WO2024100695A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
WO2024100695A1
WO2024100695A1 PCT/JP2022/041305 JP2022041305W WO2024100695A1 WO 2024100695 A1 WO2024100695 A1 WO 2024100695A1 JP 2022041305 W JP2022041305 W JP 2022041305W WO 2024100695 A1 WO2024100695 A1 WO 2024100695A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
leg
power
calculation unit
inverter
Prior art date
Application number
PCT/JP2022/041305
Other languages
French (fr)
Japanese (ja)
Inventor
雄希 木村
浩之 清永
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/041305 priority Critical patent/WO2024100695A1/en
Priority to JP2023502872A priority patent/JP7241996B1/en
Publication of WO2024100695A1 publication Critical patent/WO2024100695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to a power conversion device incorporating a power semiconductor element.
  • Examples of power conversion devices include inverters, converters, and uninterruptible power supplies (UPS). This type of power conversion device has multiple built-in power semiconductor elements, and power conversion is performed by a drive circuit that controls the switching of the multiple power semiconductor elements.
  • IGBTs Insulated Gate Bipolar Transistors
  • MOS-FETs Metal Oxide Semiconductor Field-Effect Transistors
  • the power conversion device has at least one leg consisting of at least two power semiconductor elements connected in series. If there are multiple legs, the multiple legs are connected in parallel to each other. This connection form is called a "bridge connection.”
  • one or more power semiconductor elements used in power conversion devices are often sealed and configured as a package.
  • the sealed package is called a "power module.”
  • Power semiconductor elements are packaged to simplify the electrical connection between the power semiconductor elements or between the power semiconductor elements and other electrical components, and to improve the heat dissipation of the power semiconductor elements.
  • a power module is configured with silicon chips that make up the IGBTs or MOS-FETs, silicon chips that make up the rectifier elements, metal pads for wire bonding, external terminals of the module, metal wires that connect the silicon chips, etc.
  • a power conversion device power conversion is performed by switching the power semiconductor elements built into the power module. During this process, the power semiconductor elements generate a lot of heat. Therefore, when a power conversion device is operated intermittently, the power semiconductor elements experience rapid temperature changes.
  • the linear expansion coefficient of the silicon chip is different from that of the metal wire. For this reason, it is known that shear stress occurs between the silicon chip and the metal wire with each temperature change, causing the wire to peel off. If the wire peeling progresses, the electrical connection by the metal wire is severed, causing the power module to malfunction and leading to failure of the device equipped with the power module.
  • the resistance to the shear stress that occurs between the silicon chip and the metal wire when the temperature changes is generally called the "power cycle resistance.”
  • Patent Document 1 proposes a method of detecting an increase in thermal resistance between a metal base and a power device, and detecting failure of the power module in advance based on the degree of increase in thermal resistance. Patent Document 1 also describes that by determining the timing of replacing a power module based on the predicted lifespan, it is possible to reduce the margin beyond the margin that should be maintained for the predicted time of failure, and to extend the maintenance cycle for replacement, etc.
  • Patent Document 1 merely predicts the lifespan of a power module in order to reduce margins in maintenance cycles such as replacement, and is not a technology that directly extends the lifespan of a power module.
  • the technology in Patent Document 1 does not have the effect of mitigating the shear stress that occurs between the silicon chip and the metal wire, and if the power module is used under conditions in which temperature changes occur frequently, the lifespan of the power module will be shortened.
  • the present disclosure has been made in consideration of the above, and aims to obtain a power conversion device that can suppress shortening of the lifespan of a power module, even when the power module is used under operating conditions in which temperature changes occur frequently.
  • the power conversion device includes a power module incorporating at least one of the legs formed by electrically connecting at least two or more semiconductor elements in series, and supplies load power to a load device by operating the power module.
  • a power module incorporating at least one of the legs formed by electrically connecting at least two or more semiconductor elements in series, and supplies load power to a load device by operating the power module.
  • the power conversion device performs short-circuit control by repeatedly performing an operation of electrically shorting, for a specified time, at least the semiconductor elements of the upper and lower arms of the leg whose temperature has dropped by the certain value or more.
  • the power conversion device disclosed herein has the effect of preventing shortening of the lifespan of the power module, even when the power module is used under operating conditions in which temperature changes occur frequently.
  • FIG. 1 is a plan view of a power module included in an inverter according to a first embodiment
  • FIG. 2 is a diagram in which a calculation unit, a drive circuit, and a thermistor are added to the electric circuit configuration diagram of the inverter according to the first embodiment shown in FIG. 1.
  • FIG. 13 is a diagram showing a state of temperature change when a switching element built into a power module is driven using the method of the first embodiment.
  • 1 is a flowchart used to explain a control flow according to the first embodiment.
  • Electric circuit configuration diagram of an inverter according to a second embodiment 1 is a flowchart used to explain a control flow according to the second embodiment.
  • Fig. 1 is an electric circuit diagram of an inverter 50 according to the first embodiment.
  • the inverter 50 includes a DC power supply 10 that outputs a DC voltage, a capacitor 9 that smoothes the DC voltage output by the DC power supply 10, and an inverter main circuit unit 7.
  • the inverter main circuit unit 7 includes switching elements 1a to 6a that perform switching, and rectifier elements 1b to 6b that are connected in parallel to the switching elements 1a to 6a, respectively.
  • the inverter main circuit unit 7 supplies three-phase AC power to a load device 8. Examples of the load device 8 include an induction motor and a permanent magnet motor.
  • Each of the switching elements 1a to 6a is a power semiconductor element.
  • Typical power semiconductor elements include IGBTs and MOS-FETs.
  • the rectifier elements 1b to 6b include diodes and thyristors. If each of the switching elements 1a to 6a is a MOS-FET, the parasitic diode of the MOS-FET may be used as the rectifier elements 1b to 6b.
  • Capacitor 9 is arranged to stabilize the voltage of the DC section of inverter 50.
  • the DC section is the electrical wiring that electrically connects capacitor 9 to inverter main circuit section 7.
  • the capacitor voltage which is the voltage across capacitor 9 is maintained within a certain range of voltage values. This voltage maintained within a certain range is called the "bus voltage.”
  • switching elements 1a and 2a are connected in series to form leg 20a
  • switching elements 3a and 4a are connected in series to form leg 20b
  • switching elements 5a and 6a are connected in series to form leg 20c.
  • the switching elements 1a, 3a, and 5a located on the high potential side are called the “upper arm switching elements”
  • the switching elements 2a, 4a, and 6a located on the low potential side are called the “lower arm switching elements.”
  • connection points of each switching element in legs 20a to 20c form intermediate potential points 18a, 18b, and 18c.
  • wiring is drawn from each of these intermediate potential points 18a, 18b, and 18c and connected to the load device 8.
  • the inverter 50 supplies three-phase AC power to the load device 8, for example, by PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • PWM control uses known technology and will not be described in this specification.
  • the inverter main circuit section 7 shown in FIG. 1 has three legs 20a-20c and has a three-phase configuration that supplies three-phase AC power to the load device 8, but is not limited to this configuration.
  • the number of legs may be one or two, or may be four or more. When there is one leg, it is called a "half bridge", and when there are two legs, it is called a “single-phase bridge", "full bridge”, etc.
  • the number of elements connected in series is two, but this example is not limiting. The number of elements connected in series may be three or more.
  • the switching elements 1a to 6a and the rectifier elements 1b to 6b are high heat generating components. Therefore, these high heat generating components are sealed with resin and configured as a single power module 40.
  • This configuration has the advantage that it is only necessary to provide a heat dissipation mechanism for the power module 40, making it possible to simplify the heat dissipation mechanism.
  • the power module 40 is mounted on a printed circuit board (not shown in FIG. 1) and is electrically connected to the load device 8 and the capacitor 9 via the printed circuit board.
  • a heat dissipation component (not shown) is attached to the power module 40.
  • An example of a heat dissipation component is a heat dissipation fin. The heat dissipation component operates to keep the temperature of the high heat generating components built into the power module 40 below an allowable temperature.
  • FIG. 2 is a plan view of the power module 40 included in the inverter 50 according to the first embodiment.
  • Silicon chips 11 and 12 are mounted on the printed circuit board 45.
  • the silicon chip 11 corresponds to the switching elements 1a to 6a
  • the silicon chip 12 corresponds to the rectifying elements 1b to 6b.
  • the silicon chip 11 and the metal pad 14 are electrically connected by wire bonding the metal wire 13.
  • a metal wire such as gold, aluminum, or copper is used.
  • the metal wire 13 is used when electrically connecting the silicon chips 11 and 12 to other electrical components, and between the silicon chips 11 and 12.
  • the silicon chips 11 and 12, and the silicon chip 12 and the metal pad 14 are also electrically connected by the metal wire 13.
  • Module external terminals 15 are also provided on the printed circuit board 45.
  • the module external terminals 15 are inserted into through holes provided in the printed circuit board 45 and connected with solder or the like.
  • the module external terminals 15 are also electrically connected to the metal pads 14 by wiring. This electrically connects the module external terminals 15 to the circuit pattern formed on the printed circuit board 45.
  • FIG. 3 is a diagram in which the calculation unit 30, drive circuit 60, and thermistor 90 have been added to the electrical circuit configuration diagram of the inverter 50 according to the first embodiment shown in FIG. 1.
  • a shunt resistor 16 is inserted in each of legs 20a to 20c on the low potential side, i.e., the emitter terminal side, of the lower arm switching elements 2a, 4a, and 6a, and a voltage measurement circuit 17 is connected to both ends of the shunt resistor 16.
  • the inverter 50 also includes a thermistor 90.
  • the shunt resistor 16 is a current measuring resistor used to measure the current flowing through the switching elements 2a, 4a, and 6a of the lower arm.
  • the shunt resistor 16 may be disposed inside the power module 40, or may be disposed on the printed circuit board 45 on which the power module 40 is mounted.
  • the voltage measuring circuit 17 is composed of an isolation element, for example a photocoupler or an isolation amplifier, and a signal amplification element, such as an operational amplifier.
  • the isolation element is used to electrically isolate the legs 20a to 20c from the calculation unit 30.
  • Thermistor 90 is used to measure the ambient temperature of inverter 50.
  • Thermistor 90 is typically attached to the housing of inverter 50 (not shown), but is not limited to this configuration.
  • Thermistor 90 can be attached anywhere on inverter 50 as long as it can measure the ambient temperature of inverter 50.
  • the thermistor 90 may be an element having a nonlinear temperature-resistance characteristic, such as an NTC (Negative Temperature Coefficient) type, a PTC (Positive Temperature Coefficient) type, or a CTR (Critical Temperature Resistor) type.
  • NTC Negative Temperature Coefficient
  • PTC Positive Temperature Coefficient
  • CTR Chronic Temperature Resistor
  • the voltage across the shunt resistor 16 is input to the calculation unit 30 via the voltage measurement circuit 17.
  • the calculation unit 30 can be realized by a processing circuit having a processor and a memory.
  • the calculation unit 30 may also be realized by a dedicated processing circuit instead of a processor and a memory.
  • As the dedicated processing circuit an integrated circuit such as an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), or a microcomputer (microcomputer) is used.
  • the calculation unit 30 also includes a memory area 30a.
  • the memory area 30a may be the memory of the processing circuit.
  • the temperature information measured by the thermistor 90 and the voltage information measured by the voltage measurement circuit 17 are stored in the memory area 30a.
  • An external command 80 is input to the calculation unit 30.
  • the external command 80 is a drive command input from outside the inverter 50 to operate the inverter 50.
  • the calculation unit 30 inputs an operation command for the switching elements 1a to 6a to the drive circuit 60 based on the external command 80.
  • the drive circuit 60 drives the inverter main circuit unit 7 by outputting a drive signal 70 to the switching elements 1a to 6a.
  • calculation unit 30 estimates the current flowing through legs 20a to 20c based on the voltage information of shunt resistor 16 input via voltage measurement circuit 17.
  • the current estimated by calculation unit 30 is stored as an estimated current in memory area 30a.
  • the memory area 30a stores a conversion table that converts the current flowing through the legs 20a to 20c into temperature.
  • the calculation unit 30 calculates the temperature of the legs 20a to 20c based on the estimated current of the legs 20a to 20c stored in the memory area 30a.
  • the conversion table stored in the memory area 30a is specific to each power module 40 used, and is provided for each power module 40.
  • this conversion table is constructed for each power module 40 by measuring in advance the relationship between the current flowing through the power module 40 and the temperature in the legs 20a to 20c.
  • the memory area 30a stores the thermal resistance value between the legs 20a to 20c and the heat dissipation components attached to the power module 40. This thermal resistance value is a value specific to each inverter 50.
  • the calculation unit 30 Since the calculation unit 30 provides the drive signal 70 to the switching elements 1a to 6a based on the external command 80, the calculation unit 30 itself can determine whether the inverter 50 is operating or not.
  • the external command 80 also includes a drive stop command to stop the operation of the inverter 50. Therefore, the calculation unit 30 can store the temperature information of the legs 20a to 20c when the inverter 50 stops driving in the memory area 30a, just as when the inverter 50 is operating.
  • the temperature of the switching elements 1a to 6a is approximately the same as the ambient temperature of the inverter 50. Therefore, when comparing when the inverter 50 is driven with when the inverter 50 is in a resting state, a temperature difference ⁇ T occurs between the two.
  • the linear expansion coefficients of the switching elements 1a to 6a and the metal wire 13 are different, so every time the temperature of the switching elements 1a to 6a changes, shear stress is generated between the switching elements 1a to 6a and the metal wire 13, which causes wire peeling, in which the metal wire 13 peels off.
  • the temperature difference ⁇ T between the switching elements 1a to 6a when the inverter 50 is operating and when the inverter 50 is in a resting state can be reduced, the shear stress generated between the switching elements 1a to 6a and the metal wire 13 can be mitigated. This can extend the life of the power module 40 due to its power cycle resistance.
  • Fig. 4 is a diagram showing, as a comparative example, how the temperature changes when the switching elements 1a to 6a built into the power module 40 are driven using a conventional method.
  • Fig. 5 is a diagram showing how the temperature changes when the switching elements 1a to 6a built into the power module 40 are driven using the method of the first embodiment.
  • Fig. 6 is a flowchart used to explain the control flow relating to the method of the first embodiment.
  • TR represents the inverter ambient temperature before the inverter drive command is input, i.e., before the inverter is driven
  • TE represents the temperature of the legs 20a to 20c immediately after the inverter is stopped.
  • the calculation unit 30 When an inverter drive command is input to the calculation unit 30 by an external command 80, the calculation unit 30 provides a drive signal 70 to the switching elements 1a to 6a via the drive circuit 60. This causes the inverter 50 to start driving.
  • the inverter 50 When driving starts, three-phase AC power is supplied to the load device 8, and current flows through the legs 20a to 20c.
  • the switching elements 1a to 6a generate heat loss due to conduction and heat loss due to switching operations.
  • the rectifier elements 1b to 6b generate heat loss due to conduction. These losses cause the temperatures of the legs 20a to 20c to rise. Furthermore, after a certain time has passed, the temperatures of the legs 20a to 20c saturate depending on the amount of current flowing through the legs 20a to 20c.
  • the calculation unit 30 stops outputting the drive signal 70.
  • the inverter 50 stops supplying three-phase AC power to the load device 8, and no current flows through the legs 20a to 20c.
  • the current that generates the heat loss disappears.
  • the temperature of the legs 20a to 20c when no current is applied is approximately the same as the inverter ambient temperature T R. Therefore, a large temperature difference ⁇ T J ′ occurs between the temperature of the switching elements 1a to 6a that are being driven and the temperature of the switching elements 1a to 6a that are not being driven.
  • the operating waveforms when driven using the method of the first embodiment are as shown in FIG. 5.
  • the difference from the conventional method is the operation after the inverter drive stop command is input.
  • the calculation unit 30 provides a drive signal 70 to the switching elements 1a to 6a through the drive circuit 60. This causes the inverter 50 to start driving.
  • three-phase AC power is supplied to the load device 8, and current flows through the legs 20a to 20c.
  • the switching elements 1a to 6a generate heat loss due to conduction and heat loss due to switching operation.
  • the rectifier elements 1b to 6b generate heat loss due to conduction. These losses cause the temperature of the legs 20a to 20c to rise.
  • the temperature of the legs 20a to 20c saturates depending on the amount of current flowing through the legs 20a to 20c. The operation up to this point is the same as in the comparative example.
  • the calculation unit 30 stores the temperature T E immediately after the inverters of the legs 20a to 20c are stopped at the time of driving end in the storage area 30a.
  • the calculation unit 30 also performs calculation processing related to temperature estimation of the power module 40 at regular time intervals.
  • the storage area 30a stores thermal resistance values between the legs 20a to 20c and the heat dissipation components attached to the power module 40.
  • the storage area 30a also stores the temperature estimates of the legs 20a to 20c and the inverter ambient temperature T R input from the thermistor 90.
  • the amounts of heat dissipated in the legs 20a to 20c can be calculated using the temperatures of the legs 20a to 20c, the temperature difference between the temperatures of the legs 20a to 20c and the inverter ambient temperature T R , and the thermal resistance values between the legs 20a to 20c and the heat dissipation components. This allows the calculation unit 30 to calculate the temperatures of the legs 20a to 20c after driving is stopped.
  • the calculation unit 30 instructs the drive circuit 60 to output a drive signal 70 for turning on the switching elements of the upper and lower arms of the leg whose temperature has fallen by a certain value or more.
  • this operation is called a "short-circuit operation".
  • This short-circuit operation is performed for a predetermined specified time. Note that the legs on which the short-circuit operation is performed do not necessarily include only the upper and lower arms of the leg whose temperature has fallen by a certain value or more, but may include at least the leg whose temperature has fallen by a certain value or more.
  • the switching elements of the upper and lower arms of all the legs may be turned on. That is, the power conversion device according to the first embodiment performs control to electrically short-circuit the switching elements of the upper and lower arms of at least the leg whose temperature has fallen by a certain value or more among the legs 20a to 20c for a specified time when the temperature of at least one of the legs 20a to 20c falls by a certain value or more below the temperature T E immediately after the inverter is stopped.
  • the constant value it can be any value between 1 and 100°C.
  • the time of the short circuit operation that turns on the upper and lower arm switching elements in at least one leg of the switching elements 1a to 6a depends on the thermal resistance value that characterizes the temperature rise of the switching elements 1a to 6a, but can be any time between 0.1 ⁇ s and 1 ms, for example.
  • the calculation unit 30 raises the temperature of the switching elements 1a to 6a by conduction loss, and increases the temperature to a value close to the temperature T E immediately after the inverter is stopped.
  • the conversion table stored in the memory area 30a is assumed to contain the amount of temperature rise of the legs 20a to 20c when the legs 20a to 20c are short-circuited for an arbitrary period of time in advance.
  • the calculation unit 30 can estimate the temperature of the legs 20a to 20c after the short-circuit operation is performed based on the amount of temperature rise recorded in the conversion table in the memory area 30a.
  • the calculation unit 30 raises the temperature of the switching elements 1a to 6a to a value near the temperature T E , and then commands the drive circuit 60 to turn off all of the switching elements 1a to 6a, i.e., to stop outputting the drive signal 70.
  • the calculation unit 30 repeats the flow of performing a temperature estimation calculation of the legs 20a to 20c, and performing a short-circuit operation again when the temperature of the legs 20a to 20c drops. This repeated control is referred to as "short-circuit control" in this paper. Note that this short-circuit control corresponds to the processing of steps S6 to S9 described below, and the temperature estimation calculation in the short-circuit control corresponds to the processing of step S6 in the steps S6 to S9.
  • the temperatures of the legs 20a to 20c have a periodic waveform in which temperature drops and temperature rises are repeated.
  • the specified time is set appropriately, the temperature rise due to the short circuit operation for the specified time and the temperature drop due to the rest time between the short circuit operations are harmonized, and the temperatures of the legs 20a to 20c have a waveform in which temperature drops and temperature rises are repeated around the temperature T E immediately after the inverter is stopped, as shown in FIG.
  • the temperature difference ⁇ T J which is the amount of temperature change in the legs 20a to 20c when the short circuit control is performed, is smaller than the temperature difference ⁇ T when the short circuit control is not performed.
  • the calculation unit 30 receives the information regarding whether or not short circuit control is implemented and stores it in the memory area 30a.
  • the calculation unit 30 inputs the drive signal 70 to the switching elements 1a to 6a through the drive circuit 60 (step S1).
  • Step S1 causes the inverter 50 to start operating, and three-phase AC power is supplied to the load device 8.
  • the calculation unit 30 calculates the temperatures of the legs 20a to 20c when the drive signal 70 is input, and stores the calculated values in the memory area 30a (step S2). As described above, the temperatures of the legs 20a to 20c can be calculated by using a conversion table that converts the current values of the legs 20a to 20c stored in the memory area 30a into the temperatures of the legs 20a to 20c.
  • step S3 it is determined whether an inverter drive stop command has been input to the calculation unit 30 (step S3).
  • an inverter drive stop command is input to the calculation unit 30 by an external command 80. If an inverter drive stop command has not been input to the calculation unit 30 (step S3, No), the process returns to step S2 and the process from step S2 is repeated. If an inverter drive stop command has been input to the calculation unit 30 (step S3, Yes), the calculation unit 30 stops outputting the drive signal 70. When the output of the drive signal 70 is stopped, the inverter 50 stops operating.
  • step S4 the calculation unit 30 checks whether the short circuit control is enabled (step S4). As described above, whether or not to implement the short circuit control is determined by the user or administrator, and the information is stored in the memory area 30a. The calculation unit 30 checks the memory area 30a to determine whether the short circuit control is enabled, i.e., whether or not to implement the short circuit control. If the short circuit control is not enabled (step S4, No), the process flow of FIG. 6 is terminated without implementing the short circuit control. If the short circuit control is enabled (step S4, Yes), the calculation unit 30 stores the temperature of the legs 20a to 20c immediately after the inverter drive is stopped as temperature T E in the memory area 30a (step S5).
  • step S5 the calculation unit 30 calculates the temperatures of the legs 20a to 20c after the inverter is stopped, and stores the calculated values in the memory area 30a (step S6).
  • the calculation in step S6 can be performed based on the temperature T E immediately after the inverter is stopped, the temperature difference between the temperature T E immediately after the inverter is stopped and the inverter ambient temperature T R , and the thermal resistance value between the legs 20a to 20c and the heat dissipation components.
  • step S6 the calculation unit 30 judges whether or not the temperature of at least one of the calculated temperatures of the legs 20a to 20c is lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S7). If all of the calculated temperatures of the legs 20a to 20c are not lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S7, No), the calculation unit 30 returns to step S6 and repeats the processing from step S6 onwards.
  • step S8 the calculation unit 30 performs the above-mentioned short-circuit control for a specified time.
  • step S8 it is judged whether or not an inverter drive command has been input to the calculation unit 30 (step S9). If an inverter drive command has been input to the calculation unit 30 (step S9, Yes), the calculation unit 30 returns to step S2 and repeats the processing from step S2 onwards. If an inverter drive command has not been input to the calculation unit 30 (step S9, No), the process returns to step S6, and the processes from step S6 onwards are repeated.
  • the power conversion device supplies load power to a load device by operating a power module incorporating at least one of legs formed by electrically connecting at least two or more semiconductor elements in series.
  • the power conversion device performs short-circuit control by repeatedly shorting the switching elements of the upper and lower arms of at least the leg whose temperature has dropped by the certain value or more for a specified time.
  • the power conversion device can be configured to include a current measurement resistor electrically connected in series to the legs, a first temperature measurement circuit capable of measuring the ambient temperature of the power conversion device, and a calculation unit that performs short circuit control.
  • the calculation unit can calculate the temperature of the legs based on the voltage across the current measurement resistor and the measurement result of the first temperature measurement circuit. Note that it is sufficient that a current measurement resistor is provided for at least one leg. The temperature for a leg that does not have a current measurement resistor can be estimated based on the calculation result for a leg that has a current measurement resistor.
  • the calculation unit calculates the amount of heat dissipation in the leg based on the thermal resistance value between the leg and the heat dissipation component, the temperature of the leg immediately after driving is stopped, and the temperature difference between the temperature of the leg immediately after driving is stopped and the ambient temperature of the power conversion device. This calculation process makes it possible to estimate the temperature of the leg during the short circuit control period.
  • Fig. 7 is an electric circuit diagram of an inverter 50A according to embodiment 2.
  • thermistors 90a to 90c are provided instead of the shunt resistor 16, the voltage measurement circuit 17, and thermistor 90 in the inverter 50 according to embodiment 1 shown in Fig. 3.
  • the other configurations are the same as or equivalent to those of the inverter 50 according to embodiment 1 shown in Fig. 3, and the same or equivalent components are denoted by the same reference numerals, and duplicated explanations will be omitted as appropriate.
  • Thermistors 90a to 90c are used to measure the temperatures of legs 20a to 20c, respectively.
  • Thermistors 90a to 90c may be attached to any location on legs 20a to 20c or inverter 50 as long as they are capable of measuring the temperatures of legs 20a to 20c.
  • the power conversion device according to embodiment 2 can be operated with a control flow equivalent to the control flow shown in FIG. 6.
  • FIG. 8 is a flowchart used to explain the control flow relating to the method of embodiment 2. Note that in FIG. 8, processing steps that are the same as or equivalent to those in FIG. 6 are indicated with the same step numbers, and duplicate explanations will be omitted as appropriate.
  • step S1 the inverter 50 starts operating and three-phase AC power is supplied to the load device 8.
  • step S1 the calculation unit 30 receives temperature information of the legs 20a to 20c at the time when the drive signal 70 is input from the thermistors 90a to 90c and stores it in the memory area 30a (step S20).
  • the temperatures T E in the legs 20a to 20c immediately after the inverter drive is stopped are stored in the memory area 30a (step S5).
  • the calculation unit 30 receives temperature information of the legs 20a to 20c after the inverter drive is stopped from the thermistors 90a to 90c and stores the information in the memory area 30a (step S21).
  • step S21 the calculation unit 30 judges whether or not the temperature of at least one of the received temperatures of the legs 20a to 20c is lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S22). If the temperature of at least one of the received temperatures of the legs 20a to 20c is lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S22, Yes), the short circuit control described above is performed for a specified time (step S8).
  • the subsequent operations are the same as those in the first embodiment.
  • step S22, No if all of the received temperatures of the legs 20a to 20c are not lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S22, No), the process returns to step S21 and repeats the processes from step S21 onwards.
  • the above processes can provide the same effects as those in the first embodiment.
  • the power conversion device can be configured to include a second temperature measurement circuit capable of measuring the temperature of the power module, and a calculation unit that performs short circuit control.
  • the calculation unit can receive the measurement result of the second temperature measurement circuit as temperature information and store it in a memory area. This allows the calculation unit to calculate the temperature of the leg based on the measurement result of the second temperature measurement circuit, and to perform the above-mentioned short circuit control. This allows the same effect as in the first embodiment to be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter (50), which is an example of a power conversion device, comprises a power module (40) incorporating legs (20a to 20c) constituted by sets of two switching elements (1a, 2a), (3a, 4a), and (5a, 6a), respectively, that are electrically connected in series, and operates the power module (40) to supply load power to a load device (8). When the temperature of at least one of the legs (20a to 20c) during a non-driving period, in which the supply of load power to the load device (8) is stopped, decreases by at least a certain value as compared to the temperature of the leg immediately after the supply of load power is stopped, the inverter (50) implements short circuit control by repeatedly performing the operation of electrically shorting, for a specified period of time, the switching elements of the upper and lower arms of at least the leg where the temperature has decreases by at least a certain value.

Description

電力変換装置Power Conversion Equipment
 本開示は、パワー半導体素子を内蔵する電力変換装置に関する。 This disclosure relates to a power conversion device incorporating a power semiconductor element.
 電力変換装置の例には、インバータ、コンバータ、無停電電源装置(Uninterruptible Power Supply:UPS)などがある。この種の電力変換装置では、複数のパワー半導体素子が内蔵され、複数のパワー半導体素子を駆動回路がスイッチング制御することで電力変換が行われる。パワー半導体素子としては、一般的にIGBT(Insulated Gate Bipolar Transistor)、MOS-FET(Metal Oxide Semiconductor Field-Effect Transistor)などが用いられる。 Examples of power conversion devices include inverters, converters, and uninterruptible power supplies (UPS). This type of power conversion device has multiple built-in power semiconductor elements, and power conversion is performed by a drive circuit that controls the switching of the multiple power semiconductor elements. Generally, IGBTs (Insulated Gate Bipolar Transistors) and MOS-FETs (Metal Oxide Semiconductor Field-Effect Transistors) are used as power semiconductor elements.
 電力変換装置は、少なくとも2つのパワー半導体素子が直列に接続されて構成されるレグを少なくとも1つ有している。レグの数が複数である場合、複数のレグは、互いに並列に接続される。この接続形態は、「ブリッジ接続」と呼ばれる。 The power conversion device has at least one leg consisting of at least two power semiconductor elements connected in series. If there are multiple legs, the multiple legs are connected in parallel to each other. This connection form is called a "bridge connection."
 一般的に、電力変換装置に用いられるパワー半導体素子は、1つ以上が封止されてパッケージとして構成されることが多い。封止されたパッケージは、「パワーモジュール」と呼ばれている。パワー半導体素子をパッケージ化する理由は、パワー半導体素子同士又はパワー半導体素子とその他の電気部品との電気的接続を簡便化し、パワー半導体素子の放熱性を向上させるためである。パワーモジュールは、IGBT又はMOS-FETを構成するシリコンチップ、整流素子を構成するシリコンチップ、ワイヤボンディング用金属パッド、モジュール外部端子、シリコンチップ間を接続する金属ワイヤなどを備えて構成される。 Typically, one or more power semiconductor elements used in power conversion devices are often sealed and configured as a package. The sealed package is called a "power module." Power semiconductor elements are packaged to simplify the electrical connection between the power semiconductor elements or between the power semiconductor elements and other electrical components, and to improve the heat dissipation of the power semiconductor elements. A power module is configured with silicon chips that make up the IGBTs or MOS-FETs, silicon chips that make up the rectifier elements, metal pads for wire bonding, external terminals of the module, metal wires that connect the silicon chips, etc.
 電力変換装置では、パワーモジュールに内蔵されるパワー半導体素子がスイッチング動作することで電力変換が行われる。その際、パワー半導体素子は大きく発熱する。そのため、電力変換装置を断続的に運転する場合には、パワー半導体素子に急激な温度変化が生じる。 In a power conversion device, power conversion is performed by switching the power semiconductor elements built into the power module. During this process, the power semiconductor elements generate a lot of heat. Therefore, when a power conversion device is operated intermittently, the power semiconductor elements experience rapid temperature changes.
 シリコンチップの線膨張係数と、金属ワイヤの線膨張係数とは異なる。このため、温度変化の度にシリコンチップと金属ワイヤとの間にせん断応力が発生し、ワイヤ剥離が起きることが知られている。ワイヤ剥離が進展すると、金属ワイヤによる電気的接続が断となり、パワーモジュールが動作不良となり、当該パワーモジュールを搭載した装置は故障に至る。温度変化の際に、シリコンチップと金属ワイヤとの間に発生するせん断応力に対する耐量は、一般的に「パワーサイクル耐量」と呼ばれている。 The linear expansion coefficient of the silicon chip is different from that of the metal wire. For this reason, it is known that shear stress occurs between the silicon chip and the metal wire with each temperature change, causing the wire to peel off. If the wire peeling progresses, the electrical connection by the metal wire is severed, causing the power module to malfunction and leading to failure of the device equipped with the power module. The resistance to the shear stress that occurs between the silicon chip and the metal wire when the temperature changes is generally called the "power cycle resistance."
 上記のように、パワーモジュールは有寿命部品であるため、従来から、パワーモジュールのパワーサイクル耐量に起因する寿命を予測することが行われていた。例えば、下記特許文献1には、金属ベースとパワーデバイスとの間の熱抵抗の上昇を検出し、当該熱抵抗の上昇の程度に基づいて、パワーモジュールの故障を事前に検出する手法が提案されている。また、特許文献1には、予測した寿命に基づいてパワーモジュールを交換するタイミングを決定することで、予測される故障時期に対して保つべきマージンよりもマージンを減らすことができ、交換等の保守サイクルを延ばすことができると記載されている。 As mentioned above, power modules are components with a finite lifespan, and so it has been common to predict the lifespan of a power module based on its power cycle tolerance. For example, the following Patent Document 1 proposes a method of detecting an increase in thermal resistance between a metal base and a power device, and detecting failure of the power module in advance based on the degree of increase in thermal resistance. Patent Document 1 also describes that by determining the timing of replacing a power module based on the predicted lifespan, it is possible to reduce the margin beyond the margin that should be maintained for the predicted time of failure, and to extend the maintenance cycle for replacement, etc.
特開2017-017822号公報JP 2017-017822 A
 しかしながら、特許文献1の技術は、交換等の保守サイクルにおけるマージンを減らすためにパワーモジュールの寿命を予測しているに過ぎず、パワーモジュールの寿命を直接的に延ばす技術ではない。また、特許文献1の技術には、シリコンチップと金属ワイヤとの間に発生するせん断応力を緩和する効果はなく、温度変化が頻繁に発生する使用条件でパワーモジュールを使用する場合、パワーモジュールの寿命は短くなってしまう。 However, the technology in Patent Document 1 merely predicts the lifespan of a power module in order to reduce margins in maintenance cycles such as replacement, and is not a technology that directly extends the lifespan of a power module. In addition, the technology in Patent Document 1 does not have the effect of mitigating the shear stress that occurs between the silicon chip and the metal wire, and if the power module is used under conditions in which temperature changes occur frequently, the lifespan of the power module will be shortened.
 本開示は、上記に鑑みてなされたものであって、温度変化が頻繁に発生する使用条件でパワーモジュールを使用する場合であっても、パワーモジュールの寿命短縮を抑制可能な電力変換装置を得ることを目的とする。 The present disclosure has been made in consideration of the above, and aims to obtain a power conversion device that can suppress shortening of the lifespan of a power module, even when the power module is used under operating conditions in which temperature changes occur frequently.
 上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、少なくとも2以上の半導体素子を直列に電気的に接続して構成されるレグの少なくとも1つを内蔵するパワーモジュールを備え、パワーモジュールを動作させることで負荷装置に負荷電力を供給する。電力変換装置は、負荷装置に対して負荷電力の供給が停止されている非駆動期間中、少なくとも1つのレグの温度が、負荷電力の供給を停止した直後のレグの温度と比べて一定値以上低下した場合に、少なくとも、温度が一定値以上低下したレグにおける上下アームの半導体素子を電気的に規定時間短絡させる動作を繰り返して行う短絡制御を実施する。 In order to solve the above-mentioned problems and achieve the object, the power conversion device according to the present disclosure includes a power module incorporating at least one of the legs formed by electrically connecting at least two or more semiconductor elements in series, and supplies load power to a load device by operating the power module. During a non-driving period in which the supply of load power to the load device is stopped, when the temperature of at least one leg drops by a certain value or more compared to the temperature of the leg immediately after the supply of load power is stopped, the power conversion device performs short-circuit control by repeatedly performing an operation of electrically shorting, for a specified time, at least the semiconductor elements of the upper and lower arms of the leg whose temperature has dropped by the certain value or more.
 本開示に係る電力変換装置によれば、温度変化が頻繁に発生する使用条件でパワーモジュールを使用する場合であっても、パワーモジュールの寿命短縮を抑制できるという効果を奏する。 The power conversion device disclosed herein has the effect of preventing shortening of the lifespan of the power module, even when the power module is used under operating conditions in which temperature changes occur frequently.
実施の形態1に係るインバータの電気回路構成図Electrical circuit configuration diagram of an inverter according to the first embodiment 実施の形態1に係るインバータに含まれるパワーモジュールの平面図FIG. 1 is a plan view of a power module included in an inverter according to a first embodiment; 図1に示した実施の形態1に係るインバータの電気回路構成図に演算部、ドライブ回路及びサーミスタを加筆した図FIG. 2 is a diagram in which a calculation unit, a drive circuit, and a thermistor are added to the electric circuit configuration diagram of the inverter according to the first embodiment shown in FIG. 1. パワーモジュールに内蔵されるスイッチング素子を従来手法を用いて駆動したときの温度変化の様子を比較例として示す図A comparative example showing the temperature change when a switching element built into a power module is driven using a conventional method. パワーモジュールに内蔵されるスイッチング素子を実施の形態1の手法を用いて駆動したときの温度変化の様子を示す図FIG. 13 is a diagram showing a state of temperature change when a switching element built into a power module is driven using the method of the first embodiment. 実施の形態1の手法に係る制御フローの説明に使用するフローチャート1 is a flowchart used to explain a control flow according to the first embodiment. 実施の形態2に係るインバータの電気回路構成図Electric circuit configuration diagram of an inverter according to a second embodiment 実施の形態2の手法に係る制御フローの説明に使用するフローチャート1 is a flowchart used to explain a control flow according to the second embodiment.
 以下に添付図面を参照し、本開示の実施の形態に係る電力変換装置について詳細に説明する。なお、以下の実施の形態では、直流を交流に変換するインバータを電力変換装置の一例として説明するが、インバータ以外の電力変換装置への適用を除外する意図ではない。即ち、本開示の技術は、インバータ以外の電力変換装置への適用も可能である。 Below, a power conversion device according to an embodiment of the present disclosure will be described in detail with reference to the attached drawings. Note that in the following embodiment, an inverter that converts direct current to alternating current will be described as an example of a power conversion device, but this is not intended to exclude application to power conversion devices other than inverters. In other words, the technology of the present disclosure can also be applied to power conversion devices other than inverters.
実施の形態1.
 図1は、実施の形態1に係るインバータ50の電気回路構成図である。図1に示すように、インバータ50は、直流電圧を出力する直流電源10と、直流電源10が出力する直流電圧を平滑するコンデンサ9と、インバータ主回路部7とを備える。インバータ主回路部7は、スイッチングを行うスイッチング素子1a~6aと、スイッチング素子1a~6aの各々に並列に接続される整流素子1b~6bとを備える。インバータ主回路部7は、負荷装置8に三相交流電力を供給する。負荷装置8としては、誘導モータ、永久磁石モータなどが例示される。
Embodiment 1.
Fig. 1 is an electric circuit diagram of an inverter 50 according to the first embodiment. As shown in Fig. 1, the inverter 50 includes a DC power supply 10 that outputs a DC voltage, a capacitor 9 that smoothes the DC voltage output by the DC power supply 10, and an inverter main circuit unit 7. The inverter main circuit unit 7 includes switching elements 1a to 6a that perform switching, and rectifier elements 1b to 6b that are connected in parallel to the switching elements 1a to 6a, respectively. The inverter main circuit unit 7 supplies three-phase AC power to a load device 8. Examples of the load device 8 include an induction motor and a permanent magnet motor.
 スイッチング素子1a~6aの各々は、パワー半導体素子である。パワー半導体素子としては、IGBT、MOS-FETなどが代表的である。整流素子1b~6bとしては、ダイオード、サイリスタなどが用いられる。スイッチング素子1a~6aの各々がMOS-FETである場合、当該MOS-FETの寄生ダイオードを整流素子1b~6bとして利用してもよい。 Each of the switching elements 1a to 6a is a power semiconductor element. Typical power semiconductor elements include IGBTs and MOS-FETs. The rectifier elements 1b to 6b include diodes and thyristors. If each of the switching elements 1a to 6a is a MOS-FET, the parasitic diode of the MOS-FET may be used as the rectifier elements 1b to 6b.
 コンデンサ9は、インバータ50の直流部の電圧安定化のために配置される。直流部とは、コンデンサ9とインバータ主回路部7とを電気的に接続する電気配線の部位である。インバータ主回路部7が負荷装置8に三相交流電力を供給する際には、コンデンサ9の両端電圧であるコンデンサ電圧は、一定範囲の電圧値に保持される。この一定範囲に保持される電圧は、「母線電圧」と呼ばれる。 Capacitor 9 is arranged to stabilize the voltage of the DC section of inverter 50. The DC section is the electrical wiring that electrically connects capacitor 9 to inverter main circuit section 7. When inverter main circuit section 7 supplies three-phase AC power to load device 8, the capacitor voltage, which is the voltage across capacitor 9, is maintained within a certain range of voltage values. This voltage maintained within a certain range is called the "bus voltage."
 インバータ主回路部7において、スイッチング素子1a,2aは直列に接続されてレグ20aを構成し、スイッチング素子3a,4aは直列に接続されてレグ20bを構成し、スイッチング素子5a,6aは直列に接続されてレグ20cを構成する。レグを構成するスイッチング素子1a~6aのうち、高電位側に位置するスイッチング素子1a,3a,5aは「上アームのスイッチング素子」と呼ばれ、低電位側に位置するスイッチング素子2a,4a,6aは「下アームのスイッチング素子」と呼ばれる。 In the inverter main circuit section 7, switching elements 1a and 2a are connected in series to form leg 20a, switching elements 3a and 4a are connected in series to form leg 20b, and switching elements 5a and 6a are connected in series to form leg 20c. Of the switching elements 1a to 6a that make up the legs, the switching elements 1a, 3a, and 5a located on the high potential side are called the "upper arm switching elements," and the switching elements 2a, 4a, and 6a located on the low potential side are called the "lower arm switching elements."
 レグ20a~20cにおける各スイッチング素子の接続部は、中間電位点18a,18b,18cを構成する。インバータ主回路部7において、これらの中間電位点18a,18b,18cの各々からは配線が引き出され、負荷装置8に接続される。 The connection points of each switching element in legs 20a to 20c form intermediate potential points 18a, 18b, and 18c. In the inverter main circuit section 7, wiring is drawn from each of these intermediate potential points 18a, 18b, and 18c and connected to the load device 8.
 インバータ50は、例えばPWM(Pulse Width Modulation)制御により、負荷装置8に三相交流電力を供給する。なお、PWM制御には公知技術を使用するものとし、本明細書内では特に説明しない。 The inverter 50 supplies three-phase AC power to the load device 8, for example, by PWM (Pulse Width Modulation) control. Note that PWM control uses known technology and will not be described in this specification.
 また、図1に示すインバータ主回路部7は、3つのレグ20a~20cを有して負荷装置8に三相交流電力を供給する三相の構成であるが、この構成に限定されない。レグの数は、1又は2でもよく、また4以上であってもよい。レグの数が1である場合は、「ハーフブリッジ」などと呼ばれ、レグの数が2である場合は、「単相ブリッジ」、「フルブリッジ」などと呼ばれる。また、各々のレグ20a~20cにおいて、直列接続される素子数は2である場合を例示しているが、この例に限定されない。直列接続される素子数は、3以上でもよい。 The inverter main circuit section 7 shown in FIG. 1 has three legs 20a-20c and has a three-phase configuration that supplies three-phase AC power to the load device 8, but is not limited to this configuration. The number of legs may be one or two, or may be four or more. When there is one leg, it is called a "half bridge", and when there are two legs, it is called a "single-phase bridge", "full bridge", etc. Also, in each of the legs 20a-20c, the number of elements connected in series is two, but this example is not limiting. The number of elements connected in series may be three or more.
 上記のように構成されるインバータ50において、スイッチング素子1a~6a、及び整流素子1b~6bは高発熱部品となる。そのため、これらの高発熱部品を樹脂封止して、1つのパワーモジュール40として構成する。このように構成すれば、パワーモジュール40に対して放熱機構を設ければよく、放熱機構を簡便化できるというメリットがある。 In the inverter 50 configured as described above, the switching elements 1a to 6a and the rectifier elements 1b to 6b are high heat generating components. Therefore, these high heat generating components are sealed with resin and configured as a single power module 40. This configuration has the advantage that it is only necessary to provide a heat dissipation mechanism for the power module 40, making it possible to simplify the heat dissipation mechanism.
 パワーモジュール40は、図1では図示しないプリント基板に対して実装され、プリント基板を介して、負荷装置8及びコンデンサ9に電気的に接続される。パワーモジュール40には、図示しない放熱部品が取り付けられる。放熱部品の例は、放熱フィンである。放熱部品によって、パワーモジュール40に内蔵された高発熱部品の温度が許容温度以下になるように動作する。 The power module 40 is mounted on a printed circuit board (not shown in FIG. 1) and is electrically connected to the load device 8 and the capacitor 9 via the printed circuit board. A heat dissipation component (not shown) is attached to the power module 40. An example of a heat dissipation component is a heat dissipation fin. The heat dissipation component operates to keep the temperature of the high heat generating components built into the power module 40 below an allowable temperature.
 図2は、実施の形態1に係るインバータ50に含まれるパワーモジュール40の平面図である。図2において、図1に示す構成要素については、同一の符号を付して示している。プリント基板45には、シリコンチップ11,12が搭載されている。シリコンチップ11はスイッチング素子1a~6aに対応し、シリコンチップ12は整流素子1b~6bに対応している。シリコンチップ11と金属パッド14との間は、金属ワイヤ13をワイヤボンディングすることで電気的に接続される。金属ワイヤ13には、例えば金、アルミ、銅などの金属線が使用される。金属ワイヤ13は、シリコンチップ11,12とその他の電気部品、及びシリコンチップ11,12同士を電気的に接続する場合などに使用される。例えば、図2では、シリコンチップ11とシリコンチップ12との間、及びシリコンチップ12と金属パッド14との間も金属ワイヤ13で電気的に接続される。 FIG. 2 is a plan view of the power module 40 included in the inverter 50 according to the first embodiment. In FIG. 2, the components shown in FIG. 1 are indicated with the same reference numerals. Silicon chips 11 and 12 are mounted on the printed circuit board 45. The silicon chip 11 corresponds to the switching elements 1a to 6a, and the silicon chip 12 corresponds to the rectifying elements 1b to 6b. The silicon chip 11 and the metal pad 14 are electrically connected by wire bonding the metal wire 13. For the metal wire 13, a metal wire such as gold, aluminum, or copper is used. The metal wire 13 is used when electrically connecting the silicon chips 11 and 12 to other electrical components, and between the silicon chips 11 and 12. For example, in FIG. 2, the silicon chips 11 and 12, and the silicon chip 12 and the metal pad 14 are also electrically connected by the metal wire 13.
 また、プリント基板45には、モジュール外部端子15が設けられる。モジュール外部端子15は、プリント基板45に設けられた貫通穴に挿入され、はんだなどで接続される。また、モジュール外部端子15は、配線により金属パッド14に電気的に接続される。これにより、モジュール外部端子15とプリント基板45上に形成された回路パターンとが、電気的に接続される。 Module external terminals 15 are also provided on the printed circuit board 45. The module external terminals 15 are inserted into through holes provided in the printed circuit board 45 and connected with solder or the like. The module external terminals 15 are also electrically connected to the metal pads 14 by wiring. This electrically connects the module external terminals 15 to the circuit pattern formed on the printed circuit board 45.
 図3は、図1に示した実施の形態1に係るインバータ50の電気回路構成図に演算部30、ドライブ回路60及びサーミスタ90を加筆した図である。 FIG. 3 is a diagram in which the calculation unit 30, drive circuit 60, and thermistor 90 have been added to the electrical circuit configuration diagram of the inverter 50 according to the first embodiment shown in FIG. 1.
 図3において、レグ20a~20cの各々には、下アームのスイッチング素子2a,4a,6aの低電位側、即ちエミッタ端子側にシャント抵抗16が挿入され、シャント抵抗16の両端には電圧測定回路17が接続されている。また、インバータ50は、サーミスタ90を備えている。 In FIG. 3, a shunt resistor 16 is inserted in each of legs 20a to 20c on the low potential side, i.e., the emitter terminal side, of the lower arm switching elements 2a, 4a, and 6a, and a voltage measurement circuit 17 is connected to both ends of the shunt resistor 16. The inverter 50 also includes a thermistor 90.
 シャント抵抗16は、下アームのスイッチング素子2a,4a,6aに流れる電流を測定する用途に使用される電流測定抵抗である。シャント抵抗16は、パワーモジュール40の内部に配置してもよいし、パワーモジュール40が搭載されるプリント基板45に配置してもよい。電圧測定回路17は、例えばフォトカプラ又アイソレーションアンプなどの絶縁素子と、オペアンプなどの信号増幅素子とから構成される。ここで、絶縁素子は、レグ20a~20cと、演算部30とを電気的に絶縁するために使用される。 The shunt resistor 16 is a current measuring resistor used to measure the current flowing through the switching elements 2a, 4a, and 6a of the lower arm. The shunt resistor 16 may be disposed inside the power module 40, or may be disposed on the printed circuit board 45 on which the power module 40 is mounted. The voltage measuring circuit 17 is composed of an isolation element, for example a photocoupler or an isolation amplifier, and a signal amplification element, such as an operational amplifier. Here, the isolation element is used to electrically isolate the legs 20a to 20c from the calculation unit 30.
 サーミスタ90は、インバータ50の周囲温度を測定する用途に使用される。サーミスタ90は、図示しないインバータ50の筐体部に取り付けるのが一般的であるが、この構成に限定されない。サーミスタ90は、インバータ50の周囲温度を測定できる箇所であればよく、インバータ50の任意の場所に取り付けることができる。 Thermistor 90 is used to measure the ambient temperature of inverter 50. Thermistor 90 is typically attached to the housing of inverter 50 (not shown), but is not limited to this configuration. Thermistor 90 can be attached anywhere on inverter 50 as long as it can measure the ambient temperature of inverter 50.
 サーミスタ90によって測定されたインバータ50の周囲温度に関する情報は、演算部30に入力される。サーミスタ90としては、NTC(Negative Temperature Coefficient)型、PTC(Positive Temperature Coefficient)型、CTR(Critical Temperature Resistor)型などの非線形な温度-抵抗特性を有する素子を用いることができる。なお、サーミスタ90の抵抗特性から温度情報を読み取る方法は公知技術であるため、本明細書内では特に説明しない。なお、本稿では、サーミスタ90を含み、サーミスタ90の測定結果を演算部30に伝送する回路の部位を「第1の温度測定回路」と呼ぶことがある。 Information about the ambient temperature of the inverter 50 measured by the thermistor 90 is input to the calculation unit 30. The thermistor 90 may be an element having a nonlinear temperature-resistance characteristic, such as an NTC (Negative Temperature Coefficient) type, a PTC (Positive Temperature Coefficient) type, or a CTR (Critical Temperature Resistor) type. Note that the method of reading temperature information from the resistance characteristic of the thermistor 90 is a publicly known technique, and will not be described in this specification. Note that in this document, the part of the circuit that includes the thermistor 90 and transmits the measurement results of the thermistor 90 to the calculation unit 30 may be referred to as the "first temperature measurement circuit."
 シャント抵抗16の両端電圧は、電圧測定回路17を介して、演算部30に入力される。演算部30は、プロセッサとメモリとを有する処理回路によって実現することができる。また、プロセッサ及びメモリの代わりに専用の処理回路で演算部30を実現してもよい。専用の処理回路としては、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、マイコン(Micro Computer)などの集積回路が用いられる。また、演算部30は、記憶領域30aを備えている。記憶領域30aは、処理回路のメモリであってもよい。サーミスタ90によって測定された温度情報、及び電圧測定回路17によって測定された電圧情報は、記憶領域30aに格納される。 The voltage across the shunt resistor 16 is input to the calculation unit 30 via the voltage measurement circuit 17. The calculation unit 30 can be realized by a processing circuit having a processor and a memory. The calculation unit 30 may also be realized by a dedicated processing circuit instead of a processor and a memory. As the dedicated processing circuit, an integrated circuit such as an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), or a microcomputer (microcomputer) is used. The calculation unit 30 also includes a memory area 30a. The memory area 30a may be the memory of the processing circuit. The temperature information measured by the thermistor 90 and the voltage information measured by the voltage measurement circuit 17 are stored in the memory area 30a.
 演算部30には、外部指令80が入力される。ここで、外部指令80は、インバータ50を動作させるために、インバータ50の外部から入力される駆動指令である。演算部30は、外部指令80に基づいて、スイッチング素子1a~6aに対する動作指令をドライブ回路60に入力する。ドライブ回路60は、スイッチング素子1a~6aに対して駆動信号70を出力することで、インバータ主回路部7を駆動する。 An external command 80 is input to the calculation unit 30. Here, the external command 80 is a drive command input from outside the inverter 50 to operate the inverter 50. The calculation unit 30 inputs an operation command for the switching elements 1a to 6a to the drive circuit 60 based on the external command 80. The drive circuit 60 drives the inverter main circuit unit 7 by outputting a drive signal 70 to the switching elements 1a to 6a.
 スイッチング素子1a~6aが駆動信号70によって駆動されている間、演算部30は、電圧測定回路17を介して入力されたシャント抵抗16の電圧情報に基づいて、レグ20a~20cに流れる電流を推定する。演算部30によって推定された電流は、推定電流として記憶領域30aに格納される。 While switching elements 1a to 6a are being driven by drive signal 70, calculation unit 30 estimates the current flowing through legs 20a to 20c based on the voltage information of shunt resistor 16 input via voltage measurement circuit 17. The current estimated by calculation unit 30 is stored as an estimated current in memory area 30a.
 ここで、記憶領域30aには、レグ20a~20cに流れる電流を温度に変換する変換表が格納されている。演算部30は、記憶領域30aに格納されるレグ20a~20cの推定電流に基づいて、レグ20a~20cの温度を演算する。記憶領域30aに格納される変換表は、使用するパワーモジュール40ごとに固有のものであり、パワーモジュール40ごとに設けられる。また、この変換表は、パワーモジュール40ごとに、パワーモジュール40に流れる通電電流とレグ20a~20cにおける温度との関係を事前に測定することで構築される。また、記憶領域30aには、レグ20a~20cとパワーモジュール40に取り付けられた放熱部品との間の熱抵抗値が格納される。この熱抵抗値は、インバータ50ごとに固有の値である。 Here, the memory area 30a stores a conversion table that converts the current flowing through the legs 20a to 20c into temperature. The calculation unit 30 calculates the temperature of the legs 20a to 20c based on the estimated current of the legs 20a to 20c stored in the memory area 30a. The conversion table stored in the memory area 30a is specific to each power module 40 used, and is provided for each power module 40. In addition, this conversion table is constructed for each power module 40 by measuring in advance the relationship between the current flowing through the power module 40 and the temperature in the legs 20a to 20c. In addition, the memory area 30a stores the thermal resistance value between the legs 20a to 20c and the heat dissipation components attached to the power module 40. This thermal resistance value is a value specific to each inverter 50.
 ここで、演算部30は、指令された外部指令80に基づいて駆動信号70をスイッチング素子1a~6aに与えているため、インバータ50が動作中であるか否かは、演算部30自身が判断することができる。また、外部指令80には、インバータ50の駆動を停止する駆動停止指令も含まれる。このため、演算部30は、インバータ50が駆動停止するときの、レグ20a~20cの温度情報も、インバータ50が動作中であるときと同様に、記憶領域30aに格納することができる。 Since the calculation unit 30 provides the drive signal 70 to the switching elements 1a to 6a based on the external command 80, the calculation unit 30 itself can determine whether the inverter 50 is operating or not. The external command 80 also includes a drive stop command to stop the operation of the inverter 50. Therefore, the calculation unit 30 can store the temperature information of the legs 20a to 20c when the inverter 50 stops driving in the memory area 30a, just as when the inverter 50 is operating.
 インバータ50を駆動しているとき、スイッチング素子1a~6aには電流が流れ、導通に伴う熱損失と、スイッチング動作による熱損失とが発生する。これらの熱損失により、スイッチング素子1a~6aを封止したパワーモジュール40が発熱する。このときのパワーモジュール40内部のスイッチング素子1a~6aの温度は、インバータ50の周囲温度と比べると高くなる。 When the inverter 50 is operating, current flows through the switching elements 1a to 6a, generating heat loss due to conduction and heat loss due to switching operation. These heat losses cause the power module 40, which encapsulates the switching elements 1a to 6a, to generate heat. At this time, the temperature of the switching elements 1a to 6a inside the power module 40 becomes higher than the ambient temperature of the inverter 50.
 インバータ50が休止状態のとき、スイッチング素子1a~6aの温度は、インバータ50の周囲温度と同程度となる。従って、インバータ50を駆動しているときと、インバータ50が休止状態のときとを比較すると、両者には温度差ΔTが生じる。前述したように、スイッチング素子1a~6aの線膨張係数と、金属ワイヤ13の線膨張係数とは異なるため、スイッチング素子1a~6aが温度変化するごとに、スイッチング素子1a~6aと金属ワイヤ13との間でせん断応力が発生し、金属ワイヤ13が剥離するワイヤ剥離の原因となる。 When the inverter 50 is in a resting state, the temperature of the switching elements 1a to 6a is approximately the same as the ambient temperature of the inverter 50. Therefore, when comparing when the inverter 50 is driven with when the inverter 50 is in a resting state, a temperature difference ΔT occurs between the two. As mentioned above, the linear expansion coefficients of the switching elements 1a to 6a and the metal wire 13 are different, so every time the temperature of the switching elements 1a to 6a changes, shear stress is generated between the switching elements 1a to 6a and the metal wire 13, which causes wire peeling, in which the metal wire 13 peels off.
 一方、インバータ50を駆動しているときと、インバータ50が休止状態のときの、スイッチング素子1a~6aにおける温度差ΔTを小さくすることができれば、スイッチング素子1a~6aと金属ワイヤ13との間に発生するせん断応力を緩和できる。これにより、パワーモジュール40のパワーサイクル耐量に起因する寿命を延ばすことができる。 On the other hand, if the temperature difference ΔT between the switching elements 1a to 6a when the inverter 50 is operating and when the inverter 50 is in a resting state can be reduced, the shear stress generated between the switching elements 1a to 6a and the metal wire 13 can be mitigated. This can extend the life of the power module 40 due to its power cycle resistance.
 次に、パワーモジュール40に内蔵されるスイッチング素子1a~6aにおける温度差ΔTを小さくする実施の形態1の制御手法を、図4から図6を参照して説明する。図4は、パワーモジュール40に内蔵されるスイッチング素子1a~6aを従来手法を用いて駆動したときの温度変化の様子を比較例として示す図である。図5は、パワーモジュール40に内蔵されるスイッチング素子1a~6aを実施の形態1の手法を用いて駆動したときの温度変化の様子を示す図である。図6は、実施の形態1の手法に係る制御フローの説明に使用するフローチャートである。 Next, the control method of the first embodiment for reducing the temperature difference ΔT in the switching elements 1a to 6a built into the power module 40 will be described with reference to Figs. 4 to 6. Fig. 4 is a diagram showing, as a comparative example, how the temperature changes when the switching elements 1a to 6a built into the power module 40 are driven using a conventional method. Fig. 5 is a diagram showing how the temperature changes when the switching elements 1a to 6a built into the power module 40 are driven using the method of the first embodiment. Fig. 6 is a flowchart used to explain the control flow relating to the method of the first embodiment.
 図4及び図5における各々の各上部には、1つのレグに流れる通電電流値の波形が示され、各々の下部には、当該1つのレグに属するパワー半導体素子の温度変化の波形が示されている。また、各図において、Tはインバータ駆動指令が入力される前、即ちインバータ駆動前のインバータ周囲温度を表し、Tはインバータ停止直後のレグ20a~20cの温度を表している。 4 and 5, the upper part shows the waveform of the current flowing through one leg, and the lower part shows the waveform of the temperature change of the power semiconductor element belonging to that leg. In each figure, TR represents the inverter ambient temperature before the inverter drive command is input, i.e., before the inverter is driven, and TE represents the temperature of the legs 20a to 20c immediately after the inverter is stopped.
 外部指令80によって、演算部30にインバータ駆動指令が入力されると、演算部30はドライブ回路60を通じて駆動信号70をスイッチング素子1a~6aに与える。これにより、インバータ50は、駆動を開始する。駆動が開始されると、負荷装置8に三相交流電力が供給され、レグ20a~20cには電流が流れる。スイッチング素子1a~6aには、導通に伴う熱損失とスイッチング動作による熱損失とが発生する。また、整流素子1b~6bには、導通に伴う熱損失が発生する。これらの損失により、レグ20a~20cの温度は上昇する。また、一定時間が経過した後、レグ20a~20cに流れている電流量に応じて、レグ20a~20cの温度は飽和する。 When an inverter drive command is input to the calculation unit 30 by an external command 80, the calculation unit 30 provides a drive signal 70 to the switching elements 1a to 6a via the drive circuit 60. This causes the inverter 50 to start driving. When driving starts, three-phase AC power is supplied to the load device 8, and current flows through the legs 20a to 20c. The switching elements 1a to 6a generate heat loss due to conduction and heat loss due to switching operations. Furthermore, the rectifier elements 1b to 6b generate heat loss due to conduction. These losses cause the temperatures of the legs 20a to 20c to rise. Furthermore, after a certain time has passed, the temperatures of the legs 20a to 20c saturate depending on the amount of current flowing through the legs 20a to 20c.
 外部指令80によって、演算部30にインバータ駆動停止指令が入力されると、演算部30は駆動信号70の出力を停止する。これにより、インバータ50は、負荷装置8への三相交流電力の供給を停止し、レグ20a~20cには電流が流れなくなる。インバータ50の駆動が停止されると、熱損失を発生させている電流がなくなる。ここで、図4に示す比較例では、インバータ50の駆動が停止される非通電時において、レグ20a~20cには電流が流れない。このため、非通電時におけるレグ20a~20cの温度は、インバータ周囲温度Tと同程度となる。従って、駆動中のスイッチング素子1a~6aの温度と、駆動停止中のスイッチング素子1a~6aの温度との間には、大きな温度差ΔT’が発生する。 When an inverter drive stop command is input to the calculation unit 30 by the external command 80, the calculation unit 30 stops outputting the drive signal 70. As a result, the inverter 50 stops supplying three-phase AC power to the load device 8, and no current flows through the legs 20a to 20c. When the drive of the inverter 50 is stopped, the current that generates the heat loss disappears. Here, in the comparative example shown in FIG. 4, when the drive of the inverter 50 is stopped and no current is applied, no current flows through the legs 20a to 20c. Therefore, the temperature of the legs 20a to 20c when no current is applied is approximately the same as the inverter ambient temperature T R. Therefore, a large temperature difference ΔT J ′ occurs between the temperature of the switching elements 1a to 6a that are being driven and the temperature of the switching elements 1a to 6a that are not being driven.
 これに対し、実施の形態1の手法を用いて駆動したときの動作波形は、図5に示すものとなる。従来手法と異なる点は、インバータ駆動停止指令が入力された後の動作である。外部指令80によって、演算部30にインバータ駆動指令が入力されると、演算部30はドライブ回路60を通じて駆動信号70をスイッチング素子1a~6aに与える。これにより、インバータ50は、駆動を開始する。駆動が開始されると、負荷装置8に三相交流電力が供給され、レグ20a~20cには電流が流れる。スイッチング素子1a~6aには、導通に伴う熱損失とスイッチング動作による熱損失とが発生する。また、整流素子1b~6bには、導通に伴う熱損失が発生する。これらの損失により、レグ20a~20cの温度は上昇する。また、一定時間が経過した後、レグ20a~20cに流れている電流量に応じて、レグ20a~20cの温度は飽和する。ここまでの動作は、比較例と同じである。 In contrast, the operating waveforms when driven using the method of the first embodiment are as shown in FIG. 5. The difference from the conventional method is the operation after the inverter drive stop command is input. When an inverter drive command is input to the calculation unit 30 by an external command 80, the calculation unit 30 provides a drive signal 70 to the switching elements 1a to 6a through the drive circuit 60. This causes the inverter 50 to start driving. When driving starts, three-phase AC power is supplied to the load device 8, and current flows through the legs 20a to 20c. The switching elements 1a to 6a generate heat loss due to conduction and heat loss due to switching operation. In addition, the rectifier elements 1b to 6b generate heat loss due to conduction. These losses cause the temperature of the legs 20a to 20c to rise. In addition, after a certain time has passed, the temperature of the legs 20a to 20c saturates depending on the amount of current flowing through the legs 20a to 20c. The operation up to this point is the same as in the comparative example.
 演算部30は、駆動終了時のレグ20a~20cのインバータ停止直後の温度Tを記憶領域30aに格納する。また、演算部30は、規定時間ごとに、パワーモジュール40の温度推定に関する演算処理を行う。 The calculation unit 30 stores the temperature T E immediately after the inverters of the legs 20a to 20c are stopped at the time of driving end in the storage area 30a. The calculation unit 30 also performs calculation processing related to temperature estimation of the power module 40 at regular time intervals.
 ここで、前述したように、記憶領域30aには、レグ20a~20cとパワーモジュール40に取り付けられた放熱部品との間の熱抵抗値が格納されている。また、記憶領域30aには、レグ20a~20cの温度推定値、及びサーミスタ90から入力されたインバータ周囲温度Tも格納されている。レグ20a~20cの温度、レグ20a~20cの温度とインバータ周囲温度Tとの温度差、及びレグ20a~20cと放熱部品との間の熱抵抗値を用いれば、レグ20a~20cにおける放熱量を計算することができる。これにより、演算部30は、駆動停止した後のレグ20a~20cの温度を演算することができる。 As described above, the storage area 30a stores thermal resistance values between the legs 20a to 20c and the heat dissipation components attached to the power module 40. The storage area 30a also stores the temperature estimates of the legs 20a to 20c and the inverter ambient temperature T R input from the thermistor 90. The amounts of heat dissipated in the legs 20a to 20c can be calculated using the temperatures of the legs 20a to 20c, the temperature difference between the temperatures of the legs 20a to 20c and the inverter ambient temperature T R , and the thermal resistance values between the legs 20a to 20c and the heat dissipation components. This allows the calculation unit 30 to calculate the temperatures of the legs 20a to 20c after driving is stopped.
 演算部30は、演算したレグ20a~20cの温度のうちの少なくとも1つのレグの温度がインバータ停止直後の温度Tよりも一定値以上低下した場合、温度が一定値以上低下したレグにおける上下アームのスイッチング素子をオン状態にする駆動信号70を出力するように、ドライブ回路60に指令する。本稿では、この動作を「短絡動作」と呼ぶ。また、この短絡動作は、予め定められた規定時間、実施される。なお、短絡動作を実施するレグは、必ずしも、温度が一定値以上低下したレグにおける上下アームだけ、短絡動作を実施するのではなく、短絡動作を実施するレグに少なくとも温度が一定値以上低下したレグが含まれていればよく、例えば、全てのレグにおける上下アームのスイッチング素子をオン状態にしてもよい。即ち、実施の形態1に係る電力変換装置は、レグ20a~20cのうちの少なくとも1つのレグの温度がインバータ停止直後の温度Tよりも一定値以上低下した場合に、レグ20a~20cのうちの、少なくとも、温度が一定値以上低下したレグにおける上下アームのスイッチング素子を規定時間、電気的に短絡させる制御を行う。 When the calculated temperature of at least one of the legs 20a to 20c falls by a certain value or more below the temperature T E immediately after the inverter is stopped, the calculation unit 30 instructs the drive circuit 60 to output a drive signal 70 for turning on the switching elements of the upper and lower arms of the leg whose temperature has fallen by a certain value or more. In this paper, this operation is called a "short-circuit operation". This short-circuit operation is performed for a predetermined specified time. Note that the legs on which the short-circuit operation is performed do not necessarily include only the upper and lower arms of the leg whose temperature has fallen by a certain value or more, but may include at least the leg whose temperature has fallen by a certain value or more. For example, the switching elements of the upper and lower arms of all the legs may be turned on. That is, the power conversion device according to the first embodiment performs control to electrically short-circuit the switching elements of the upper and lower arms of at least the leg whose temperature has fallen by a certain value or more among the legs 20a to 20c for a specified time when the temperature of at least one of the legs 20a to 20c falls by a certain value or more below the temperature T E immediately after the inverter is stopped.
 一定値の例としては、1~100℃までの間の任意の値とすることができる。また、スイッチング素子1a~6aのうちの少なくとも1つのレグにおける上下アームのスイッチング素子をオン状態にする短絡動作の時間は、スイッチング素子1a~6aの温度上昇を特徴づける熱抵抗値に依存するが、例えば0.1μs~1msの間の任意の時間とすることができる。 As an example of the constant value, it can be any value between 1 and 100°C. In addition, the time of the short circuit operation that turns on the upper and lower arm switching elements in at least one leg of the switching elements 1a to 6a depends on the thermal resistance value that characterizes the temperature rise of the switching elements 1a to 6a, but can be any time between 0.1 μs and 1 ms, for example.
 スイッチング素子1a~6aを短絡動作させると、直流電源10及びコンデンサ9を介して、スイッチング素子1a~6aに規定時間、電流が流れる。このとき、演算部30は、スイッチング素子1a~6aの温度を導通損失によって上昇させ、インバータ停止直後の温度T付近の値まで増加させる。なお、記憶領域30aに格納される変換表には、事前にレグ20a~20cを任意の時間短絡させたときの、レグ20a~20cの温度上昇量が記載されているものとする。演算部30は、記憶領域30aの変換表に記載された温度上昇量に基づいて、短絡動作実施後のレグ20a~20cの温度を推定することができる。 When the switching elements 1a to 6a are short-circuited, a current flows through the switching elements 1a to 6a for a specified time via the DC power supply 10 and the capacitor 9. At this time, the calculation unit 30 raises the temperature of the switching elements 1a to 6a by conduction loss, and increases the temperature to a value close to the temperature T E immediately after the inverter is stopped. Note that the conversion table stored in the memory area 30a is assumed to contain the amount of temperature rise of the legs 20a to 20c when the legs 20a to 20c are short-circuited for an arbitrary period of time in advance. The calculation unit 30 can estimate the temperature of the legs 20a to 20c after the short-circuit operation is performed based on the amount of temperature rise recorded in the conversion table in the memory area 30a.
 演算部30は、温度T付近の値までスイッチング素子1a~6aの温度を上昇させた後、スイッチング素子1a~6aを全オフ状態にするように、即ち駆動信号70の出力を停止するように、ドライブ回路60に指令する。駆動信号70の出力が停止すると、レグ20a~20cの温度は、再度低下を始める。演算部30は、レグ20a~20cの温度推定演算を実施し、レグ20a~20cの温度低下時に再度短絡動作を実施する流れを繰り返す。この繰り返し制御のことを、本稿では「短絡制御」と呼ぶ。なお、この短絡制御は後述するステップS6~S9の処理に対応し、短絡制御における温度推定演算は、当該ステップS6~S9におけるステップS6の処理に対応する。 The calculation unit 30 raises the temperature of the switching elements 1a to 6a to a value near the temperature T E , and then commands the drive circuit 60 to turn off all of the switching elements 1a to 6a, i.e., to stop outputting the drive signal 70. When the output of the drive signal 70 stops, the temperature of the legs 20a to 20c starts to drop again. The calculation unit 30 repeats the flow of performing a temperature estimation calculation of the legs 20a to 20c, and performing a short-circuit operation again when the temperature of the legs 20a to 20c drops. This repeated control is referred to as "short-circuit control" in this paper. Note that this short-circuit control corresponds to the processing of steps S6 to S9 described below, and the temperature estimation calculation in the short-circuit control corresponds to the processing of step S6 in the steps S6 to S9.
 短絡制御によって、レグ20a~20cの温度は、温度低下と温度上昇とを繰り返す周期的な波形となる。また、規定時間を適切に設定すれば、規定時間の短絡動作による温度上昇と、短絡動作間の休止時間による温度低下とが調和して、図5に示されるように、レグ20a~20cの温度がインバータ停止直後の温度Tを挟んで温度低下及び温度上昇を繰り返す波形となる。 By the short circuit control, the temperatures of the legs 20a to 20c have a periodic waveform in which temperature drops and temperature rises are repeated. In addition, if the specified time is set appropriately, the temperature rise due to the short circuit operation for the specified time and the temperature drop due to the rest time between the short circuit operations are harmonized, and the temperatures of the legs 20a to 20c have a waveform in which temperature drops and temperature rises are repeated around the temperature T E immediately after the inverter is stopped, as shown in FIG.
 また、短絡制御を実施したときのレグ20a~20cにおける温度変化量である温度差ΔTは、短絡制御を実施しないときの温度差ΔTよりも小さくなる。 Furthermore, the temperature difference ΔT J , which is the amount of temperature change in the legs 20a to 20c when the short circuit control is performed, is smaller than the temperature difference ΔT when the short circuit control is not performed.
 なお、本稿において、短絡制御は、使用者又は管理者によって実施するか否かを決定することができるものとする。短絡制御の実施の有無に関する情報を、外部指令80によって演算部30に通知することとすれば、特別な切り替えスイッチなどを設ける必要がなく、システム構成を簡便化できるというメリットがある。この場合、演算部30は、短絡制御を実施するか否かの情報を受信して、記憶領域30aに格納しておく。 In this document, it is assumed that the user or administrator can decide whether or not to implement short circuit control. If the information regarding whether or not short circuit control is implemented is notified to the calculation unit 30 by an external command 80, there is an advantage in that there is no need to provide a special changeover switch or the like, and the system configuration can be simplified. In this case, the calculation unit 30 receives the information regarding whether or not short circuit control is implemented and stores it in the memory area 30a.
 次に、演算部30から見た、実施の形態1に係る電力変換装置の短絡動作に関する制御フローについて、図6を参照して説明する。まず、直流電源10から直流電圧が出力され、演算部30に外部指令80が入力されると、負荷装置8に対してインバータ50によって三相電力の供給が開始できる状態となる。 Next, the control flow for the short-circuit operation of the power conversion device according to the first embodiment as seen from the calculation unit 30 will be described with reference to FIG. 6. First, when a DC voltage is output from the DC power source 10 and an external command 80 is input to the calculation unit 30, the inverter 50 is ready to start supplying three-phase power to the load device 8.
 演算部30は、ドライブ回路60を通じて駆動信号70をスイッチング素子1a~6aに入力する(ステップS1)。ステップS1によって、インバータ50は動作を開始し、負荷装置8に三相交流電力が供給される。 The calculation unit 30 inputs the drive signal 70 to the switching elements 1a to 6a through the drive circuit 60 (step S1). Step S1 causes the inverter 50 to start operating, and three-phase AC power is supplied to the load device 8.
 演算部30は、駆動信号70入力時のレグ20a~20cの温度を演算し、その演算値を記憶領域30aに格納する(ステップS2)。前述したように、レグ20a~20cの温度は、記憶領域30aに格納されているレグ20a~20cの電流値を、レグ20a~20cの温度に変換する変換表を使用することで演算することができる。 The calculation unit 30 calculates the temperatures of the legs 20a to 20c when the drive signal 70 is input, and stores the calculated values in the memory area 30a (step S2). As described above, the temperatures of the legs 20a to 20c can be calculated by using a conversion table that converts the current values of the legs 20a to 20c stored in the memory area 30a into the temperatures of the legs 20a to 20c.
 ステップS2の後、演算部30にインバータ駆動停止指令が入力されているか否かが判定される(ステップS3)。負荷装置8への三相電力供給が不要になると、演算部30には、外部指令80によって、インバータ駆動停止指令が入力される。演算部30にインバータ駆動停止指令が入力されていない場合(ステップS3,No)、ステップS2に戻って、ステップS2からの処理が繰り返される。また、演算部30にインバータ駆動停止指令が入力されている場合(ステップS3,Yes)、演算部30は、駆動信号70の出力を停止する。駆動信号70の出力が停止されると、インバータ50は、動作を停止する。 After step S2, it is determined whether an inverter drive stop command has been input to the calculation unit 30 (step S3). When it becomes unnecessary to supply three-phase power to the load device 8, an inverter drive stop command is input to the calculation unit 30 by an external command 80. If an inverter drive stop command has not been input to the calculation unit 30 (step S3, No), the process returns to step S2 and the process from step S2 is repeated. If an inverter drive stop command has been input to the calculation unit 30 (step S3, Yes), the calculation unit 30 stops outputting the drive signal 70. When the output of the drive signal 70 is stopped, the inverter 50 stops operating.
 ステップS3の後、演算部30は、短絡制御が有効であるか否かを確認する(ステップS4)。前述したように、短絡制御の実施の有無は、使用者又は管理者によって決定され、その情報は記憶領域30aに格納されている。演算部30は、記憶領域30aを確認して短絡制御が有効であるか否か、即ち短絡制御を実施するか否かを判別する。短絡制御が有効ではない場合(ステップS4,No)、短絡制御を実施せずに図6の処理フローを終了する。また、短絡制御が有効である場合(ステップS4,Yes)、演算部30は、インバータ駆動停止直後のレグ20a~20cの温度を温度Tとして記憶領域30aに格納する(ステップS5)。 After step S3, the calculation unit 30 checks whether the short circuit control is enabled (step S4). As described above, whether or not to implement the short circuit control is determined by the user or administrator, and the information is stored in the memory area 30a. The calculation unit 30 checks the memory area 30a to determine whether the short circuit control is enabled, i.e., whether or not to implement the short circuit control. If the short circuit control is not enabled (step S4, No), the process flow of FIG. 6 is terminated without implementing the short circuit control. If the short circuit control is enabled (step S4, Yes), the calculation unit 30 stores the temperature of the legs 20a to 20c immediately after the inverter drive is stopped as temperature T E in the memory area 30a (step S5).
 ステップS5の後、演算部30は、インバータ駆動停止後のレグ20a~20cの温度を演算し、その演算値を記憶領域30aに格納する(ステップS6)。ステップS6の演算は、インバータ駆動停止直後の温度T、インバータ駆動停止直後の温度Tとインバータ周囲温度Tとの温度差、及びレグ20a~20cと放熱部品との間の熱抵抗値に基づいて実施することができる。 After step S5, the calculation unit 30 calculates the temperatures of the legs 20a to 20c after the inverter is stopped, and stores the calculated values in the memory area 30a (step S6). The calculation in step S6 can be performed based on the temperature T E immediately after the inverter is stopped, the temperature difference between the temperature T E immediately after the inverter is stopped and the inverter ambient temperature T R , and the thermal resistance value between the legs 20a to 20c and the heat dissipation components.
 ステップS6の後、演算部30は、演算したレグ20a~20cの温度のうちの少なくとも1つのレグの温度がインバータ停止直後の温度Tよりも一定値以上低下しているか否かを判定する(ステップS7)。演算したレグ20a~20cの温度の全てがインバータ停止直後の温度Tよりも一定値以上低下していない場合(ステップS7,No)、ステップS6に戻って、ステップS6以降の処理を繰り返す。一方、演算したレグ20a~20cの温度のうちの少なくとも1つのレグの温度がインバータ停止直後の温度Tよりも一定値以上低下している場合(ステップS7,Yes)、演算部30は、上述した短絡制御を規定時間実施する(ステップS8)。ステップS8の後、演算部30にインバータ駆動指令が入力されているか否かが判定される(ステップS9)。演算部30にインバータ駆動指令が入力されている場合(ステップS9,Yes)、ステップS2に戻って、ステップS2以降の処理が繰り返される。また、演算部30にインバータ駆動指令が入力されていない場合(ステップS9,No)、ステップS6に戻って、ステップS6以降の処理が繰り返される。 After step S6, the calculation unit 30 judges whether or not the temperature of at least one of the calculated temperatures of the legs 20a to 20c is lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S7). If all of the calculated temperatures of the legs 20a to 20c are not lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S7, No), the calculation unit 30 returns to step S6 and repeats the processing from step S6 onwards. On the other hand, if the calculated temperature of at least one of the legs 20a to 20c is lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S7, Yes), the calculation unit 30 performs the above-mentioned short-circuit control for a specified time (step S8). After step S8, it is judged whether or not an inverter drive command has been input to the calculation unit 30 (step S9). If an inverter drive command has been input to the calculation unit 30 (step S9, Yes), the calculation unit 30 returns to step S2 and repeats the processing from step S2 onwards. If an inverter drive command has not been input to the calculation unit 30 (step S9, No), the process returns to step S6, and the processes from step S6 onwards are repeated.
 以上説明したように、実施の形態1に係る電力変換装置は、少なくとも2以上の半導体素子を直列に電気的に接続して構成されるレグの少なくとも1つを内蔵するパワーモジュールを動作させることで負荷装置に負荷電力を供給する。電力変換装置は、負荷装置に対して負荷電力の供給が停止されている非駆動期間中において、少なくとも1つのレグの温度が、負荷電力の供給を停止した直後のレグの温度と比べて一定値以上低下した場合に、少なくとも、温度が一定値以上低下したレグにおける上下アームのスイッチング素子を電気的に規定時間短絡させる動作を繰り返して行う短絡制御を実施する。このような短絡制御を行えば、電力変換装置が駆動と駆動停止とを繰り返す際の温度変化に起因して発生するスイッチング素子と金属ワイヤとの間のせん断応力を軽減することができる。これにより、ワイヤ剥離までの時間を延長することができるので、パワーモジュール及び電力変換装置の寿命を増加させることができる。また、温度変化が頻繁に発生する使用条件でパワーモジュールを使用する場合であっても、パワーモジュールの寿命短縮を抑制することができる。 As described above, the power conversion device according to the first embodiment supplies load power to a load device by operating a power module incorporating at least one of legs formed by electrically connecting at least two or more semiconductor elements in series. During a non-driving period in which the supply of load power to the load device is stopped, when the temperature of at least one leg drops by a certain value or more compared to the temperature of the leg immediately after the supply of load power is stopped, the power conversion device performs short-circuit control by repeatedly shorting the switching elements of the upper and lower arms of at least the leg whose temperature has dropped by the certain value or more for a specified time. By performing such short-circuit control, it is possible to reduce the shear stress between the switching elements and the metal wire caused by temperature changes when the power conversion device repeatedly drives and stops driving. This makes it possible to extend the time until the wire peels off, thereby increasing the lifespan of the power module and the power conversion device. In addition, even when the power module is used under operating conditions in which temperature changes occur frequently, it is possible to suppress shortening of the lifespan of the power module.
 実施の形態1に係る電力変換装置は、レグに対して電気的に直列接続された電流測定抵抗と、電力変換装置の周囲温度を測定可能な第1の温度測定回路と、短絡制御を実施する演算部とを備える構成とすることができる。この構成により、演算部は、電流測定抵抗の両端電圧と、第1の温度測定回路の測定結果とに基づいてレグの温度を演算することができる。なお、電流測定抵抗は、少なくとも1つのレグに対して設けられていればよい。電流測定抵抗が設けられていないレグに対しての温度は、電流測定抵抗が設けられているレグの演算結果に基づいて推定することが可能である。 The power conversion device according to the first embodiment can be configured to include a current measurement resistor electrically connected in series to the legs, a first temperature measurement circuit capable of measuring the ambient temperature of the power conversion device, and a calculation unit that performs short circuit control. With this configuration, the calculation unit can calculate the temperature of the legs based on the voltage across the current measurement resistor and the measurement result of the first temperature measurement circuit. Note that it is sufficient that a current measurement resistor is provided for at least one leg. The temperature for a leg that does not have a current measurement resistor can be estimated based on the calculation result for a leg that has a current measurement resistor.
 また、パワーモジュールに放熱部品が取り付けられている場合、演算部は、レグと放熱部品との間の熱抵抗値、駆動停止直後のレグの温度、及び駆動停止直後のレグの温度と電力変換装置の周囲温度との温度差に基づいて、レグにおける放熱量を演算する。この演算処理により、短絡制御期間中のレグの温度を推定することができる。 In addition, if a heat dissipation component is attached to the power module, the calculation unit calculates the amount of heat dissipation in the leg based on the thermal resistance value between the leg and the heat dissipation component, the temperature of the leg immediately after driving is stopped, and the temperature difference between the temperature of the leg immediately after driving is stopped and the ambient temperature of the power conversion device. This calculation process makes it possible to estimate the temperature of the leg during the short circuit control period.
実施の形態2.
 図7は、実施の形態2に係るインバータ50Aの電気回路構成図である。図7では、図3に示した実施の形態1に係るインバータ50において、シャント抵抗16、電圧測定回路17及びサーミスタ90の代わりに、サーミスタ90a~90cが備えられている。その他の構成は、図3に示す実施の形態1に係るインバータ50の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示し、重複する説明は適宜割愛する。
Embodiment 2.
Fig. 7 is an electric circuit diagram of an inverter 50A according to embodiment 2. In Fig. 7, thermistors 90a to 90c are provided instead of the shunt resistor 16, the voltage measurement circuit 17, and thermistor 90 in the inverter 50 according to embodiment 1 shown in Fig. 3. The other configurations are the same as or equivalent to those of the inverter 50 according to embodiment 1 shown in Fig. 3, and the same or equivalent components are denoted by the same reference numerals, and duplicated explanations will be omitted as appropriate.
 サーミスタ90a~90cは、それぞれがレグ20a~20cの温度を測定する用途に使用される。サーミスタ90a~90cは、レグ20a~20cの温度を測定できる箇所であればよく、レグ20a~20c、又はインバータ50の任意の場所に取り付けることができる。 Thermistors 90a to 90c are used to measure the temperatures of legs 20a to 20c, respectively. Thermistors 90a to 90c may be attached to any location on legs 20a to 20c or inverter 50 as long as they are capable of measuring the temperatures of legs 20a to 20c.
 サーミスタ90a~90cによって測定されたレグ20a~20cの温度に関する情報は、演算部30に入力される。これにより、演算部30は、スイッチング素子1a~6aの駆動時及び非駆動時におけるレグ20a~20cの温度情報を取得することができる。なお、本稿では、サーミスタ90a~90cを含み、サーミスタ90a~90cの測定結果を演算部30に伝送する回路の部位を「第2の温度測定回路」と呼ぶことがある。 Information about the temperatures of legs 20a-20c measured by thermistors 90a-90c is input to calculation unit 30. This enables calculation unit 30 to obtain temperature information about legs 20a-20c when switching elements 1a-6a are driven and when they are not driven. Note that in this document, the part of the circuit that includes thermistors 90a-90c and transmits the measurement results of thermistors 90a-90c to calculation unit 30 is sometimes referred to as the "second temperature measurement circuit."
 演算部30には、レグ20a~20cの温度情報が常時入力されるので、図6に示す制御フローと同等の制御フローで実施の形態2に係る電力変換装置を動作させることができる。 Since the temperature information of legs 20a to 20c is constantly input to the calculation unit 30, the power conversion device according to embodiment 2 can be operated with a control flow equivalent to the control flow shown in FIG. 6.
 図8は、実施の形態2の手法に係る制御フローの説明に使用するフローチャートである。なお、図8において、図6と同一又は同等の処理ステップについては、同一のステップ番号を付して示し、重複する説明は適宜割愛する。 FIG. 8 is a flowchart used to explain the control flow relating to the method of embodiment 2. Note that in FIG. 8, processing steps that are the same as or equivalent to those in FIG. 6 are indicated with the same step numbers, and duplicate explanations will be omitted as appropriate.
 まず、ステップS1によって、インバータ50は動作を開始し、負荷装置8に三相交流電力が供給される。ステップS1の後、演算部30は、駆動信号70入力時のレグ20a~20cの温度情報をサーミスタ90a~90cから受領して記憶領域30aに格納する(ステップS20)。 First, in step S1, the inverter 50 starts operating and three-phase AC power is supplied to the load device 8. After step S1, the calculation unit 30 receives temperature information of the legs 20a to 20c at the time when the drive signal 70 is input from the thermistors 90a to 90c and stores it in the memory area 30a (step S20).
 実施の形態1と同様に、短絡制御を実施する場合には、レグ20a~20cにおけるインバータ駆動停止直後の温度Tを記憶領域30aに格納する(ステップS5)。ステップS5の後、演算部30は、インバータ駆動停止後のレグ20a~20cの温度情報をサーミスタ90a~90cから受領して記憶領域30aに格納する(ステップS21)。 As in the first embodiment, when short circuit control is performed, the temperatures T E in the legs 20a to 20c immediately after the inverter drive is stopped are stored in the memory area 30a (step S5). After step S5, the calculation unit 30 receives temperature information of the legs 20a to 20c after the inverter drive is stopped from the thermistors 90a to 90c and stores the information in the memory area 30a (step S21).
 ステップS21の後、演算部30は、受領したレグ20a~20cの温度のうちの少なくとも1つのレグの温度がインバータ停止直後の温度Tよりも一定値以上低下しているか否かを判定する(ステップS22)。受領したレグ20a~20cの温度のうちの少なくとも1つのレグの温度がインバータ停止直後の温度Tよりも一定値以上低下している場合には(ステップS22,Yes)、上述した短絡制御を規定時間実施する(ステップS8)。以降の動作は、実施の形態1と同様である。また、受領したレグ20a~20cの温度の全てがインバータ停止直後の温度Tよりも一定値以上低下していない場合には(ステップS22,No)、ステップS21に戻って、ステップS21以降の処理を繰り返す。以上の処理により、実施の形態1と同等の効果を享受することができる。 After step S21, the calculation unit 30 judges whether or not the temperature of at least one of the received temperatures of the legs 20a to 20c is lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S22). If the temperature of at least one of the received temperatures of the legs 20a to 20c is lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S22, Yes), the short circuit control described above is performed for a specified time (step S8). The subsequent operations are the same as those in the first embodiment. Also, if all of the received temperatures of the legs 20a to 20c are not lower than the temperature T E immediately after the inverter is stopped by a certain value or more (step S22, No), the process returns to step S21 and repeats the processes from step S21 onwards. The above processes can provide the same effects as those in the first embodiment.
 以上説明したように、実施の形態2に係る電力変換装置は、パワーモジュールの温度を測定可能な第2の温度測定回路と、短絡制御を実施する演算部とを備える構成とすることができる。この構成により、演算部は、第2の温度測定回路の測定結果を温度情報として受領して記憶領域に格納することができる。これにより、演算部は、第2の温度測定回路の測定結果に基づいてレグの温度を演算することができ、上述した短絡制御を実施することができる。これにより、実施の形態1と同様な効果を得ることができる。 As described above, the power conversion device according to the second embodiment can be configured to include a second temperature measurement circuit capable of measuring the temperature of the power module, and a calculation unit that performs short circuit control. With this configuration, the calculation unit can receive the measurement result of the second temperature measurement circuit as temperature information and store it in a memory area. This allows the calculation unit to calculate the temperature of the leg based on the measurement result of the second temperature measurement circuit, and to perform the above-mentioned short circuit control. This allows the same effect as in the first embodiment to be obtained.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, or the embodiments may be combined with each other. In addition, parts of the configurations may be omitted or modified without departing from the spirit of the invention.
 1a~6a スイッチング素子、1b~6b 整流素子、7 インバータ主回路部、8 負荷装置、9 コンデンサ、10 直流電源、11,12 シリコンチップ、13 金属ワイヤ、14 金属パッド、15 モジュール外部端子、16 シャント抵抗、17 電圧測定回路、18a,18b,18c 中間電位点、20a,20b,20c レグ、30 演算部、30a 記憶領域、40 パワーモジュール、45 プリント基板、50,50A インバータ、60 ドライブ回路、70 駆動信号、80 外部指令、90,90a~90c サーミスタ。 1a-6a switching elements, 1b-6b rectifier elements, 7 inverter main circuit section, 8 load device, 9 capacitor, 10 DC power supply, 11, 12 silicon chip, 13 metal wire, 14 metal pad, 15 module external terminal, 16 shunt resistor, 17 voltage measurement circuit, 18a, 18b, 18c midpoint potential point, 20a, 20b, 20c leg, 30 calculation section, 30a memory area, 40 power module, 45 printed circuit board, 50, 50A inverter, 60 drive circuit, 70 drive signal, 80 external command, 90, 90a-90c thermistor.

Claims (7)

  1.  少なくとも2以上の半導体素子を直列に電気的に接続して構成されるレグの少なくとも1つを内蔵するパワーモジュールを備え、前記パワーモジュールを動作させることで負荷装置に負荷電力を供給する電力変換装置において、
     前記負荷装置に対して前記負荷電力の供給が停止されている非駆動期間中、少なくとも1つの前記レグの温度が、前記負荷電力の供給を停止した直後の前記レグの温度と比べて一定値以上低下した場合に、少なくとも、温度が一定値以上低下した前記レグにおける上下アームの半導体素子を電気的に規定時間短絡させる動作を繰り返して行う短絡制御を実施する
     ことを特徴とする電力変換装置。
    A power conversion device includes a power module having at least one built-in leg formed by electrically connecting at least two or more semiconductor elements in series, and supplies load power to a load device by operating the power module,
    a power conversion device which performs short-circuit control in which, when the temperature of at least one of the legs drops by a certain value or more compared to the temperature of the leg immediately after the supply of the load power is stopped during a non-driving period in which the supply of the load power to the load device is stopped, the device repeats an operation of electrically short-circuiting at least the upper and lower arm semiconductor elements of the leg whose temperature has dropped by the certain value or more for a specified period of time.
  2.  少なくとも1つの前記レグに対して、電気的に直列接続された電流測定抵抗と、
     前記電力変換装置の周囲温度を測定可能な第1の温度測定回路と、
     前記短絡制御を実施する演算部と、を備え、
     前記演算部は、前記電流測定抵抗の両端電圧と、前記第1の温度測定回路の測定結果とに基づいて前記レグの温度を演算する
     ことを特徴とする請求項1に記載の電力変換装置。
    a current measuring resistor electrically connected in series with at least one of the legs;
    A first temperature measuring circuit capable of measuring an ambient temperature of the power conversion device;
    A calculation unit that performs the short circuit control,
    The power conversion device according to claim 1 , wherein the calculation unit calculates the temperature of the leg based on a voltage across the current measuring resistor and a measurement result of the first temperature measuring circuit.
  3.  前記演算部は、
     前記電流測定抵抗の両端電圧に基づいて推定された前記レグに流れる電流と、前記レグに流れる電流を温度に変換する変換表とに基づいて、前記負荷装置に前記負荷電力を供給しているときの前記レグの温度を演算し、
     前記第1の温度測定回路の測定結果に基づいて、前記短絡制御の期間中の前記レグの温度を演算する
     ことを特徴とする請求項2に記載の電力変換装置。
    The calculation unit is
    calculating a temperature of the leg when the load power is being supplied to the load device, based on a current flowing through the leg estimated based on a voltage across the current measuring resistor and a conversion table for converting the current flowing through the leg into a temperature;
    The power conversion device according to claim 2 , wherein the temperature of the leg during the short circuit control is calculated based on the measurement result of the first temperature measurement circuit.
  4.  前記パワーモジュールには放熱部品が取り付けられており、
     前記演算部は、前記レグと前記放熱部品との間の熱抵抗値、駆動停止直後の前記レグの温度、及び駆動停止直後の前記レグの温度と前記電力変換装置の周囲温度との温度差に基づいて前記レグにおける放熱量を演算することで前記短絡制御の期間中の前記レグの温度を推定する
     ことを特徴とする請求項2又は3に記載の電力変換装置。
    The power module is provided with a heat dissipation component,
    4. The power conversion device according to claim 2 or 3, wherein the calculation unit estimates the temperature of the leg during the short-circuit control by calculating an amount of heat dissipation in the leg based on a thermal resistance value between the leg and the heat dissipation component, a temperature of the leg immediately after driving is stopped, and a temperature difference between the temperature of the leg immediately after driving is stopped and an ambient temperature of the power conversion device.
  5.  前記第1の温度測定回路には、サーミスタが含まれる
     ことを特徴とする請求項2から4の何れか1項に記載の電力変換装置。
    The power conversion device according to claim 2 , wherein the first temperature measurement circuit includes a thermistor.
  6.  前記パワーモジュールの温度を測定可能な第2の温度測定回路と、
     前記短絡制御を実施する演算部と、を備え、
     前記演算部は、前記第2の温度測定回路の測定結果に基づいて前記レグの温度を演算する
     ことを特徴とする請求項1に記載の電力変換装置。
    a second temperature measurement circuit capable of measuring a temperature of the power module;
    A calculation unit that performs the short circuit control,
    The power conversion device according to claim 1 , wherein the calculation unit calculates the temperature of the leg based on a measurement result of the second temperature measurement circuit.
  7.  前記第2の温度測定回路には、サーミスタが含まれる
     ことを特徴とする請求項6に記載の電力変換装置。
    The power conversion device according to claim 6 , wherein the second temperature measurement circuit includes a thermistor.
PCT/JP2022/041305 2022-11-07 2022-11-07 Power converter WO2024100695A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/041305 WO2024100695A1 (en) 2022-11-07 2022-11-07 Power converter
JP2023502872A JP7241996B1 (en) 2022-11-07 2022-11-07 power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041305 WO2024100695A1 (en) 2022-11-07 2022-11-07 Power converter

Publications (1)

Publication Number Publication Date
WO2024100695A1 true WO2024100695A1 (en) 2024-05-16

Family

ID=85600306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041305 WO2024100695A1 (en) 2022-11-07 2022-11-07 Power converter

Country Status (2)

Country Link
JP (1) JP7241996B1 (en)
WO (1) WO2024100695A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254574A (en) * 2005-03-09 2006-09-21 Yaskawa Electric Corp Protective device of inverter
JP2009022084A (en) * 2007-07-11 2009-01-29 Fuji Electric Device Technology Co Ltd Method for protecting semiconductor device against impairment
JP2009019953A (en) * 2007-07-11 2009-01-29 Fuji Electric Device Technology Co Ltd Semiconductor device degradation detecting method
JP2011024329A (en) * 2009-07-15 2011-02-03 Hitachi Ltd Inverter controller
US10742205B1 (en) * 2019-09-16 2020-08-11 Advanced Energy Industries, Inc. System and method for prolonging the life of switching components
JP2021138460A (en) * 2020-02-28 2021-09-16 株式会社日立製作所 Elevator control device and elevator control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254574A (en) * 2005-03-09 2006-09-21 Yaskawa Electric Corp Protective device of inverter
JP2009022084A (en) * 2007-07-11 2009-01-29 Fuji Electric Device Technology Co Ltd Method for protecting semiconductor device against impairment
JP2009019953A (en) * 2007-07-11 2009-01-29 Fuji Electric Device Technology Co Ltd Semiconductor device degradation detecting method
JP2011024329A (en) * 2009-07-15 2011-02-03 Hitachi Ltd Inverter controller
US10742205B1 (en) * 2019-09-16 2020-08-11 Advanced Energy Industries, Inc. System and method for prolonging the life of switching components
JP2021138460A (en) * 2020-02-28 2021-09-16 株式会社日立製作所 Elevator control device and elevator control method

Also Published As

Publication number Publication date
JP7241996B1 (en) 2023-03-17

Similar Documents

Publication Publication Date Title
JP4830993B2 (en) Degradation detection method for semiconductor device
US20100080024A1 (en) Power electronic module igbt protection method and system
US20080007318A1 (en) Adaptive gate drive for switching devices of inverter
JP2002005989A (en) Deterioration determining method for electric power semiconductor element
JP2011258623A (en) Power semiconductor system
JP2005519578A (en) H-bridge with single lead frame
CN108075676B (en) Sensorless temperature compensation for power switching devices
JPWO2017168951A1 (en) Overheat protection control device and in-vehicle power circuit device
JP2020532261A (en) Systems and methods for fast current sensing and transistor timing control
Chen et al. Driver Integrated Online R ds-on Monitoring Method for SiC Power Converters
JP2015033149A (en) Drive unit of semiconductor element and power conversion device using the same
JPWO2014064822A1 (en) Power semiconductor module and power converter equipped with the same
US11736000B2 (en) Power converter with thermal resistance monitoring
JP2007049870A (en) Power semiconductor module
WO2024100695A1 (en) Power converter
JP4677756B2 (en) Power module
US11480607B2 (en) Determining the remaining usability of a semiconductor module in normal use
CN113949327A (en) Power module for operating an electric vehicle drive
JP4631179B2 (en) Semiconductor device and inverter device using the same
US11863166B2 (en) Power semiconductor module and power converter
CN110880859B (en) Semiconductor module and power conversion device
JP2014239576A (en) Power conversion device
JP6656501B1 (en) Power converter, semiconductor chip life diagnosis device, and semiconductor chip life diagnosis method
CN111630401B (en) Semiconductor device and power conversion device
JP7396264B2 (en) Semiconductor modules and power conversion devices