JP5236535B2 - Joining material for Al alloy-ceramic composite material and method for producing the same - Google Patents
Joining material for Al alloy-ceramic composite material and method for producing the same Download PDFInfo
- Publication number
- JP5236535B2 JP5236535B2 JP2009054086A JP2009054086A JP5236535B2 JP 5236535 B2 JP5236535 B2 JP 5236535B2 JP 2009054086 A JP2009054086 A JP 2009054086A JP 2009054086 A JP2009054086 A JP 2009054086A JP 5236535 B2 JP5236535 B2 JP 5236535B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- bonding
- foil
- joining
- ceramic composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 131
- 239000000919 ceramic Substances 0.000 title claims description 56
- 239000002131 composite material Substances 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 229910000838 Al alloy Inorganic materials 0.000 claims description 46
- 239000010410 layer Substances 0.000 claims description 39
- 239000011162 core material Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 239000002344 surface layer Substances 0.000 claims description 26
- 238000005304 joining Methods 0.000 claims description 23
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 239000012779 reinforcing material Substances 0.000 claims description 12
- 229910052725 zinc Inorganic materials 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims 1
- 239000011888 foil Substances 0.000 description 60
- 238000002844 melting Methods 0.000 description 23
- 230000008018 melting Effects 0.000 description 23
- 238000009792 diffusion process Methods 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000005219 brazing Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- ZPPSOOVFTBGHBI-UHFFFAOYSA-N lead(2+);oxido(oxo)borane Chemical compound [Pb+2].[O-]B=O.[O-]B=O ZPPSOOVFTBGHBI-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000005385 borate glass Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 229910018137 Al-Zn Inorganic materials 0.000 description 2
- 229910018573 Al—Zn Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 238000009715 pressure infiltration Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910008285 Si—Cu—Zn Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Ceramic Products (AREA)
Description
本発明は、Al合金をマトリックスとするAl合金-セラミックス複合材料を接合するための接合材に関するものである。 The present invention relates to a bonding material for bonding an Al alloy-ceramic composite material having an Al alloy as a matrix.
Al合金は軽量かつ耐食性に優れる材料であり、熱伝導性や導電性においても優れているため、これまでに様々な分野で利用が進んでいる。セラミックスの分野においてもマトリックスにAl合金を用い、強化材にセラミックスを用いて両者を複合化したAl合金−セラミックス複合材料が、Al合金の上記特徴を活かしつつ軽量であり、かつ高剛性な材料として利用されるようになってきた。 Al alloy is a material that is lightweight and excellent in corrosion resistance, and is excellent in thermal conductivity and conductivity, and thus has been used in various fields so far. Also in the field of ceramics, an Al alloy-ceramic composite material, in which an Al alloy is used for the matrix and ceramics is used for the reinforcing material, is a lightweight and highly rigid material that takes advantage of the above characteristics of the Al alloy. It has come to be used.
さらにAl合金−セラミックス複合材料を各種の用途に適用・拡大させるためには、大型化や複雑形状化、さらには中空構造化に対応可能な接合技術が必須である。即ち、Al合金-セラミックス複合材料同士が実用に耐え得るほど強固に接合され、かつ、その接合部が気体のリークを防止できるほど良好な気密性を有するAl合金-セラミックス複合材料接合体を作製可能な接合技術が必要であるが、このような報告例はほとんどない。 Furthermore, in order to apply and expand the Al alloy-ceramic composite material for various applications, it is essential to have a joining technique that can cope with an increase in size, a complicated shape, and a hollow structure. In other words, it is possible to produce an Al alloy-ceramic composite joined body that is tightly bonded so that the Al alloy-ceramic composite material can withstand practical use, and that the joint has good airtightness to prevent gas leakage. However, there are few examples of such reports.
これまでに接合技術として、例えば、Cuなどのインサート材をAl合金-セラミックス複合材料間に充填し、それを所定の温度と圧力で熱処理することにより、マトリックス合金の融点より低い温度でも接合できる拡散接合方法(特許文献1参照)が提案されているが、拡散接合法では強固な接合ができるものの、かなりの高圧、例えば1MPa程度の圧力下で熱処理しなければならず、加圧するための大型の装置、例えばプレス機などの装置が必要となりコスト高になるという問題があった。加えて、形状が複雑になると、圧力をかけること自体が難しく、接合が困難になるという問題もあった。そこで、大型の加圧装置がなくても気体のリークを防止できるほど良好な気密性を有するAl合金−セラミックス複合材料接合体の作製方法として、本出願人はホウ酸鉛を主成分とするガラスを接合材に使用する接合方法(特許文献2参照)を提案した。 So far, as a joining technique, for example, a diffusion material that can be joined even at a temperature lower than the melting point of the matrix alloy by filling an insert material such as Cu between Al alloy-ceramic composite material and heat-treating it with a predetermined temperature and pressure. Although a bonding method (see Patent Document 1) has been proposed, the diffusion bonding method can perform strong bonding, but must be heat-treated at a considerably high pressure, for example, about 1 MPa, and is large in order to pressurize. There is a problem that a device such as a press machine is required and the cost is increased. In addition, when the shape is complicated, there is a problem that it is difficult to apply pressure itself and joining becomes difficult. Therefore, as a method for producing an Al alloy-ceramic composite material assembly having such a satisfactory hermeticity that gas leakage can be prevented without a large pressure device, the present applicant has made glass containing lead borate as a main component. Has proposed a joining method (see Patent Document 2) in which is used as a joining material.
また、本出願人は、簡単に強固に接合できる金属―セラミックス複合材料の接合方法として、Al合金をマトリックスとする金属−セラミックス複合材料と、それと同種または異種の材料との間にAlを40質量%以上含み、かつ500℃以下の液相生成温度を有するロウ材を装填し、それを非酸化雰囲気中500℃以上でかつ複合材料中の金属が融ける融点以下の温度で熱処理して接合することとした金属−セラミックス複合材料の接合方法を提案した(特許文献3参照)。 In addition, as a method of joining a metal-ceramic composite material that can be easily and firmly joined, the present applicant has 40 masses of Al between a metal-ceramic composite material using an Al alloy as a matrix and the same or different material. % And containing a brazing filler metal having a liquid phase generation temperature of 500 ° C. or less, and heat-treating it at a temperature of 500 ° C. or more in a non-oxidizing atmosphere and a melting point or less at which the metal in the composite material melts. A metal-ceramic composite material joining method was proposed (see Patent Document 3).
特許文献2の接合方法であれば大型の加圧装置がなくても気体のリークを防止できるほど良好な気密性を有したAl合金-セラミックス複合材料接合体が得られるものの、接合材にホウ酸鉛ガラスを使用しているため接合部の強度が低く、被接合材の大きさや用途が制限されるという問題があった。加えて近年では、鉛の毒性が問題視されるようになっており、多くの業界で鉛の使用規制が発令されているため、今後ホウ酸鉛ガラスを使用できなくなる可能性が高いことも問題であった。一方、鉛フリーガラスであれば毒性に関する問題は解決できるが、鉛入りのガラスに比べて濡れ性が悪いため接合部に欠陥が生じやすく、接合部の気密がとれないという問題があった。 With the joining method of Patent Document 2, an Al alloy-ceramic composite material assembly having good airtightness that can prevent gas leakage can be obtained without a large pressure device, but boric acid is used as the joining material. Since lead glass is used, there is a problem that the strength of the joint is low and the size and application of the material to be joined are limited. In addition, in recent years, the toxicity of lead has been regarded as a problem, and since there are regulations on the use of lead in many industries, there is a high possibility that lead borate glass cannot be used in the future. Met. On the other hand, lead-free glass can solve the problem related to toxicity, but there is a problem in that the wettability is poor as compared with glass containing lead, so that a defect is likely to occur in the bonded portion, and the bonded portion cannot be hermetically sealed.
また、特許文献3の方法では、接合材として、Al−Si−Cu−Sn系、Al−Zn系、Al−Si−Cu−Zn系等が挙げられているが、このような接合材を用いてAl合金−セラミックス複合材料接合体を作製すると、被接合材のAl合金―セラミックス複合材料の強度よりも接合強度が著しく小さくなることがあるため問題となっていた。 In the method of Patent Document 3, Al—Si—Cu—Sn, Al—Zn, Al—Si—Cu—Zn, and the like are listed as the bonding material. Thus, when an Al alloy-ceramic composite material joined body is produced, there is a problem because the joint strength may be significantly smaller than the strength of the Al alloy-ceramic composite material to be joined.
本発明は、このようなAl合金−セラミックス複合材料の接合における課題に鑑みてなされたものであり、大型の加圧装置を用いることなく容易に接合でき、実用に耐える接合強度が得られるAl合金-セラミックス複合材料用の接合材を提供することを目的とする。 The present invention has been made in view of the problem in joining of such an Al alloy-ceramic composite material, and can be easily joined without using a large pressure device, and an Al alloy capable of obtaining a joining strength that can withstand practical use. -It aims at providing the bonding material for ceramics composite materials.
本発明者らは、上記目的を達成するために鋭意研究した結果、接合材を層構造とすることで強固に接合できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors have found that the bonding material can be firmly bonded by using a layer structure, and have completed the present invention.
即ち、本発明者は、上記課題を解決するための手段として以下の(1),(2)を提供する。
(1)Al合金をマトリックスとし、強化材にセラミックスを用いたAl合金-セラミックス複合材料同士を接合するための接合材であって、主成分がZnであり、芯を構成する芯材と、主成分がAlであってMgを0.5〜2.5質量%含有し、表層を構成する表層材と、Al及びZnを含む合金からなり、前記芯材と前記表層材との間に形成された中間層と、を含み、当該接合材に含まれるAlとZnの質量比Al/Znが0.25〜2.33であることを特徴とするAl合金-セラミックス複合材料用の接合材。
(2)Al合金をマトリックスとし、強化材にセラミックスを用いたAl合金-セラミックス複合材料同士を接合するための接合材の製造方法であって、Mgを0.5〜2.5質量%含有するAl合金の薄板と、Znの薄板とを準備する工程と、前記Al合金の薄板と、前記Znの薄板とを重ね合わせて圧延接合する工程と、熱処理によりAl合金とZnとが相互に拡散した中間層を形成する工程と、を含み、当該接合材に含まれるAlとZnの質量比Al/Znが0.25〜2.33であることを特徴とするAl合金-セラミックス複合材料同士を接合するための接合材の製造方法。
That is, the present inventor provides the following (1) and (2) as means for solving the above problems.
(1) The Al alloy as a matrix, Al alloy was used ceramic reinforcing material - a bonding material for bonding the ceramic composite material to each other, the main component is Zn, a core material constituting the core, the main The component is Al and contains 0.5 to 2.5% by mass of Mg and is composed of a surface layer material constituting the surface layer , an alloy containing Al and Zn, and is formed between the core material and the surface layer material. bonding material for ceramic composite material - was an intermediate layer, only including, Al alloy mass ratio Al / Zn of Al and Zn contained in the bonding material, characterized in that a 0.25 to 2.33.
(2) A method for manufacturing a bonding material for bonding Al alloy-ceramic composite materials using Al alloy as a matrix and ceramics as a reinforcing material, and containing 0.5 to 2.5% by mass of Mg and the thin Al alloy, a step of preparing a sheet of Zn, and the thin plate before Symbol a l alloy, a step of roll-bonding by superposing the sheet of the Zn, and Ri by the heat treatment a l alloy and Zn Al alloy but that seen containing a step of forming an intermediate layer diffused into each other, the weight ratio Al / Zn of Al and Zn contained in the bonding material, characterized in that a 0.25 to 2.33 - A method for manufacturing a bonding material for bonding ceramic composite materials.
本発明は、大型の加圧装置を用いることなく容易に接合でき、実用に耐える接合強度が得られるAl合金-セラミックス複合材料用の接合材を提供する。 The present invention provides a bonding material for an Al alloy-ceramic composite material that can be easily bonded without using a large-sized pressurizing device and that can provide a bonding strength that can withstand practical use.
以下、図面を参照して、本発明の実施形態について説明する。図1は、本発明の接合材を示す概略断面図である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a bonding material of the present invention.
本発明の接合材は、芯を構成する芯材11と、表層を構成する表層材12と、前記芯材と前記表層材との間に形成された中間層13とを含む構造を有する。
The bonding material of the present invention has a structure including a
芯材11は、Znを主成分とする。これは、Znを接合材の中心部に配置することで、接合強度の低下を防止できるためである。
The
特許文献3には、Al−Zn系の接合材として、金属を混合した後、黒鉛坩堝中で650℃の温度で加熱溶解し、それを金属製の回転2本ロールに流し出す方法で得られるものが記載されている。このような方法によれば、接合材の組成が均一化されて好ましいように思われる。しかしながら、このような接合材を用いると接合強度が著しく低下する場合があった。これは、被接合材へのZnの拡散が進むと接合層に空隙が生じるために接合強度が著しく低下したものと考えられた。この問題を解決するために、本発明ではZnを接合材の中心部に配置した。このような構成にすることで、接合層の空隙を解消することができる。 In Patent Document 3, as an Al—Zn-based bonding material, after a metal is mixed, it is heated and melted at a temperature of 650 ° C. in a graphite crucible, and it is obtained by pouring it out to a metal rotating two roll. Things are listed. Such a method seems to be preferable because the composition of the bonding material is made uniform. However, when such a bonding material is used, the bonding strength may be significantly reduced. This is thought to be due to the fact that as the diffusion of Zn into the material to be joined progresses, voids are formed in the joining layer, so that the joining strength is significantly reduced. In order to solve this problem, in the present invention, Zn is disposed at the center of the bonding material. With such a configuration, the voids in the bonding layer can be eliminated.
また、特許文献3に記載されたような金属を混合して加熱溶解させる方法では、300×300mm(以下、□300mm)を超えるような大面積の接合材を一体で作製するのは困難であった。一体でない接合材を使用した場合、接合層に継ぎ目ができることは不可避である。そのため継ぎ目部分に欠陥が発生しやすく□300mmを超えるような大型で、かつ良好な気密性を有するAl合金−セラミックス複合材料接合体を作製できない問題があった。本発明では、芯材と表層材と中間層とを含む接合材としたため、□300mmを超えるような大型の接合材が作製できる。 In addition, in the method of mixing and melting metals as described in Patent Document 3, it is difficult to integrally produce a bonding material having a large area exceeding 300 × 300 mm (hereinafter, □ 300 mm). It was. When a non-integral bonding material is used, it is inevitable that a seam is formed in the bonding layer. Therefore, there is a problem that it is difficult to produce an Al alloy-ceramic composite material joined body having a large size exceeding □ 300 mm and having good airtightness. In this invention, since it was set as the joining material containing a core material, surface layer material, and an intermediate | middle layer, a large-sized joining material exceeding □ 300 mm is producible.
表層材12の主成分はAlである。表層材の主成分をAlとし、Znを主成分とする芯材を接合材の中心部に配置することで接合層の空隙を解消できる。
The main component of the
芯材11と表層材12の間には中間層13が形成される。そして中間層はAl及びZnを含む合金からなる。中間層13は、主として、融点が低く拡散し易い芯材側のZnが表層材側のAlに拡散して形成される。このときZnの拡散よりは少ないが表層材側のAlも芯材側のZnに拡散する。
An
表層材側へのZnの拡散は過剰にならないように調整する必要がある。過剰に拡散が進むと接合材が脆くなり、□300mmを超えるような大面積の接合材とすることができなくなる。したがって、芯材と中間層と表層材との区別がなくなるほど拡散させることは好ましくない。また、拡散が少なすぎると、接合時に融点の低いZnが先に溶け出し、蒸気圧が高いため速やかに揮発するので接合材として機能しなくなってしまう。このような観点から、芯材にはZnが70質量%以上含まれることが好ましく、90質量%以上であることがより好ましい。表層材のAlは、50質量%以上含まれることが好ましく、70質量%以上含まれることがより好ましい。中間層は、芯材及び表層材の中間の組成を有する。 It is necessary to adjust Zn diffusion to the surface material side so as not to be excessive. If the diffusion proceeds excessively, the bonding material becomes brittle, and a bonding material having a large area exceeding □ 300 mm cannot be obtained. Therefore, it is not preferable to diffuse the core material, the intermediate layer, and the surface layer material so that the core material, the intermediate layer, and the surface material are not distinguished. On the other hand, if the diffusion is too small, Zn having a low melting point will be dissolved first at the time of bonding, and since it has a high vapor pressure, it will volatilize quickly and thus will not function as a bonding material. From such a viewpoint, the core material preferably contains 70 mass% or more of Zn, and more preferably 90 mass% or more. The surface layer material Al is preferably contained in an amount of 50% by mass or more, and more preferably 70% by mass or more. The intermediate layer has an intermediate composition between the core material and the surface layer material.
接合材に含まれるAlとZnの質量比Al/Znが0.25〜2.33とすることが好ましい。これはAlの含有量が少ない場合、即ち質量比Al/Znが0.25よりも小さい場合は、腐食しやすい環境下では接合部の陽極腐食が起こりやすいこと、熱がかかる環境下では温度上昇時に生じる接合部での不均一な拡散による欠陥が生じやすいこと等の問題により接合部の信頼性が劣るためである。一方、質量比Al/Znが2.33よりも大きい場合は、接合材の融点が600℃よりも高くなってしまうため、Al合金-セラミックス複合材料の接合には使用が困難であるためである。なお、質量比Al/Znは0.85〜2.33とすることがより望ましい。 The Al / Zn mass ratio Al / Zn contained in the bonding material is preferably 0.25 to 2.33. This is because when the Al content is low, that is, when the mass ratio Al / Zn is smaller than 0.25, the anodic corrosion of the joint is likely to occur in a corrosive environment, and the temperature rises in an environment where heat is applied. This is because the reliability of the bonded portion is inferior due to problems such as the occurrence of defects due to uneven diffusion at the bonded portion that sometimes occur. On the other hand, when the mass ratio Al / Zn is larger than 2.33, the melting point of the bonding material becomes higher than 600 ° C., so that it is difficult to use it for bonding of an Al alloy-ceramic composite material. . The mass ratio Al / Zn is more preferably 0.85 to 2.33.
また、本発明では表層材を構成する成分に、Mgが0.5〜2.5質量%含有することを特徴としている。ここで、表層材にMgを添加する理由は、Mgが、接合を阻害するAl合金表面の酸化皮膜を破壊する役割を果たすからである。一般的にAl合金のろう付けにおいては、Al合金の表面に存在する酸化皮膜がろう付けを阻害することが知られており、フラックス等により酸化皮膜を破壊しなければ強固なろう付けはできない。Al合金-セラミックス複合材料同士の接合においても同様に、接合時の熱処理によって接合材が完全に溶ける前に、接合面に露出したマトリックスのAl合金表面の酸化皮膜を破壊する必要があり、接合材にMgが含まれていれば、その役割を果たすことができる。即ち、Mgが接合時の熱処理により接合材から蒸発する際に、Al合金の表面酸化膜を破壊して溶融Al合金相を接合面に露出させる。また、蒸発したMgが炉内の残留酸素や水分を除去するゲッターとしての役割も果たすため、新たなAl酸化皮膜の生成を抑制するので強固な接合が可能となる。 Further, the present invention is characterized in that Mg is contained in the component constituting the surface layer material in an amount of 0.5 to 2.5% by mass. Here, the reason why Mg is added to the surface layer material is that Mg plays a role of destroying the oxide film on the surface of the Al alloy that inhibits bonding. Generally, in brazing of an Al alloy, it is known that an oxide film existing on the surface of the Al alloy hinders brazing, and strong brazing cannot be performed unless the oxide film is destroyed by a flux or the like. Similarly, when joining Al alloy-ceramic composite materials, it is necessary to destroy the oxide film on the Al alloy surface of the matrix exposed on the joining surface before the joining material is completely melted by the heat treatment during joining. If Mg contains Mg, it can play its role. That is, when Mg evaporates from the bonding material by heat treatment during bonding, the surface oxide film of the Al alloy is destroyed and the molten Al alloy phase is exposed to the bonding surface. Further, since the evaporated Mg also serves as a getter for removing residual oxygen and moisture in the furnace, the formation of a new Al oxide film is suppressed, so that strong bonding is possible.
接合材中に含まれるMgの量としては0.5〜2.5質量%としているが、その理由はMgを0.5質量%より少なくすると十分な量のMgが供給されないため、Al合金表面の酸化皮膜を破壊しきれず接合界面に欠陥が残って強固な接合ができないためである。また、その量が2.5質量%より多い場合、Alの酸化皮膜と同様に接合を阻害するMgOが接合面に生成してしまうため、強固な接合ができないためである。さらに、Mgの量が上記範囲であれば、酸化皮膜の除去効果に加え、接合材に含まれるZnとMgの拡散が起こり易く、密着性及び接合強度を高まることがわかった。 The amount of Mg contained in the bonding material is 0.5 to 2.5% by mass. The reason is that if Mg is less than 0.5% by mass, a sufficient amount of Mg is not supplied, so the surface of the Al alloy This is because the oxide film cannot be completely broken and defects remain at the bonding interface, so that strong bonding cannot be achieved. Further, when the amount is more than 2.5% by mass, MgO that inhibits bonding is generated on the bonding surface as in the case of the Al oxide film, so that strong bonding cannot be performed. Furthermore, it was found that when the amount of Mg is in the above range, in addition to the effect of removing the oxide film, the diffusion of Zn and Mg contained in the bonding material is likely to occur, and the adhesion and bonding strength are increased.
被接合材は、Al合金をマトリックスとし、強化材にセラミックスを用いた、Al合金-セラミックス複合材料同士を接合するための接合材である。被接合材に使用するAl合金は、製法や目的とする特性に応じて必要なAl合金を選択すればよい。例えば、鋳物用、展伸用のAl合金が使用でき、なかでもJIS規格合金のAC3A、AC8A、5052等を用いることが好ましい。接合材の融点よりも高い融点のAl合金であれば、適用できる。 The material to be bonded is a bonding material for bonding Al alloy-ceramic composite materials using an Al alloy as a matrix and ceramics as a reinforcing material. What is necessary is just to select required Al alloy according to a manufacturing method and the characteristic made into the objective as Al alloy used for a to-be-joined material. For example, Al alloy for casting and spreading can be used, and among them, JIS standard alloys AC3A, AC8A, 5052, etc. are preferably used. Any Al alloy having a melting point higher than that of the bonding material can be applied.
被接合材の強化材のセラミックスとしては、炭化珪素、窒化ケイ素、アルミナ、窒化アルミニウム、ジルコニア等種々のセラミックスを用いることができる。また、強化材のセラミックスの含有量は、30〜80体積%のものが好ましい。このような複合材料は、熱伝導性や導電性においても優れ、軽量であり、かつ高剛性な材料として好適である。 Various ceramics such as silicon carbide, silicon nitride, alumina, aluminum nitride, and zirconia can be used as the reinforcing material ceramics. The ceramic content of the reinforcing material is preferably 30 to 80% by volume. Such a composite material is excellent in thermal conductivity and electrical conductivity, is lightweight, and is suitable as a highly rigid material.
次に、本発明のAl合金−セラミックス複合材料用接合材の製造方法について説明する。 Next, the manufacturing method of the joining material for Al alloy-ceramic composite material of this invention is demonstrated.
本発明は、Al合金をマトリックスとし、強化材にセラミックスを用いたAl合金-セラミックス複合材料同士を接合するための接合材の製造方法であって、AlまたはAl合金の薄板と、Znの薄板とを準備する工程と、前記AlまたはAl合金の薄板と、Znの薄板とを重ね合わせて圧延接合する工程と、熱処理によりAlまたはAl合金とZnとが相互に拡散した中間層を形成する工程と、を含むことを特徴とするAl合金-セラミックス複合材料同士を接合するための接合材の製造方法を提供する。 The present invention is a method of manufacturing a bonding material for bonding Al alloy-ceramic composite materials using Al alloy as a matrix and ceramics as a reinforcing material, and includes a thin plate of Al or Al alloy, a thin plate of Zn, A step of superimposing the Al or Al alloy thin plate and a Zn thin plate on each other and rolling and joining, and a step of forming an intermediate layer in which Al or Al alloy and Zn are diffused to each other by heat treatment, The manufacturing method of the joining material for joining Al alloy-ceramics composite materials characterized by including these is provided.
本発明の接合材は、芯を構成する芯材11と、表層を構成する表層材12と、前記芯材と前記表層材との間に形成された中間層13とを含む構造を有する。このような構造は、AlまたはAl合金の薄板(以下、便宜的にAl箔と呼ぶ)とZnの薄板(以下、Zn箔と呼ぶ)とをAl箔/Zn箔/Al箔の順に重ね合わせて、熱間で圧延することでクラッドし、所望の厚さまで薄板化して得られる。Al箔及びZn箔は単独であれば圧延性は良好であるが、Al、Znを合金化した場合、脆く割れやすくなるため大型の接合材を作製することが難しくなる。そこで、それぞれ圧延で薄板化したAl箔及びZn箔を、所定の組成となるような比率でAl箔/Zn箔/Al箔の順に重ね合わせて、冷間ないし熱間で圧延することで、□300mmを超える大型の接合材を作製する。
The bonding material of the present invention has a structure including a
Al箔は、AlまたはAl合金からなる。接合材の接着強度や耐食性に応じたAl合金が用いられるが、単体で圧延性が良好なAl合金を選べばよい。もちろん、純Alを選択してもよい。例えば、展伸用のAl合金が使用でき、JIS規格合金の1000系〜7000系等種々の合金を用いることができる。なかでも1050、4004、5052等が好適である。 The Al foil is made of Al or an Al alloy. An Al alloy corresponding to the bonding strength and corrosion resistance of the bonding material is used, but an Al alloy having a good rolling property alone may be selected. Of course, pure Al may be selected. For example, a wrought Al alloy can be used, and various alloys such as JIS standard alloys 1000 series to 7000 series can be used. Of these, 1050, 4004, 5052 and the like are preferable.
Zn箔は、Znを95質量%以上含むZn合金、より好ましくは純度99%以上のZnを用いることができる。 As the Zn foil, a Zn alloy containing 95% by mass or more of Zn, more preferably, Zn having a purity of 99% or more can be used.
Zn箔をAl箔で挟み込むように重ね合わせるのは、融点の低いZnがAl箔側に拡散するのを制御して芯材、中間層及び表層材とを形成するためである。これにより、接合時に接合層に生じ易い空隙を解消し、接合強度が著しく低下することを防ぐことができる。逆にAl箔をZn箔で挟んで接合材を作製すると、融点の低いZnが部分溶融を起こしAlから剥離する。 The reason why the Zn foils are overlapped so as to be sandwiched between the Al foils is to form the core material, the intermediate layer and the surface layer material by controlling the diffusion of Zn having a low melting point to the Al foil side. As a result, voids that are likely to occur in the bonding layer during bonding can be eliminated, and the bonding strength can be prevented from significantly decreasing. Conversely, when an Al foil is sandwiched between Zn foils to produce a bonding material, Zn having a low melting point causes partial melting and delamination from Al.
芯材と表層材間の中間層は、芯材を表層材の間に挟みこみ所望の形状に圧延する過程で熱拡散処理することで形成できる。ここで、Al箔とZn箔とを重ね合わせて圧延接合する工程と、熱処理によりAlまたはAl合金とZnとが相互に拡散した中間層を形成する工程とは、明確に別個に行われても良いし、同時に行われても良い。例えば、冷間または熱拡散が起こらない温度の熱間で圧延して接合した後に、加熱して熱拡散処理して中間層を形成しても良いし、熱間圧延時の温度や時間によって圧延と同時に熱拡散させて中間層を形成しても良い。ただし、熱間圧延過程で生成する中間層は圧延性の低下を招くので、圧延時の温度や時間を調整し、熱環境を制御することで極力抑制することが好ましい。中間層がない場合、即ち、それぞれAl箔、Zn箔を挟み込んだだけでAl合金-セラミックス複合材料同士を接合しようとすると、融点の低いZnが先に溶け出すが、蒸気圧が高いため速やかに揮発してしまうので接合材として機能しない。 The intermediate layer between the core material and the surface layer material can be formed by subjecting the core material between the surface layer materials and performing a heat diffusion process in the process of rolling into a desired shape. Here, the step of rolling and joining the Al foil and the Zn foil and the step of forming an intermediate layer in which Al or an Al alloy and Zn are mutually diffused by heat treatment may be performed clearly separately. Good or may be done at the same time. For example, after rolling and joining at a temperature that does not cause cold or thermal diffusion, the intermediate layer may be formed by heating and thermal diffusion treatment, or rolling depending on the temperature and time during hot rolling At the same time, the intermediate layer may be formed by thermal diffusion. However, since the intermediate layer generated in the hot rolling process causes a decrease in rolling properties, it is preferable to suppress the temperature as much as possible by adjusting the temperature and time during rolling and controlling the thermal environment. When there is no intermediate layer, that is, when an Al alloy-ceramic composite material is joined only by sandwiching an Al foil and a Zn foil, Zn having a low melting point melts first, but quickly because the vapor pressure is high. Since it volatilizes, it does not function as a bonding material.
また、Al箔とZn箔との間に、両箔よりも融点の高い成分を挟むことで拡散を遅らせる方法を用いても良い。例えば、Al箔として低融点のものと高融点のものとを用意し、低融点Al箔/高融点Al箔/Zn箔/高融点Al箔/低融点Al箔の順に挟み込み、熱間で圧延してクラッドし、熱拡散処理することで中間層の形成が容易になる。低融点Al箔と高融点Al箔の組合せには、例えば、4004と1050、5052と1050等種々の組合せが適用できる。 Moreover, you may use the method of delaying a spreading | diffusion by pinching the component whose melting | fusing point is higher than both foil between Al foil and Zn foil. For example, low and high melting point Al foils are prepared and sandwiched in the order of low melting point Al foil / high melting point Al foil / Zn foil / high melting point Al foil / low melting point Al foil and rolled hot. Then, the intermediate layer can be easily formed by cladding and thermal diffusion treatment. Various combinations such as 4004 and 1050 and 5052 and 1050 can be applied to the combination of the low melting point Al foil and the high melting point Al foil.
接合材全体のAlとZnの質量比Al/Znの調整は、Al箔の厚さとZn箔の厚さを変えることで調整できる。したがって、質量比Al/Znが0.25〜2.33の範囲で変化しても芯材と表層材の組成は、上記のような好ましい範囲に調整することができる。 Adjustment of the mass ratio Al / Zn of Al and Zn of the whole bonding material can be adjusted by changing the thickness of the Al foil and the thickness of the Zn foil. Therefore, even if mass ratio Al / Zn changes in the range of 0.25 to 2.33, the composition of the core material and the surface layer material can be adjusted to the above preferable range.
接合材は、一方の面が□300mm以上の面積を有し、50〜500μmの厚さを有する板状であることが望ましい。Al箔とZn箔とを用い、上述したように中間層の形成を制御することにより、適切な接合材の厚さに調整することができる。このような範囲の厚さであれば、十分な接合強度及び気密性を得ることが可能となる。なお、特許文献3に記載された金属を混合して加熱溶解させる方法では、溶解して得られる金属が脆いため、□300mmを超えるような大型で、かつ上記のような厚さを有する接合材とすることは困難である。 As for a joining material, it is desirable for one side to have a plate shape which has an area of □ 300 mm or more and a thickness of 50 to 500 μm. By using an Al foil and a Zn foil and controlling the formation of the intermediate layer as described above, the thickness of the bonding material can be adjusted appropriately. When the thickness is in such a range, it is possible to obtain sufficient bonding strength and airtightness. In addition, in the method of mixing and heating and melting the metal described in Patent Document 3, since the metal obtained by melting is brittle, the bonding material has a large size exceeding □ 300 mm and the thickness as described above. It is difficult to do.
被接合材は、セラミックスからなる強化材に適宜バインダ等を添加して作製された多孔質セラミックス成形体(プリフォーム)中に、金属を含侵させて得られる。含侵方法としては、圧力によって溶融金属を強制的に含浸させる加圧浸透法や、溶融Alとセラミックス間の濡れ性が良好になるようセラミックスの表面を改質し、毛管現象を利用して非加圧で溶融金属を含浸させる非加圧浸透法等を採用することができる。 The material to be joined is obtained by impregnating a metal in a porous ceramic molded body (preform) produced by appropriately adding a binder or the like to a reinforcing material made of ceramics. As the impregnation method, a pressure infiltration method in which molten metal is forcibly impregnated by pressure, a ceramic surface is modified so as to improve the wettability between molten Al and ceramics, and non-capillary using a capillary phenomenon. A non-pressure infiltration method or the like in which the molten metal is impregnated with pressure can be employed.
接合は、板状の接合材を、Al合金-セラミックス複合材料の接合面に挿入し、被接合材の自重により、または重しを載せることにより、10〜500g/cm2程度の荷重がかかるようにする。これを炉内に設置し、0.1〜50Paの真空中または常圧窒素雰囲気中で加熱する。加熱は、複合材料中のマトリックスAl合金の融点よりも低く、接合材の融点よりも高い温度とし、所定時間保持した後、冷却する。このように、重し、焼成温度および焼成時間を調整すると良い。 For joining, a plate-like joining material is inserted into the joining surface of the Al alloy-ceramic composite material, and a load of about 10 to 500 g / cm 2 is applied by the weight of the material to be joined or by placing a weight. To. This is installed in a furnace and heated in a vacuum of 0.1 to 50 Pa or in a normal pressure nitrogen atmosphere. The heating is performed at a temperature lower than the melting point of the matrix Al alloy in the composite material and higher than the melting point of the bonding material, held for a predetermined time, and then cooled. Thus, it is preferable to adjust the firing temperature and firing time.
本発明の接合材は、接合材によって形成される接合層により外部との通気が遮断された中空部を有する接合体とすることが可能である。軽量化のための内部空間構造はもとより、中空部に熱媒体を流すような接合体を得る場合に好適である。 The bonding material of the present invention can be a bonded body having a hollow portion in which ventilation with the outside is blocked by a bonding layer formed of the bonding material. It is suitable not only for the internal space structure for weight reduction but also for obtaining a joined body in which a heat medium flows through the hollow portion.
図2は、本発明の接合材の適用例を示す概略断面図である。被接合材の板材24と凹部25bを有する凹型材25が本発明の接合材20により接合される。
FIG. 2 is a schematic sectional view showing an application example of the bonding material of the present invention. The
図3は、接合体の概略断面図である。接合体36は、板材34と凹型材35が接合層30を介して接合されており、接合層により外部との通気が遮断された中空部37を有している。本発明の接合材を用いて接合すれば、接合層30に空隙を生じさせることなく接合できるので、気密性の高い接合体を得ることができる。
FIG. 3 is a schematic cross-sectional view of the joined body. The joined
ここで、「接合層により外部との通気が遮断され」ているか否か、すなわち気密に接合されているか否かは、具体的には、ボンビング法によってHeリーク試験を行って判断した。試験の結果、リーク量が1×10−8Pa・m3/secよりも少ないものは、通気が遮断され、十分な気密性があるとした。なお、被接合材である複合材料自体のリーク量が上記数値よりも小さいことは言うまでもない。また、このような気密性の評価は、接合層の耐食性も加味して行った。 Here, specifically, whether or not “aeration with the outside is blocked by the bonding layer”, that is, whether the bonding is airtight or not, was determined by performing a He leak test by a bombing method. As a result of the test, those having a leak amount less than 1 × 10 −8 Pa · m 3 / sec were considered to have sufficient airtightness because the ventilation was blocked. Needless to say, the leakage amount of the composite material itself, which is the material to be joined, is smaller than the above numerical value. Such evaluation of airtightness was performed in consideration of the corrosion resistance of the bonding layer.
以下、本発明の実施例を比較例と共に具体的に挙げ、本発明をより詳細に説明する。 Examples of the present invention will be specifically described below together with comparative examples to describe the present invention in more detail.
(作製No.3〜12)
被接合材のAl合金-セラミックス複合材料は、強化材として市販の炭化珪素粉末を用い、マトリックスとなるアルミニウム合金としてAC3Aを用いた。市販のセラミックス粉末100質量部と、バインダとしてPVB(ポリビニルブチラール)5質量部と、コロイダルシリカ5質量部を添加し、これをプレスして所定の大きさに成形してプリフォームを製造した。
(Production No. 3-12)
As the Al alloy-ceramic composite material to be joined, commercially available silicon carbide powder was used as a reinforcing material, and AC3A was used as an aluminum alloy serving as a matrix. A preform was manufactured by adding 100 parts by weight of commercially available ceramic powder, 5 parts by weight of PVB (polyvinyl butyral) as a binder, and 5 parts by weight of colloidal silica, and pressing them into a predetermined size.
続いて、製造したプリフォームの周囲に厚み1mmの鉄板をプリフォームとの間に1mmの間隔を設けて設置し、これらを700℃に予熱した。予熱したプリフォームと鉄板を取り出し、これらを予熱処理時と同じ形態となるように、溶湯加圧装置の金型に配置した。 Subsequently, an iron plate having a thickness of 1 mm was placed around the manufactured preform with a 1 mm gap between the preform and preheated to 700 ° C. The preheated preform and the iron plate were taken out and placed in the mold of the molten metal pressurizing apparatus so that they were in the same form as in the preheat treatment.
別途、アルミニウム合金を750℃で溶融させ、この溶融アルミニウム合金を、プリフォームが配置された金型に投入し、30MPaの圧力を印加して、溶融アルミニウム合金をプリフォーム内に浸透させた。この浸透処理は10分間行った。その後、Al合金-セラミックス複合材料を含む塊状体を金型から取り出した。こうして得られた塊状体から複合材料の周囲に付着している余分なAl合金を研削加工により除去し、プリフォームと同等形状のAl合金-セラミックス複合材料を得た。 Separately, the aluminum alloy was melted at 750 ° C., this molten aluminum alloy was put into a mold in which a preform was placed, and a pressure of 30 MPa was applied to infiltrate the molten aluminum alloy into the preform. This infiltration treatment was performed for 10 minutes. Thereafter, the lump containing the Al alloy-ceramic composite material was taken out of the mold. Excess Al alloy adhering to the periphery of the composite material was removed from the mass obtained in this way by grinding to obtain an Al alloy-ceramic composite material having the same shape as the preform.
このAl合金-セラミックス複合材料から試料を図4に示したような板材として幅50mm、奥行100mm、厚さ20mmの板状の被接合材、凹型材として同板材の片面の略中央に幅30mm、奥行80mm、深さ10mmの凹部を有する箱型の被接合材を切り出し、接合面の平面度が5μm以下となるように#800の砥石で研削した。図4に作製した凹型材45の平面図を示す。片面に凹部45bと接合面45aが形成されている。接合面の研削汚れはアセトンで洗浄した。
A sample from this Al alloy-ceramic composite material is a plate-like material having a width of 50 mm, a depth of 100 mm and a thickness of 20 mm as a plate material as shown in FIG. 4, a width of 30 mm at the approximate center of one surface of the plate material as a concave material, A box-shaped material to be joined having a recess having a depth of 80 mm and a depth of 10 mm was cut out and ground with a # 800 grindstone so that the flatness of the joining surface was 5 μm or less. FIG. 4 shows a plan view of the
接合材の材料であるAlはJIS合金1050を用い、Znは純度99%品を、Mgは純度99%品を用いた。箔の原材料を黒鉛坩堝中で500〜700℃の温度で加熱溶解し、それを金属製の回転2本ロールに流し出す方法によりそれぞれの箔を作製した。AlとZnの質量比、及びMgの含有量が所定値となるようAl箔、Zn箔を作製した。 JIS alloy 1050 was used for Al as the material of the bonding material, Zn was 99% purity, and Mg was 99% purity. The foil raw material was heated and melted at a temperature of 500 to 700 ° C. in a graphite crucible, and each foil was prepared by pouring it out into a metal two-roll roll. Al foil and Zn foil were prepared so that the mass ratio of Al and Zn and the content of Mg were predetermined values.
次にAl箔については、苛性ソーダエッチング及び酸洗浄を施し後、水洗、乾燥した。Zn箔については、サンダー研磨及びアセトン洗浄を施した。しかる後に、両箔をAl箔/Zn箔/Al箔の順に重ね合わせて350℃での熱間と、室温での冷間圧延とを行って厚さ250μmまで薄板化した後、350℃で24時間加熱し、拡散処理を施して外寸450×450mmの接合材とした。 Next, the Al foil was subjected to caustic soda etching and acid cleaning, then washed with water and dried. The Zn foil was subjected to sanding and acetone cleaning. Thereafter, the two foils are superposed in the order of Al foil / Zn foil / Al foil, and are subjected to hot rolling at 350 ° C. and cold rolling at room temperature to reduce the thickness to 250 μm. It was heated for a time and subjected to a diffusion treatment to obtain a bonding material having an outer dimension of 450 × 450 mm.
得られた接合材を図4に示す接合面に合わせた形状に加工し、表面をアセトンで洗浄した。接合材を図2に示すように、Al合金-セラミックス複合材料の各接合面の間に挿入し、接合面に300g/cm2の荷重がかかるよう重しを載せて炉内に設置した。これを0.1〜50Pa程度の真空中550℃で加熱し、550℃で1時間保持した後に炉内で冷却し、図3のように高さおよそ40mm、幅50mm、奥行100mmの中空部を有する接合体を得た。 The obtained bonding material was processed into a shape corresponding to the bonding surface shown in FIG. 4, and the surface was washed with acetone. As shown in FIG. 2, the bonding material was inserted between the bonding surfaces of the Al alloy-ceramic composite material, and a weight was placed on the bonding surface so that a load of 300 g / cm 2 was applied, and the bonding material was placed in the furnace. This was heated in a vacuum of about 0.1 to 50 Pa at 550 ° C., held at 550 ° C. for 1 hour, then cooled in the furnace, and a hollow portion having a height of about 40 mm, a width of 50 mm, and a depth of 100 mm as shown in FIG. A joined body was obtained.
(作製No.1、2、13〜20)
作製No.1では、接合材をクラッドせず、Zn箔をAl箔の間に挟み込んだだけで使用した以外は、上記作製例と同様の手順で中空部を有する接合体を得た。作製No.2では、Al箔をZn箔の間に挟みこんだ以外は、上記作製例と同様の手順で接合材を作製した。作製No.13〜18では、被接合材のAl合金-セラミックス複合材料の強化材に、それぞれ市販のアルミナ、ジルコニア、窒化アルミ、窒化ホウ素、窒化珪素、炭化ホウ素粉末を用いたこと以外は、上記作製例と同様の手順で中空部を有する接合体を得た。作製No.19、20では、接合材にそれぞれ、ホウ酸鉛ガラス(LS3051 日本電気硝子社製)、無鉛ガラス(BNL115BB 旭硝子社製)を用いた。ガラス粉末にアクリル樹脂バインダを添加して厚さ250μmのグリーンシートにしたものを接合材として使用し、熱処理条件を大気中500℃、5分保持、接合面の荷重30g/cm2とした以外は、上記作製例と同様の手順で中空部を有する接合体を得た。
(Production No. 1, 2, 13-20)
In Production No. 1, a joined body having a hollow part was obtained in the same procedure as in the above production example except that the joining material was not clad and the Zn foil was sandwiched between Al foils. Production No. In No. 2, a bonding material was produced in the same procedure as in the above production example except that an Al foil was sandwiched between Zn foils. Production No. Nos. 13 to 18 except that commercially available alumina, zirconia, aluminum nitride, boron nitride, silicon nitride, and boron carbide powder were used as reinforcing materials for the Al alloy / ceramic composite material to be bonded, respectively. The joined body which has a hollow part was obtained in the same procedure. In Production Nos. 19 and 20, lead borate glass (LS3051 manufactured by Nippon Electric Glass Co., Ltd.) and lead-free glass (BNL115BB manufactured by Asahi Glass Co., Ltd.) were used as the bonding materials. A glass sheet added with an acrylic resin binder into a green sheet with a thickness of 250 μm is used as the bonding material, except that the heat treatment conditions are maintained in the atmosphere at 500 ° C. for 5 minutes and the load on the bonding surface is 30 g / cm 2. A joined body having a hollow portion was obtained in the same procedure as in the above production example.
(接合材成分分布の測定)
EPMA(JXA-8500F日本電子社製)を用いて図1に示したような接合材断面の成分分布を測定した。
(Measurement of bonding material component distribution)
EPMA (JXA-8500F manufactured by JEOL Ltd.) was used to measure the component distribution on the cross section of the bonding material as shown in FIG.
(接合強度測定)
各作製No.と同条件、同形状の接合体を作製し、接合強度試験用の試験片(3mm×4mm×40mm)を切り出して、下部スパン30mm、上部スパン10mmの4点曲げ試験(JISR1624準拠)を行い、接合強度を求めた。
(Bonding strength measurement)
A bonded body having the same conditions and shape as each manufacturing No. was manufactured, a test piece (3 mm × 4 mm × 40 mm) for bonding strength test was cut out, and a four-point bending test (JISR1624 compliant) with a lower span of 30 mm and an upper span of 10 mm ) To obtain the bonding strength.
(Heリーク試験)
中空部を有する接合体でHeリーク試験を行った。Heリークは、予めボンビング装置にてHeを0.7MPaで30分加圧した試料を、チャンバー内に入れて真空差圧にて流出したHeを検出するボンビング法にて測定した。
(He leak test)
A He leak test was performed on a joined body having a hollow portion. The He leak was measured by a bombing method in which a sample in which He was previously pressurized at 0.7 MPa for 30 minutes by a bombing apparatus was placed in a chamber and He that flowed out under a vacuum differential pressure was detected.
次に接合部の耐食性を確認するため、Heリーク試験を終えた接合体を高温度高湿度(85℃-85%RH)環境下に480時間静置し、加速試験を実施した。加速試験実施後の接合体についても同様にHeリーク試験を行い、加速試験前後でのHeリーク量を比較することで耐食性を確認した。 Next, in order to confirm the corrosion resistance of the joint, the joined body after the He leak test was left in a high temperature and high humidity (85 ° C.-85% RH) environment for 480 hours, and an acceleration test was performed. The bonded body after the accelerated test was similarly subjected to the He leak test, and the corrosion resistance was confirmed by comparing the amount of He leak before and after the accelerated test.
試験結果を表1に示す。 The test results are shown in Table 1.
作製No.4〜6、8、10、11、13〜18では、いずれも接合強度は100MPaを超えており、接合材にガラス粉末を使用したNo.19、20の場合に比べて強度が高かった。また、Heリークに関しても、いずれも気体のリークを防止できる目安である1×10−8Pa・m3/secよりリークが少なく、かつ耐食試験後にも良好な気密性を維持したままであった。 Production No. In all of 4-6, 8, 10, 11, 13-18, the joining strength exceeded 100 MPa, and the strength was higher than those of Nos. 19 and 20 using glass powder as the joining material. Further, with respect to He leak, the leak was less than 1 × 10 −8 Pa · m 3 / sec, which is a standard for preventing gas leak, and good airtightness was maintained after the corrosion resistance test. .
一方、Zn箔とAl箔とをクラッドせず、挟みこんだだけの作製No.1では、Zn箔とAl箔との間に中間層がなかったため、接合時の熱処理によりZnが揮発し接合できなかった。Al箔をZn箔の間に挟みこんだ作製No.2では、Zn箔とAl箔とをクラッドする際に表層に配したZnが部分溶融を起こして剥離し、目的の構造を有する接合材を得ることができなかった。接合材のAl/Zn質量比が小さい作製No.3では、耐食試験の際に接合層が腐食し、耐食試験後は気密がとれなかった。接合材のAl/Zn質量比が大きい作製No.7では、接合温度550℃で生成する液相の量が少ないため接合できなかった。接合材の表層材中のMg含有量が少ない作製No.9、及びMg含有量が多い作製No.12では、接合はできたものの強度は低く、気密もとれなかった。接合材にホウ酸鉛ガラス粉末を用いた作製No.19では、気密はとれたものの接合強度が45MPaと低かった。接合材に無鉛ガラスを用いた作製No.20では、接合強度が30MPaと低く、気密もとれなかった。 On the other hand, production No. 1 was simply sandwiched without clad Zn foil and Al foil. In No. 1, since there was no intermediate layer between the Zn foil and the Al foil, Zn was volatilized by the heat treatment during bonding, and bonding could not be performed. Production No. with Al foil sandwiched between Zn foils In No. 2, Zn clad on the surface layer when the Zn foil and the Al foil were clad was partially melted and peeled off, and a bonding material having a target structure could not be obtained. In Production No. 3 in which the Al / Zn mass ratio of the bonding material was small, the bonding layer was corroded during the corrosion resistance test, and hermeticity could not be obtained after the corrosion resistance test. Production No. with a large Al / Zn mass ratio of the bonding material. No. 7 could not be joined because the amount of liquid phase produced at a joining temperature of 550 ° C. was small. Production No. with low Mg content in the surface material of the bonding material. 9 and production No. with a high Mg content. In No. 12, although bonding was possible, the strength was low and airtightness could not be obtained. In production No. 19 using lead borate glass powder as the bonding material, the bonding strength was as low as 45 MPa although it was hermetic. Production No. using lead-free glass as the bonding material. In No. 20, the bonding strength was as low as 30 MPa, and airtightness could not be obtained.
10 接合材
11 芯材
12 表層材
13 中間層
10
Claims (2)
主成分がZnであり、芯を構成する芯材と、
主成分がAlであってMgを0.5〜2.5質量%含有し、表層を構成する表層材と、
Al及びZnを含む合金からなり、前記芯材と前記表層材との間に形成された中間層と、
を含み、当該接合材に含まれるAlとZnの質量比Al/Znが0.25〜2.33であることを特徴とするAl合金-セラミックス複合材料用の接合材。 A bonding material for bonding Al alloy-ceramic composite materials using Al alloy as a matrix and ceramics as a reinforcing material,
A core material whose main component is Zn and constituting the core;
A main layer is Al and contains 0.5 to 2.5% by mass of Mg, and a surface layer material constituting the surface layer;
An intermediate layer made of an alloy containing Al and Zn, and formed between the core material and the surface layer material,
Only including, Al alloy mass ratio Al / Zn of Al and Zn contained in the bonding material, characterized in that a 0.25 to 2.33 - bonding material for ceramic composites.
Mgを0.5〜2.5質量%含有するAl合金の薄板と、Znの薄板とを準備する工程と、
前記Al合金の薄板と、前記Znの薄板とを重ね合わせて圧延接合する工程と、
熱処理によりAl合金とZnとが相互に拡散した中間層を形成する工程と、
を含み、当該接合材に含まれるAlとZnの質量比Al/Znが0.25〜2.33であることを特徴とするAl合金-セラミックス複合材料同士を接合するための接合材の製造方法。 A method of manufacturing a joining material for joining together an Al alloy-ceramic composite material using an Al alloy as a matrix and ceramics as a reinforcing material,
A step of preparing an Al alloy thin plate containing 0.5 to 2.5% by mass of Mg and a Zn thin plate;
A step of roll-bonding superposed and the thin plate before Symbol A l alloy, a thin plate of the Zn,
Forming an intermediate layer and by Ri A l alloy and Zn in a heat treatment are diffused into each other,
Preparation of the bonding material for bonding the ceramic composite material to each other - only contains, Al alloy, wherein the weight ratio Al / Zn of Al and Zn contained in the bonding material is from 0.25 to 2.33 Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009054086A JP5236535B2 (en) | 2009-03-06 | 2009-03-06 | Joining material for Al alloy-ceramic composite material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009054086A JP5236535B2 (en) | 2009-03-06 | 2009-03-06 | Joining material for Al alloy-ceramic composite material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010207831A JP2010207831A (en) | 2010-09-24 |
JP5236535B2 true JP5236535B2 (en) | 2013-07-17 |
Family
ID=42968592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009054086A Active JP5236535B2 (en) | 2009-03-06 | 2009-03-06 | Joining material for Al alloy-ceramic composite material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5236535B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110421261A (en) * | 2019-08-21 | 2019-11-08 | 新疆大学 | Add titanium alloy-stainless steel dissimilar metal laser welding method of composite interlayer |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5773628B2 (en) * | 2010-12-01 | 2015-09-02 | 株式会社Uacj | Heat exchanger and manufacturing method thereof |
JP6406753B2 (en) * | 2014-09-04 | 2018-10-17 | 国立研究開発法人産業技術総合研究所 | Method for joining ceramic member and aluminum member |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03114691A (en) * | 1989-09-28 | 1991-05-15 | Showa Alum Corp | Composite brazing filler metal |
JP2008137034A (en) * | 2006-11-30 | 2008-06-19 | Honda Motor Co Ltd | Brazing filler metal and brazing method |
-
2009
- 2009-03-06 JP JP2009054086A patent/JP5236535B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110421261A (en) * | 2019-08-21 | 2019-11-08 | 新疆大学 | Add titanium alloy-stainless steel dissimilar metal laser welding method of composite interlayer |
CN110421261B (en) * | 2019-08-21 | 2021-09-28 | 新疆大学 | Laser welding method for titanium alloy-stainless steel dissimilar metal added with composite intermediate layer |
Also Published As
Publication number | Publication date |
---|---|
JP2010207831A (en) | 2010-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101248967B1 (en) | Method for producing aluminum composite material | |
JP5759152B2 (en) | Aluminum-diamond composite and method for producing the same | |
JP2015505806A (en) | Method of joining materials, plate and shaft device, and multilayer plate formed using the same | |
US9556501B2 (en) | Magnesium-based composite member, heat radiation member, and semiconductor device | |
WO2015141295A1 (en) | Bonded body, substrate for power modules, power module and method for producing bonded body | |
JP2006100770A (en) | Manufacturing method of substrate base plate, substrate base plate and substrate using base plate | |
WO2011040044A1 (en) | Heat sink for electronic device, and process for production thereof | |
JP2009538984A (en) | Cold compressed sputter target | |
KR20150135530A (en) | Li-CONTAINING OXIDE TARGET ASSEMBLY | |
JP2012050995A (en) | Aluminum alloy brazing material sheet for fluxless brazing and fluxless brazing method for aluminum material | |
JP5236535B2 (en) | Joining material for Al alloy-ceramic composite material and method for producing the same | |
JP5764506B2 (en) | Ceramic porous body-metal heat insulating material and manufacturing method thereof | |
EP3968369B1 (en) | Heat radiation member and method for producing same | |
JP5209356B2 (en) | Al alloy-ceramic composite material joining method and joined body using the same | |
JP2012144767A (en) | Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member | |
JPH0729859B2 (en) | Ceramics-Metal bonding material | |
JP5388464B2 (en) | Aluminum-ceramic composite and method for producing the same | |
WO2023286856A1 (en) | Copper/ceramic bonded body and insulated circuit board | |
JP4646202B2 (en) | Composite comprising ceramic layers and method for producing the composite | |
JP2010235417A (en) | Porous body, metal-ceramic composite material and method of manufacturing them | |
JP5184934B2 (en) | Joining material for Al alloy-ceramic composite material and joined body using the same | |
JP6769169B2 (en) | Method for manufacturing a bonded body of a ceramic substrate and an aluminum-impregnated silicon carbide porous body | |
US20160039031A1 (en) | Ceramic-metal bonding structure and process for producing same | |
WO2024181224A1 (en) | Ceramic plate, package, ceramic plate manufacturing method, module, and electric/electronic component | |
WO2022249918A1 (en) | Production method for aluminum-diamond composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100810 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130327 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5236535 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |