 12, the heat sink 11 may be grounded for the purpose of preventing electric shock. Good configuration.

ところで、上記のように構成されるパワーモジュールには、装置の断続的な運転による急激な温度変化により、内部の端子接続部分が熱疲労により断線するのみならず、断線時に生じるスパークにより半導体チップが破壊してしまうという問題がある。半導体チップ表面(エミッタ端子面)から電極,外部接続端子などへは、上述のようにアルミニウムなどのワイヤをボンディング、すなわちワイヤと接続面を超音波により擦り合わせ、摩擦熱で塑性変形させることにより接続される。   By the way, in the power module configured as described above, due to a rapid temperature change due to intermittent operation of the device, not only the internal terminal connection portion is disconnected due to thermal fatigue, but also the semiconductor chip is caused by a spark generated at the time of disconnection. There is a problem of destroying. Connection from the semiconductor chip surface (emitter terminal surface) to electrodes, external connection terminals, etc. by bonding wires such as aluminum as described above, that is, by rubbing the wires and connection surfaces with ultrasonic waves and plastically deforming with frictional heat Is done.

上記接続は、アルミニウム(配線材)とシリコン(半導体チップ)との接続点であり、各素材の線膨張係数はアルミニウム:23×10-6/℃、シリコン:8×10-6/℃で、約3倍の差がある。したがって、長期にわたり断続通電が行なわれると、その温度変化による膨張率の相違により、接合部分に繰り返し応力が発生し、接合部に亀裂(クラック)が進行する。この亀裂がある程度進行すると、亀裂部分での電圧降下が大きくなり、発熱量が増大するため亀裂が加速度的に進行し、ついには断線を引き起こすことになる。 The connection is a connection point between aluminum (wiring material) and silicon (semiconductor chip). The linear expansion coefficient of each material is aluminum: 23 × 10 −6 / ° C., silicon: 8 × 10 −6 / ° C., There is a difference of about 3 times. Therefore, when intermittent energization is performed over a long period of time, due to the difference in expansion coefficient due to the temperature change, stress is repeatedly generated in the joint portion, and a crack (crack) progresses in the joint portion. If this crack progresses to some extent, the voltage drop at the crack portion increases, and the amount of heat generation increases, so that the crack progresses at an accelerated rate and eventually causes disconnection.

この繰り返し発熱によるパワーモジュールの劣化および寿命をパワーサイクル耐量(またはパワーサイクル寿命)と呼び、パワーモジュールの信頼性を判断するための、非常に重要な項目の1つになっている。
図6はパワーモジュールのパワーサイクル寿命特性曲線の例で、接合部の温度変化量(ΔTj)が大きくなると、パワーサイクル回数が低下することを示している。
This deterioration and life of the power module due to repeated heat generation is called power cycle tolerance (or power cycle life), and is one of the very important items for judging the reliability of the power module.
FIG. 6 is an example of a power cycle life characteristic curve of the power module, and shows that the number of power cycles decreases as the temperature change amount (ΔTj) of the junction increases.

図7は亀裂の進行を説明するもので、チップ3a,3bの表面とボンディングされたワイヤ9a,9bの接続点に亀裂9c(ギザギザの線で示す)が発生していることを示す。
また、図8は接続点における抵抗値測定例を示す。初期状態では、ワイヤ接続部の抵抗値は2mΩ程度であるが、パワーサイクル回数とともに抵抗値が上昇し、寿命末期においては5mΩ程度まで抵抗値が急増し、破壊に至ることが判明している。
このようなパワー半導体素子の特性劣化をすばやく検出し、素子が破壊する直前に交換を促すことにより、設備機器のトラブルを防止する予防保全機能の実現が要望されており、特性劣化の推定,検出する技術が例えば特許文献1,2に開示されている。
FIG. 7 illustrates the progress of cracks, and shows that cracks 9c (shown by jagged lines) occur at the connection points between the surfaces of the chips 3a and 3b and the bonded wires 9a and 9b.
FIG. 8 shows an example of resistance value measurement at the connection point. In the initial state, the resistance value of the wire connection portion is about 2 mΩ, but the resistance value increases with the number of power cycles, and it has been found that the resistance value rapidly increases to about 5 mΩ at the end of the life, leading to destruction.
There is a demand for the realization of preventive maintenance functions that prevent troubles in equipment by promptly detecting such characteristic deterioration of power semiconductor elements and prompting replacement immediately before the element breaks down. Estimating and detecting characteristic deterioration For example, Patent Documents 1 and 2 disclose such techniques.

特許文献1には、半導体チップの配線剥離を検出する方法として、配線強度を主配線よりも弱くしたダミー配線を施し、これの剥離から主配線の寿命が近いことを検出する技術が示されている。
しかし、モジュール製造時の配線工程が複雑になるだけでなく、実際の寿命時のワイヤ剥離においては、チップ表面の電極もスパークにより損傷する場合が多く、ダミー配線の剥離が直ちに製品の寿命となってしまうと言う問題がある。
Patent Document 1 discloses a technique for detecting a separation of a semiconductor chip wiring by providing a dummy wiring whose wiring strength is weaker than that of the main wiring and detecting that the main wiring is near the end of its life from the separation. Yes.
However, not only does the wiring process at the time of module manufacture become complicated, but in the case of wire peeling at the actual life, the electrodes on the chip surface are often damaged by sparks, and the peeling of the dummy wiring immediately reaches the product life. There is a problem to say.

一方、特許文献2には、図6のような予め求めてある半導体素子のパワーサイクル寿命特性曲線(温度変化幅に対するパワーサイクルの依存特性)と、実際の運転における温度,回数を比較し、特性曲線と照らし合わせて寿命推定を行なう技術が開示されている。しかし、ここでは単純な回数のみのカウントであり、実際の剥離状態を観測していないため、推定誤差が大きくなってしまう。通常、変換装置の付加状態は一定ではなく、温度変化幅も運転状況によって様々に異なるため、単一の温度条件でのサイクル寿命数から実物のパワーサイクル寿命を推定することは極めて難しい。   On the other hand, Patent Document 2 compares the power cycle life characteristic curve (depending on the power cycle with respect to the temperature change width) of a semiconductor element obtained in advance as shown in FIG. A technique for performing life estimation in comparison with a curve is disclosed. However, since this is a simple count only and the actual peeling state is not observed, the estimation error becomes large. Usually, the additional state of the conversion device is not constant, and the temperature change width varies depending on the operating conditions. Therefore, it is extremely difficult to estimate the actual power cycle life from the number of cycle lifes under a single temperature condition.

また、予め半導体素子のパワーサイクル寿命特性曲線を求めておく必要があり、評価に時間が掛かる。さらに、メモリなどに寿命曲線および温度変化値、装置の運転履歴を記憶させておく必要があり、装置構成が複雑になる。
また、接合部の抵抗値は数mΩ程度であるため、パワーモジュールが通常流す電流値での電圧降下は0.2ないし0.5V程度で非常に小さいため、精度良く検出するのが非常に難しい。さらに、パワーモジュールの電流値自信も運転状態によって異なり、常に一定と言うわけではないので、電流値に合わせて接合部の抵抗値を検出することは非常に困難である。
In addition, it is necessary to obtain a power cycle life characteristic curve of the semiconductor element in advance, which takes time for evaluation. Furthermore, it is necessary to store a life curve, a temperature change value, and an operation history of the apparatus in a memory or the like, and the apparatus configuration becomes complicated.
Also, since the resistance value of the junction is about several mΩ, the voltage drop at the current value that the power module normally passes is very small at about 0.2 to 0.5 V, so it is very difficult to detect with high accuracy. . Furthermore, since the current value confidence of the power module varies depending on the operating state and is not always constant, it is very difficult to detect the resistance value of the joint in accordance with the current value.

特開2005−286009号公報JP 2005-286209 A 特開平08−051768号公報JP-A-08-05768

従って、この発明の解決しようとする課題は、パワーモジュール内部配線の劣化を効率よく正確に検出できるようにすることにある。   Therefore, the problem to be solved by the present invention is to enable efficient and accurate detection of deterioration of the internal wiring of the power module.

上記課題を解決すため、請求項1の発明では、直列接続された複数の半導体素子を備えた半導体モジュールを直流電源間に接続して、前記半導体モジュールの表面に接続されたワイヤ配線における電圧降下を検出することにより半導体素子の劣化を検知するものにおいて、前記直流電源間に直列接続された複数の半導体素子に同時にオンパルスを与え、そのオンパルス期間でのワイヤ配線の電圧降下を検出することを特徴とする。
In order to solve the above-mentioned problem, in the invention of claim 1, a voltage drop in a wire wiring connected to the surface of the semiconductor module by connecting a semiconductor module having a plurality of semiconductor elements connected in series between DC power sources In which deterioration of a semiconductor element is detected by detecting an on-pulse, simultaneously applying an on-pulse to a plurality of semiconductor elements connected in series between the DC power supplies, and detecting a voltage drop in the wire wiring during the on-pulse period. And

上記請求項1の発明においては、前記ワイヤ配線の電圧降下を予め設定した基準レベルと比較し、ワイヤ配線の電圧降下が基準レベル以上になったとき、半導体素子の劣化を検出することができる(請求項2の発明)。
In the invention described in claim 1, as compared to the previous SL reference level set a voltage drop in advance of the wire wiring, when the voltage drop of the wire wiring is equal to or greater than the reference level, it is possible to detect the deterioration of the semiconductor element (Invention of Claim 2 ).

この発明では、直流電源間にブリッジ接続された半導体モジュールの、直列に接続された対の素子を同時にオンさせて短絡電流を流し、そのときのワイヤ配線における電圧降下を計測する。これにより、負荷状態によらず一定の電流を流せるので、ワイヤ接合部の電圧降下を正確に検出でき、半導体モジュールの寿命を破壊前に把握することができる。   In the present invention, a pair of elements connected in series in a semiconductor module bridge-connected between DC power supplies are simultaneously turned on to cause a short-circuit current to flow, and a voltage drop in the wire wiring at that time is measured. As a result, a constant current can flow regardless of the load state, so that a voltage drop at the wire junction can be accurately detected, and the lifetime of the semiconductor module can be grasped before destruction.

図1はこの発明の実施の形態を示す回路図で、IGBT3a,3bが直列に接続されたブリッジ回路の1相分を示す。IGBT3a,3bには駆動回路8a,8bが接続されており、制御回路10から発生される駆動信号15a,15bを増幅してIGBTを駆動するものである。9a,9bは図5と同じワイヤ配線を示しており、このワイヤ配線9a,9bにおける電圧降下レベルを検出するために比較器6a,6bを設け、基準値7a,7bとの比較を行なう。   FIG. 1 is a circuit diagram showing an embodiment of the present invention, and shows one phase of a bridge circuit in which IGBTs 3a and 3b are connected in series. Drive circuits 8a and 8b are connected to the IGBTs 3a and 3b. The drive signals 15a and 15b generated from the control circuit 10 are amplified to drive the IGBT. Reference numerals 9a and 9b denote the same wire wiring as in FIG. 5, and comparators 6a and 6b are provided to detect voltage drop levels in the wire wirings 9a and 9b, and the comparison with the reference values 7a and 7b is performed.

ワイヤ配線9a,9bでの電圧降下が基準値を超えた、つまりワイヤ接合部の亀裂が進行した場合には、比較器6a,6bの出力14a,14bが反転するので、これを寿命到達信号として検出することにより、パワーモジュールが破壊する前に寿命到達を検出することが可能となる。さらに、上述したような微小な電圧降下を正確に検出するために、この発明では上下アームのIGBT3a,3bに対し、短絡により破壊しない程度の、ごく短時間同時にオンさせるパルス(寿命計測用パルス)を入力し、大電流の短絡電流を流すことにより、負荷の状態によらず、微小な抵抗値を計測できるようにしている。   When the voltage drop in the wire wirings 9a and 9b exceeds the reference value, that is, when the crack of the wire joint progresses, the outputs 14a and 14b of the comparators 6a and 6b are inverted. By detecting it, it is possible to detect the end of life before the power module is destroyed. Further, in order to accurately detect such a small voltage drop as described above, in the present invention, the pulses that cause the IGBTs 3a and 3b of the upper and lower arms to be simultaneously turned on for a very short time so as not to be broken by a short circuit (life measurement pulse). Is input, and a large short-circuit current is allowed to flow, so that a minute resistance value can be measured regardless of the state of the load.

図2に、寿命計測用パルスのタイミングチャートを示す。
IGBT3aおよび3bに対し、それぞれ図2(a),(b)のような、短時間の同時オンパルス信号を入力している。これに伴い、IGBT3a,3bには図2(c)のような大電流のパルス状短絡電流が流れる。一般的に、パルス電流のピークは、IGBT定格の5〜10倍程度の電流となる。
FIG. 2 shows a timing chart of a life measurement pulse.
Short-time simultaneous on-pulse signals as shown in FIGS. 2A and 2B are input to the IGBTs 3a and 3b, respectively. As a result, a large pulsed short-circuit current as shown in FIG. 2C flows through the IGBTs 3a and 3b. In general, the peak of the pulse current is about 5 to 10 times the IGBT rating.

例えば、100A定格のIGBTでは、短絡電流は500〜1000Aにも達するため、上記接合部の抵抗における電圧降下(Vwire)は、短絡電流値が500A、接合部抵抗が2mΩ(初期時)であったとすると、次のようになる。
Vwire=500A×2mΩ=1V
一方、寿命時における接合部抵抗が5mΩであったとすると、
Vwire=500A×5mΩ=2.5V
であるので、初期時と寿命時の中間付近に、図2(d)のように寿命レベル電圧値7a,7bを設定することにより、パワーモジュールの寿命到達を検出できる。
For example, in a 100 A rated IGBT, the short circuit current reaches 500 to 1000 A, so the voltage drop (Vwire) at the junction resistance is 500 A short circuit current and 2 mΩ junction resistance (initial). Then, it becomes as follows.
Vwire = 500A × 2mΩ = 1V
On the other hand, if the junction resistance at the time of life was 5 mΩ,
Vwire = 500A × 5mΩ = 2.5V
Therefore, by setting the life level voltage values 7a and 7b near the middle between the initial time and the life time as shown in FIG.

検出する電圧は数ボルト程度なので、定格電流で計測した場合の1V以下の電圧降下を検出する場合に比べて、外部ノイズなどの影響も受け難くなる。しかも、この短絡電流特性は、素子(IGBT)チップの特性により決定されるため、負荷電流の大小によらず正確に電圧降下を検出することができる。IGBTチップの短絡耐量(時間)は、一般的には10マイクロ秒程度なので、この時間以下の寿命計測パルスを用いれば良い。   Since the detected voltage is about several volts, it is less susceptible to external noise and the like than when detecting a voltage drop of 1 V or less when measured at the rated current. Moreover, since the short-circuit current characteristics are determined by the characteristics of the element (IGBT) chip, it is possible to accurately detect the voltage drop regardless of the magnitude of the load current. Since the short-circuit tolerance (time) of the IGBT chip is generally about 10 microseconds, a life measurement pulse shorter than this time may be used.

また、上記寿命計測パルスは必要に応じて、運転開始時や一定の累積期間毎に入力しても良い。さらに、駆動信号としての上下アームパルス15a,15bは、短絡電流が流れる期間さえ確保されていれば、上下同じタイミングやパルス時間幅である必要は無い。また、寿命計測パルス発生中には、IGBTのゲート電圧を低減させることにより、短絡電流を抑制して計測時間を延長することも可能である。   Further, the life measurement pulse may be input at the start of operation or every certain accumulation period as necessary. Furthermore, the upper and lower arm pulses 15a and 15b as drive signals do not need to have the same timing and pulse time width as long as the short-circuit current flows. In addition, during the lifetime measurement pulse generation, it is possible to suppress the short-circuit current and extend the measurement time by reducing the gate voltage of the IGBT.

以上では、直流電源間に2つのIGBTを接続した2レベルインバータの例を説明したが、多数のIGBTを直列に接続した3レベル以上のインバータについても、全てのIGBTを同時にオンさせることで、同様の効果が得られることは勿論である。また、インバータ内の複数のモジュールのうち、全てのIGBTのワイヤ電圧を検出しても良く、動作責務が同じならば各モジュールの寿命もほぼ同じと考えられるので、どれか1つのモジュールのみのワイヤ電圧を検出しても良い。   In the above, an example of a two-level inverter in which two IGBTs are connected between DC power supplies has been described, but the same applies to all three or more inverters in which a large number of IGBTs are connected in series by simultaneously turning on all the IGBTs. Of course, this effect can be obtained. Also, the wire voltage of all IGBTs among a plurality of modules in the inverter may be detected, and if the operation responsibilities are the same, the life of each module is considered to be almost the same. The voltage may be detected.

この発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention 図1の動作説明図FIG. 1 is an explanatory diagram of the operation. 一般的なインバータ回路を示す回路図Circuit diagram showing a general inverter circuit パワーモジュールの外観図External view of power module 図4の断面図Sectional view of FIG. パワーサイクル寿命特性を示す特性曲線図Characteristic curve diagram showing power cycle life characteristics ワイヤボンディングにおける亀裂の説明図Explanatory drawing of cracks in wire bonding パワーサイクルにおけるボンディング接続部の抵抗推移説明図Explanatory diagram of resistance transition at bonding connection in power cycle

符号の説明Explanation of symbols

1…直流電源、2…モジュール容器、2a〜2d…端子、3a,3b…IGBT、4a,4b…ダイオード、5…負荷(モータ)、6a,6b…比較器、9a,9b…ワイヤ配線、10…制御回路、11…放熱板、12…絶縁基板、12a〜12c…配線パターン、15a,15b…駆動信号(上下アームパルス)。   DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Module container, 2a-2d ... Terminal, 3a, 3b ... IGBT, 4a, 4b ... Diode, 5 ... Load (motor), 6a, 6b ... Comparator, 9a, 9b ... Wire wiring, 10 ... Control circuit, 11 ... Heat sink, 12 ... Insulating substrate, 12a to 12c ... Wiring pattern, 15a, 15b ... Drive signal (upper and lower arm pulses).

Claims (2)

直列接続された複数の半導体素子を備えた半導体モジュールを直流電源間に接続して、前記半導体モジュールの表面に接続されたワイヤ配線における電圧降下を検出することにより半導体素子の劣化を検知するものにおいて、前記直流電源間に直列接続された複数の半導体素子に同時にオンパルスを与え、そのオンパルス期間でのワイヤ配線の電圧降下を検出することを特徴とする半導体装置の劣化保護方法。 A semiconductor module including a plurality of semiconductor elements connected in series is connected between DC power supplies, and the deterioration of the semiconductor element is detected by detecting a voltage drop in the wire wiring connected to the surface of the semiconductor module. A method for protecting a deterioration of a semiconductor device , comprising: simultaneously applying an ON pulse to a plurality of semiconductor elements connected in series between the DC power supplies, and detecting a voltage drop in the wire wiring during the ON pulse period . 前記ワイヤ配線の電圧降下を予め設定した基準レベルと比較し、ワイヤ配線の電圧降下が基準レベル以上になったとき、半導体素子の劣化を検出することを特徴とする請求項1に記載の半導体装置の劣化保護方法。   2. The semiconductor device according to claim 1, wherein the voltage drop of the wire wiring is compared with a preset reference level, and deterioration of the semiconductor element is detected when the voltage drop of the wire wiring is equal to or higher than the reference level. Deterioration protection method.
JP2007181867A 2007-07-11 2007-07-11 Degradation protection method for semiconductor device Expired - Fee Related JP5245306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181867A JP5245306B2 (en) 2007-07-11 2007-07-11 Degradation protection method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181867A JP5245306B2 (en) 2007-07-11 2007-07-11 Degradation protection method for semiconductor device

Publications (2)

Publication Number Publication Date
JP2009022084A JP2009022084A (en) 2009-01-29
JP5245306B2 true JP5245306B2 (en) 2013-07-24

Family

ID=40361225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181867A Expired - Fee Related JP5245306B2 (en) 2007-07-11 2007-07-11 Degradation protection method for semiconductor device

Country Status (1)

Country Link
JP (1) JP5245306B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018025A (en) * 2010-07-07 2012-01-26 Fuji Electric Co Ltd Deterioration diagnosis method and deterioration diagnosis device for semiconductor power module
WO2015125281A1 (en) * 2014-02-21 2015-08-27 株式会社日立製作所 Power module, power conversion device, and railroad vehicle
US20220003808A1 (en) 2019-03-01 2022-01-06 Mitsubishi Electric Corporation Semiconductor device and method for diagnosing deterioration of semiconductor device
CN115668736A (en) * 2020-06-19 2023-01-31 三菱电机株式会社 Short-circuit detection method for switching element, inverter device, and hand dryer
JP2022036633A (en) 2020-08-24 2022-03-08 富士電機株式会社 Semiconductor module and deterioration detection method of semiconductor module
WO2024100695A1 (en) * 2022-11-07 2024-05-16 三菱電機株式会社 Power converter
WO2024127629A1 (en) * 2022-12-16 2024-06-20 三菱電機株式会社 Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331478A (en) * 1986-07-24 1988-02-10 Toshiba Corp Troubleshooting device for inverter
JP2005012951A (en) * 2003-06-20 2005-01-13 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device
JPWO2005038918A1 (en) * 2003-10-15 2007-02-01 株式会社日立製作所 Power semiconductor module, power conversion device using the same, and moving body

Also Published As

Publication number Publication date
JP2009022084A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4830993B2 (en) Degradation detection method for semiconductor device
JP5245306B2 (en) Degradation protection method for semiconductor device
US9935577B2 (en) Semiconductor device and fault detecting method
US8148929B2 (en) Power electronic module IGBT protection method and system
JP4581930B2 (en) Anomaly detection device for power semiconductor elements
JP2002005989A (en) Deterioration determining method for electric power semiconductor element
Niu A review of power cycle driven fatigue, aging, and failure modes for semiconductor power modules
US11346879B2 (en) Semiconductor device
JP2007040817A (en) Apparatus for detecting anomaly of semiconductor device for electric power
JP4097613B2 (en) Semiconductor device
JP2017184298A (en) Electric power conversion system
JP4798170B2 (en) Semiconductor device
JP2007049870A (en) Power semiconductor module
JP2012018025A (en) Deterioration diagnosis method and deterioration diagnosis device for semiconductor power module
WO2011152151A1 (en) Method for predicting lifetime of element, and circuit board provided with function of predicting lifetime of element
JP4677756B2 (en) Power module
JPWO2019043950A1 (en) Semiconductor module and power converter
JP6877595B2 (en) Semiconductor equipment and power conversion equipment
JP2008042091A (en) Semiconductor device
JP2013140889A (en) Power module
JP2009277975A (en) Semiconductor device
JP2006049567A (en) Semiconductor apparatus and using method of the same
JP7241996B1 (en) power converter
JP2007113983A (en) Abnormality detecting apparatus for power semiconductor device
JP2023042142A (en) Semiconductor device control circuit and semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5245306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees