JP5234354B2 - Surface coated cutting tool with excellent heat plastic deformation and interlayer adhesion strength - Google Patents

Surface coated cutting tool with excellent heat plastic deformation and interlayer adhesion strength Download PDF

Info

Publication number
JP5234354B2
JP5234354B2 JP2009001305A JP2009001305A JP5234354B2 JP 5234354 B2 JP5234354 B2 JP 5234354B2 JP 2009001305 A JP2009001305 A JP 2009001305A JP 2009001305 A JP2009001305 A JP 2009001305A JP 5234354 B2 JP5234354 B2 JP 5234354B2
Authority
JP
Japan
Prior art keywords
layer
cutting
dispersed
upper layer
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009001305A
Other languages
Japanese (ja)
Other versions
JP2010158733A (en
Inventor
興平 冨田
誠 五十嵐
晃 長田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009001305A priority Critical patent/JP5234354B2/en
Publication of JP2010158733A publication Critical patent/JP2010158733A/en
Application granted granted Critical
Publication of JP5234354B2 publication Critical patent/JP5234354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、硬質被覆層がすぐれた熱遮蔽効果を有するとともにすぐれた層間密着強度を有することから、高熱発生を伴う鋼等の高速切削加工においても、熱塑性変形、チッピングを発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, since the hard coating layer has an excellent heat shielding effect and an excellent interlayer adhesion strength, even in high-speed cutting such as steel accompanied by high heat generation, it does not generate thermoplastic deformation and chipping for a long time. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over the use of the above.

特許文献1に示すように、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、0.01〜10質量%のY(イットリウム)を含有し、かつ、該Y(イットリウム)がAl23の粒界に存在してなるY含有Al23層、
上記(a)、(b)からなる硬質被覆層を蒸着形成してなる被覆工具(以下、従来被覆工具という)が知られており、この従来被覆工具はAl23の結晶粒界強度が高められているため、結晶粒の脱落がなく、切削耐久特性が向上することが知られている。
As shown in Patent Document 1, a substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a tool substrate). On the surface)
(A) As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and having an overall average layer thickness of 3 to 20 μm,
(B) as the upper layer, containing 0.01 to 10 wt% of Y a (yttrium), and, Y containing the Al 2 O 3 layer in which the Y (yttrium) is present in the grain boundary of Al 2 O 3 ,
A coated tool formed by vapor-depositing a hard coating layer comprising the above (a) and (b) (hereinafter referred to as a conventional coated tool) is known, and this conventional coated tool has a grain boundary strength of Al 2 O 3. It is known that since it is enhanced, the crystal grains do not fall off and the cutting durability characteristics are improved.

また、特許文献2に示すように、耐摩耗性の複合セラミックコーティングを基材に付着させる方法として、酸化アルミニウム、酸化イットリウム或いは酸化ジルコニウムから成る連続金属酸化物相内に酸化アルミニウム、酸化イットリウム或いは酸化ジルコニウムから成る不連続金属酸化物を離散した第二相として分散させ該コーティングを形成することも知られているが、このようなコーティングで切削工具の硬質被覆層を形成した場合には、連続金属酸化物を構成する結晶粒の粒界強度が十分ではないため、厳しい切削条件下では、連続金属酸化物の結晶粒の脱落等により、満足できる工具特性を備えているとはいえない。   Further, as shown in Patent Document 2, as a method of attaching a wear-resistant composite ceramic coating to a substrate, aluminum oxide, yttrium oxide or oxidation is carried out in a continuous metal oxide phase composed of aluminum oxide, yttrium oxide or zirconium oxide. It is also known that a discontinuous metal oxide composed of zirconium is dispersed as a discrete second phase to form the coating. However, when a hard coating layer of a cutting tool is formed with such a coating, a continuous metal is formed. Since the grain boundary strength of the crystal grains constituting the oxide is not sufficient, it cannot be said that satisfactory tool characteristics are provided under severe cutting conditions due to dropping of the crystal grains of the continuous metal oxide.

特開2004−1154号公報JP 2004-1154 A 特開昭63−192869号公報JP 63-192869 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化、高能率化する傾向にあるが、例えば、上記従来被覆工具においては、これを低合金鋼や炭素鋼などの通常条件の切削加工に用いた場合には特に問題はないが、特にこれを、高熱発生を伴う鋼等の高速切削加工に用いた場合には、硬質被覆層の層間密着強度および耐熱遮蔽効果が満足できるものでないため、切刃部にチッピング(微少欠け)、欠損、剥離を発生しやすくなり、また、耐熱性も十分でないため熱塑性変形による偏摩耗も生じやすくなり、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to become even faster and more efficient. For example, in the above-mentioned conventional coated tool, there is no particular problem when this is used for cutting under normal conditions such as low alloy steel and carbon steel. When used for processing, the interlaminar adhesion strength and heat-shielding effect of the hard coating layer are not satisfactory, so chipping (slight chipping), chipping and peeling are likely to occur at the cutting edge, and heat resistance is also good. Since it is not sufficient, uneven wear due to thermoplastic deformation is likely to occur, and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、高熱発生を伴う高速切削加工に用いた場合にも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、以下の知見を得た。   Therefore, from the above viewpoint, the present inventors have provided a coated tool that exhibits excellent chipping resistance and wear resistance over long-term use even when used for high-speed cutting with high heat generation. As a result of earnest research to develop, the following knowledge was obtained.

上記の従来被覆工具におけるY含有Al23層は、
例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:1〜5%、YCl3:0.005〜0.5%、CO2:3〜8%、H2:残り、
反応雰囲気温度: 1000〜1020 ℃、
反応雰囲気圧力: 5〜10 kPa、
の条件で蒸着形成することができるが、
同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、YCl3:0.1〜0.6%、CO2:4〜8%、HCl:1〜5%、H2S:0.1〜0.5%、Ar:5〜20%、H2:残り、
反応雰囲気温度: 980〜1020 ℃、
反応雰囲気圧力: 5〜8 kPa、
の条件で、下部層であるTi化合物層の表面に化学蒸着をおこなうと、Y(イットリウム)を0.1〜2原子%含有する(但し、Y含有量は、各元素をモルで表した場合、Y/(Al+O+Y)×100で表される原子%である)とともに、Y(イットリウム)が、YとしてAl相中に分散したY分散Al層が上部層として蒸着形成される。
さらに、Al相中に均一に分散する上記Yについて、X線回折によりその配向性を調査すると、(222)、(40−2)、(003)、(840)面に回折ピークが存在するが、その中で(840)面の回折強度が大きく、(840)面の回折強度I(840)と、第2ピークの面の回折強度Isecとの回折強度の比I(840)/Isecの値が1.5以上であることから、上記Yは、(840)面、即ち、(210)面に高配向性を有することがわかる。
The Y-containing Al 2 O 3 layer in the above conventional coated tool is
For example, in a normal chemical vapor deposition system,
Reaction gas composition: by volume%, AlCl 3: 1~5%, YCl 3: 0.005~0.5%, CO 2: 3~8%, H 2: remainder,
Reaction atmosphere temperature: 1000 to 1020 ° C.,
Reaction atmosphere pressure: 5 to 10 kPa,
It can be formed under the conditions of
Similarly, using a normal chemical vapor deposition system,
Reaction gas composition: by volume%, AlCl 3: 1~5%, YCl 3: 0.1~0.6%, CO 2: 4~8%, HCl: 1~5%, H 2 S: 0.1 ~0.5%, Ar: 5~20%, H 2: remainder,
Reaction atmosphere temperature: 980 to 1020 ° C.,
Reaction atmosphere pressure: 5-8 kPa,
When chemical vapor deposition is performed on the surface of the Ti compound layer, which is the lower layer, the content of Y (yttrium) is 0.1 to 2 atomic% (provided that the Y content is expressed in terms of moles of each element) Y / (Al + O + Y) × 100) and Y (yttrium) as Y 2 O 3 is dispersed in the Al 2 O 3 phase as a Y 2 O 3 dispersed Al 2 O 3 layer. Vapor deposition is formed as an upper layer.
Furthermore, when the orientation of the Y 2 O 3 that is uniformly dispersed in the Al 2 O 3 phase is investigated by X-ray diffraction, the (222), (40-2), (003), and (840) planes are observed. There is a diffraction peak, of which the (840) plane has a high diffraction intensity, and the ratio of the diffraction intensity I (840) of the (840) plane and the diffraction intensity Isec of the second peak plane I ( Since the value of (840) / Isec is 1.5 or more, it can be seen that the Y 2 O 3 has high orientation in the (840) plane, that is, the (210) plane.

そして、下部層であるTi化合物層上に、上記Y分散Al層を蒸着形成することにより硬質被覆層を構成したところ、このような構造の硬質被覆層を有する被覆工具は、高熱発生を伴う高速切削条件下においても、一段とすぐれた層間密着強度と熱遮蔽性を有することにより、すぐれた耐チッピング性および耐摩耗性を発揮することを見出した。 Then, the Ti compound layer as the lower layer, was constituting the hard coating layer by depositing forming the Y 2 O 3 dispersed the Al 2 O 3 layer, coated tool having a hard coating layer having such a structure The present inventors have found that even under high-speed cutting conditions with high heat generation, excellent chipping resistance and wear resistance are exhibited by having excellent interlayer adhesion strength and heat shielding properties.

この発明は、上記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と上部層からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
(a)下部層は、Tiの炭化物、窒化物、炭窒化物、炭酸化物および炭窒酸化物のいずれか1種又は2種以上からなる3〜20μmの合計層厚のTi化合物層、
(b)上部層は、Y(イットリウム)を0.1〜2原子%含有するとともに、該Y(イットリウム)は、YとしてAl相中に分散しており、さらに、該上部層についてX線回折を行ったときにYの(840)面からの回折強度I(840)の値が最大回折強度を示し、かつ、他のYの結晶面で2番目に大きい回折強度Isecとの比の値I(840)/Isecが1.5以上の値を満足するY分散Al層、
からなることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer and an upper layer is vapor-deposited on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The lower layer is a Ti compound layer having a total layer thickness of 3 to 20 μm made of any one or more of Ti carbide, nitride, carbonitride, carbonate and carbonitride,
(B) The upper layer contains 0.1 to 2 atomic% of Y (yttrium), and the Y (yttrium) is dispersed in the Al 2 O 3 phase as Y 2 O 3 , the maximum diffraction intensity value of the diffraction intensity I (840) from (840) plane of Y 2 O 3 when subjected to X-ray diffraction for the upper layer, and 2 at the crystal face of the other Y 2 O 3 Y 2 O 3 dispersed Al 2 O 3 layer in which the value I (840) / Isec of the ratio to the second largest diffraction intensity Isec satisfies a value of 1.5 or more,
A surface-coated cutting tool comprising: "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)Ti化合物層(下部層)
Tiの炭化物(以下、TiCで示す)層、窒化物(以下、TiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層は、基本的には上部層であるY分散Al層の下部層として存在し、自身の具備するすぐれた靭性及び耐摩耗性によって硬質被覆層の高温強度向上に寄与するほか、工具基体とY分散Al層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着強度向上にも寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速切削条件では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Ti compound layer (lower layer)
Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate (hereinafter referred to as TiCO) layer and carbonitride oxide The Ti compound layer consisting of one or more of the layers (hereinafter referred to as TiCNO) is basically present as the lower layer of the Y 2 O 3 dispersed Al 2 O 3 layer, which is the upper layer. Contributes to improving the high temperature strength of the hard coating layer by its excellent toughness and wear resistance, and firmly adheres to both the tool base and the Y 2 O 3 dispersed Al 2 O 3 layer, so that the hard coating layer Although it has an action that contributes to an improvement in adhesion strength to the tool base, if the total average layer thickness is less than 3 μm, the above-mentioned action cannot be sufficiently exhibited, while if the total average layer thickness exceeds 20 μm, High speed with high heat generation Under the cutting conditions, thermoplastic deformation is likely to occur, and this causes uneven wear. Therefore, the total average layer thickness was determined to be 3 to 20 μm.

(b)Y分散Al層(上部層)
分散Al層からなる上部層は、例えば、通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、YCl3:0.1〜0.6%、CO2:4〜8%、HCl:1〜5%、H2S:0.1〜0.5%、Ar:5〜20%、H2:残り、
反応雰囲気温度: 980〜1020 ℃、
反応雰囲気圧力: 5〜8 kPa、
の条件で、下部層であるTi化合物層の表面に化学蒸着を行うことにより、形成することができる。
(B) Y 2 O 3 dispersed Al 2 O 3 layer (upper layer)
The upper layer composed of the Y 2 O 3 dispersed Al 2 O 3 layer uses, for example, a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, YCl 3: 0.1~0.6%, CO 2: 4~8%, HCl: 1~5%, H 2 S: 0.1 ~0.5%, Ar: 5~20%, H 2: remainder,
Reaction atmosphere temperature: 980 to 1020 ° C.,
Reaction atmosphere pressure: 5-8 kPa,
Under the conditions, it can be formed by performing chemical vapor deposition on the surface of the Ti compound layer as the lower layer.

下部層の上に化学蒸着されたY分散Al層からなる上部層は、その構成成分であるAl成分が、層の高温硬さおよび耐熱性を向上させる。
また、Y換算で0.1〜2原子%(Y(モル)/(Al(モル)+O(モル)+Y(モル)×100の値)のYが、層の主体相を構成するAl相中に均一に分散する組織状態を形成することにより、下部層との層間密着強度が向上するとともに、上部層の耐熱性がより一層向上し、さらに、分散相であるYが(210)面に高配向していることにより、上部層の熱遮蔽効果が高まり、熱塑性変形による偏摩耗の発生を防止する。
上部層におけるYの含有割合が0.1原子%未満では、Al相中にYが均一に分散する組織状態を形成することができず、一方、Y含有割合が2原子%を超えると、上部層の主体相を構成するAl層の高温強度が低下するようになるため、上部層におけるYの含有割合を0.1〜2原子%と定めた。
また、Y分散Al層からなる上部層の層厚が2μm未満では、熱遮蔽効果が十分でないため、熱塑性変形、偏摩耗の発生を防止するに不十分であり、一方、層厚が15μmを超えると、チッピングなどの異常損層を発生しやすくなることから、上部層の層厚は2〜15μmとすることが望ましい。
In the upper layer composed of the Y 2 O 3 dispersed Al 2 O 3 layer chemically vapor-deposited on the lower layer, the Al component as its constituent component improves the high temperature hardness and heat resistance of the layer.
Further, Y 2 O 3 of 0.1 to 2 atomic% (Y (mol) / (Al (mol) + O (mol) + Y (mol)) × 100 value) in terms of Y constitutes the main phase of the layer. by forming the tissue state of uniformly distributed al 2 O 3 phase, as well as improved interlayer adhesion strength between the lower layer, the heat resistance of the upper layer is further improved, further, a dispersed phase Y 2 Since O 3 is highly oriented in the (210) plane, the heat shielding effect of the upper layer is enhanced and the occurrence of uneven wear due to thermoplastic deformation is prevented.
When the content ratio of Y in the upper layer is less than 0.1 atomic%, it is impossible to form a textured state in which Y 2 O 3 is uniformly dispersed in the Al 2 O 3 phase, while the Y content ratio is 2 atoms. If it exceeds 50%, the high-temperature strength of the Al 2 O 3 layer constituting the main phase of the upper layer is lowered, so the Y content in the upper layer was determined to be 0.1 to 2 atomic%.
Further, if the thickness of the upper layer composed of the Y 2 O 3 dispersed Al 2 O 3 layer is less than 2 μm, the heat shielding effect is not sufficient, so that it is insufficient to prevent the occurrence of thermoplastic deformation and uneven wear, If the layer thickness exceeds 15 μm, an abnormal loss layer such as chipping is likely to occur. Therefore, the layer thickness of the upper layer is preferably 2 to 15 μm.

上記のとおり、この発明の被覆工具は、Ti化合物層からなる下部層上に、Y(イットリウム)を0.1〜2原子%含有するとともに、該Y(イットリウム)は、YとしてAl相中に分散しており、さらに、該Yは(210)面に高配向性を有するY分散Al層を上部層として蒸着形成したことにより、下部層−上部層間の層間密着強度が増すとともに、上部層の耐熱性、熱遮蔽効果が向上するため、高熱発生を伴う高速切削加工において、チッピング、欠損、剥離を生じないばかりか、熱塑性変形による偏摩耗を発生することもなく、長期の使用に亘ってすぐれた耐摩耗性を発揮し、使用寿命の一層の延命化が可能となる。 As described above, the coated tool of the present invention contains 0.1 to 2 atom% of Y (yttrium) on the lower layer made of the Ti compound layer, and Y (yttrium) is Al as Y 2 O 3. The Y 2 O 3 is dispersed in the 2 O 3 phase, and the Y 2 O 3 is deposited on the (210) plane as a top layer by depositing a Y 2 O 3 dispersed Al 2 O 3 layer having a high orientation. The interlayer adhesion strength between the upper layer and the upper layer is increased, and the heat resistance and heat shielding effect of the upper layer are improved. Therefore, not only chipping, chipping and peeling are not caused in high-speed cutting processing with high heat generation, but also the deformation due to thermoplastic deformation. No wear is generated and excellent wear resistance is exhibited over a long period of use, and the service life can be further extended.

本発明被覆工具1の硬質被覆層の上部層であるY分散Al層について測定したX線回折チャートを示す。Indicating the Y 2 O 3 X-ray diffraction chart measured for dispersed Al 2 O 3 layer which is the upper layer of the hard coating layer of the present invention coated tools 1. 従来被覆工具1の硬質被覆層の上部層であるY含有Al層について測定したX線回折チャートを示す。It shows the X-ray diffraction chart measured for the upper layer in which Y contains the Al 2 O 3 layer of the hard coating layer of the conventional coated tools 1.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を1.3Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408MAに規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 1.3 Pa. After sintering, the cutting edge portion had R: 0.07 mm. The tool bases A to E made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG120408MA were manufactured by performing the honing process.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408MAのチップ形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to e made of TiCN base cermet having a standard / CNMG120408MA chip shape were formed.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
ついで、表4に示される条件にて、表6に示される目標層厚のY分散Al層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜10をそれぞれ製造した。
Then, each of these tool bases A to E and tool bases a to e is charged into a normal chemical vapor deposition apparatus,
First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A No. 6-8010, and other than that, a normal granular crystal structure is shown. The Ti compound layer having the target layer thickness shown in Table 6 is deposited as a lower layer of the hard coating layer under the conditions shown in FIG.
Then, under the conditions shown in Table 4, the present invention coated tool by depositing form Y 2 O 3 dispersed the Al 2 O 3 layer of the target layer thicknesses shown in Table 6 as the upper layer of the hard layer 10 Were manufactured respectively.

また、比較の目的で、硬質被覆層の下部層を表3に示される条件にて形成し、上部層を表5に示される条件(特許文献1に開示されたY含有Al23層の蒸着条件に相当)にて形成することにより、表7に示される目標層厚のTi化合物層とY含有Al23層からなる硬質被覆層を設けた従来被覆工具1〜10をそれぞれ製造した。
なお、従来被覆工具1〜10の工具基体種別、下部層種別及び下部層厚は、それぞれ、本発明被覆工具1〜10のそれと同じである。
For comparison purposes, the lower layer of the hard coating layer is formed under the conditions shown in Table 3, and the upper layer is formed under the conditions shown in Table 5 (the Y-containing Al 2 O 3 layer disclosed in Patent Document 1). The conventional coated tools 1 to 10 provided with a hard coating layer composed of a Ti compound layer having a target layer thickness shown in Table 7 and a Y-containing Al 2 O 3 layer were produced respectively. .
The tool base type, the lower layer type, and the lower layer thickness of the conventional coated tools 1 to 10 are the same as those of the present coated tools 1 to 10, respectively.

ついで、上記の本発明被覆工具1〜10の硬質被覆層の上部層を構成するY分散Al層、および、従来被覆工具1〜10の硬質被覆層の上部層を構成するY含有Al層について、X線回折により、Y存在の有無と配向性を、また、エネルギー分散型X線回折装置内蔵の透過型電子顕微鏡により、結晶粒内部と結晶粒界部のY量を分析した。
X線回折の測定条件は次のとおりである。
通常のX線回折装置を用い、X線管中に設置されたCu陽極(ターゲット)に対して、電圧40kV、電流350mAの条件で金属Wフィラメントから発生させた熱電子を加速照射することにより、前記Cu陽極表面から0.154nmの波長を有する特性X線であるCu−Kα線を発生させ、前記特性X線をY分散Al層表面、Y含有Al層表面に照射し、該層から散乱したX線のうち、該層表面に対するX線入射角度θと等しい角度で回折したX線の強度をX線検出器にて測定することにより行った。また、このときの測定範囲は、θ=7.5〜65°である。
図1に、本発明被覆工具1について測定したX線回折チャートを示すが、このチャートから、(222)、(40−2)、(003)、(840)面に回折ピークが存在するが、その中で(840)面の回折強度I(840)が一番大きく、I(840)と第2ピークの回折強度Isecとの回折強度比I(840)/Isecの値が1.5以上であることから、Y分散Al層のY相は、(840)面、即ち、(210)面に高配向性を有することがわかる。
参考のために、従来被覆工具1〜10のAl相の粒界に存在するY相についても、X線回折により、面配向性を調査した。
図2に、従来被覆工具1について測定したX線回折チャートを示すが、このチャートでは、Y回折ピークが存在していなかった。
表6、7に、X線回折で測定したY相の有する最強面指数を示す。表6、7から、本発明被覆工具の上部層のY相は、(210)面への高い配向性を示すのに対して、従来被覆工具の上部層では、Y相が存在していないことがわかる。
また、前記エネルギー分散型X線回折装置内蔵の透過型電子顕微鏡による結晶粒内部と結晶粒界部のY量の分析結果から、本発明被覆工具の上部層におけるY相の存在個所は、結晶粒界のみではないことがわかる。
Next, the Y 2 O 3 dispersed Al 2 O 3 layer constituting the upper layer of the hard coating layer of the present invention coated tools 1 to 10 and the upper layer of the hard coating layer of the conventional coated tools 1 to 10 are configured. For Y-containing Al 2 O 3 layer, the presence and orientation of Y 2 O 3 are determined by X-ray diffraction, and the inside of crystal grains and the grain boundaries are analyzed by a transmission electron microscope built in an energy dispersive X-ray diffractometer. The amount of Y in the part was analyzed.
The measurement conditions of X-ray diffraction are as follows.
By using a normal X-ray diffractometer, a Cu anode (target) installed in an X-ray tube is accelerated and irradiated with thermoelectrons generated from a metal W filament under conditions of a voltage of 40 kV and a current of 350 mA, A Cu—Kα ray, which is a characteristic X-ray having a wavelength of 0.154 nm, is generated from the Cu anode surface, and the characteristic X-ray is generated as a Y 2 O 3 dispersed Al 2 O 3 layer surface or a Y-containing Al 2 O 3 layer surface. The X-ray intensity diffracted at an angle equal to the X-ray incident angle θ on the surface of the X-rays scattered from the layer was measured by an X-ray detector. Further, the measurement range at this time is θ = 7.5 to 65 °.
FIG. 1 shows an X-ray diffraction chart measured for the coated tool 1 of the present invention. From this chart, diffraction peaks exist on the (222), (40-2), (003), and (840) planes. Among them, the diffraction intensity I (840) of the (840) plane is the largest, and the value of the diffraction intensity ratio I (840) / Isec between I (840) and the diffraction intensity Isec of the second peak is 1.5 or more. From this, it can be seen that the Y 2 O 3 phase of the Y 2 O 3 -dispersed Al 2 O 3 layer has a high orientation in the (840) plane, that is, the (210) plane.
For reference, the surface orientation of the Y 2 O 3 phase existing at the grain boundaries of the Al 2 O 3 phase of the conventional coated tools 1 to 10 was also examined by X-ray diffraction.
FIG. 2 shows an X-ray diffraction chart measured for the conventional coated tool 1, and in this chart, no Y 2 O 3 diffraction peak was present.
Tables 6 and 7 show the strongest surface index of the Y 2 O 3 phase measured by X-ray diffraction. From Tables 6 and 7, the Y 2 O 3 phase of the upper layer of the coated tool of the present invention shows high orientation to the (210) plane, whereas the Y 2 O 3 phase of the upper layer of the conventional coated tool is shown. It can be seen that does not exist.
Further, from the result of analyzing the amount of Y inside the crystal grains and the grain boundary portion by the transmission electron microscope built in the energy dispersive X-ray diffractometer, the existence location of the Y 2 O 3 phase in the upper layer of the coated tool of the present invention is It turns out that it is not only a grain boundary.

ついで、本発明被覆工具1〜10、従来被覆工具1〜10の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したが、いずれもの場合も、目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Next, the thickness of each constituent layer of the hard coating layer of the present invention coated tools 1 to 10 and conventional coated tools 1 to 10 was measured using a scanning electron microscope (longitudinal section measurement). The average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.

つぎに、上記の本発明被覆工具1〜10、従来被覆工具1〜10について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S45Cの丸棒、
切削速度: 460 m/min.、
切り込み: 1.5 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)での炭素鋼の乾式高速連続切削試験(通常の切削速度は、250m/min.)、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min.、
切り込み: 1.5 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件(切削条件Bという)でのクロムモリブデン合金鋼の湿式高速断続切削試験(通常の切削速度は、300m/min.)、
被削材:JIS・SNCM439の丸棒、
切削速度: 350 m/min.、
切り込み: 1.5 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件(切削条件Cという)でのニッケルクロムモリブデン合金鋼の乾式高速連続切削試験(通常の切削速度は、250m/min.)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表8に示した。
Next, for the above-described coated tools 1 to 10 of the present invention and the conventional coated tools 1 to 10, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S45C round bar,
Cutting speed: 460 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed continuous cutting test of carbon steel under the following conditions (referred to as cutting condition A) (normal cutting speed is 250 m / min.),
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 400 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 300 m / min.) Of chromium-molybdenum alloy steel under the following conditions (referred to as cutting condition B),
Work material: JIS / SNCM439 round bar,
Cutting speed: 350 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed continuous cutting test of nickel chromium molybdenum alloy steel under the conditions (cutting condition C) (normal cutting speed is 250 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 8.

Figure 0005234354
Figure 0005234354

Figure 0005234354
Figure 0005234354

Figure 0005234354
Figure 0005234354

Figure 0005234354
Figure 0005234354

Figure 0005234354
Figure 0005234354

Figure 0005234354
Figure 0005234354

Figure 0005234354
Figure 0005234354

Figure 0005234354
Figure 0005234354

表8〜10に示される結果から、本発明被覆工具1〜10は、硬質被覆層の上部層を構成するY分散Al層が、優れた層間密着強度、耐熱性及び熱遮蔽効果を有することから、高熱発生を伴う高速切削加工において、チッピング、欠損、剥離を生じないばかりか、熱塑性変形による偏摩耗を発生することもなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する。
これに対して、硬質被覆層の上部層がY含有Al層からなる従来被覆工具1〜15においては、チッピング、欠損、剥離の発生あるいは熱塑性変形による偏摩耗の発生によって、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 8 to 10, according to the present invention coated tools 1 to 10, the Y 2 O 3 dispersed Al 2 O 3 layer constituting the upper layer of the hard coating layer has excellent interlayer adhesion strength, heat resistance and heat. Because it has a shielding effect, it does not cause chipping, chipping or peeling in high-speed cutting with high heat generation, and does not cause uneven wear due to thermoplastic deformation. To demonstrate.
On the other hand, in the conventional coated tools 1 to 15 in which the upper layer of the hard coating layer is composed of the Y-containing Al 2 O 3 layer, it is relatively short due to occurrence of chipping, chipping, peeling, or partial wear due to thermoplastic deformation. It is clear that the service life is reached in time.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常条件の切削加工は勿論のこと、高熱発生を伴う高速切削加工でも、チッピング、偏摩耗等の発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has excellent resistance to cutting without occurrence of chipping, uneven wear, etc., even in high-speed cutting with high heat generation, as well as cutting under various conditions such as various steels and cast iron. Since it exhibits wearability and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction. .

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と上部層からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
(a)下部層は、Tiの炭化物、窒化物、炭窒化物、炭酸化物および炭窒酸化物のいずれか1種又は2種以上からなる3〜20μmの合計層厚のTi化合物層、
(b)上部層は、Y(イットリウム)を0.1〜2原子%含有するとともに、該Y(イットリウム)は、YとしてAl相中に分散しており、さらに、該上部層についてX線回折を行ったときにYの(840)面からの回折強度I(840)の値が最大回折強度を示し、かつ、他のYの結晶面で2番目に大きい回折強度Isecとの比の値I(840)/Isecが1.5以上の値を満足するY分散Al層、
からなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer and an upper layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The lower layer is a Ti compound layer having a total layer thickness of 3 to 20 μm made of any one or more of Ti carbide, nitride, carbonitride, carbonate and carbonitride,
(B) The upper layer contains 0.1 to 2 atomic% of Y (yttrium), and the Y (yttrium) is dispersed in the Al 2 O 3 phase as Y 2 O 3 , the maximum diffraction intensity value of the diffraction intensity I (840) from (840) plane of Y 2 O 3 when subjected to X-ray diffraction for the upper layer, and 2 in the crystal plane other Y 2 O 3 Y 2 O 3 dispersed Al 2 O 3 layer in which the value I (840) / Isec of the ratio to the second largest diffraction intensity Isec satisfies a value of 1.5 or more,
A surface-coated cutting tool comprising:
JP2009001305A 2009-01-07 2009-01-07 Surface coated cutting tool with excellent heat plastic deformation and interlayer adhesion strength Active JP5234354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009001305A JP5234354B2 (en) 2009-01-07 2009-01-07 Surface coated cutting tool with excellent heat plastic deformation and interlayer adhesion strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009001305A JP5234354B2 (en) 2009-01-07 2009-01-07 Surface coated cutting tool with excellent heat plastic deformation and interlayer adhesion strength

Publications (2)

Publication Number Publication Date
JP2010158733A JP2010158733A (en) 2010-07-22
JP5234354B2 true JP5234354B2 (en) 2013-07-10

Family

ID=42576291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009001305A Active JP5234354B2 (en) 2009-01-07 2009-01-07 Surface coated cutting tool with excellent heat plastic deformation and interlayer adhesion strength

Country Status (1)

Country Link
JP (1) JP5234354B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1026688A (en) * 1987-01-20 1988-07-21 Gte Laboratories Incorporated A method for depositing composite coatings
CA2149567C (en) * 1994-05-31 2000-12-05 William C. Russell Coated cutting tool and method of making same
JP3910881B2 (en) * 2002-06-03 2007-04-25 日立ツール株式会社 Oxide coating tool
JP4569862B2 (en) * 2004-03-02 2010-10-27 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP5118381B2 (en) * 2007-04-10 2013-01-16 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ Tool with protective layer system

Also Published As

Publication number Publication date
JP2010158733A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
WO2014034730A1 (en) Surface-coated cutting tool
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP7098932B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4888771B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP2005131730A (en) Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
JP2019005867A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent anti-chipping properties
JP5935562B2 (en) Surface-coated cutting tool with excellent initial coating and chipping resistance with excellent hard coating layer
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5402516B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP5023896B2 (en) Surface coated cutting tool
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5477767B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP5234354B2 (en) Surface coated cutting tool with excellent heat plastic deformation and interlayer adhesion strength
JP2004299021A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20130228

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20130313

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3