JP5244714B2 - 無線通信システム及び無線通信方法 - Google Patents

無線通信システム及び無線通信方法 Download PDF

Info

Publication number
JP5244714B2
JP5244714B2 JP2009150441A JP2009150441A JP5244714B2 JP 5244714 B2 JP5244714 B2 JP 5244714B2 JP 2009150441 A JP2009150441 A JP 2009150441A JP 2009150441 A JP2009150441 A JP 2009150441A JP 5244714 B2 JP5244714 B2 JP 5244714B2
Authority
JP
Japan
Prior art keywords
wireless
communication quality
communication
relay
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009150441A
Other languages
English (en)
Other versions
JP2011009974A (ja
Inventor
健二 今本
敬規 大倉
義人 佐藤
洋一 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009150441A priority Critical patent/JP5244714B2/ja
Publication of JP2011009974A publication Critical patent/JP2011009974A/ja
Application granted granted Critical
Publication of JP5244714B2 publication Critical patent/JP5244714B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は、無線通信システム及び無線通信方法に関し、特に、プラント内など作業員移動や荷物搬入等により通信環境が変動する環境に適用が好ましい無線通信システム及び無線通信方法に関する。
プラント内の様々な作業場所にセンサを配置し,各センサにより測定された情報を無線通信により収集することでプラントの無人監視を行うプラント計装無線技術の導入が進められている。無線によるデータ伝送においては,反射による遅延波やビット誤りによるデータ伝送速度の低下,多数の無線局器導入により発生する干渉が存在するため,良好な無線通信環境を創出するには車両や周辺建築物が及ぼす影響を計画・設計の段階から評価し,無線局の無線通信中継経路を決定することが必要となる。
通信性能は設置環境の優劣に大きく依存するため,無線通信システムの設計では一般に,現地においてパラメタを変えながら通信性能を確認する試行錯誤的な作業を繰り返し,要求する通信性能を満たすことができる設置場所や台数などを決定する必要があった。
上記のようにあらかじめネットワークの設計を行ったとしても、プラントでは建造物の新築や撤去などの構造物変化や、クレーンや作業員などの物体移動による通信環境の変動が発生することから、その変動に応じたパラメタの最適化が必要となる。
例えば、電波伝搬シミュレータを用いた無線パラメタチューニングを行う。本手法では、無線局における電波強度の測定値を用いて、シミュレーションの際に用いる減衰特性を示した数式(奥村カーブ,秦式など)を補正することによって実環境の伝搬を模擬している。このような技術は、特開2005−223732号公報に記載されている。
また、無線局は周辺の無線局とテスト信号のやり取りを行うことで最短の中継経路を確立しておき、通信する際には事前に確立した中継経路の無線局に対してデータを送信する。このような技術は、特願平8−20129号公報に記載されている。
特開2005−223732号公報 特願平8−20129号公報
上記の術来技術では、通信環境や適用すべき数式が既知である場合は通信環境をシミュレーション可能であるが、周辺建築物の構造変化など通信環境が変動する状況では適用すべき数式も変化するため、こういった状況では通信環境の推定ができない。また特許文献2記載の手法では、テスト信号により測定して高い通信品質が得られた経路であっても、環境変動時には通信品質が変化するため、不適切な中継経路を使用し、通信のリアルタイム性が確保できない状況が発生する。また中継経路の評価値として中継時間のみを使用するため、干渉波の発生や災害による機器故障,障害物による電波の遮蔽など、障害に対する耐性(ロバスト性)を考慮していない。よって従来手法では、無線サービスエリアに対して所望の通信品質を安定して提供できない。
本発明の目的は、上記の問題に鑑み、人や物の移動,周辺建築物の構造変化等により通信状態の変化が生じる環境において、その環境に適応して、通信品質の向上が可能となる無線通信システム及び無線通信方法を提供することにある。
上記目的を達成するため、本発明では、通信に影響を与える構造物の時間に対する位置的変位を推定し、推定部の推定に基づいて中継経路を構成する無線中継局を選択し、所定の無線局との間で選択された無線中継局を介して通信するように構成した。
より具体的には、(1)無線サービスエリア内における通信品質として無線局が受信した通信のBER(Bit Error Rate),PER(Packet Error Rate),パケット到達率,通信遅延時間,受信電力,到来角度,位相,遅延プロファイルのいずれか一つ以上を測定し、(2)無線サービスエリア内の運用計画(荷物搬入,作業員移動など)を入力し、(3)該運用計画を元に通信環境の変動状況や変動発生時間を予測し、各時間帯・状況において適切な中継経路を導出することで、通信環境の変動に応じた中継経路の自動調整を可能とした。
また経路導出は、運用計画入力として入力された情報や、無線サービスエリア内における通信品質の測定値を一定期間記録しておき、その記録情報より得られる通信環境変動の周期性(時間帯・曜日・時季による通信品質変動の周期性など)を元に通信環境の変動状況や変動発生時間を予測し、各時間帯・状況において適切な中継経路を導出する機能とを有する。
本発明によれば、人や物の移動,周辺建築物の構造変化等により通信環境の変化が生じる環境においても、その環境の変化に対して、中継経路を適切に調整することにより、所望の通信環境を実現できる。
本発明の実施例1による無線通信システムの構成の一例を示す図である。 本発明の実施例1による無線通信システムの構成の一例(図1記載の構成に中継経路格納装置および時間測定装置を追加した構成)を示す図である。 本発明の実施例1による無線通信システムの構成の一例(図1記載の構成に中継経路格納装置および通信品質判定装置を追加した構成)を示す図である。 本発明が対象とする無線通信システムの利用環境の一例を示す図である。 本発明の実施例1での中央サーバによる無線通信システムの中継経路設定手順を示すフローチャートである。 本発明の実施例1での無線局による無線通信システムの中継経路切り替え手順(現在時刻に応じた切り替え手順)を示すフローチャートである。 本発明の実施例1での無線局による無線通信システムの中継経路切り替え手順(現在の通信品質に応じた切り替え手順)を示すフローチャートである。 通信品質の時間変動の一例を示す図である。 本発明の中継経路の通信品質を評価する手法の一例を示す図である。 本発明の耐故障性評価手法を説明する一例として、一定範囲内に存在する無線局の通信品質劣化が発生する状況を示す図である。 本発明の耐故障性評価手法を説明する一例として、通信路が遮蔽された場合の通信品質劣化が発生する状況を示す図である。 本発明の状態表示装置25のアラーム表示画面の一例を示す図である。
以下、本発明の実施の形態について、図面を参照して説明する。ただし、図面は模式的なものであることに留意すべきである。
図1に本実施例の構成を示す。本実施例では、無線通信システムは無線局1,中央サーバ2,ネットワーク3により構成される。無線局1は無線通信システム内に1台以上存在し、無線局間の通信は無線通信によって行われる。また各無線局1は、他無線局および中央サーバ2とネットワーク3を介して通信を行う。
無線通信システムの構築例を図4に示す。本例では4台の無線局1(1a,1b,1c,1d)および中央サーバ2を無線サービスエリア内に配置している。ただし中央サーバ2は必ずしもサービスエリア内に存在していなくても良い。図4の外枠は通信品質として無線局1が受信する無線通信のBER(Bit Error Rate),PER(Packet Error Rate),パケット到達率,通信遅延時間,受信電力,到来角度,位相,遅延プロファイルのいずれか一つ以上を推定する際の解析領域200であり、無線サービスエリアは解析領域200内に含まれる。解析領域200内には、建物や移動物体(作業員,車両,建築物,クレーンなど)である多数のオブジェクトが存在する。無線通信システムを運用する場合、中央サーバ2は、運用計画情報や各無線局から受け取った通信品質測定値を用い、変動発生の時間帯や発生箇所201を推定し、その変動に応じて各無線局の中継経路を適切に設定することで、所望の通信品質を提供する。
図1に示すように、無線局1は、無線送受信装置11と、受信した通信の通信品質を測定する通信品質測定装置12と、中央サーバ2より通知された中継経路を無線通信の際に適用する中継制御装置13と、無線通信の送信,受信,測定に使用するアンテナ14を有する。また図2に示すように、無線局1は、中央サーバ2より通知された中継経路を格納する中継経路格納装置15と、現在の時刻を計測する時間測定装置16を有しても良い。また図3に示すように、無線局1は、中央サーバ2より通知された中継経路を格納する中継経路格納装置15と、通信品質測定値を元に通信品質の変動発生の有無を判定する通信品質判定装置17を有しても良い。
中央サーバ2は、無線局1より送信された測定値を格納する通信品質格納装置21と、無線サービスエリア内の運用計画(荷物搬入,作業員配置など)を入力するための運用計画入力装置22と、運用計画や通信品質の測定値を元に、無線サービスエリア内における通信品質の時間変動を推定する通信品質推定装置23と、通信品質推定装置23により推定された通信品質を元に、各時間帯において適切な中継経路を導出する経路導出装置24と、通信品質推定装置23および経路導出装置24が出力した情報を基にシステム管理者に対してサービスエリア内の通信環境の状況や通信改善のための対策などを表示する状態表示装置25を有する。
以下では、本実施例における中継経路設定手順を説明する。図5に中継経路設定時に中央サーバ2が実施する作業のフローチャートを示す。中央サーバ2は、まずステップ9000において無線サービスエリア内での無線通信環境の変動を予測し、ステップ9001において変動が発生した場合の各無線局間の無線通信に関する通信品質を推定する。ステップ9002において推定された通信品質や要件を元に、その変動に適した中継経路を導出し、ステップ9003において各無線局へ中継経路情報を通知する。各手順の詳細については以下で述べる。
無線局1による中継処理の手順は以下の通り。無線局1は、ステップ9003において中央サーバ2より通知された中継経路情報を元に、中継制御装置13によって中継経路の切り替えを行う。経路を切り替えた場合、経路を切り替えた旨を無線送受信装置11により中央サーバ2および他無線局へ通知する。他無線局へのデータ中継処理を行う場合、その時点で次の中継先として設定されている無線局へ中継データを送信する。
無線局1による上記中継処理では、経路を切り替えるタイミングを決定する際、時間測定装置16を用いても良い。ステップ9003において中央サーバ2より通知された中継経路情報には、中継経路を切り替える時刻が含まれているとする。無線局1の時間測定装置16を用いた中継処理のフローチャートを図6に示す。無線局1は、時間測定装置16を用い、ステップ9100において現在時刻を取得する。中継制御装置13は、ステップ9003において中継経路格納装置15に格納している中継経路情報に含まれる中継経路へ切り替える時刻を確認し、ステップ9101において現在時刻が経路切り替え時刻に達しているかどうかを判定する。切り替え時刻に達している場合、ステップ9102において中継制御装置13は指示された中継経路に切り替える。
無線局1による上記中継処理では、経路を切り替えるタイミングを決定する際、通信品質判定装置17を用いても良い。ステップ9003において中央サーバ2より通知された中継経路情報には、中継経路を切り替える通信品質の閾値が含まれているとする。無線局1の通信品質判定装置17を用いた中継処理のフローチャートを図7に示す。無線局1は、通信品質測定装置12を用い、ステップ9200において他無線局からの無線通信の通信品質を測定する。通信品質判定装置17は、通信品質測定装置12の測定値とステップ9003において中継経路格納装置15に格納した中継経路情報に含まれる閾値を比較し、ステップ9201において現時点の通信品質が経路切り替えの閾値に達しているかどうかを判定する。閾値に達している場合、通信品質判定装置17は変動が発生したと判定し、ステップ9202において該判定を元に中継制御装置13は指示された中継経路に切り替える。この方法は、上記の時間測定する方法と組み合わせても良い。適用する閾値は中央サーバ2が通信品質推定装置23により推定した通信品質の変動を元に変動の検知に適切な上記閾値を決定し、ステップ9003において無線局1に通知する中継経路情報に含んでも良い。無線局1は、通知された中継経路情報に含まれる閾値に関する情報を元に、通信環境の変動状況や時刻に応じて適用する閾値を変更しても良い。また、通信品質を測定し、通信品質推定装置23が予測していた通信品質と測定値に閾値以上の差がある場合、通信品質推定の誤差が発生したとみなし、測定値を元に適切な中継経路へ切り替えても良い。
中央サーバ2は、上記無線通信環境の変動を予測するステップ9000や通信品質を推定するステップ9001において、通信品質格納装置21に格納している通信品質測定値と、該測定値を測定した時間に関する情報を用い、統計処理やデータマイニング,ベイズ推定などの手法により通信品質が変動する周期性を解析しても良い。図8に、通信品質の測定値の例を示す。図8の横軸は測定を開始してからの経過時間を表し、縦軸はサービスエリア内のある無線局から別の無線局へ無線通信した際のパケット到達率を表す。パケット到達率は、ある無線局1から既知のテスト信号を一定パケット数だけ送信し、該テスト信号を受信した無線局が正しく受信できたパケット数を確認することで、その無線局間の経路におけるパケット到達率を算出しても良い。図8に示す測定結果より、8時から20時まで(作業者の労働時間帯)はパケット到達率が低く通信が不安定であり、それ以外の時間では安定していることが分かる。労働時間帯では作業者が無線局間で作業し、無線局間の電波伝搬路が作業者の移動等により塞がれたことで通信品質が落ちたと推測される。こういった通信品質変動の周期性を利用して変動発生を事前に予測し、その変動に応じて安定した経路への切り替えや多重経路を構築することで、通信のロバスト性を維持する。また、通信品質はある時間を境に突然変動するのではなく、一定の移行期間が存在する。図8では、7時〜8時半および19時〜21時の時間帯は作業時間外(21時〜7時)より通信品質が劣化しているが、作業時間内(8時半〜19時)よりは品質が良い。こういった過渡現象は、作業者がある上記時間帯に徐々に出退勤することで、通信品質の変動が徐々に現れることから発生する。通信品質の変動量を測定して経路切り替えを行う方法では、上記のような通信品質の過渡現象を検知することで、通信品質の劣化を予測した経路切り替えが可能となる。
また上記無線通信環境の変動を予測するステップ9000や通信品質を推定するステップ9001において、システム管理者が運用計画入力装置22を用いて無線サービスエリア内の運用計画に関する情報を通信品質推定装置23へ入力し、通信品質の変動を予測しても良い。例えば時間帯ごとの人員配置,車両移動,荷物搬入の予定が分かっている場合、過去にそのサービスエリア内で類似の状況が発生していれば、通信品質格納装置21に格納している情報を元に、その際の通信品質と同程度の通信品質が予定時間に得られると予測できる。またレイトレース法やFDTD法(時間領域差分法)といった電波伝搬シミュレータを用い、予定した計画が実施された場合の通信環境を計算機上でモデル化してシミュレーションを実施し、通信品質を推定しても良い。運用計画入力装置22には、作業者や車両の入退場管理システム,荷物搬入管理システム,侵入監視システムなど他システムから得られた情報を入力し、通信品質推定装置23により通信品質の変動発生を予測しても良い。
中央サーバ2は、上記の中継経路を導出するステップ9002において、通信品質の推定するステップ9001において推定された各時間帯の通信品質として通信帯域,受信電力,BER,PER,パケット到達率の少なくとも一つを評価値として利用し、経路導出装置24を用いて適切な中継経路を導出しても良い。中継経路の評価手法の一例として、パケット到達率の推定値を用いる方法を図9に示す。ここでpXY(t)は、時間tにおいて無線局Xが送信したパケットが無線局Yに到達する確率(時間tにおけるパケット到達率)を意味する。無線局Aから無線局Bへのパケット到達率pAB(t)は、その中継経路の構成によって値が求められる。無線局Cが無線局AとBの通信を中継する場合、pAB(t)は〔数式1〕となる。また、無線局Cを介する経路と無線局Dを介する経路の2経路が存在する場合、pAB(t)は〔数式2〕となる。上記計算式を用いることで、任意の中継経路におけるパケット到達率が計算できる。各無線局間のパケット到達率は一般的に時間によって変動するため、同一の中継経路であってもその通信品質は変動する。中継経路を導出するステップ9002では、中継する通信に求められる最低限の通信品質を満足する中継経路を適切な経路として導出する。
〔数式1〕
AB(t)=pAC(t)pBC(t)
〔数式2〕
AB(t)=1−{1−pAC(t)pBC(t)}{1−pAD(t)pBD(t)}
=pAC(t)pBC(t)+pAD(t)pBD(t)
−pAC(t)pBC(t)+pAD(t)pBD(t)
中央サーバ2は、上記の中継経路を導出するステップ9002において、中継経路を利用した場合の通信コストとして通信遅延時間,経由する無線局数,消費電力を評価値として用いても良い。要求される通信品質を満たす中継経路が複数存在した場合、通信コストが低い経路を選択することで、運用コストの低い無線通信システムが構築できる。
中央サーバ2は、上記の中継経路を導出するステップ9002において、中継経路の耐故障性を評価値として用いても良い。故障の種類としては、単一無線局の故障,一定範囲内に存在する無線局の故障がある。単一無線局の故障とは、解析領域200内に存在する無線局のどれか1つの無線局との無線通信の通信品質がある閾値以下にまで劣化した場合を指す。中継経路の単一耐故障性を評価する方法として、ある無線局から他無線局への通信のパケット到達率を0から1まで変化させ、その中継経路全体のパケット到達率の変動量を評価指標として用いても良い。一定範囲内に存在する無線局の故障とは、地震や火事などの災害により一定範囲内の無線局が物理的に破壊された状況や、干渉波の発生により一定範囲内の無線局が通信障害を起こした状況を指す。以下では、図10のような位置に5台の無線局A,B,C,D,Eおよび障害物であるオブジェクト210が存在する場合における一定範囲内の故障について説明する。無線局Aから無線局Dへの中継経路として、無線局A→B→D,A→C→D,A→E→Dの3経路が存在する。これら3経路のうち、2つの経路を用いて中継経路を構成する場合、無線局B,Cは無線局Eと比べて無線局Dの近くに存在するため、例えば特許文献2記載の手法ではこの2経路が選択される。しかし一定範囲内の故障を考慮した場合、無線局B,Cは設置位置が近いため、障害や災害の発生等により同時に通信品質が劣化する可能性が高い。よって、中継経路に存在する無線局の距離関係を耐故障性の評価値として用いても良い。また、図11のような位置に無線局A,B,C,D,Eおよび障害物が存在する場合を考える。無線局Aから無線局BおよびCへ送信された無線通信は、障害物により無線局A→BおよびA→Cの電波伝搬路が遮蔽され、同時にパケット到達率が劣化する。この2経路で経路多重化した場合、多重化しているにも関わらず1つの障害物に妨害されやすい構成となっている。これは、無線局Aから無線局BおよびCへの電波伝搬路の射出角度が近いため、障害物の遮蔽により2経路の通信品質が同時に劣化する可能性が高くなっている。よって中継経路内で利用される無線局や電波伝搬路の位置関係を耐故障性の評価値として用いても良い。例えば図11の配置では、無線局Aから無線局Bを直線で結んだ線分ベクトルAB(→)と、無線局Aから無線局Cを直線で結んだ線分ベクトルAC(→)と、無線局Aから無線局Eを直線で結んだ線分ベクトルAE(→)を求め、それぞれの内積(ベクトルAB(→)・ベクトルAC(→),ベクトルAB(→)・ベクトルAE(→),ベクトルAC(→)・ベクトルAE(→))を評価値として用いても良い。電波伝搬路の算出やパケット到達率の評価,干渉波や障害物による影響範囲の推定は、電波伝搬シミュレータを用いても良い。
上記の中継経路を導出するステップ9002において、通信品質,通信コスト,耐故障性を1つ以上評価値として用いても良い。経路導出装置24は、中継する通信に求められる最低限の通信品質を達成する中継経路のうち、通信コストが低く、耐故障性が高い経路を適切な経路として導出する。各評価値は通信内容の緊急性や重要性に応じて重み付けしても良い。
無線局1は無線通信を行う際、そのときの送信先や通信環境に応じて無線送受信装置11の無線パラメタとしてアンテナ方向,アンテナチルト角,アンテナ指向性,送信出力,変調方式,通信帯域の少なくとも一つを調整,変更しても良い。無線局1が通信品質測定値を中央サーバ2へ送信する場合、測定の際に設定していた無線パラメタの情報を含んでも良い。また、中央サーバ2は中継経路や時間帯において各無線局が設定すべき無線パラメタを導出し、各無線局へ通知する中継経路に関する情報に該無線パラメタの情報を含んでも良い。
中央サーバ2や無線局1が、ある通信環境内に存在する無線局1の適切な中継経路を求める手法として、電波伝搬シミュレータを用いても良い。設置された無線局や建築物の位置を電波伝搬シミュレータへ入力し、無線局より発信される電波の電波伝搬経路,受信電界強度,遅延プロファイル,到来角度などを推定する。電波伝搬シミュレーションを行う手法として、レイトレース法が一般に利用されている。例えばレイトレース法の一つであるレイラウンチ法では、伝搬経路を探索するために送信機からΔθで光線(レイ)を離散的に放射し、障害物で反射・透過・回折を繰り返しながら送信波をトレースする。推定した伝搬経路や受信電界強度などの情報を元に、所望の通信品質を実現するための適切な中継経路を決定する。
中央サーバ2は、無線局1へ中継情報を通知するステップ9003において、中継経路を導出するステップ9002において経路導出装置24を用いて導出された中継経路に関する情報を、ネットワーク3を通して各無線局1へ通知する。ネットワーク3は、無線通信、もしくは有線ケーブルによるネットワークを指す。また、システム管理者は中央サーバ2が導出した中継経路に関するデータをUSBメモリやCD−ROMなど外部記録メディアに記録して無線局1へ運ぶ、もしくは手動で無線局1へ中継経路に関するデータを直接入力することで、中央サーバ2から無線局1へのデータ送信を行っても良い。同様に、無線局1から中央サーバ2へ測定値や経路切り替えに関する情報を送付する場合、システム管理者は無線局1が保持する該データを外部記録メディアに中央サーバ2へ運ぶ、もしくは手動で中央サーバ2へ該データを直接入力しても良い。
中央サーバ2は、通信品質格納装置21に格納している情報、およびステップ9000,9001,9002,9003において処理した内容を状態表示装置25に表示する。表示する処理内容は、通信品質格納装置21が保持する通信品質測定値,通信品質推定装置23が導出した通信品質推定値,経路導出装置24が導出した中継経路情報に関する情報を含んでも良い。ステップ9001において通信品質を推定し、現在の無線局の性能や配置では必要な通信品質が提供できないと推定される場合、状態表示装置25はアラームを出してシステム管理者に警告しても良い。アラームは、所望の通信品質が得られない時間帯,推定される通信品質,障害の原因,障害への対策を含んでも良い。所望の通信品質が得られない時間帯に関する情報は、上記無線通信環境の変動を予測するステップ9000において求められた変動情報を含む。推定される通信品質に関する情報は、上記通信品質を推定するステップ9001において求められた通信品質情報を含む。障害の原因に関する情報は、所望の通信品質が得られない原因となる中継経路、および該中継経路において通信品質が劣化する原因となる無線局1の識別情報,位置,適用する無線パラメタに関する情報を含んでも良い。また障害の原因に関する情報として、障害が発生する時間帯における運用計画に関する情報を含んでも良い。障害への対策として、運用計画の調整,アンテナ設置位置の調整値,新規無線局の追加配置の少なくとも一つに関する情報を含んでも良い。例えば図12に示す表示画面300を上記アラームの表示としても良い。当初計画を表示する画面301では、無線局1やオブジェクト210の配置,利用する経路,要求されるパケット到達率を実現できないと予想される中継経路が存在する場合、該障害が発生する予想時間,該障害が発生する経路,予想されるパケット到達率,該障害が発生する原因が中央サーバ2の状態表示装置25に表示される。上記表示と併せて、当初計画からの変更を提案する画面302では、該障害が発生した場合の対策として、原因となるオブジェクトの移動先候補範囲303、および対策実施時に予想されるパケット到達率を表示しても良い。オブジェクトの移動先候補303は、無線局1の配置や周辺物のモデルを作成して電波伝搬シミュレーションを行うことで導出しても良い。周辺物のモデルは運用計画入力装置22による入力情報を用いても良い。
実施例1においては、各無線局が発信する通信の通信品質より通信環境の変動発生を検知・推定するが、カメラを用いた画像認識手法やミリ波,レーザによる測定,オブジェクトや無線局が保持するGPS受信機(Global Positioning System)による位置情報取得、各オブジェクトに設置した無線局が発信する電波強度による位置推定、および各手法を組み合わせた手法に基づいた検知,推定を行っても良い。
例えば画像認識手法では、カメラに写る物体の画像情報を元に、該物体の位置や形状,種類を検知する。プラント内に設置されている監視カメラを利用して画像認識による物体検知を行い、その検知情報を元に変動発生を推定することで、変動に応じた適切な中継経路を導出するステップ9002を実施しても良い。例えば状態表示装置25は通信品質の測定値が閾値以上である場合に変動が発生すると判定するが、サービスエリア内を写すカメラが設置されていれば、該エリアの範囲がより詳細に推定され、作業者の人数や移動経路,荷物搬入量やそのタイミングなどを知ることができるため、変動発生の判定精度が向上する。
プラント計装無線システムや無線を用いた列車制御システム(CBTC:Communication Based Train Control)において、通信品質の変動発生予測手法と無線局を連携することにより、無線環境を自律的に制御するシステムの構築に適用できる。
1 無線局
2 中央サーバ
3 ネットワーク
11 無線送受信装置
12 通信品質測定装置
13 中継制御装置
14 アンテナ
21 通信品質格納装置
22 運用計画入力装置
23 通信品質推定装置
24 経路導出装置
25 状態表示装置
200 解析領域
9000 環境変動予測手順
9001 通信品質推定手順
9002 中継経路導出手順
9003 無線局通知手順

Claims (4)

  1. 第1の無線局と第2の無線局とが中継経路を介して通信する無線通信システムにおいて、
    いずれの前記中継経路を用いて通信を行うかを設定する中央計算機を有し、前記中央計算機の設定に従って、前記中継経路を構成する無線中継局を選択可能に構成されるものであって、
    前記中央計算機は、
    物体の移動、又は、構造物の変化の運用計画に関する情報を記憶し、
    前記運用計画から、物体の移動、又は、構造物の変化後の前記中継経路ごとの通信品質を電波伝搬シミュレーション、又は、過去の通信実績から推定し、
    当該推定した通信品質を元に、各時間帯において所定の通信品質を満たす中継経路を導出する
    ことを特徴とする無線通信システム。
  2. 請求項1において、
    前記中央計算機は、現在の時刻を取得する時間測定部を有し、当該時間測定装置より取得した時間に応じて中継経路の切り替えを行うことを特徴とする無線通信システム。
  3. 請求項1において、
    前記中央計算機は、通信品質の測定値を元に経路を切り替えるタイミングを判定する通信品質判定部を有し、通信品質判定部より取得した経路切り替えのタイミングに応じて中継経路の切り替えを行うことを特徴とする無線通信システム。
  4. 第1の無線局と第2の無線局とが、中央計算機の設定に従って中継する無線中継局を選択して通信を行う無線通信方法であって、
    物体の移動、又は、構造物の変化の運用計画に関する情報の入力を受付け、
    前記運用計画から、物体の移動、又は、構造物の変化後の前記中継経路ごとの通信品質を電波伝搬シミュレーション、又は、過去の通信実績から推定し、
    当該推定した通信品質を元に、各時間帯において所定の通信品質を満たす中継経路を導出する
    ことを特徴とする無線通信方法。
JP2009150441A 2009-06-25 2009-06-25 無線通信システム及び無線通信方法 Expired - Fee Related JP5244714B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150441A JP5244714B2 (ja) 2009-06-25 2009-06-25 無線通信システム及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150441A JP5244714B2 (ja) 2009-06-25 2009-06-25 無線通信システム及び無線通信方法

Publications (2)

Publication Number Publication Date
JP2011009974A JP2011009974A (ja) 2011-01-13
JP5244714B2 true JP5244714B2 (ja) 2013-07-24

Family

ID=43566132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150441A Expired - Fee Related JP5244714B2 (ja) 2009-06-25 2009-06-25 無線通信システム及び無線通信方法

Country Status (1)

Country Link
JP (1) JP5244714B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104454A1 (ko) * 2012-12-31 2014-07-03 인텔렉추얼디스커버리 주식회사 지리적 정보를 이용한 라우팅 시스템 및 방법
US9912541B2 (en) 2013-07-30 2018-03-06 Nec Corporation Network management apparatus, line condition improvement method, and non-transitory computer readable medium storing program
JP6234323B2 (ja) * 2014-05-21 2017-11-22 株式会社日立産機システム 計算機システム、センタ装置、端末、及び通信制御方法
JP2016103730A (ja) * 2014-11-28 2016-06-02 アズビル株式会社 無線機器評価装置および方法
JP6730953B2 (ja) * 2017-03-30 2020-07-29 Kddi株式会社 移動物体認識情報を考慮した端末位置推定装置、プログラム及び方法
JP6906380B2 (ja) * 2017-06-30 2021-07-21 株式会社東芝 経路制御装置、経路制御方法、コンピュータプログラム及び無線通信システム
JP6439123B1 (ja) * 2017-10-24 2018-12-19 株式会社国際電気通信基礎技術研究所 無線環境状況予測システム、無線環境状況予測方法、および、プログラム
JP7170727B2 (ja) * 2018-08-07 2022-11-14 株式会社Nttドコモ 無線ノード、及び、無線通信方法
WO2020070889A1 (ja) * 2018-10-05 2020-04-09 三菱電機株式会社 中央処理装置、データ収集システムおよびデータ収集方法
JP7192525B2 (ja) * 2019-01-23 2022-12-20 富士通株式会社 無線通信装置設置シミュレーション装置及び方法
JP2019084461A (ja) 2019-03-18 2019-06-06 株式会社三洋物産 遊技機
US20240098807A1 (en) * 2021-03-31 2024-03-21 Nec Corporation Communication system, control device, and method for controlling communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698115B1 (en) * 2003-12-23 2013-03-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Predictive ad-hoc

Also Published As

Publication number Publication date
JP2011009974A (ja) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5244714B2 (ja) 無線通信システム及び無線通信方法
CN102077680B (zh) 路径控制装置、方法
JP5146098B2 (ja) 無線品質劣化予測システム
JP2010147519A (ja) 無線通信システム
CN108521340B (zh) 一种物联网局域故障定位与自适应屏蔽系统和方法
KR101505624B1 (ko) 상대적 접근 특성 기반의 이동성 예측 방법 및 그 장치
US9894536B2 (en) Motion-controlled device for supporting planning, deployment or operation of a wireless network
WO2009084820A1 (en) System for preventing collision of cranes and monitoring crane work
Fong et al. Prognostics and health management for wireless telemedicine networks
US20230358573A1 (en) Fiber-optic equipment enclosure sensors
CN112367609A (zh) 一种煤矿井下单基站精确定位的方法
US8818355B2 (en) Wireless cell monitoring method, its device, and its program
US9854451B2 (en) Methods of optimizing tilt angle of an antenna
JP6040428B2 (ja) ネットワーク監視装置、無線機、気象予測システムおよびプログラム
Candell et al. Industrial wireless deployments in the navy shipyard
KR101136970B1 (ko) 차량 관제 장치, 이를 이용한 경비 시스템 및 경비 방법
US20130315073A1 (en) Diversity Monitoring for Communication Network Circuits
JP2015041933A (ja) 分散アンテナシステムの保守管理システム
JP7153481B2 (ja) 無線環境測定システムおよび無線環境測定方法
JP7097769B2 (ja) 無線通信システム
CN115606223A (zh) 检测工业设施中干扰源的方法
JP7584355B2 (ja) 遠方監視制御システム、サーバ装置および通信障害予測方法
JP6004737B2 (ja) 小規模基地局およびその通信システム
WO2024176311A1 (ja) 表示システム、表示装置及び表示方法
JP2022182636A (ja) 遠方監視制御システム、サーバ装置および通信障害予測方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees