JP5237286B2 - フォトニック結晶により定められたアレイ状エミッタを含む発光デバイス - Google Patents

フォトニック結晶により定められたアレイ状エミッタを含む発光デバイス Download PDF

Info

Publication number
JP5237286B2
JP5237286B2 JP2009529840A JP2009529840A JP5237286B2 JP 5237286 B2 JP5237286 B2 JP 5237286B2 JP 2009529840 A JP2009529840 A JP 2009529840A JP 2009529840 A JP2009529840 A JP 2009529840A JP 5237286 B2 JP5237286 B2 JP 5237286B2
Authority
JP
Japan
Prior art keywords
region
light
type region
contact
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009529840A
Other languages
English (en)
Other versions
JP2010506382A (ja
Inventor
ジョナサン ジュニア ウィーラー
ミハイル エム シガラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2010506382A publication Critical patent/JP2010506382A/ja
Application granted granted Critical
Publication of JP5237286B2 publication Critical patent/JP5237286B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Description

本発明は、フォトニック結晶(photonic crystal)を含む半導体発光デバイスに関する。
発光ダイオード(LED)、共振空洞型発光ダイオード(RCLED)、垂直空洞型レーザ・ダイオード(VCSEL)、及びエッジ発光型レーザを含む半導体発光デバイスは、現在入手可能な最も効率の良い光源の部類に入る。可視スペクトルの全域で動作可能な高輝度発光デバイスを製造する上で、現在興味のある材料系は、III−V族半導体、特に、III族窒化物材料とも呼ばれる、ガリウム、アルミニウム、インジウム、及び窒素の二元、三元、及び四元合金を含む。通常、III族窒化物発光デバイスは、有機金属化学気相堆積(MOCVD)、分子線エピタキシ(MBE)、又は他のエピタキシャル技術を用いて、適切な基板上に、異なる組成とドーパント濃度をもった半導体層の積層体(スタック)をエピタキシャルに成長させることによって製造される。その積層体は、基板上に形成された、例えばSiでドープされた1つ又はそれ以上のn型層と、そのn型層の上に形成された発光又は活性領域と、活性領域の上に形成された、例えばMgでドープされた1つ又はそれ以上のp型層とを含むことが多い。
LEDの品質は、例えば、発光デバイスの単位面積当たりの指定方向に放出されるパワーである放射輝度と、デバイスから抽出されたフォトンと発光領域において生成されたフォトンの比率である抽出効率とによって特徴付けられる。抽出効率は、とりわけ、デバイスのp−型発光領域及びn−型発光領域を形成する高屈折率の半導体結晶の壁において、多数の内部全反射を受ける放出フォトンによって制限される。その結果、多くの放出フォトンが自由空間内に逃げないので、一般的には30%未満の低い抽出効率をもたらす。
Joannopoulos他に付与された「Light Emitting Device Utilizing a Periodic Dielectric Structure」という名称の特許文献1は、抽出効率を高めるためのフォトニック結晶の使用を説明する。フォトニック結晶は、発光ダイオードの半導体層を通る孔の格子を形成することによって生成される。孔の格子は、周期的に変調される誘電定数を有する媒体を生成し、光がその媒体を通って伝播する仕方に影響を及ぼす。適切な格子間隔が選択された場合、そうでない場合には内部全反射によって構造体内に捕捉される光が、今や逃げることができ、LEDの抽出効率が増す。効果的なフォトニック結晶の設計が、当技術分野において必要とされる。
米国特許第5,955,749号 米国特許公開第2003/0141507号 米国特許第6,274,924号
G.B.Stringfellow及びM.George Craford著、「High Brightness Light Emitting Diodes」、Associated Press発行、1997年
本発明の実施形態によると、発光デバイスが、n−型領域とp−型領域との間に配置された発光領域を有する半導体構造体を含む。フォトニック結晶を形成する半導体構造体内の複数の孔が、発光領域の第1の部分に対応する半導体構造体内の第1の領域内に形成される。発光領域の第2の部分に対応する半導体構造体の第2の領域は、フォトニック結晶を含まず、第1の領域によって囲まれ得る。デバイスは、順方向にバイアスがかけられたとき、第2の領域内に電流が注入され、第1の領域には実質的には電流がないように構成される。従って、フォトニック結晶によって妨げられない第2の領域においてのみ、光が生成される。光を生成する発光領域の区域をフォトニック結晶から分離することにより、p−n接合部を通してフォトニック結晶をエッチングすることに起因する表面再結合を回避することができる。光学モード体積を低減させるために、n−型領域及びp−型領域を薄く保持することができる。反射性コンタクトによって半導体構造体を支持し、光を一方の側に向けることができる。
フォトニック結晶を含むIII族窒化物デバイスを示す。 本発明の実施形態によるフォトニック結晶発光デバイスの部分の断面図である。 図2に示されるデバイスの部分の平面図である。 フォトニック結晶を形成し、p−型領域を打ち込むためのマスクを有するデバイスの部分の断面図である。 フォトニック結晶をエッチングし、マスクを剥離した後の図4のデバイスの断面図である。 コンタクト材料を堆積した後の図5のデバイスの断面図である。 ホストに接合し、成長基板を除去した後の図6のデバイスの断面図である。 エピタキシャル構造体を薄層化し、第2のコンタクトを形成した後の図7のデバイスの断面図である。 本発明の実施形態による、フリップ・チップ実装されたフォトニック結晶発光デバイスの部分の断面図である。 本発明の代替的な実施形態による、フリップ・チップ実装されたフォトニック結晶発光デバイスの部分の断面図である。 成長基板が除去されたマウント上にフリップ・チップ実装されたデバイスの部分の断面図である。 フォトニック結晶構造体をエッチングした後の図1のデバイスの断面図である。 p−型領域を打ち込み、非導電性領域を形成した後の図12のデバイスの断面図である。 パッケージ型発光デバイスの展開図である。 本発明の実施形態による、n−コンタクトの例の平面図である。 本発明の実施形態による、n−コンタクトの例の平面図である。 発光領域と半導体構造体の下部に配置された反射層の間の距離の関数としての抽出効率のプロットである。 幾つかの半導体構造体の厚さに関するフォトニック結晶の格子定数の関数としての抽出効率のプロットである。 フォトニック結晶の格子定数の関数としての抽出効率のプロットである。 2つの準結晶構造のフォトニック結晶の平面図である。 2つの準結晶構造のフォトニック結晶の平面図である。 フォトニック結晶及び横方向の酸化に適した半導体層を有するデバイスの部分の断面図である。 エピタキシャル構造体内の層の1つを酸化した後の図21のデバイスの部分の断面図である。 マスクを除去し、構造体をホスト基板に接合した後の図22のデバイスの断面図である。
図1は、2002年1月28日に出願され、引用によりここに組み入れられる「LED Efficiency Using Photonic Crystal Structure」という名称の特許文献2により詳細に記載されるIII族窒化フォトニック結晶LED(PXLED)100を示す。
図1のPXLED100において、n−型領域108が、例えばサファイア、SiC、又はGaNとすることができる成長基板102の上に形成され、活性領域112が、n−型領域108の上に形成され、p−型領域116が、活性領域112の上に形成される。領域108、112及び116の各々は、同じ又は異なる組成、厚さ、又はドーパント濃度の単一の層又は多数の層とすることができる。p−型領域116及び活性領域112の一部分をエッチングにより除去してn−型領域108の一部分を露出させ、次に、p−型領域116上にp−コンタクト120を形成し、n−型領域108の露出部分の上にn−コンタクト104を形成する。図1に示されるように、デバイスを反転し、コンタクト104及び120を通してマウント(図示せず)に接続する。
活性領域112は、n−型領域108からの電子がp−型領域116の正孔と組み合わされて、理想的にはフォトンの形態のエネルギーを放出する接合領域を含む。活性層112は、フォトンの生成を最適化するように量子井戸構造を含むことができる。例えば非特許文献1によって、多くの異なる量子井戸構造が説明されている。図1のPXLED100のフォトニック結晶は、LED内に孔122−iの周期的構造を形成することによって生成される。
図1に示されるフォトニック結晶デバイス及び特許文献1に記載されるデバイスは、幾つかの不利な点を有し得る。例えば、図1のデバイスにおけるフォトニック結晶構造体は、p−型領域内にドライエッチングを行ない周期構造を形成する孔のアレイを形成することによって形成することができる。エッチングが結晶を損傷して窒素空孔をもたらし、そのことがn−型ドナーをもたらし得るので、p−型III族窒化物材料のドライエッチングは、特に問題である。図1のp−型領域116においては、n−型ドナーの存在は、正孔濃度を低下させ、結晶をひどく損傷した場合、領域116の導電型をn−型に変化させ得るので、p−n接合が破壊され、デバイスが動作できなくなる。また、活性領域内の量子井戸を通してエッチングすることにより、表面再結合がもたらされ、潜在的にデバイスの効率が低下される。
本発明の実施形態によると、半導体発光デバイスは、フォトニック結晶を有する1つの領域と、フォトニック結晶を有していない別の領域とを含む。フォトニック結晶を有する領域は、デバイスにおいて電気的に活性化していない。このことは、フォトニック結晶領域に図4−図8に示されるような非導電種を打ち込むことによって、フォトニック結晶領域に接触させないことによって、或いは図21−図23に示されるように半導体構造体内の層を横方向に酸化させることによって達成され、その結果、電流が流れ、よって、フォトニック結晶を有していない領域においてのみ光が生成される。こうした構成は、フォトニック結晶のエッチングによる半導体構造体への損傷に起因する如何なる効率損失も回避することができる。
図2は、本発明の実施形態による、フォトニック結晶を含む半導体発光デバイスの部分の断面図である。図2のデバイスは、領域27、29、及び30を含むn−型領域とp−型領域24との間に配置された発光領域28を含むエピタキシャル構造体を含む。
n−型領域27、29、及び30を形成する半導体材料は、例えば、n−型であってもよく、又は意図的にドープされていなくてもよい緩衝層又は核形成層などの準備層と、成長基板の剥離又は基板の除去後の半導体構造体の薄層化を容易にするように設計された剥離層と、光を効率的に放出するように発光領域に望ましい特定の光学的特性又は電気的特性のために設計されたn−型デバイス層とを含む、異なる組成及びドーパント濃度の多数の層を含むことができる。n−型領域と同様に、p−型領域24を形成する半導体材料はまた、異なる組成、厚さ、及びドーパント濃度の多数の層を含むこともできる。
発光領域28は、例えば、1つ又はそれ以上の厚い又は薄い発光層を含むことができる。適切な発光領域の例は、例えば50オングストロームより厚い厚さを有する単一の発光層であり、多数の量子井戸発光領域の例は、障壁層によって分離された、各々が例えば20オングストロームから30オングストロームまでの間の厚さを有する多数の薄い量子井戸発光層を含む。
n−コンタクト25はn−型領域29に電気的に接続され、p−コンタクト20はp−型領域24に電気的に接続される。p−コンタクト20は、光損失を最小にし、光をデバイスの上側に向けるように、反射性(例えば、75%より大きい反射性)とすることができる。p−型領域24に隣接するエピタキシャル成長された材料の部分22は、非導電性にされる。一般にエピタキシャル材料内の周期的な孔26のアレイであるフォトニック結晶領域は、非導電領域22の区域内に形成される。電流は、n−コンタクト25からn−型領域29内に流れ、かつ、孔26の近くのn−型領域30を通ってn−型領域24に拡散する。領域22は非導電性であるか又はほとんど導電性ではないので、電流は、p−コンタクト20からp−型領域24内にのみ流れる。従って、電子及び正孔は、n−型領域27とp−型領域24の間に配置された、エミッタと呼ばれる発光領域28の部分においてのみ再結合することができる。フォトニック結晶領域は、他の場合には内部全反射される光が逃げることを可能にし、よって、エミッタにおいて放出された光の抽出を潜在的に増大させる。代替的に、フォトニック結晶領域は、半導体構造体内で横方向に伝播する光を反射させる。光はエミッタ内に閉じ込められ、そこで効率的に抽出することができる。光は、エミッタから、フォトニック結晶領域から、又はその両方から抽出することができる。
図3は、図2に断面で示されるデバイスの部分の平面図である。光は、n−型領域27(図2に示される)の下にあるエミッタにおいてのみ放出される。フォトニック結晶を形成する孔26を有する領域において、非導電性材料は、電流が発光領域内に注入されることを防止するので、これらの区域から光は放出されない。光は、フォトニック結晶を形成する孔26を有する領域、及び、孔が形成されないエミッタから抽出することができる。図3に示される格子は、三角格子である。三角格子から4つの孔が除外され、各々のエミッタを形成する。エミッタのサイズ、形状、及び間隔は、図3に示されるものとは異なることがあり、かつ、恣意的なものであり得る。他の実施形態においては、各エミッタについて、1つの孔又は7つの孔といったより多くの又はより少ない孔を除外することができる。エミッタは、いずれの恣意的な形状を有することもできるが、それらは、おおよそ円形又は正方形など全体的にコンパクトなものであり、0.15μmから3μmまでの間、より好ましくは0.3μmから0.9μmまでの間、より好ましくは0.35μmから0.7μmまでの間の直径又は対角線を有する。代替的に、エミッタは、コンパクトなものでなく、細長いものであってもよい。エミッタは、通常、0.3μmから10μmまで、より好ましくは0.6μmから3μmまで、より好ましくは0.7μmから2.5μmまで間隔をおいて配置される。エミッタ間の距離は、エミッタが等間隔で配置されないように変えることができる。下記に述べられるように、三角格子以外の格子を用いることもできる。三角格子について図3に示されるように、これらの格子から孔が周期的に除外される、エミッタを形成する。
エミッタ間の領域内のフォトニック結晶構造体は、典型的には、最大と最小が交互する、エピタキシャル構造体の厚さの周期的変化である。一例は、孔26の回折格子(一次元の格子)又は平面格子(二次元の格子)である。格子は、格子タイプ、孔の直径d、最も近い隣接孔の中心間の距離である格子定数a、孔の深さw、及び孔内(多くの場合、空中)に配置された誘電体の誘電定数εhによって特徴付けられる。
従って、パラメータa、d、w、εh、エミッタのサイズ及び形状、並びにエミッタ間の距離は、デバイスが放出する放射パターンに影響を及ぼし、デバイスからの抽出効率を向上させるように選択することができる。代替的に、適切なフォトニック結晶及びエミッタのパラメータが選択されたとき、放出される光の放射パターンを狭めて、LEDの放射輝度を増大させることができる。これは、特定の角度の光だけが有用な用途において有用である。一実施形態においては、フォトニック結晶のパラメータは、デバイスを出る放射の50%より多くが、デバイスの表面に垂直な軸線に対して45度の角度で定められた出口コーン内に放出されるように選択される。
図19及び図20に示されるように、孔26は、三角格子、正方格子、六方格子、ハニカム格子、又は準結晶格子を含む他の2次元格子タイプを形成するように配置することができる。準結晶は、正方形131及び三角形132の反復パターンの頂点に配置された孔のパターンである。こうした反復パターンは、アルキメデス格子又はペンローズ・タイルと呼ばれることが多い。準結晶の格子定数は、反復パターンにおける三角形又は正方形の辺の長さである。幾つかの実施形態においては、デバイスの異なる領域内に、異なる格子形が形成される。孔26は、円形、正方形、六角形、又は他の断面を有することができる。幾つかの実施形態においては、格子間隔は、約0.1λから約10λまでの間、好ましくは約0.1λから約4λまでの間であり、ここで、λは、活性領域により放出される光のデバイスにおける波長である。幾つかの実施形態においては、孔26は、約0.1aから約0.5aまでの間の距離dを有することができ、ここで、aは格子定数である。幾つかの実施形態においては、孔の半径と格子定数の比率は、0.2から0.45までの範囲に及ぶことができる。孔26は、空気で充填することができ、又は約1から約16までの間であることが多い誘電定数εhの随意的な誘電体で充填することができる。可能な誘電体は、酸化シリコンを含む。
エミッタは、横方向(x−y方向)においてフォトニック結晶領域、z方向において反射性p−コンタクト20及び空気によって囲まれ、全方向への共振を有する微小共振器を形成する。微小共振器は、優れた光の制御を提供することができる。半導体構造体が薄層化されたとき、光学モード体積はz方向に低減される。横方向のモード体積は、エミッタのサイズ及びそれを囲むフォトニック結晶によって制御される。モード体積が低減されるに伴って、共振器内に捕捉することができる導波管モードはより少なくなり、光がデバイスを出る可能性が増大する。フォトニック結晶領域は、これらのモードの抽出を助けるか、又はデバイスから抽出することができる光をエミッタ内に光を完全に閉じ込める。フォトニック結晶及びエミッタのパラメータを適切に選択することにより、デバイスからの抽出が最大化され得る。
ここに説明されるデバイスの一部の有限差分時間領域法(FDTD)モデリングは、フォトニック結晶を有していない領域によって分離された、フォトニック結晶領域を有するデバイスの方が、連続的な中断されないフォトニック結晶を有する同じデバイスよりも、放射輝度及び抽出効率がより高いことを予測する。
FDTDモデリングはまた、デバイスの光生成領域をフォトニック結晶から分離することにより、発光領域と反射性コンタクトの間の距離に対する抽出効率及び放射輝度の感受性が低減され、それにより制御が困難になり得ることも予測する。特に、図2及び図9に示されるデバイスのように、フォトニック結晶構造体がp−型領域で始まるようにエッチングされるデバイスにおいては、発光領域の配置に対する感度が非常に低い。図16は、図2に示されるデバイスについての、反射性p−コンタクト20と発光領域28との間の距離の関数としての抽出効率のプロットである。図16に示されるように、p−コンタクト20と発光領域28との間の距離が変わっても、抽出効率は大きく変化しない。
さらに、FDTDモデリングは、所定のデバイス設計について、エピタキシャル構造体の最も厚い部分の全厚が薄くなるに伴って、抽出効率が向上することを予測する。図17は、異なるエピタキシャル構造厚さを有する、図2に示される構造体を有するデバイスについてのフォトニック結晶の格子定数の関数としての抽出効率のプロットである。菱形は、約240nmのエピタキシャル構造厚さを有するデバイスを表し、正方形は、約288nmのエピタキシャル構造厚さを有するデバイスを表し、三角形は、約336nmのエピタキシャル構造厚さを有するデバイスを表し、xは、約384nmのエピタキシャル構造厚さを有するデバイスを表し、アスタリスクは、約432nmのエピタキシャル構造厚さを有するデバイスを表し、丸は、約480nmのエピタキシャル構造厚さを有するデバイスを表す。図17に示されるように、一般に、格子定数に関係なく、エピタキシャル構造厚さが減少するに伴って、抽出効率が向上する。従って、幾つかの実施形態においては、エピタキシャル構造体は、500nmの厚さを超えないほど、より好ましくは400nmの厚さを超えないほど、より好ましくは300nmの厚さを超えないほどに制限される。エピタキシャル構造厚さが減少するに伴って、特にコンタクト区域が制限されるn−型領域において、電流が拡散できる距離が減少される。従って、より薄いエピタキシャル構造を有するデバイスは、より厚いエピタキシャル構造を有するデバイスと比べて、より狭いn−型コンタクト金属の間隔を必要とすることがある。
さらに、FDTDモデリングは、最適なフォトニック結晶の格子定数を予測する。図18は、図2に示される構造体を有するデバイスについての格子定数の関数としての抽出効率のプロットである。図18に示されるように、フォトニック結晶の格子定数が200nmより上に増大すると、300nmから400nmまでの間の格子定数において抽出効率がピークまで増大する。従って、幾つかの実施形態において、フォトニック結晶の格子定数は、200nmから500nmまでの間、より好ましくは300nmから400nmまでの間である。図18に示されるデータにおいて、デバイス内のエミッタは、7つのフォトニック結晶孔のサイズであった。一般に、より大きいエミッタは、より小さいエミッタより、格子定数に対する感受性がより高い。
図4−図8は、図2及び図3に示されるデバイスを形成する方法を示す。図4に示される部分的なデバイスにおいては、n−型領域34が、通常のように適切な成長基板32の上に成長される。発光領域28がn−型領域34の上に成長され、続いてp−型領域24が成長される。例えばSiO2とすることができるマスク36が、p−型領域24の上に堆積され、次に、例えば電子ビーム・リソグラフィ、ナノ・インプリント・リソグラフィ、極端UVリソグラフィ、ディープX線リソグラフィ、干渉リソグラフィ、ホット・エンボス加工、又はマイクロコンタクト・プリンティングのような高解像度リソグラフィ技術を用いて、パターン形成され、開口部38を形成する。マスク開口部38の下方のp−型半導体材料に、例えば水素が打ち込まれ、非導電性領域22を形成する。フォトニック結晶によって中断されないことが意図される区域においては、打ち込みはマスク36を貫通しない。打ち込みは、p−型領域24の深さ、及び、フォトニック結晶の孔間の横方向距離(およそ(a−d)/2の距離)を進まなくてはならない。等方性の打ち込みステップについての打ち込み条件は、打ち込みが2つの距離のより長い方を進むように選択される。打ち込みは、図4に示される非導電性領域22の深さより深く進むことができる。
図5においては、例えば、反応性イオン、誘導結合プラズマ、集束イオン・ビーム、スパッタ・エッチング、電子サイクロトロン共鳴、又は化学支援イオン・ビーム・エッチングのような通常のドライエッチング技術を用いて、エピタキシャル構造体をエッチングし、フォトニック結晶を形成する孔26のアレイを形成する。ドライエッチングに起因する損傷は、後の短いウェット化学エッチング、アニール、それらの組み合わせ、又は他の表面パッシベーション技術によって緩和することができる。孔26は、非導電性材料22を形成するために打ち込まれたp−型半導体層の部分のみに形成される。次に、マスクに適したプロセスによって、マスク36(図4)を除去する。上述したプロセスに代わるものとして、最初に孔26をエッチングし、次に構造体に打ち込むことができる。エピタキシャル横方向過成長(epitaxial lateral overgrowth)のような、エッチング以外の技術を用いて、孔26を形成することもできる。
図6において、デバイスの表面の上に、p−コンタクト20を形成する。図6に示されるように、p−コンタクト20は、一般に、連続的シートで形成された銀のような反射性材料である。孔26内への金属の堆積を回避するように、斜め蒸着(angled evaporation)によってp−コンタクト20を堆積することができる。例えば、インジウム・スズ酸化物、ZnO:Ga、又はInO:Gaとすることができる、電流を拡散し、p−コンタクト20の反射率を増大させるための随意的な導電性酸化物41は、例えば蒸着によって、エピタキシャル構造体の上面とp−コンタクト20との間に形成することができる。
図7においては、デバイスは、図4、図5及び図6に示される配向に対して反転され、例えば1つ又はそれ以上の金属又は非金属のボンディング層45によって、ホスト基板44に結合される。成長基板32を、例えば、サファアイア基板のためのレーザ溶融、或いはSiC又は複合基板のためのエッチングなど、基板材料に適した技術によって除去する。成長基板32を除去することにより、多くの場合n−型領域であるエピタキシャル構造体の表面が露出される。
図8においては、例えば光電気化学的又はドライエッチングによって、デバイスのエピタキシャル構造体を随意的に薄層化することができ、次に、n−型領域の露出された上面に、n−コンタクト25が形成される。フォトニック結晶は、デバイスの上面を貫通しても、又は貫通しなくてもよい。n−コンタクト25は、不透明、半透明、又は反射性とすることができ、よって、n−コンタクト25の横方向の範囲又は広がりは、光の吸収を最小にするように制限される。図8に示されるように、n−コンタクト25は、一般に、フォトニック結晶を有していない領域内、及び、非導電性領域22の上にある領域内に配置され、その結果、n−コンタクトの真下で生成される光は、コンタクトによる吸収により失われる可能性が高いので、n−コンタクト25の真下の発光領域の部分において光は生成されない。図15A及び図15Bは、2つの可能なn−コンタクト25の平面図である。図15Aのデバイスにおいて、n−コンタクト25は、幾つかの緊密に離間配置された金属ライン150である。ライン150は、1つ又はそれ以上のボンディング・パッド152に電気的に接続され、ボンディング・パッド152は、ワイヤ・ボンドなどによってデバイスを別の構造体に電気的に接続するのに十分に大きい金属パッドとすることができる。図15Bのデバイスにおいて、n−コンタクト25は、格子状に形成された幾つかの緊密に離間配置された金属ライン154である。図15A及び図15Bのデバイス内にn−コンタクト25を形成する金属ライン152及び154が不透明である場合、エミッタの上では放出された光が不透明な金属ラインに吸収して失われることがあるので、これらの金属ラインは、エミッタの上ではなく、光が生成されないデバイスのフォトニック結晶領域の上に形成することが好ましい。代替的に、金属ライン152及び154は透明であってもよく、或いは半導体構造体の上面が平坦である場合には、n−コンタクト25は、電流を拡散するように、上面の全て又はほぼ全てを覆う透明なコンタクトとすることもできる。典型的には、コンタクトは、デバイスに順方向バイアスがかけられたとき、アレイ内の全てのエミッタが活性化されるように形成されるので、エミッタのアレイ内の個々のエミッタを単独で扱うことはできない。
図9は、エピタキシャル構造体がフリップ・チップとして実装された、本発明の代替的な実施形態を示す。図9に示されるデバイスは、フォトニック結晶がp−型領域に隣接する非導電性領域の表面で始まるようにエッチングすることによって形成されるという点で、図2に示されるデバイスに類似している。図2に示されるように、エピタキシャル構造体の両側に形成された連続的シートのp−コンタクト20及びn−コンタクトではなく、図9のデバイスにおいては、発光領域28及びp−型領域又は非導電性領域の一部分が除去され、n−型領域29に電気的に接続される、n−コンタクト52が形成されるビア60を形成する。p−コンタクト50及び随意的な導電層51が中断され、n−コンタクト52を収容する。n−コンタクト52及びp−コンタクト50は、空気又は固体絶縁材料とすることができる誘電体層53及び55によって互いから電気的に絶縁することができる。
図9に示されるエピタキシャル構造体は、マウント62上に実装されるように示される。マウント62は、セラミック又は半導体のような電気絶縁及び熱伝導性材料63を含むことができる。p−コンタクト50は、p−相互接続部57によってマウント62に物理的及び電気的に接続される。n−コンタクト52は、n−相互接続部58によってマウント62に物理的及び電気的に接続される。p−相互接続部57及びn−相互接続部58は、例えば、はんだ又は金とすることができる。1つ又はそれ以上の導電性ビア66が、p−相互接続部57をマウント62の下部のp−ボンディング・パッド64に電気的に接続する。1つ又はそれ以上の導電性ビア67が、n−相互接続部58をマウント62の下部のn−ボンディング・パッド65に電気的に接続する。
図9に示されるデバイスは、次のように形成することができる。図5に示されるようにフォトニック結晶構造体がエッチングされた後、非導電性領域22又はp−型領域24、発光領域28、及びn−型領域27、29、又は30の一部分が除去され、図6に示されるビア60を形成する。随意的な導電層51及びp−コンタクト50が、非導電性領域22及びp−型領域24の残りの部分の上に形成される。ビア60内にn−コンタクト52が形成される。図9に示されるように、付加的な誘電体層及び金属層を形成することもできる。次に、p−コンタクト50をp−相互接続部57に取り付け、n−コンタクト52をn−相互接続部58に取り付けることによって、構造体をマウント62上に実装する。次に、上述したように、図5に示される成長基板32を除去する。成長基板を除去する前に、フリップ・チップ実装されたデバイスにおいて、エピタキシャル構造体とマウントとの間に材料を導入して、エピタキシャル構造体を支持し、成長基板の除去中に亀裂が入るのを防ぐことができる。成長基板が除去された後、エピタキシャル構造体を随意的に薄層化し、n−型領域の露出された面を随意的にテキスチャ加工して、光抽出を高めることができる。
図21−図23は、エピタキシャル構造体内の半導体層を横方向に酸化することによって、フォトニック結晶領域から電流が遮断されるデバイスを形成する方法を示す。図21に示されるデバイスの部分において、n−型領域160と、例えばAlInNとすることができる、横方向の酸化に適した半導体層161と、n−型領域163とp−型領域165との間に挟まれた発光領域28とを含むエピタキシャル構造体が、成長基板32の上に成長される。エピタキシャル構造体の上にp−コンタクト金属20が形成され、次いでマスク167が形成される。次に、構造体をパターン形成し、フォトニック結晶領域内の孔26と、フォトニック結晶を有していないエミッタ168とを形成する。
図22において、層の部分161が酸化され、非導電性酸化物部分164で囲まれた導電部分161をもたらす。AlInN酸化物部分164を次のように形成することができる。すなわち、pH8.5のニトリロ三酢酸/水酸化カリウム/水の溶液中にサンプルを配置する。溶液中に白金ワイヤも配置し、サンプルと、AlInN層の酸化を推進するワイヤとの間にバイアスを確立する。酸化物部分164は、フォトニック結晶孔26を有するデバイスの領域における電流の注入を遮断する。
図23において、マスク167が剥離され、次いで、p−コンタクト20の上に、コンタクト金属170が形成される。コンタクト金属170の上に1つ又はそれ以上の随意的なボンディング層172を形成することができ、次いで、ホスト基板176上に形成された1つ又はそれ以上の随意的なボンディング層174を介して、構造体がホスト基板176に接合される。図2に示されるように、基板32を除去し、n−型領域160を随意的に薄層化及び/又はテキスチャ加工し、露出されたn−型領域上にn−コンタクトを形成することができる。
図10は、本発明の代替的なフリップ・チップの実施形態を示す。p−型領域の表面で始まるようにエッチングされるフォトニック結晶構造体の場合である上述したデバイスとは違って、n−型領域の表面で始まるようにエッチングすることによって、図10のデバイスのフォトニック結晶構造体が形成される。n−型領域74の部分内に、フォトニック結晶を形成する孔76のアレイが形成される。n−型領域74の別の部分77は、フォトニック結晶によって中断されない。n−型領域74のこれらの中断されない部分は、p−型領域72の上に配置される。p−型領域72は、非導電性材料71で囲まれるので、n−型領域74のうちフォトニック結晶によって中断されない部分77においてのみ、電流が発光領域73内に注入される。非導電性材料領域71は、フォトニック結晶を形成する孔76のアレイの下にある。p−型領域70は、非導電性材料領域71及びp−型領域72の下にある。
図10のデバイスにおいて、n−コンタクト52が、ビア内に形成され、n−型領域74の裏面に電気的に接続される。p−コンタクト50が、p−型領域70に電気的に接続される。p−コンタクト50及びn−コンタクト52は、誘電体層53及び55によって互いから電気的に絶縁することができる。半導体層は、図9を参照して上述したマウントに類似したものであり得るマウント62上に実装される。図9に示されるように、p−相互接続部57は、p−コンタクト50をマウント62に電気的及び物理的に接続し、n−相互接続部58は、n−コンタクト52をマウント62に電気的及び物理的に接続する。
図11−図13は、図10に示されるデバイスを形成する方法を示す。最初に、通常のn−型領域74が、適切な成長基板の上に成長され、続いて通常の発光領域73及び通常のp−型領域70が成長される。p−型領域70及び発光領域73を通って1つ又はそれ以上のビア80がエッチングされ、n−型領域74の部分を露出させる。n−型領域74に電気的に接続されたビア内に、n−コンタクト52が形成される。次に、図9及び図10を参照して上述されたように、デバイスは、成長方向に対して反転され、マウント62上に実装される。上述したように成長基板を除去し、n−型領域74の表面を露出させ、n−型領域74の上にマスク層82を配置し、図11に示されるデバイスをもたらす。
マスク層82を、例えば、ウェーブ・プリンティングのような柔軟な打ち抜き又はスタンププロセスによるなど、ウェハ上に個々のダイの高さの可能な差を明らかにするプロセスによって、パターン形成する。次に、図12に示されるように、半導体層をエッチングして、フォトニック結晶を形成する孔76のアレイと、孔76によって中断されないn−型領域74のエミッタ区域77とを形成する。図13では、p−型領域70の部分71には、例えば水素が打ち込まれ、それらが非導電性にされる。非導電性部分71は、フォトニック結晶を形成する孔76のアレイの下方に配置される。非導電性部分71は、p−型のままである部分72を囲む。発光領域73のうちp−型部分72の近くにのみ電流が注入され、よって、光は、エミッタにおいてのみ生成される。非導電性領域71への打ち込み後、マスキング材料に適した技術によって、マスク82を剥離し、図10に示されるデバイスをもたらす。
上述した実施形態において、1つ又はそれ以上の蛍光体などの波長変換層、或いはダイクロイック又は偏光子のような当技術分野において周知の二次光学系といった構造体を発光面に適用することができる。発光領域は、青色光を放出することができる。波長変換層は、青色光の少なくとも一部分を吸収し、より長い波長で1つ又はそれ以上の光の色を放出するように構成することができるので、変換されていない青色光及び波長変換された光の複合体は、白色、或いは例えば、赤色、青色、又は緑色のような単色に見える。
上述したデバイスは、幾つかの利点を有することができる。フォトニック結晶によって中断されない発光領域の部分において、光が生成される。従って、エミッタ(ここで光が生成される)は、フォトニック結晶領域(ここで光がデバイスから抽出される)から物理的に分離される。キャリアはフォトニック結晶から離れて再結合するので、孔の深さがデバイスの全厚の高いパーセンテージとなるように、フォトニック結晶を形成する孔を、活性領域を通して延ばすことができ、そのことは、フォトニック結晶の反射性特性を改善し、潜在的にエミッタにおけるより高い光の閉じ込め、又はより高い発光効率をもたらすことができる。さらに、発光領域のこれらの部分はフォトニック結晶をエッチングすることによって損傷されないので、この分離は、光を放出する発光領域の部分におけるより高い光生成効率の利点を提供することができる。さらに、デバイスの光生成領域をフォトニック結晶から分離することにより、平坦な面上に電気コンタクトを形成することが可能になり、そのことは、フォトニック結晶のようなテキスチャ加工された面に接触させるよりもはるかに簡単であり、より確実で丈夫なコンタクトをもたらすことができる。
図14は、特許文献3により詳細に説明されるようなパッケージ型発光デバイスの展開図である。ヒートシンクスラグ200が、インサート成形されたリードフレーム内に配置される。インサート成形されたリードフレームは、例えば、電気経路を提供する金属フレーム206の周りに成形された充填されたプラスチック材料205である。スラグ200は、随意的な反射器カップ202を含むことができる。上記の実施形態において述べられたデバイスのいずれとすることもできる発光デバイス・ダイ204は、熱伝導性マウント203を介してスラグ200に直接的又は間接的に実装される。随意的なレンズとすることができるカバー208を付加することもできる。
本発明を詳細に説明したが、当業者であれば、本開示が与えられた場合、ここに述べられる本発明の概念の精神から逸脱することなく、本発明に変更をなし得ることを理解するであろう。例えば、上記の例はIII族窒化物デバイスを説明するが、他の材料系から形成されたデバイス内に、本発明の実施形態を形成することができる。従って、本発明の範囲は、示され説明された特定の実施形態に制限されるように意図されるものではない。
20 p−コンタクト
22 非導電性領域
24 n−型領域
25 n−コンタクト
26 フォトニック結晶孔
28 発光領域
32 成長基板
34 n−型領域
36 マスク
38 マスク開口部
41 導電性酸化物
44 ホスト基板
45 ボンディング層
50 p−コンタクト
51 導電層
52 n−コンタクト
53、55 誘電体層
57 p−相互接続部
58 n−相互接続部
60 導電性ビア
62 マウント
64 p−ボンディング・パッド
65 n−ボンディング・パッド
66、67 導電性ビア
71 非導電性領域
72 p−型領域
73 発光領域
74 n−型領域
76 孔
77 エミッタ区域
80 ビア
82 マスク層

Claims (37)

  1. n−型領域とp−型領域との間に配置された発光領域を含む構造体と、前記構造体の下面の少なくとも一部分上に配置された反射器と、を備えたデバイスであって、
    前記構造体内には複数の孔が、前記発光領域の第1の部分に対応する前記構造体の第1の領域内に形成され、
    前記構造体の複数の第2の領域には孔がなく、第2の領域の各々が、前記発光領域の第2の部分に対応し、前記第1の領域に囲まれており、
    前記デバイスは、順方向バイアスがかけられたとき、前記第2の領域内に電流が注入され、前記第1の領域には実質的に電流がないように構成され
    前記第1の領域の前記複数の孔が非導電性材料内に設けられていることを特徴とするデバイス。
  2. 前記構造体から抽出される光の大部分は、前記第1の領域から放出されることを特徴とする、請求項1に記載のデバイス。
  3. 前記構造体から抽出される光の大部分は、前記複数の第2の領域から放出されることを特徴とする、請求項1に記載のデバイス。
  4. 前記構造体から抽出される光は、前記第1の領域及び前記複数の第2の領域の両方から放出されることを特徴とする、請求項1に記載のデバイス。
  5. 前記構造体から抽出される光の大部分は、前記構造体の上面を通して抽出されることを特徴とする、請求項1に記載のデバイス。
  6. 前記複数の孔は、周期的な屈折率の変化を含むフォトニック結晶を形成することを特徴とする、請求項1に記載のデバイス。
  7. 前記構造体の前記第1の領域は、非導電層を含むことを特徴とする、請求項1に記載のデバイス。
  8. 前記非導電層は、打込み層又は酸化物層を含むことを特徴とする、請求項に記載のデバイス。
  9. 前記構造体は、III族窒化物半導体構造体を含むことを特徴とする、請求項1に記載のデバイス。
  10. 前記孔は、発光領域内に延びることを特徴とする、請求項1に記載のデバイス。
  11. 前記孔は、前記n−型領域内に延びることを特徴とする、請求項1に記載のデバイス。
  12. 前記孔は、前記p−型領域内に延びることを特徴とする、請求項1に記載のデバイス。
  13. 前記孔は、前記構造体の全厚を通して延びることを特徴とする、請求項1に記載のデバイス。
  14. 前記孔への開口部は前記構造体の上面内に配置され、前記孔は前記構造体の下面に向けて延びることを特徴とする、請求項1に記載のデバイス。
  15. 前記孔への開口部は前記構造体の下面内に配置され、前記孔は前記構造体の上面に向けて延びることを特徴とする、請求項1に記載のデバイス。
  16. 前記反射器は銀を含むことを特徴とする、請求項1に記載のデバイス。
  17. 前記反射器は、前記p−型領域に電気的に接続された第1のコンタクトであり、前記デバイスは、前記構造体の上面に近接した前記n−型領域に電気的に接続された第2のコンタクトをさらに含むことを特徴とする、請求項1に記載のデバイス。
  18. 前記第1のコンタクト及び前記第2のコンタクトの一方と前記構造体との間に配置された導電性酸化物をさらに含むことを特徴とする、請求項17に記載のデバイス。
  19. 前記導電性酸化物は、インジウム・スズ酸化物、InO:Ga、及びZnO:Gaの1つであることを特徴とする、請求項18に記載のデバイス。
  20. 前記反射器は、前記p−型領域に電気的に接続された第1のコンタクトであり、前記デバイスは、前記n−型領域に電気的に接続された第2のコンタクトをさらに含み、前記第2のコンタクトは、前記構造体の前記下面に形成されたビア内に配置されることを特徴とする、請求項1に記載のデバイス。
  21. 前記複数の孔は、前記構造体の前記下面に近接して配置されることを特徴とする、請求項20に記載のデバイス。
  22. 前記複数の孔は、前記構造体の上面に近接して配置されることを特徴とする、請求項20に記載のデバイス。
  23. 前記第2の領域の少なくとも1つは、0.15μmから3μmまでの間の横方向の範囲を有することを特徴とする、請求項1に記載のデバイス。
  24. 前記複数の第2の領域の各々は、最も近い隣接する第2の領域から、0.3μmから10μmまでの間だけ離間配置されていることを特徴とする、請求項1に記載のデバイス。
  25. 前記構造体の最大厚は、500nm未満であることを特徴とする、請求項1に記載のデバイス。
  26. 前記複数の孔は、200nmから500nmまでの間の格子定数を有する格子内に形成されることを特徴とする、請求項1に記載のデバイス。
  27. 前記複数の孔は、三角格子、正方格子、六方格子、ハニカム格子、準結晶格子のうちの1つの格子内に形成されることを特徴とする、請求項1に記載のデバイス。
  28. 前記複数の孔は、ある格子定数を有する格子内に形成され、少なくとも1つの孔の半径と前記格子定数の比率は、0.2から0.45までの間の範囲であることを特徴とする、請求項1に記載のデバイス。
  29. 前記n−型領域及び前記p−型領域に電気的に接続されたリード線と、前記構造体の上に配置されたカバーとをさらに含むことを特徴とする、請求項1に記載のデバイス。
  30. 前記構造体から抽出された光路内に配置された波長変換材料をさらに含むことを特徴とする、請求項1に記載のデバイス。
  31. 順方向バイアスがかけられたとき、前記発光領域は第1の波長の光を放出し、前記波長変換材料は、前記第1の波長の光の少なくとも一部分を吸収し、かつ、少なくとも1つの第2の波長の光を放出するように構成され、前記第1の波長の光及び前記第2の波長の光を含む複合光が白色に見えることを特徴とする、請求項30に記載のデバイス。
  32. 順方向バイアスがかけられたとき、前記発光領域は第1の波長の光を放出し、前記波長変換材料は、前記第1の波長の光の少なくとも一部分を吸収し、かつ、第2の波長の光を放出するように構成され、前記波長変換材料を通過した後、前記デバイスから逃れる光は、前記第2の波長の色に見えることを特徴とする、請求項30に記載のデバイス。
  33. 前記第2の波長は、赤色、緑色、及び青色であることを特徴とする、請求項32に記載のデバイス。
  34. 前記n−型領域に電気的に接続された第1のコンタクトと、前記p−型領域に電気的に接続された第2のコンタクトとをさらに含み、前記第1のコンタクト及び前記第2のコンタクトは、順方向バイアスがかけられたとき、前記第2の領域の各々に電流が注入されるように構成されることを特徴とする、請求項1に記載のデバイス。
  35. 前記前記構造体のn−型領域上の上面に形成されたn−コンタクトと、
    前記n−コンタクトと前記反射器との間に配置された非導電性材料を有する請求項1に記載のデバイス。
  36. 前記非導電性材料は、前記p−型領域に隣接している請求項1に記載のデバイス。
  37. 前記非導電性材料は、前記反射器と前記発光領域との間に配置されている請求項1に記載のデバイス。
JP2009529840A 2006-10-02 2007-09-27 フォトニック結晶により定められたアレイ状エミッタを含む発光デバイス Active JP5237286B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/537,940 2006-10-02
US11/537,940 US7697584B2 (en) 2006-10-02 2006-10-02 Light emitting device including arrayed emitters defined by a photonic crystal
PCT/IB2007/053937 WO2008041161A2 (en) 2006-10-02 2007-09-27 Light emitting device including arrayed emitters defined by a photonic crystal

Publications (2)

Publication Number Publication Date
JP2010506382A JP2010506382A (ja) 2010-02-25
JP5237286B2 true JP5237286B2 (ja) 2013-07-17

Family

ID=39156124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009529840A Active JP5237286B2 (ja) 2006-10-02 2007-09-27 フォトニック結晶により定められたアレイ状エミッタを含む発光デバイス

Country Status (7)

Country Link
US (1) US7697584B2 (ja)
EP (1) EP2074669B1 (ja)
JP (1) JP5237286B2 (ja)
CN (1) CN101523623B (ja)
BR (1) BRPI0719765A8 (ja)
TW (1) TWI453942B (ja)
WO (1) WO2008041161A2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008038852B4 (de) 2008-06-03 2024-02-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Bauelementes und optoelektronisches Bauelement
DE102008030584A1 (de) * 2008-06-27 2009-12-31 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelementes und optoelektronisches Bauelement
US7919780B2 (en) * 2008-08-05 2011-04-05 Dicon Fiberoptics, Inc. System for high efficiency solid-state light emissions and method of manufacture
US20100123386A1 (en) 2008-11-13 2010-05-20 Maven Optronics Corp. Phosphor-Coated Light Extraction Structures for Phosphor-Converted Light Emitting Devices
KR101064016B1 (ko) * 2008-11-26 2011-09-08 엘지이노텍 주식회사 발광 소자 및 그 제조방법
EP2317542B1 (en) * 2009-10-30 2018-05-23 IMEC vzw Semiconductor device and method of manufacturing thereof
KR20120034910A (ko) * 2010-10-04 2012-04-13 삼성엘이디 주식회사 반도체 발광소자 및 이의 제조방법
CN102468418B (zh) * 2010-11-18 2015-04-29 展晶科技(深圳)有限公司 垂直结构发光二极管芯片及其制造方法
JP5822543B2 (ja) * 2011-06-06 2015-11-24 キヤノン株式会社 発光素子
EP2733752B1 (en) 2011-07-12 2016-10-05 Marubun Corporation Light emitting element and method for manufacturing the same
TWI563686B (en) * 2012-12-21 2016-12-21 Hon Hai Prec Ind Co Ltd Led chip and method manufacturing the same
US10866343B2 (en) * 2013-04-17 2020-12-15 Japan Science And Technology Agency Photonic crystal and optical functional device including the same
US9929311B2 (en) 2013-07-17 2018-03-27 Marubun Corporation Semiconductor light emitting element and method for producing the same
JP5757512B1 (ja) * 2014-03-06 2015-07-29 丸文株式会社 深紫外led及びその製造方法
CN107210336B (zh) * 2015-01-16 2019-05-10 丸文株式会社 深紫外led及其制造方法
US10680134B2 (en) 2015-09-03 2020-06-09 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10056526B2 (en) 2016-03-30 2018-08-21 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
CN106505076B (zh) * 2016-11-09 2018-07-31 太原理工大学 微米阵列led制备方法
FR3059828B1 (fr) * 2016-12-02 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a diode electroluminescente a extraction augmentee
CN110770986A (zh) * 2017-04-05 2020-02-07 维克萨股份有限公司 显示器的vcsel的新型图案化、感测和成像
US11309454B2 (en) 2018-01-26 2022-04-19 Marubun Corporation Deep ultraviolet LED and method for producing the same
CN109994578B (zh) * 2019-01-09 2020-12-11 南京邮电大学 垂直结构蓝光发光二极管及其制备方法
CN109841714B (zh) * 2019-01-09 2020-12-11 南京邮电大学 垂直结构近紫外发光二极管及其制备方法
JP2021150373A (ja) * 2020-03-17 2021-09-27 セイコーエプソン株式会社 発光装置、プロジェクター、およびディスプレイ
DE102021214311A1 (de) 2021-12-14 2023-06-15 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Oberflächenemittierender photonischer-kristall-laser, optoelektronisches system und verfahren zur herstellung eines oberflächenemittierenden photonischer-kristall-lasers
DE102022101575A1 (de) 2022-01-24 2023-07-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer vielzahl optoelektronischer halbleiterchips und optoelektronischer halbleiterchip

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279718B2 (en) * 2002-01-28 2007-10-09 Philips Lumileds Lighting Company, Llc LED including photonic crystal structure
US7083993B2 (en) * 2003-04-15 2006-08-01 Luminus Devices, Inc. Methods of making multi-layer light emitting devices
US6831302B2 (en) * 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
US7098589B2 (en) * 2003-04-15 2006-08-29 Luminus Devices, Inc. Light emitting devices with high light collimation
US7012279B2 (en) 2003-10-21 2006-03-14 Lumileds Lighting U.S., Llc Photonic crystal light emitting device
US20050152417A1 (en) * 2004-01-08 2005-07-14 Chung-Hsiang Lin Light emitting device with an omnidirectional photonic crystal
US20050173714A1 (en) * 2004-02-06 2005-08-11 Ho-Shang Lee Lighting system with high and improved extraction efficiency
CN101032034A (zh) * 2004-06-30 2007-09-05 克里公司 用于封装发光器件的芯片级方法和芯片级封装的发光器件
US7442964B2 (en) * 2004-08-04 2008-10-28 Philips Lumileds Lighting Company, Llc Photonic crystal light emitting device with multiple lattices
JP4594814B2 (ja) * 2004-10-25 2010-12-08 株式会社リコー フォトニック結晶レーザ、フォトニック結晶レーザの製造方法、面発光レーザアレイ、光伝送システム、及び書き込みシステム
JP2006179573A (ja) * 2004-12-21 2006-07-06 Sumitomo Electric Ind Ltd 半導体レーザ素子およびその製造方法
US7285791B2 (en) * 2006-03-24 2007-10-23 Goldeneye, Inc. Wavelength conversion chip for use in solid-state lighting and method for making same

Also Published As

Publication number Publication date
BRPI0719765A2 (pt) 2014-01-28
WO2008041161A2 (en) 2008-04-10
WO2008041161A3 (en) 2008-07-03
CN101523623A (zh) 2009-09-02
BRPI0719765A8 (pt) 2015-10-06
EP2074669B1 (en) 2017-11-15
TWI453942B (zh) 2014-09-21
US20080080581A1 (en) 2008-04-03
EP2074669A2 (en) 2009-07-01
CN101523623B (zh) 2011-09-07
TW200836372A (en) 2008-09-01
JP2010506382A (ja) 2010-02-25
US7697584B2 (en) 2010-04-13

Similar Documents

Publication Publication Date Title
JP5237286B2 (ja) フォトニック結晶により定められたアレイ状エミッタを含む発光デバイス
JP4824293B2 (ja) フォトニック結晶発光デバイス
US7675084B2 (en) Photonic crystal light emitting device
US8735185B2 (en) Light emitting device and fabrication method thereof
TWI390759B (zh) 製造三族氮化物裝置之方法及使用該方法製造之裝置
KR101203365B1 (ko) SiC 기판상에 형성된 GaN막을 위한 리프트오프프로세스 및 그 방법을 이용하여 제조된 장치
US10868213B2 (en) LED utilizing internal color conversion with light extraction enhancements
TWI714146B (zh) 具有光提取強化之利用內部色彩轉換之發光二極體
US9306120B2 (en) High efficiency light emitting diode
KR20080028292A (ko) 경사진 측벽 반사면을 갖는 ⅲ―니트라이드계 led 구조및 그 제조방법
TWI290775B (en) Lighting system with high and improved extraction efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250