JP5228777B2 - Focus detection apparatus and imaging apparatus - Google Patents

Focus detection apparatus and imaging apparatus Download PDF

Info

Publication number
JP5228777B2
JP5228777B2 JP2008262735A JP2008262735A JP5228777B2 JP 5228777 B2 JP5228777 B2 JP 5228777B2 JP 2008262735 A JP2008262735 A JP 2008262735A JP 2008262735 A JP2008262735 A JP 2008262735A JP 5228777 B2 JP5228777 B2 JP 5228777B2
Authority
JP
Japan
Prior art keywords
focus detection
pixel
detection pixel
pair
defective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008262735A
Other languages
Japanese (ja)
Other versions
JP2010091848A (en
Inventor
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008262735A priority Critical patent/JP5228777B2/en
Publication of JP2010091848A publication Critical patent/JP2010091848A/en
Application granted granted Critical
Publication of JP5228777B2 publication Critical patent/JP5228777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を複数個の焦点検出画素の配列により生成するとともに、一対の像信号のズレ量に基づいて光学系の焦点調節状態を検出する焦点検出装置および撮像装置に関する。   According to the present invention, a pair of image signals corresponding to a pair of images formed by a pair of light beams passing through an optical system is generated by an array of a plurality of focus detection pixels, and an optical signal is generated based on a shift amount of the pair of image signals. The present invention relates to a focus detection device and an imaging device that detect a focus adjustment state of a system.

光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する複数個の焦点検出画素の配列を撮像画素中に混在させたイメージセンサーを備え、撮像画素の出力により画像信号を生成するとともに、焦点検出画素が生成する一対の像信号のズレ量に基づいて、光学系の焦点調節状態を検出する焦点検出機能を備えた撮像装置が知られている(例えば、特許文献1参照)。
特開2007−189312号公報
An image sensor in which an array of a plurality of focus detection pixels that generate a pair of image signals corresponding to a pair of images formed by a pair of light beams passing through an optical system is mixed in the imaging pixel, 2. Description of the Related Art An image pickup apparatus that generates an image signal and has a focus detection function that detects a focus adjustment state of an optical system based on a shift amount between a pair of image signals generated by a focus detection pixel is known (for example, a patent) Reference 1).
JP 2007-188931 A

しかしながら、上述した従来の撮像装置では、複数の焦点検出画素の一部に出力が異常となる欠陥焦点検出画素を含んだまま像ズレ検出を行った場合、焦点検出精度が悪化し、間違った焦点検出結果を出したり、焦点検出が不能になるという問題がある。このような問題を防止するために、個別検査により欠陥焦点検出画素を含まないイメージセンサーを選別して撮像装置に組み込む対策を施すと、イメージセンサーの歩留まりが低下し、撮像装置のコストが増加するという問題が生じる。   However, in the above-described conventional imaging device, when image shift detection is performed while including a defective focus detection pixel whose output is abnormal in some of the plurality of focus detection pixels, the focus detection accuracy deteriorates and the wrong focus is detected. There is a problem that detection results are output and focus detection becomes impossible. In order to prevent such a problem, if a measure for selecting an image sensor that does not include a defective focus detection pixel by individual inspection and incorporating it into the imaging apparatus is taken, the yield of the image sensor is reduced and the cost of the imaging apparatus is increased. The problem arises.

請求項1の発明による焦点検出装置は、撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の前記焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子と、前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素の周囲の画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段と、を備え、前記補間手段は、前記欠陥焦点検出画素の周囲の前記撮像画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算し、前記撮像画素には複数種類の色フィルターが設けられており、前記補間手段は、前記色フィルターが設けられていない前記欠陥焦点検出画素の出力信号を、それぞれの前記色フィルターが設けられた前記撮像画素の出力信号の線形和として演算することを特徴とする。
請求項2の発明による焦点検出装置は、撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の前記焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子と、前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素の周囲の画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段と、を備え、前記補間手段は、前記欠陥焦点検出画素の周囲の前記撮像画素と前記焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算し、前記撮像画素には複数種類の色フィルターが設けられており、前記補間手段は、前記色フィルターが設けられていない前記欠陥焦点検出画素の出力信号を、それぞれの前記色フィルターが設けられた前記撮像画素の出力信号の線形和として演算することを特徴とする。
請求項3の発明による焦点検出装置は、撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の前記焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子と、前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素の周囲に位置する前記撮像画素及び前記焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段とを備えることを特徴とする。
請求項4の発明による焦点検出装置は、撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、前記焦点検出画素は結像光学系を通過する一対の焦点検出光束の一方及び他方をそれぞれ受光する第1及び第2の焦点検出画素を有し、前記第1及び第2の焦点検出画素は一方向に互いに隣接して交互にそれぞれ3個以上配置され、前記一対の焦点検出光束による一対の像に対応した一対の像信号を出力する撮像素子と、前記第1の焦点検出画素が欠陥焦点検出画素である場合に、少なくとも前記欠陥焦点検出画素の両隣にそれぞれ位置する第2の焦点検出画素にそれぞれ隣接する第1の焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段と、を備え、前記補間手段は、前記欠陥焦点検出画素の両隣にそれぞれ位置する第2の焦点検出画素にそれぞれ隣接する第1の焦点検出画素の出力信号と、前記欠陥焦点検出画素の周囲の前記撮像画素の出力信号とに基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする。
請求項の発明による焦点検出装置は、撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、前記焦点検出画素は、一方向に複数個配列され、結像光学系を通過する一対の焦点検出光束の一方及び他方をそれぞれ受光する第1及び第2の光電変換部を有し、前記結像光学系を通過する一対の焦点検出光束が形成する一対の像に対応した一対の像信号を出力する撮像素子と、前記焦点検出画素の第1の光電変換部からの出力信号に欠陥がある場合に、前記欠陥焦点検出画素の両隣にそれぞれ位置する焦点検出画素の第1の光電変換部の出力信号に基づいて前記欠陥焦点検出画素の第1の光電変換部の出力信号を補間により演算する補間手段と、前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段とを備え、前記補間手段は、前記欠陥焦点検出画素の両隣にそれぞれ位置する焦点検出画素の第1の光電変換部の出力信号と、前記欠陥焦点検出画素の周囲の前記撮像画素の出力信号とに基づいて前記欠陥焦点検出画素の第1の光電変換部の出力信号を補間により演算することを特徴とする。
請求項の発明による焦点検出装置は、撮像画素と結像光学系を通過する一対の焦点検出光束を受光する焦点検出画素とが二次元状に配列された撮像素子であって、前記焦点検出画素が互いに隣接して複数個一直線上に配置されて前記一対の焦点検出光束が形成する一対の像に対応した一対の像信号を出力する撮像素子と、前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素に近接する周囲の前記撮像画素と前記焦点検出画素との少なくとも一方の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段と、を備え、前記補間手段は、前記撮像画素と前記焦点検出画素との両方の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする。
A focus detection device according to a first aspect of the present invention is an image pickup device in which an image pickup pixel and a focus detection pixel are two-dimensionally arranged, and a pair of images passing through an imaging optical system by the arrangement of the plurality of focus detection pixels. When there is an image sensor that generates a pair of image signals corresponding to a pair of images formed by a light beam and a defective focus detection pixel among the plurality of focus detection pixels, outputs of pixels around the defective focus detection pixel A pair generated by an interpolation means for calculating an output signal of the defective focus detection pixel based on a signal by interpolation, an output signal of the focus detection pixel and an output signal of the defective focus detection pixel calculated by the interpolation means. Detection means for detecting a relative shift amount of the pair of images based on the image signal of the image, and focus adjustment of the imaging optical system based on the shift amount of the pair of images detected by the detection means State Calculating means, and the interpolation means calculates an output signal of the defective focus detection pixel based on an output signal of the imaging pixel around the defective focus detection pixel by interpolation, and the imaging pixel A plurality of types of color filters are provided, and the interpolation means outputs an output signal of the defective focus detection pixel not provided with the color filter to an output signal of the imaging pixel provided with each of the color filters. It is characterized by calculating as a linear sum.
A focus detection device according to a second aspect of the present invention is an image pickup device in which an image pickup pixel and a focus detection pixel are arranged in a two-dimensional shape, and a pair of images passing through an imaging optical system by the arrangement of the plurality of focus detection pixels. When there is an image sensor that generates a pair of image signals corresponding to a pair of images formed by a light beam and a defective focus detection pixel among the plurality of focus detection pixels, outputs of pixels around the defective focus detection pixel A pair generated by an interpolation means for calculating an output signal of the defective focus detection pixel based on a signal by interpolation, an output signal of the focus detection pixel and an output signal of the defective focus detection pixel calculated by the interpolation means. Detection means for detecting a relative shift amount of the pair of images based on the image signal of the image, and focus adjustment of the imaging optical system based on the shift amount of the pair of images detected by the detection means State Calculating means for calculating, the interpolation means calculates the output signal of the defective focus detection pixel by interpolation based on the output signal of the imaging pixel and the focus detection pixel around the defective focus detection pixel, The image pickup pixel is provided with a plurality of types of color filters, and the interpolation means outputs the output signal of the defective focus detection pixel not provided with the color filter to the image pickup provided with each of the color filters. It is calculated as a linear sum of output signals of pixels.
A focus detection device according to a third aspect of the present invention is an image pickup device in which an image pickup pixel and a focus detection pixel are arranged two-dimensionally, and a pair of images passing through an imaging optical system by the arrangement of the plurality of focus detection pixels. The imaging element that generates a pair of image signals corresponding to a pair of images formed by a light beam, and the defective focus detection pixel in the plurality of focus detection pixels, the position located around the defective focus detection pixel Interpolation means for calculating the output signal of the defective focus detection pixel by interpolation based on the output signals of the imaging pixel and the focus detection pixel, and the defective focus detection pixel calculated by the output signal of the focus detection pixel and the interpolation means Based on a pair of image signals generated by the output signals of the two, based on a detection unit that detects a relative shift amount of the pair of images and a shift amount of the pair of images detected by the detection unit. Te, characterized in that it comprises a calculating means for calculating a focusing state of the imaging optical system.
A focus detection apparatus according to a fourth aspect of the present invention is an image pickup device in which an image pickup pixel and a focus detection pixel are two-dimensionally arranged, and the focus detection pixel is a pair of focus detection light beams that pass through an imaging optical system. The first and second focus detection pixels that receive one and the other respectively, and three or more of the first and second focus detection pixels are alternately arranged adjacent to each other in one direction. When an image sensor that outputs a pair of image signals corresponding to a pair of images by a focus detection light beam and the first focus detection pixel is a defect focus detection pixel, they are positioned at least on both sides of the defect focus detection pixel, respectively. Interpolating means for calculating the output signal of the defective focus detection pixel by interpolation based on the output signal of the first focus detection pixel adjacent to the second focus detection pixel, and the output signal of the focus detection pixel and the complement Detection means for detecting a relative shift amount of the pair of images based on a pair of image signals generated by an output signal of the defective focus detection pixel calculated by the means; and detected by the detection means Computing means for computing a focus adjustment state of the imaging optical system based on a deviation amount of the pair of images , wherein the interpolation means is a second focus located respectively on both sides of the defect focus detection pixel. The output signal of the defective focus detection pixel is calculated by interpolation based on the output signal of the first focus detection pixel adjacent to the detection pixel and the output signal of the imaging pixel around the defective focus detection pixel. Features.
A focus detection apparatus according to a fifth aspect of the present invention is an image pickup device in which image pickup pixels and focus detection pixels are two-dimensionally arranged, and a plurality of the focus detection pixels are arranged in one direction, and an imaging optical system Corresponding to a pair of images formed by a pair of focus detection light beams that pass through the imaging optical system. In the case where there is a defect in the output signal from the first photoelectric conversion unit of the focus detection pixel and the imaging device that outputs the pair of image signals, the first of the focus detection pixels located on both sides of the defective focus detection pixel, respectively. Interpolation means for calculating the output signal of the first photoelectric conversion section of the defective focus detection pixel based on the output signal of one photoelectric conversion section by interpolation, the output signal of the focus detection pixel and the interpolation means The defect focus detection image Based on a pair of image signals generated by the output signals of the first and second detection means, and detecting means for detecting a relative shift amount of the pair of images, and based on a shift amount of the pair of images detected by the detection means. Calculating means for calculating a focus adjustment state of the imaging optical system, and the interpolation means includes an output signal of a first photoelectric conversion unit of a focus detection pixel located on both sides of the defective focus detection pixel, respectively. The output signal of the first photoelectric conversion unit of the defective focus detection pixel is calculated by interpolation based on the output signal of the imaging pixel around the defective focus detection pixel .
A focus detection apparatus according to a sixth aspect of the present invention is an image pickup device in which an image pickup pixel and a focus detection pixel that receives a pair of focus detection light beams that pass through an imaging optical system are two-dimensionally arranged, and the focus detection An image sensor that outputs a pair of image signals corresponding to a pair of images formed by the pair of focus detection light beams, the pixels being arranged on a straight line adjacent to each other, and a defect in the focus detection pixels Interpolation that calculates the output signal of the defective focus detection pixel by interpolation based on the output signal of at least one of the surrounding imaging pixel and the focus detection pixel adjacent to the defective focus detection pixel when there is a focus detection pixel Based on a pair of image signals generated by the output signal of the focus detection pixel and the output signal of the defective focus detection pixel calculated by the interpolation means. Detecting means for detecting an amount, based on the shift amount of the pair of images detected by the detection means, and a calculation means for calculating a focusing state of the imaging optical system, the interpolation means, The output signal of the defective focus detection pixel is calculated by interpolation based on the output signals of both the imaging pixel and the focus detection pixel .

本発明によれば、欠陥焦点検出画素を含んだ撮像素子を使用しても正常に焦点検出を行うことが可能になるとともに、撮像素子の歩留まりの低下を防ぐことができる。   According to the present invention, it is possible to normally perform focus detection even when an image sensor including defective focus detection pixels is used, and it is possible to prevent a decrease in yield of the image sensor.

一実施の形態の焦点検出装置および撮像装置として、レンズ交換式デジタルスチルカメラを例に上げて説明する。図1は一実施の形態のカメラの構成を示すカメラの横断面図である。一実施の形態のデジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、交換レンズ202がマウント部204を介してカメラボディ203に装着される。カメラボディ203にはマウント部204を介して種々の撮影光学系を有する交換レンズ202が装着可能である。   A lens interchangeable digital still camera will be described as an example of a focus detection device and an imaging device according to an embodiment. FIG. 1 is a cross-sectional view of a camera showing the configuration of the camera of one embodiment. A digital still camera 201 according to an embodiment includes an interchangeable lens 202 and a camera body 203, and the interchangeable lens 202 is attached to the camera body 203 via a mount unit 204. An interchangeable lens 202 having various photographing optical systems can be attached to the camera body 203 via a mount unit 204.

交換レンズ202はレンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り211、レンズ駆動制御装置206などを備えている。レンズ駆動制御装置206は不図示のマイクロコンピューター、メモリ、駆動制御回路などから構成され、フォーカシング用レンズ210の焦点調節と絞り211の開口径調節のための駆動制御や、ズーミング用レンズ208、フォーカシング用レンズ210および絞り211の状態検出などを行う他、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報の受信を行う。絞り211は、光量およびボケ量調整のために光軸中心に開口径が可変な開口を形成する。   The interchangeable lens 202 includes a lens 209, a zooming lens 208, a focusing lens 210, an aperture 211, a lens drive control device 206, and the like. The lens drive control device 206 includes a microcomputer (not shown), a memory, a drive control circuit, and the like. The lens drive control device 206 includes drive control for adjusting the focus of the focusing lens 210 and the aperture diameter of the aperture 211, zooming lens 208, and focusing. In addition to detecting the state of the lens 210 and the aperture 211, the lens information is transmitted and the camera information is received through communication with a body drive control device 214 described later. The aperture 211 forms an aperture having a variable aperture diameter at the center of the optical axis in order to adjust the amount of light and the amount of blur.

カメラボディ203は撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には、撮像画素が二次元状に配置されるとともに、焦点検出位置に対応した部分に焦点検出画素が組み込まれている。また撮像素子212には不揮発性メモリ(詳細後述)が内蔵されており、撮像素子212がカメラボディ203に組み込まれる前に個別検査が行われ、欠陥画素の有無、欠陥画素の位置情報などの撮像素子個別の情報が該メモリに書き込まれて記憶される。この撮像素子212については詳細を後述する。   The camera body 203 includes an imaging element 212, a body drive control device 214, a liquid crystal display element drive circuit 215, a liquid crystal display element 216, an eyepiece lens 217, a memory card 219, and the like. In the imaging element 212, imaging pixels are two-dimensionally arranged, and focus detection pixels are incorporated in portions corresponding to focus detection positions. The image sensor 212 has a non-volatile memory (details will be described later), and an individual inspection is performed before the image sensor 212 is incorporated into the camera body 203, and imaging such as presence / absence of defective pixels and position information of defective pixels is performed. Information specific to each element is written and stored in the memory. Details of the image sensor 212 will be described later.

ボディ駆動制御装置214はマイクロコンピューター、メモリ、駆動制御回路などから構成され、撮像素子212の駆動制御と画像信号および焦点検出信号の読み出しと、焦点検出信号に基づく焦点検出演算と交換レンズ202の焦点調節を繰り返し行うとともに、画像信号の処理と記録、カメラの動作制御などを行う。また、ボディ駆動制御装置214は電気接点213を介してレンズ駆動制御装置206と通信を行い、レンズ情報の受信とカメラ情報(デフォーカス量や絞り値など)の送信を行う。   The body drive control device 214 includes a microcomputer, a memory, a drive control circuit, and the like, and controls the drive of the image sensor 212, reads out the image signal and the focus detection signal, performs the focus detection calculation based on the focus detection signal, and the focus of the interchangeable lens 202. The adjustment is repeated, and image signal processing and recording, camera operation control, and the like are performed. The body drive control device 214 communicates with the lens drive control device 206 via the electrical contact 213 to receive lens information and send camera information (defocus amount, aperture value, etc.).

液晶表示素子216は電気的なビューファインダー(EVF:Electronic View Finder)として機能する。液晶表示素子駆動回路215は撮像素子212によるスルー画像を液晶表示素子216に表示し、撮影者は接眼レンズ217を介してスルー画像を観察することができる。メモリカード219は、撮像素子212により撮像された画像を記憶する画像ストレージである。   The liquid crystal display element 216 functions as an electric view finder (EVF). The liquid crystal display element driving circuit 215 displays a through image by the imaging element 212 on the liquid crystal display element 216, and the photographer can observe the through image through the eyepiece lens 217. The memory card 219 is an image storage that stores an image captured by the image sensor 212.

交換レンズ202を通過した光束により、撮像素子212の受光面上に被写体像が形成される。この被写体像は撮像素子212により光電変換され、画像信号と焦点検出信号がボディ駆動制御装置214へ送られる。   A subject image is formed on the light receiving surface of the image sensor 212 by the light beam that has passed through the interchangeable lens 202. This subject image is photoelectrically converted by the image sensor 212, and an image signal and a focus detection signal are sent to the body drive control device 214.

ボディ駆動制御装置214は、撮像素子212の焦点検出画素からの焦点検出信号に基づいてデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像素子212からの画像信号を処理して画像を生成し、メモリカード219に格納するとともに、撮像素子212からのスルー画像信号を液晶表示素子駆動回路215へ送り、スルー画像を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送って絞り211の開口制御を行う。   The body drive control device 214 calculates the defocus amount based on the focus detection signal from the focus detection pixel of the image sensor 212 and sends the defocus amount to the lens drive control device 206. The body drive control device 214 processes the image signal from the image sensor 212 to generate an image, stores the image in the memory card 219, and sends the through image signal from the image sensor 212 to the liquid crystal display element drive circuit 215. The through image is displayed on the liquid crystal display element 216. Further, the body drive control device 214 sends aperture control information to the lens drive control device 206 to control the aperture of the aperture 211.

レンズ駆動制御装置206は、フォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じてレンズ情報を更新する。具体的には、ズーミング用レンズ208とフォーカシング用レンズ210の位置と絞り211の絞り値を検出し、これらのレンズ位置と絞り値に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからレンズ位置と絞り値に応じたレンズ情報を選択する。   The lens drive controller 206 updates the lens information according to the focusing state, zooming state, aperture setting state, aperture opening F value, and the like. Specifically, the positions of the zooming lens 208 and the focusing lens 210 and the aperture value of the aperture 211 are detected, and lens information is calculated according to these lens positions and aperture values, or a lookup prepared in advance. Lens information corresponding to the lens position and aperture value is selected from the table.

レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に応じてフォーカシング用レンズ210を合焦位置へ駆動する。また、レンズ駆動制御装置206は受信した絞り値に応じて絞り211を駆動する。   The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to the in-focus position according to the lens drive amount. Further, the lens drive control device 206 drives the diaphragm 211 in accordance with the received diaphragm value.

図2は、交換レンズ202の撮影画面上における焦点検出位置を示す図であり、後述する撮像素子212上の焦点検出画素列が焦点検出の際に撮影画面上で像をサンプリングする領域(焦点検出エリア、焦点検出位置)の一例を示す。この例では、矩形の撮影画面100上の中央および上下の3箇所に焦点検出エリア101〜103が配置される。長方形で示す焦点検出エリアの長手方向に、焦点検出画素が直線的に配列される。   FIG. 2 is a diagram showing a focus detection position on the imaging screen of the interchangeable lens 202, and an area in which an image is sampled on the imaging screen when a focus detection pixel row on the image sensor 212 described later performs focus detection (focus detection An example of an area and a focus detection position is shown. In this example, focus detection areas 101 to 103 are arranged at the center and three locations above and below the rectangular shooting screen 100. Focus detection pixels are linearly arranged in the longitudinal direction of the focus detection area indicated by a rectangle.

図3は撮像素子212の詳細な構成を示す正面図であり、撮像素子212上の焦点検出エリア101の近傍を拡大して示す。撮像素子212には撮像画素310が二次元正方格子状に稠密に配列されるとともに、焦点検出エリア101に対応する位置には焦点検出用の焦点検出画素313、314が垂直方向の直線上に隣接して交互に配列される。なお、図示を省略するが、焦点検出エリア102、103の近傍の構成も図3に示す構成と同様である。   FIG. 3 is a front view showing a detailed configuration of the image sensor 212, and shows an enlarged vicinity of the focus detection area 101 on the image sensor 212. Imaging pixels 310 are densely arranged in a two-dimensional square lattice pattern on the imaging element 212, and focus detection pixels 313 and 314 for focus detection are adjacent to each other on a vertical straight line at a position corresponding to the focus detection area 101. Are alternately arranged. Although not shown, the configuration in the vicinity of the focus detection areas 102 and 103 is the same as the configuration shown in FIG.

撮像画素310は、図4に示すようにマイクロレンズ10、光電変換部11、および色フィルター(不図示)から構成される。色フィルターは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの分光感度は図6に示す特性になっている。撮像素子212には、各色フィルターを備えた撮像画素310がベイヤー配列されている。   As illustrated in FIG. 4, the imaging pixel 310 includes a microlens 10, a photoelectric conversion unit 11, and a color filter (not shown). There are three types of color filters, red (R), green (G), and blue (B), and the respective spectral sensitivities have the characteristics shown in FIG. In the image pickup device 212, image pickup pixels 310 having respective color filters are arranged in a Bayer array.

焦点検出画素313は、図5(a)に示すようにマイクロレンズ10と光電変換部13とから構成され、光電変換部13の形状は半円形である。また、焦点検出画素314は、図5(b)に示すようにマイクロレンズ10と光電変換部14とから構成され、光電変換部14の形状は半円形である。焦点検出画素313と焦点検出画素314は、図2および図3に示すように焦点検出エリア101〜103において垂直方向に交互に配置され、この配列において焦点検出画素313の光電変換部13はマイクロレンズ10の上半分の位置に配置され、焦点検出用画素314の光電変換部14はマイクロレンズ10の下半分の位置に配置される。   As shown in FIG. 5A, the focus detection pixel 313 includes the microlens 10 and the photoelectric conversion unit 13, and the photoelectric conversion unit 13 has a semicircular shape. In addition, the focus detection pixel 314 includes the microlens 10 and the photoelectric conversion unit 14 as illustrated in FIG. 5B, and the photoelectric conversion unit 14 has a semicircular shape. The focus detection pixels 313 and the focus detection pixels 314 are alternately arranged in the vertical direction in the focus detection areas 101 to 103 as shown in FIGS. 2 and 3, and in this arrangement, the photoelectric conversion unit 13 of the focus detection pixels 313 is a microlens. The photoelectric conversion unit 14 of the focus detection pixel 314 is arranged at the lower half position of the microlens 10.

焦点検出画素313、314には光量をかせぐために色フィルターが設けられておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性とを総合した分光特性(図7参照)となる。つまり、図6に示す緑画素、赤画素および青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素および青画素の感度の光波長領域を包括している。   The focus detection pixels 313 and 314 are not provided with a color filter to increase the amount of light, and the spectral characteristics of the focus detection pixels 313 and 314 include the spectral sensitivity of a photodiode that performs photoelectric conversion and the spectral characteristics of an infrared cut filter (not shown). Spectral characteristics (see FIG. 7). That is, the spectral characteristics are obtained by adding the spectral characteristics of the green pixel, the red pixel, and the blue pixel shown in FIG. 6, and the light wavelength region of the sensitivity includes the light wavelength regions of the sensitivity of the green pixel, the red pixel, and the blue pixel. ing.

焦点検出用の焦点検出画素313、314は、撮像画素310のBとGが配置されるべき列に配置されている。焦点検出用の焦点検出画素313、314が、撮像画素310のBとGが配置されるべき列に配置されているのは、焦点検出画素の位置における撮像用の画像信号を求めるための補間処理において補間誤差が生じた場合に、人間の視覚特性上、赤画素の補間誤差に比較して青画素の補間誤差が目立たないためである。   The focus detection pixels 313 and 314 for focus detection are arranged in a column where B and G of the imaging pixel 310 should be arranged. The focus detection pixels 313 and 314 for focus detection are arranged in a column in which B and G of the imaging pixel 310 are to be arranged because interpolation processing for obtaining an image signal for imaging at the position of the focus detection pixel is performed. This is because the interpolation error of the blue pixel is less noticeable than the interpolation error of the red pixel due to human visual characteristics when an interpolation error occurs in FIG.

撮像画素310の光電変換部11は、マイクロレンズ10によって最も明るい交換レンズの射出瞳径(例えばF1.0)を通過する光束をすべて受光するような形状に設計される。また、焦点検出画素313、314の光電変換部13、14は、マイクロレンズ10によって交換レンズの射出瞳の所定の領域(例えばF2.8)を通過する光束をすべて受光するような形状に設計される。   The photoelectric conversion unit 11 of the imaging pixel 310 is designed so as to receive all the light beams that pass through the exit pupil diameter (for example, F1.0) of the brightest interchangeable lens by the microlens 10. In addition, the photoelectric conversion units 13 and 14 of the focus detection pixels 313 and 314 are designed to have a shape such that the microlens 10 receives all light beams passing through a predetermined region (for example, F2.8) of the exit pupil of the interchangeable lens. The

図8は撮像画素310の断面図である。撮像画素310では撮像用の光電変換部11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部11の形状が前方に投影される。光電変換部11は半導体回路基板29上に形成される。なお、不図示の色フィルターはマイクロレンズ10と光電変換部11の中間に配置される。   FIG. 8 is a cross-sectional view of the imaging pixel 310. In the imaging pixel 310, the microlens 10 is disposed in front of the photoelectric conversion unit 11 for imaging, and the shape of the photoelectric conversion unit 11 is projected forward by the microlens 10. The photoelectric conversion unit 11 is formed on the semiconductor circuit substrate 29. A color filter (not shown) is arranged between the microlens 10 and the photoelectric conversion unit 11.

図9(a)は焦点検出画素313の断面図である。画面中央の焦点検出エリア101に配置された焦点検出画素313において、光電変換部13の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部13の形状が前方に投影される。光電変換部13は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程により一体的かつ固定的に形成される。なお、画面上下の焦点検出エリア102、103に配置された焦点検出画素313の断面構造についても、図9(a)に示す断面構造と同様である。   FIG. 9A is a cross-sectional view of the focus detection pixel 313. In the focus detection pixel 313 disposed in the focus detection area 101 at the center of the screen, the microlens 10 is disposed in front of the photoelectric conversion unit 13, and the shape of the photoelectric conversion unit 13 is projected forward by the microlens 10. The photoelectric conversion unit 13 is formed on the semiconductor circuit substrate 29, and the microlens 10 is integrally and fixedly formed thereon by a semiconductor image sensor manufacturing process. Note that the cross-sectional structure of the focus detection pixels 313 arranged in the focus detection areas 102 and 103 at the top and bottom of the screen is the same as the cross-sectional structure shown in FIG.

図9(b)は焦点検出画素314の断面図である。画面中央の焦点検出エリア101に配置された焦点検出画素314において、光電変換部14の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部14の形状が前方に投影される。光電変換部14は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程により一体的かつ固定的に形成される。なお、画面上下の焦点検出エリア102、103に配置された焦点検出画素314の断面構造についても、図9(b)に示す断面構造と同様である。   FIG. 9B is a cross-sectional view of the focus detection pixel 314. In the focus detection pixel 314 disposed in the focus detection area 101 in the center of the screen, the microlens 10 is disposed in front of the photoelectric conversion unit 14, and the shape of the photoelectric conversion unit 14 is projected forward by the microlens 10. The photoelectric conversion unit 14 is formed on the semiconductor circuit substrate 29, and the microlens 10 is integrally and fixedly formed thereon by the manufacturing process of the semiconductor image sensor. Note that the cross-sectional structure of the focus detection pixels 314 arranged in the focus detection areas 102 and 103 at the top and bottom of the screen is the same as the cross-sectional structure shown in FIG.

図10は、マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す。なお、焦点検出画素の部分は拡大して示す。図において、90は、交換レンズ202(図1参照)の予定結像面に配置されたマイクロレンズから前方dの距離に設定された射出瞳である。この距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部との間の距離などに応じて決まる距離であって、この明細書では測距瞳距離と呼ぶ。91は交換レンズの光軸、10a〜10dはマイクロレンズ、13a、13b、14a、14bは光電変換部、313a、313b、314a、314bは焦点検出画素、73,74、83,84は焦点検出光束である。   FIG. 10 shows a configuration of a pupil division type phase difference detection type focus detection optical system using a microlens. The focus detection pixel portion is shown in an enlarged manner. In the figure, reference numeral 90 denotes an exit pupil set at a distance d forward from the microlens arranged on the planned imaging plane of the interchangeable lens 202 (see FIG. 1). This distance d is a distance determined according to the curvature and refractive index of the microlens, the distance between the microlens and the photoelectric conversion unit, and is referred to as a distance measuring pupil distance in this specification. 91 is an optical axis of the interchangeable lens, 10a to 10d are microlenses, 13a, 13b, 14a, and 14b are photoelectric conversion units, 313a, 313b, 314a, and 314b are focus detection pixels, and 73, 74, 83, and 84 are focus detection light fluxes. It is.

また、93は、マイクロレンズ10a、10cにより投影された光電変換部13a、13bの領域であり、この明細書では測距瞳と呼ぶ。図10では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換部の形状が拡大投影された形状になる。同様に、94は、マイクロレンズ10b、10dにより投影された光電変換部14a、14bの領域であり、この明細書では測距瞳と呼ぶ。図10では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換部の形状が拡大投影された形状になる。   Reference numeral 93 denotes an area of the photoelectric conversion units 13a and 13b projected by the microlenses 10a and 10c, and is referred to as a distance measuring pupil in this specification. In FIG. 10, an elliptical region is shown for easy understanding, but the shape of the photoelectric conversion unit is actually an enlarged projection shape. Similarly, 94 is an area of the photoelectric conversion units 14a and 14b projected by the microlenses 10b and 10d, and is called a distance measuring pupil in this specification. In FIG. 10, an elliptical region is shown for easy understanding, but the shape of the photoelectric conversion unit is actually an enlarged projection shape.

図10では、撮影光軸に隣接する4つの焦点検出画素313a、313b、314a、314bを模式的に例示しているが、焦点検出エリア101のその他の焦点検出画素においても、また画面周辺部の焦点検出エリア102、103の焦点検出画素においても、光電変換部はそれぞれ対応した測距瞳93、94から各マイクロレンズに到来する光束を受光するように構成されている。焦点検出画素の配列方向は一対の測距瞳の並び方向、すなわち一対の光電変換部の並び方向と一致させる。   In FIG. 10, four focus detection pixels 313a, 313b, 314a, and 314b adjacent to the photographing optical axis are schematically illustrated. However, other focus detection pixels in the focus detection area 101 also have a peripheral portion of the screen. Also in the focus detection pixels in the focus detection areas 102 and 103, the photoelectric conversion units are configured to receive the light beams coming from the corresponding distance measurement pupils 93 and 94 to the respective microlenses. The arrangement direction of the focus detection pixels is made to coincide with the arrangement direction of the pair of distance measuring pupils, that is, the arrangement direction of the pair of photoelectric conversion units.

マイクロレンズ10a〜10dは交換レンズ202(図1参照)の予定結像面近傍に配置されており、マイクロレンズ10a〜10dによりその背後に配置された光電変換部13a、13b、14a、14bの形状がマイクロレンズ10a〜10cから測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。すなわち、投影距離dにある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳93,94)が一致するように、各焦点検出画素におけるマイクロレンズと光電変換部の相対的位置関係が定められ、それにより各焦点検出画素における光電変換部の投影方向が決定されている。   The microlenses 10a to 10d are disposed in the vicinity of the planned imaging plane of the interchangeable lens 202 (see FIG. 1), and the shapes of the photoelectric conversion units 13a, 13b, 14a, and 14b disposed behind the microlenses 10a to 10d. Is projected onto the exit pupil 90 separated from the microlenses 10a to 10c by the distance measurement pupil distance d, and the projection shape forms distance measurement pupils 93 and 94. That is, the relative relationship between the microlens and the photoelectric conversion unit in each focus detection pixel is such that the projection shape (ranging pupils 93 and 94) of the photoelectric conversion unit of each focus detection pixel matches on the exit pupil 90 at the projection distance d. Thus, the projection position of the photoelectric conversion unit in each focus detection pixel is determined.

光電変換部13aは測距瞳93を通過し、マイクロレンズ10aに向う光束73によりマイクロレンズ10a上に形成される像の強度に対応した信号を出力する。同様に、光電変換部13bは測距瞳93を通過し、マイクロレンズ10cに向う光束83によりマイクロレンズ10c上に形成される像の強度に対応した信号を出力する。また、光電変換部14aは測距瞳94を通過し、マイクロレンズ10bに向う光束74によりマイクロレンズ10b上に形成される像の強度に対応した信号を出力する。同様に、光電変換部14bは測距瞳94を通過し、マイクロレンズ10dに向う光束84によりマイクロレンズ10d上に形成される像の強度に対応した信号を出力する。   The photoelectric conversion unit 13a passes through the distance measuring pupil 93 and outputs a signal corresponding to the intensity of the image formed on the microlens 10a by the light beam 73 directed to the microlens 10a. Similarly, the photoelectric conversion unit 13b outputs a signal corresponding to the intensity of the image formed on the microlens 10c by the light beam 83 passing through the distance measuring pupil 93 and directed to the microlens 10c. Further, the photoelectric conversion unit 14a outputs a signal corresponding to the intensity of the image formed on the microlens 10b by the light beam 74 passing through the distance measuring pupil 94 and directed to the microlens 10b. Similarly, the photoelectric conversion unit 14b outputs a signal corresponding to the intensity of the image formed on the microlens 10d by the light beam 84 passing through the distance measuring pupil 94 and directed to the microlens 10d.

上述した2種類の焦点検出画素を直線状に多数配置し、各画素の光電変換部の出力を測距瞳93および測距瞳94に対応した出力グループにまとめることによって、測距瞳93と測距瞳94をそれぞれ通過する焦点検出用光束が画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を行うことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。   A large number of the two types of focus detection pixels described above are arranged in a straight line, and the output of the photoelectric conversion unit of each pixel is grouped into a distance measurement pupil 93 and an output group corresponding to the distance measurement pupil 94, thereby measuring the distance measurement pupil 93 and the measurement pupil 93. Information on the intensity distribution of the pair of images formed on the pixel array by the focus detection light beams that respectively pass through the distance pupil 94 is obtained. By applying an image shift detection calculation process (correlation calculation process, phase difference detection process), which will be described later, to this information, the image shift amount of a pair of images is detected by a so-called pupil division type phase difference detection method. Furthermore, by performing a conversion operation according to the center of gravity distance of the pair of distance measuring pupils to the image shift amount, the current image plane relative to the planned image plane (the focus corresponding to the position of the microlens array on the planned image plane) The deviation (defocus amount) of the imaging plane at the detection position is calculated.

図11は撮像素子212の回路構成の概念を示す図である。撮像素子212はCMOSイメージセンサーとして構成される。図11では、説明を解りやすくするために、撮像素子212の回路構成を水平方向8画素、垂直方向4画素のレイアウトに簡略化して説明する。垂直方向において2列目と6列目に焦点検出画素(図中に○印で示す)が配列され、撮像画素(図中に□印で示す)がそれ以外の列に配列される。   FIG. 11 is a diagram showing the concept of the circuit configuration of the image sensor 212. The image sensor 212 is configured as a CMOS image sensor. In FIG. 11, for ease of explanation, the circuit configuration of the image sensor 212 is simply described as a layout of 8 pixels in the horizontal direction and 4 pixels in the vertical direction. In the vertical direction, focus detection pixels (indicated by ◯ in the figure) are arranged in the second and sixth columns, and imaging pixels (indicated by □ in the figure) are arranged in the other columns.

ラインメモリ320は、1列分の画素の画素信号をサンプルホールドして一時的に保持するバッファーであり、信号線501に出力されている同一列の画素信号を水平走査回路301が発する制御信号ΦSに基づいて同時にサンプルホールドする。なお、ラインメモリ320に保持される画素信号は、制御信号ΦH1〜ΦH8の立ち上がりに同期してリセットされる。   The line memory 320 is a buffer that samples and holds the pixel signals of the pixels for one column and temporarily holds them, and the control signal ΦS that the horizontal scanning circuit 301 generates the pixel signals of the same column output to the signal line 501. Simultaneously sample and hold based on Note that the pixel signals held in the line memory 320 are reset in synchronization with the rise of the control signals ΦH1 to ΦH8.

撮像画素および焦点検出画素からの画素信号の出力は、水平走査回路301が発する制御信号(ΦH1〜ΦH8)により列ごとに独立に制御される。制御信号(ΦH1〜ΦH8)により選択された列の画素の画素信号は、信号線501へ出力される。ラインメモリ320に保持された画素信号は、垂直走査回路302が発する制御信号(ΦV1〜ΦV4)により順次出力回路330へ転送され、出力回路330において予め設定された増幅度で増幅されて外部へ出力される。撮像画素および焦点検出画素は、画素信号がサンプルホールドされた後、リセット回路303が発する制御信号(ΦR1〜ΦR8)によりリセットされ、次回の画素信号のための電荷蓄積を開始する。   Outputs of pixel signals from the imaging pixels and focus detection pixels are controlled independently for each column by control signals (ΦH1 to ΦH8) generated by the horizontal scanning circuit 301. The pixel signals of the pixels in the column selected by the control signals (ΦH1 to ΦH8) are output to the signal line 501. The pixel signals held in the line memory 320 are sequentially transferred to the output circuit 330 by the control signals (ΦV1 to ΦV4) generated by the vertical scanning circuit 302, amplified by the output circuit 330 with a preset amplification degree, and output to the outside. Is done. After the pixel signal is sampled and held, the imaging pixel and the focus detection pixel are reset by the control signals (ΦR1 to ΦR8) generated by the reset circuit 303, and charge accumulation for the next pixel signal is started.

欠陥画素メモリ304は、欠陥画素(欠陥撮像画素および欠陥焦点検出画素)の位置情報を記憶するEEPROMなどの不揮発性メモリである。製造段階の検査で欠陥画素が発見されると、その欠陥画素の位置情報が欠陥画素メモリ304へ書き込まれ、記憶される。なお、この一実施の形態では撮像素子212の半導体基板上に欠陥画素メモリ304を半導体製造プロセスで付加する例を示すが、撮像素子212は通常防塵ケースの中に封入されて撮像素子ユニット(不図示)としてカメラに設置されるので、その撮像素子ユニット内にメモリを設置して欠陥画素のデータを記憶するようにしてもよい。あるいは、カメラに装備される各種データを記憶するメモリに欠陥画素のデータを記憶するようにしてもよい。   The defective pixel memory 304 is a nonvolatile memory such as an EEPROM that stores position information of defective pixels (defective imaging pixels and defective focus detection pixels). When a defective pixel is found by inspection at the manufacturing stage, position information of the defective pixel is written and stored in the defective pixel memory 304. In this embodiment, an example in which the defective pixel memory 304 is added to the semiconductor substrate of the image pickup device 212 by a semiconductor manufacturing process is shown. However, the image pickup device 212 is usually enclosed in a dustproof case, and the image pickup device unit (not used). Since it is installed in the camera as shown in the figure, a memory may be installed in the image sensor unit to store data of defective pixels. Or you may make it memorize | store the data of a defective pixel in the memory which memorize | stores the various data with which a camera is equipped.

図12は、一実施の形態のデジタルスチルカメラ(撮像装置)の撮像動作を示すフローチャートである。ボディ駆動制御装置214は、ステップ100でカメラの電源がオンされると、ステップ110以降の撮像動作を開始する。ステップ110において撮像画素のデータを間引き読み出しし、電子ビューファインダーに表示させる。続くステップ120では焦点検出画素列から一対の像に対応した一対の像データを読み出す。なお、焦点検出エリアは、撮影者が焦点検出エリア選択部材(不図示)を用いて焦点検出エリア101〜103の内のいずれかを予め選択しているものとする。   FIG. 12 is a flowchart illustrating an imaging operation of the digital still camera (imaging device) according to the embodiment. When the power of the camera is turned on in step 100, the body drive control device 214 starts the imaging operation after step 110. In step 110, the image pickup pixel data is thinned out and displayed on the electronic viewfinder. In subsequent step 120, a pair of image data corresponding to the pair of images is read from the focus detection pixel array. The focus detection area is assumed to be selected in advance by the photographer using one of the focus detection areas 101 to 103 using a focus detection area selection member (not shown).

ステップ125では撮像素子212に内蔵された欠陥画素メモリ304(図11参照)から欠陥焦点検出画素情報を読み出し、選択された焦点検出エリアに欠陥焦点検出画素が存在する場合には、欠陥焦点検出画素の位置情報に応じて、欠陥焦点検出画素が正常であった場合の出力データを補間演算(詳細後述)により推定する。   In step 125, defective focus detection pixel information is read from the defective pixel memory 304 (see FIG. 11) built in the image sensor 212, and when there is a defective focus detection pixel in the selected focus detection area, the defective focus detection pixel is detected. Output data when the defect focus detection pixel is normal is estimated by interpolation calculation (detailed later).

ステップ130では読み出された一対の像データ(正常な焦点検出画素の出力データとステップ125で補間により推定された欠陥焦点検出画素の出力データ)に基づいて後述する像ズレ検出演算処理(相関演算処理)を行い、像ズレ量を演算してデフォーカス量に変換する。ステップ140で合焦近傍か否か、すなわち算出されたデフォーカス量の絶対値が所定値以内であるか否かを調べる。合焦近傍でないと判定された場合はステップ150へ進み、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ210を合焦位置に駆動させる。その後、ステップ110へ戻って上述した動作を繰り返す。   In step 130, based on the read pair of image data (normal focus detection pixel output data and defect focus detection pixel output data estimated by interpolation in step 125), an image shift detection calculation process (correlation calculation) to be described later. Process) to calculate the image shift amount and convert it to a defocus amount. In step 140, it is checked whether or not the focus is close, that is, whether or not the absolute value of the calculated defocus amount is within a predetermined value. If it is determined that the lens is not in focus, the process proceeds to step 150, where the defocus amount is transmitted to the lens drive control device 206, and the focusing lens 210 of the interchangeable lens 202 is driven to the focus position. Then, it returns to step 110 and repeats the operation | movement mentioned above.

なお、焦点検出不能な場合もこのステップに分岐し、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシングレンズ210を無限から至近までの間でスキャン駆動させる。その後、ステップ110へ戻って上述した動作を繰り返す。   Even when focus detection is impossible, the process branches to this step, a scan drive command is transmitted to the lens drive control device 206, and the focusing lens 210 of the interchangeable lens 202 is driven to scan from infinity to the nearest. Then, it returns to step 110 and repeats the operation | movement mentioned above.

ステップ140で合焦近傍であると判定された場合はステップ160へ進み、シャッターボタン(不図示)の操作によりシャッターレリーズがなされたか否かを判別する。シャッターレリーズがなされていないと判定された場合はステップ110へ戻り、上述した動作を繰り返す。一方、シャッターレリーズがなされたと判定された場合はステップ170へ進み、レンズ駆動制御装置206へ絞り調整命令を送信し、交換レンズ202の絞り値を制御F値(撮影者または自動により設定されたF値)にする。絞り制御が終了した時点で、撮像素子212に撮像動作を行わせ、撮像素子212の撮像画素310および全ての焦点検出画素313,314から画像データを読み出す。   If it is determined in step 140 that the focus is close to the in-focus state, the process proceeds to step 160, where it is determined whether or not a shutter release has been performed by operating a shutter button (not shown). If it is determined that the shutter release has not been performed, the process returns to step 110 to repeat the above-described operation. On the other hand, if it is determined that the shutter release has been performed, the process proceeds to step 170, where an aperture adjustment command is transmitted to the lens drive control device 206, and the aperture value of the interchangeable lens 202 is controlled to a control F value (F set by the photographer or automatically). Value). When the aperture control is finished, the image sensor 212 is caused to perform an imaging operation, and image data is read from the image pickup pixel 310 and all the focus detection pixels 313 and 314 of the image pickup element 212.

ステップ180において、焦点検出画素列の各画素位置の画素データを焦点検出画素の周囲の撮像画素のデータに基づいて画素補間する。続くステップ190では、撮像画素のデータおよび補間されたデータからなる画像データをメモリーカード219に記憶し、ステップ110へ戻って上述した動作を繰り返す。   In step 180, pixel data of each pixel position in the focus detection pixel column is subjected to pixel interpolation based on data of imaging pixels around the focus detection pixel. In the subsequent step 190, image data composed of the imaged pixel data and the interpolated data is stored in the memory card 219, and the process returns to step 110 to repeat the above-described operation.

図12のステップ130における像ズレ検出演算処理(相関演算処理)の詳細について説明する。焦点検出画素が検出する一対の像は、測距瞳がレンズの絞り開口によりけられて光量バランスが崩れている可能性があるので、光量バランスに対して像ズレ検出精度を維持できるタイプの相関演算を施す。焦点検出画素列から読み出された一対のデータ列(A11〜A1M、A21〜A2M:Mはデータ数)に対し(1)式に示す相関演算を行い、相関量C(k)を演算する。
C(k)=Σ|A1n・A2n+1+k−A2n+k・A1n+1| ・・・(1)
(1)式において、Σ演算はnについて累積される。nのとる範囲は、像ずらし量kに応じてA1n、A1n+1、A2n+k、A2n+1+kのデータが存在する範囲に限定される。像ずらし量kは整数であり、データ列のデータ間隔を単位とした相対的シフト量である。
Details of the image shift detection calculation process (correlation calculation process) in step 130 of FIG. 12 will be described. The pair of images detected by the focus detection pixels has a possibility that the distance measurement pupil is displaced by the aperture of the lens and the balance of the light quantity is lost. Perform the operation. A correlation calculation shown in the equation (1) is performed on a pair of data strings (A11 to A1M, A21 to A2M: M is the number of data) read from the focus detection pixel string, and a correlation amount C (k) is calculated.
C (k) = Σ | A1n · A2n + 1 + k−A2n + k · A1n + 1 | (1)
In equation (1), the Σ operation is accumulated for n. The range taken by n is limited to a range in which data of A1n, A1n + 1, A2n + k, and A2n + 1 + k exist according to the image shift amount k. The image shift amount k is an integer and is a relative shift amount with the data interval of the data string as a unit.

(1)式の演算結果は、図13(a)に示すように、一対のデータの相関が高いシフト量(図13(a)ではk=kj=2)において相関量C(k)が極小(小さいほど相関度が高い)になる。次の(2)式〜(5)式による3点内挿の手法を用いて連続的な相関量に対する極小値C(k)を与えるシフト量xを求める。
x=kj+D/SLOP ・・・(2),
C(x)= C(kj)−|D| ・・・(3),
D={C(kj-1)−C(kj+1)}/2 ・・・(4),
SLOP=MAX{C(kj+1)−C(kj),C(kj-1)−C(kj)}・・・(5)
As shown in FIG. 13A, the calculation result of the expression (1) shows that the correlation amount C (k) is minimal at a shift amount with high correlation between a pair of data (k = kj = 2 in FIG. 13A). (The smaller the value, the higher the degree of correlation). The shift amount x that gives the minimum value C (k) with respect to the continuous correlation amount is obtained by using the three-point interpolation method according to the following equations (2) to (5).
x = kj + D / SLOP (2),
C (x) = C (kj) − | D | (3),
D = {C (kj-1) -C (kj + 1)} / 2 (4),
SLOP = MAX {C (kj + 1) -C (kj), C (kj-1) -C (kj)} (5)

(2)式で算出されたずらし量xの信頼性があるかどうかは、次のようにして判定する。図13(b)に示すように、一対のデータの相関度が低い場合は、内挿された相関量の極小値C(x)の値が大きくなる。したがって、C(x)が所定のしきい値以上の場合は、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいは、C(x)をデータのコントラストで規格化するために、コントラストに比例した値となるSLOPでC(x)を除した値が所定値以上の場合は、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。図13(c)に示すように、一対のデータの相関度が低く、シフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、極小値C(x)を求めることができず、このような場合は焦点検出不能と判定する。   Whether or not the shift amount x calculated by the equation (2) is reliable is determined as follows. As shown in FIG. 13B, when the degree of correlation between a pair of data is low, the value of the interpolated minimum value C (x) of the correlation amount increases. Therefore, when C (x) is equal to or greater than a predetermined threshold value, it is determined that the calculated shift amount has low reliability, and the calculated shift amount x is canceled. Alternatively, in order to normalize C (x) with the contrast of data, when the value obtained by dividing C (x) by SLOP that is proportional to the contrast is equal to or greater than a predetermined value, the reliability of the calculated shift amount Is determined to be low, and the calculated shift amount x is canceled. Alternatively, when SLOP that is a value proportional to the contrast is equal to or less than a predetermined value, it is determined that the subject has low contrast and the reliability of the calculated shift amount is low, and the calculated shift amount x is canceled. As shown in FIG. 13C, when the correlation between the pair of data is low and there is no drop in the correlation amount C (k) between the shift ranges kmin to kmax, the minimum value C (x) is obtained. In such a case, it is determined that the focus cannot be detected.

相関演算式としては上記(1)式に限定されず、測距瞳がレンズの絞り開口によりけられて光量バランスが崩れている場合でも、光量バランスに対して像ズレ検出精度を維持できるタイプの相関演算式であればどのような演算式でもよい。   The correlation calculation formula is not limited to the above formula (1), and it is a type that can maintain the image shift detection accuracy with respect to the light quantity balance even when the distance measurement pupil is displaced by the aperture of the lens and the light quantity balance is lost. Any arithmetic expression may be used as long as it is a correlation arithmetic expression.

算出されたずらし量xの信頼性があると判定された場合は、(6)式により像ズ レ量shftに換算される。
shft=PY・x ・・・(6)
(6)式において、PYは検出ピッチである。(6)式で算出された像ズレ量に所定の変換係数kを乗じてデフォーカス量defへ変換する。
def=k・shft ・・・(7)
If it is determined that the calculated shift amount x is reliable, it is converted into an image shift amount shft according to equation (6).
shft = PY · x (6)
In the equation (6), PY is a detection pitch. The image shift amount calculated by the equation (6) is multiplied by a predetermined conversion coefficient k to be converted into a defocus amount def.
def = k · shft (7)

次に、図12のステップ125における欠陥焦点検出画素の出力データの補間演算処理を説明する。図14および図15は、図3に示す撮像素子212の部分的な拡大図である。これらの図において、各画素に付記したR、G、Bは各撮像画素の分光特性を示しており、A0*(*=0,1,2,・・)は焦点検出画素313を、A1*(*=0,1,2,・・)は焦点検出画素314をそれぞれ示す。   Next, the interpolation calculation process of the output data of the defective focus detection pixel in step 125 in FIG. 12 will be described. 14 and 15 are partially enlarged views of the image sensor 212 shown in FIG. In these drawings, R, G, and B added to each pixel indicate the spectral characteristics of each imaging pixel, and A0 * (* = 0, 1, 2,...) Indicates the focus detection pixel 313 and A1 *. (* = 0, 1, 2,...) Indicate the focus detection pixels 314, respectively.

《欠陥焦点検出画素の補間演算例1》
図14は、欠陥焦点検出画素が焦点検出画素313であった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の補間データA0xは、下記(8)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとを平均することにより求められる。
A0x=(A0av+A0w)/2 ・・・(8)
(8)式において、右辺第1項のA0avは、下記(9)式に示すように欠陥焦点検出画素と同じ種類の焦点検出画素であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータの平均データである。
A0av=(A00+A01)/2 ・・・(9)
<< Example 1 of interpolation calculation of defective focus detection pixels >>
FIG. 14 shows a pixel arrangement of 5 vertical pixels and 5 horizontal pixels centering on the defective focus detection pixel when the defective focus detection pixel is the focus detection pixel 313. As shown in the following equation (8), the interpolation data A0x of the defect focus detection pixel to be obtained is an estimated value A0av of the defect focus detection pixel estimated from the data of the normal focus detection pixel located between the defect focus detection pixels. It is obtained by averaging the estimated value A0w of the defect focus detection pixel estimated from the data of normal imaging pixels around the defect focus detection pixel.
A0x = (A0av + A0w) / 2 (8)
In equation (8), A0av in the first term on the right side is a focus detection pixel of the same type as the defect focus detection pixel as shown in equation (9) below, and is a normal focus at a position sandwiching the defect focus detection pixel. This is the average data of the detection pixel data.
A0av = (A00 + A01) / 2 (9)

また、(8)式において、右辺第2項のA0wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。すなわち、撮像画素と焦点検出画素は図6および図7に示すような分光特性を有しており、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表される。一般的に、焦点検出画素313と314のデータの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に次の(10)式が成立する。
A=Kr・R+Kg・G+Kb・B ・・・(10)
(10)式において、Kr、Kg、Kbは所定の係数であり、これらは実際に測定して決定される。
In equation (8), A0w in the second term on the right side is an estimated value of defective focus detection pixel data derived based on the equivalent relationship between the focus detection pixel data and the imaging pixel data. That is, the imaging pixel and the focus detection pixel have spectral characteristics as shown in FIGS. 6 and 7, and the output of the focus detection pixel is approximately expressed as a linear sum of the output of the imaging pixel. In general, when the sum of the data of the focus detection pixels 313 and 314 is the data A of the focus detection pixel, there is an approximation between the data A of the focus detection pixel and the data R, G, and B of the imaging pixel. The following equation (10) is established.
A = Kr · R + Kg · G + Kb · B (10)
In the equation (10), Kr, Kg, and Kb are predetermined coefficients, which are determined by actual measurement.

(10)式のA、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(11)式が得られる。
A=A0w+(A10+A11)/2,
R=(R00+R01+R10+R11)/4,
G=(G00+G01)/2,
B=(B00+B01)/2 ・・・(11)
When A, R, G, and B in the equation (10) are locally estimated from the data of the focus detection pixels and the imaging pixels around the defect focus detection pixel, the following equation (11) is obtained.
A = A0w + (A10 + A11) / 2
R = (R00 + R01 + R10 + R11) / 4
G = (G00 + G01) / 2
B = (B00 + B01) / 2 (11)

(11)式を(10)式に代入して整理すると、推定値A0wは次の(12)式で得られる。
A0w=Kr・(R00+R01+R10+R11)/4+Kg・(G00+G01)/2+Kb・(B00+B01)/2−(A10+A11)/2 ・・・(12)
When the equation (11) is substituted into the equation (10) and rearranged, the estimated value A0w is obtained by the following equation (12).
A0w = Kr. (R00 + R01 + R10 + R11) / 4 + Kg. (G00 + G01) / 2 + Kb. (B00 + B01) / 2- (A10 + A11) / 2 (12)

補間演算例1では、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA0xを正確に推定することができる。なお、2つの推定値A0av、A0wを重み付け平均してもよい(A0x=K1・A0av+K2・A0w、K1,K2は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avとしてもよい(A0x=A0av)。あるいは、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとしてもよい(A0x=A0w)。   In the first interpolation calculation example, the defect focus detection pixel interpolation data A0x, the defect focus detection pixel estimation value A0av estimated from the normal focus detection pixel data at the position sandwiching the defect focus detection pixel, and the defect focus detection pixel An example is shown in which it is obtained as an average with the estimated value A0w of the defect focus detection pixel estimated from the data of the surrounding normal imaging pixels. According to this calculation method, the interpolation data A0x of the defective focus detection pixel can be accurately estimated. The two estimated values A0av and A0w may be weighted and averaged (A0x = K1 · A0av + K2 · A0w, K1 and K2 are weights). Further, although the estimation accuracy is slightly lowered, the interpolation data A0x of the defect focus detection pixel is also used as the defect focus detection pixel estimation value A0av estimated from the data of the normal focus detection pixel at the position sandwiching the defect focus detection pixel. Good (A0x = A0av). Alternatively, the defect focus detection pixel interpolation data A0x may be the defect focus detection pixel estimated value A0w estimated from the data of normal imaging pixels around the defect focus detection pixel (A0x = A0w).

《欠陥焦点検出画素の補間演算例2》
図15は、欠陥焦点検出画素が焦点検出画素314であった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の補間データA1xは、下記(13)式に示すように、欠陥焦点検出画素を挟む位置にある正常焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとを平均することにより求めることができる。
A1x=(A1av+A1w)/2 ・・・(13)
(13)式において、右辺第1項のA1avは、下記(14)式に示すように欠陥焦点検出画素と同じ種類の焦点検出画素であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータの平均データである。
A1av=(A10+A11)/2 ・・・(14)
<< Example 2 of interpolation calculation of defective focus detection pixels >>
FIG. 15 shows a pixel arrangement of 5 vertical pixels and 5 horizontal pixels centering on the defective focus detection pixel when the defective focus detection pixel is the focus detection pixel 314. The interpolation data A1x of the defect focus detection pixel to be obtained is an estimated value A1av of the defect focus detection pixel estimated from the data of the normal focus detection pixel at the position sandwiching the defect focus detection pixel, as shown in the following equation (13): It can be obtained by averaging the estimated value A1w of the defect focus detection pixel estimated from the data of normal imaging pixels around the defect focus detection pixel.
A1x = (A1av + A1w) / 2 (13)
In equation (13), A1av in the first term on the right side is the same type of focus detection pixel as the defect focus detection pixel as shown in the following equation (14), and is a normal focus at a position sandwiching the defect focus detection pixel. This is the average data of the detection pixel data.
A1av = (A10 + A11) / 2 (14)

また、(13)式において、右辺第2項のA1wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素313と314のデータの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(15)式が得られる。
A=A1w+(A00+A01)/2,
R=(R00+R01)/2,
G=(G00+G01+G10+G11)/4,
B=(B00+B01+B10+B11)/4 ・・・(15)
In equation (13), A1w in the second term on the right side is an estimated value of defect focus detection pixel data derived based on the equivalent relationship between the focus detection pixel data and the imaging pixel data. As described above, since the output of the focus detection pixel is approximately expressed as a linear sum of the output of the imaging pixel, if the sum of the data of the focus detection pixels 313 and 314 is the data A of the focus detection pixel, the focus detection pixel (10) is approximately established between the data A and the sum of the data R, G, and B of the imaging pixel. In the equation (10), when R, G, and B are locally estimated from the data of the focus detection pixels and the imaging pixels around the defect focus detection pixel, the following equation (15) is obtained.
A = A1w + (A00 + A01) / 2
R = (R00 + R01) / 2
G = (G00 + G01 + G10 + G11) / 4
B = (B00 + B01 + B10 + B11) / 4 (15)

(15)式を(10)式に代入して整理すると、推定値A1wは次の(16)式で得られる。
A1w=Kr・(R00+R01)/2+Kg・(G00+G01+G10+G11)/4+Kb・(B00+B01+B10+B11)/2−(A00+A01)/2 ・・・(16)
When the equation (15) is substituted into the equation (10) and rearranged, the estimated value A1w is obtained by the following equation (16).
A1w = Kr · (R00 + R01) / 2 + Kg · (G00 + G01 + G10 + G11) / 4 + Kb · (B00 + B01 + B10 + B11) / 2- (A00 + A01) / 2 (16)

補間演算例2では、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA1xを正確に推定することができる。なお、2つの推定値A1av、A1wを重み付け平均してもよい(A1x=K1・A1av+K2・A1w、K1,K2は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avとしてもよい(A1x=A1av)。あるいは、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとしてもよい(A1x=A1w)。   In the interpolation calculation example 2, the defect focus detection pixel interpolation data A1x, the defect focus detection pixel estimated value A1av estimated from the normal focus detection pixel data at the position sandwiching the defect focus detection pixel, and the defect focus detection pixel An example is shown in which it is obtained as an average with the estimated value A1w of the defect focus detection pixel estimated from the data of the surrounding normal imaging pixels. According to this calculation method, the interpolation data A1x of the defective focus detection pixel can be accurately estimated. The two estimated values A1av and A1w may be weighted and averaged (A1x = K1 · A1av + K2 · A1w, K1 and K2 are weights). Further, although the estimation accuracy is slightly lowered, the interpolation data A1x of the defect focus detection pixel is also used as the defect focus detection pixel estimation value A1av estimated from the data of the normal focus detection pixel located between the defect focus detection pixels. Good (A1x = A1av). Alternatively, the defect focus detection pixel interpolation data A1x may be an estimated value A1w of the defect focus detection pixel estimated from data of normal imaging pixels around the defect focus detection pixel (A1x = A1w).

《発明の他の実施の形態》
撮像素子における焦点検出エリアの配置は図2に限定されることはなく、対角線方向や、その他の位置に水平方向および垂直方向に焦点検出エリアを配置することも可能である。
<< Other Embodiments of the Invention >>
The arrangement of the focus detection areas in the image sensor is not limited to that shown in FIG. 2, and the focus detection areas can be arranged in the diagonal direction and in other positions in the horizontal and vertical directions.

図3に示す一実施の形態の撮像素子212では、焦点検出画素313、314が一つの画素内に一つの光電変換部を備えた例を示したが、一つの画素内に一対の光電変換部を備えてもよい。図16は、図3に示す撮像素子212に対応した変形例の撮像素子212Aの部分拡大図であり、焦点検出画素311はひとつの画素内に一対の光電変換部を備えている。図に示す焦点検出画素311は、図3に示す焦点検出画素313と焦点検出画素314のペアに相当した機能を果たす。   In the imaging device 212 of the embodiment shown in FIG. 3, an example in which the focus detection pixels 313 and 314 include one photoelectric conversion unit in one pixel is shown. However, a pair of photoelectric conversion units is provided in one pixel. May be provided. FIG. 16 is a partial enlarged view of an image sensor 212A of a modified example corresponding to the image sensor 212 shown in FIG. 3, and the focus detection pixel 311 includes a pair of photoelectric conversion units in one pixel. The focus detection pixel 311 shown in the drawing performs a function corresponding to the pair of the focus detection pixel 313 and the focus detection pixel 314 shown in FIG.

焦点検出画素311は、図17に示すようにマイクロレンズ10と一対の光電変換部13,14から構成される。焦点検出画素311には光量をかせぐために色フィルターは配置されておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性とを総合した分光特性(図7参照)となる。つまり、図6に示す緑画素、赤画素および青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素および青画素の感度の光波長領域を包括している。   The focus detection pixel 311 includes a microlens 10 and a pair of photoelectric conversion units 13 and 14 as shown in FIG. The focus detection pixel 311 is not provided with a color filter in order to increase the amount of light, and its spectral characteristic is a spectral that combines the spectral sensitivity of a photodiode that performs photoelectric conversion and the spectral characteristic of an infrared cut filter (not shown). Characteristics (see FIG. 7). That is, the spectral characteristics are obtained by adding the spectral characteristics of the green pixel, the red pixel, and the blue pixel shown in FIG. 6, and the light wavelength region of the sensitivity includes the light wavelength regions of the sensitivity of the green pixel, the red pixel, and the blue pixel. ing.

図18は、図16に示す撮像素子212Aの焦点検出画素による瞳分割方式の焦点検出動作を説明するための図である。図において、90は、交換レンズの予定結像面に配置されたマイクロレンズの前方dの距離に設定された射出瞳である。ここで、距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部の間の距離などに応じて決まる距離であって、以下では測距瞳距離と呼ぶ。91は交換レンズの光軸、50、60はマイクロレンズ、(53,54)、(63,64)は焦点検出画素の対の光電変換部、73,74、83,84は焦点検出用光束である。   FIG. 18 is a diagram for explaining a focus detection operation of the pupil division method by the focus detection pixels of the image sensor 212A shown in FIG. In the figure, reference numeral 90 denotes an exit pupil set at a distance d in front of the microlens arranged on the planned imaging plane of the interchangeable lens. Here, the distance d is a distance determined according to the curvature and refractive index of the microlens, the distance between the microlens and the photoelectric conversion unit, and is hereinafter referred to as a distance measuring pupil distance. 91 is an optical axis of the interchangeable lens, 50 and 60 are microlenses, (53, 54), (63, 64) are photoelectric conversion units of a pair of focus detection pixels, and 73, 74, 83, and 84 are focus detection light beams. is there.

さらに、93はマイクロレンズ50、60により投影された光電変換部53,63の領域であり、以下では測距瞳と呼ぶ。同様に、94はマイクロレンズ50、60により投影された光電変換部54,64の領域であり、以下では測距瞳と呼ぶ。図18では、光軸91上にある焦点検出画素(マイクロレンズ50と一対の光電変換部53、54からなる)と、隣接する焦点検出画素(マイクロレンズ60と一対の光電変換部63、64からなる)を模式的に例示しているが、撮像面上の周辺に配置された焦点検出用画素においても、一対の光電変換部はそれぞれ一対の測距瞳93、94から各マイクロレンズに到来する光束を受光する。焦点検出画素の配列方向は一対の測距瞳の並び方向と一致させる。   Reference numeral 93 denotes an area of the photoelectric conversion units 53 and 63 projected by the microlenses 50 and 60, which will be referred to as a distance measuring pupil below. Similarly, 94 is an area of the photoelectric conversion units 54 and 64 projected by the microlenses 50 and 60, and is hereinafter referred to as a distance measuring pupil. In FIG. 18, a focus detection pixel (consisting of a microlens 50 and a pair of photoelectric conversion units 53 and 54) on the optical axis 91 and an adjacent focus detection pixel (from the microlens 60 and a pair of photoelectric conversion units 63 and 64). In the focus detection pixels arranged in the periphery on the imaging surface, the pair of photoelectric conversion units arrive at each microlens from the pair of distance measuring pupils 93 and 94, respectively. Receives light flux. The arrangement direction of the focus detection pixels is made to coincide with the arrangement direction of the pair of distance measurement pupils.

マイクロレンズ50、60は光学系の予定結像面近傍に配置されており、光軸91上に配置されたマイクロレンズ50によって、その背後に配置された一対の光電変換部53、54の形状がマイクロレンズ50、60から測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。また、マイクロレンズ50に隣接して配置されたマイクロレンズ60によって、その背後に配置された一対の光電変換部63、64の形状が測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。すなわち、測距瞳距離dにある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳93,94)が一致するように、各画素のマイクロレンズと光電変換部の位置関係が決定されている。   The microlenses 50 and 60 are disposed in the vicinity of the planned imaging plane of the optical system, and the shape of the pair of photoelectric conversion units 53 and 54 disposed behind the microlens 50 disposed on the optical axis 91 is formed. Projection is performed on the exit pupil 90 separated from the microlenses 50 and 60 by the distance measurement pupil distance d, and the projection shape forms distance measurement pupils 93 and 94. Further, the microlens 60 disposed adjacent to the microlens 50 projects the shape of the pair of photoelectric conversion units 63 and 64 disposed behind the microlens 50 onto the exit pupil 90 separated by the distance measuring pupil distance d. The projection shape forms distance measuring pupils 93 and 94. That is, the positions of the microlens and the photoelectric conversion unit of each pixel so that the projection shapes (ranging pupils 93 and 94) of the photoelectric conversion unit of each focus detection pixel match on the exit pupil 90 at the distance measurement pupil distance d. The relationship has been determined.

光電変換部53は、測距瞳93を通過してマイクロレンズ50へ向う焦点検出光束73によってマイクロレンズ50上に形成される像の強度に対応した信号を出力する。また、光電変換部54は、測距瞳94を通過してマイクロレンズ50へ向う焦点検出光束74によってマイクロレンズ50上に形成される像の強度に対応した信号を出力する。同様に、光電変換部63は、測距瞳93を通過してマイクロレンズ60へ向う焦点検出光束83によってマイクロレンズ60上に形成される像の強度に対応した信号を出力する。また、光電変換部64は、測距瞳94を通過してマイクロレンズ60へ向う焦点検出光束84によってマイクロレンズ60上に形成される像の強度に対応した信号を出力する。   The photoelectric conversion unit 53 outputs a signal corresponding to the intensity of the image formed on the microlens 50 by the focus detection light beam 73 passing through the distance measuring pupil 93 and traveling toward the microlens 50. In addition, the photoelectric conversion unit 54 outputs a signal corresponding to the intensity of the image formed on the microlens 50 by the focus detection light beam 74 that passes through the distance measuring pupil 94 and travels toward the microlens 50. Similarly, the photoelectric conversion unit 63 outputs a signal corresponding to the intensity of the image formed on the microlens 60 by the focus detection light beam 83 that passes through the distance measuring pupil 93 and travels toward the microlens 60. In addition, the photoelectric conversion unit 64 outputs a signal corresponding to the intensity of the image formed on the microlens 60 by the focus detection light beam 84 that passes through the distance measuring pupil 94 and travels toward the microlens 60.

このような焦点検出用画素を直線状に多数配置し、各画素の一対の光電変換部の出力を測距瞳93および測距瞳94に対応した出力グループにまとめることによって、測距瞳93と測距瞳94を各々通過する焦点検出光束が焦点検出画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に所定の変換処理を施すことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。   A large number of such focus detection pixels are arranged in a straight line, and the output of the pair of photoelectric conversion units of each pixel is grouped into an output group corresponding to the distance measurement pupil 93 and the distance measurement pupil 94, whereby the distance measurement pupil 93 and Information on the intensity distribution of the pair of images formed on the focus detection pixel array by the focus detection light fluxes that pass through the distance measuring pupils 94 is obtained. By applying an image shift detection calculation process (correlation calculation process, phase difference detection process), which will be described later, to this information, an image shift amount of a pair of images is detected by a so-called pupil division method. Furthermore, by applying a predetermined conversion process to the image shift amount, the deviation of the current imaging plane (imaging plane at the focus detection position corresponding to the position of the microlens array on the planned imaging plane) with respect to the planned imaging plane (Defocus amount) is calculated.

図16に示す撮像素子212Aのように、一つのマイクロレンズに対して一対の光電変換部を有する焦点検出画素を配列した撮像素子に対する欠陥焦点検出画素の補間演算を説明する。図19および図20は、図16に示す撮像素子212Aの欠陥焦点検出画素付近の拡大図である。これらの図において、各画素に付記したR、G、Bは各撮像画素の分光特性を示しており、A0*(*=0,1,2,・・)は焦点検出画素の一対の光電変換部の内の一方の光電変換部を、A1*(*=0,1,2,・・)は焦点検出画素の他方の光電変換部をそれぞれ示す。   An interpolation calculation of defective focus detection pixels for an image sensor in which focus detection pixels having a pair of photoelectric conversion units are arranged for one microlens as in the image sensor 212A illustrated in FIG. 16 will be described. 19 and 20 are enlarged views of the vicinity of the defective focus detection pixel of the image sensor 212A shown in FIG. In these figures, R, G, and B added to each pixel indicate spectral characteristics of each imaging pixel, and A0 * (* = 0, 1, 2,...) Indicates a pair of photoelectric conversions of the focus detection pixel. .., A1 * (* = 0, 1, 2,...) Indicates the other photoelectric conversion unit of the focus detection pixel.

《欠陥焦点検出画素の補間演算例3》
図19は、欠陥焦点検出画素の一対の光電変換部の内の一方の光電変換部の出力が異常で、他方の光電変換部の出力が正常な場合であって、欠陥焦点検出画素が撮像画素配列の青画素の位置にあった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の一方の光電変換部の補間データA0xは、下記(17)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとを平均することにより求められる。
A0x=(A0av+A0w)/2 ・・・(17)
(17)式において、右辺第1項のA0avは、下記(18)式に示すように欠陥焦点検出画素の出力異常の光電変換部と同じ種類の光電変換部であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素の光電変換部のデータの平均データである。
A0av=(A00+A01)/2 ・・・(18)
<< Example 3 of interpolation calculation of defective focus detection pixels >>
FIG. 19 shows a case where the output of one of the pair of photoelectric conversion units of the defect focus detection pixel is abnormal and the output of the other photoelectric conversion unit is normal, and the defect focus detection pixel is an imaging pixel. This shows a pixel arrangement of 5 pixels in the vertical direction and 5 pixels in the horizontal direction with the defective focus detection pixel at the center when it is at the position of the blue pixel in the array. Interpolation data A0x of one photoelectric conversion unit of the defect focus detection pixel to be obtained is defect focus detection estimated from data of normal focus detection pixels at positions sandwiching the defect focus detection pixel as shown in the following equation (17). It is obtained by averaging the estimated pixel value A0av and the estimated value A0w of the defect focus detection pixel estimated from the data of the normal imaging pixels around the defect focus detection pixel.
A0x = (A0av + A0w) / 2 (17)
In equation (17), A0av in the first term on the right side is the same type of photoelectric conversion unit as the abnormal output photoelectric conversion unit of the defect focus detection pixel as shown in the following equation (18), and the defect focus detection pixel is It is the average data of the data of the photoelectric conversion part of the normal focus detection pixel in the sandwiched position.
A0av = (A00 + A01) / 2 (18)

また、(17)式において、右辺第2項のA0wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素311の一対の光電変換部の出力データの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(19)式が得られる。
A=A0w+A10,
R=(R00+R01+R10+R11)/4,
G=(G00+G01)/2,
B=(B00+B01)/2 ・・・(19)
In equation (17), A0w in the second term on the right side is an estimated value of defective focus detection pixel data derived based on the equivalent relationship between the focus detection pixel data and the imaging pixel data. As described above, since the output of the focus detection pixel is approximately expressed as a linear sum of the output of the imaging pixel, the sum of the output data of the pair of photoelectric conversion units of the focus detection pixel 311 is the data A of the focus detection pixel. Then, the expression (10) is approximately established between the data A of the focus detection pixel and the sum of the data R, G, and B of the imaging pixel. In the equation (10), when R, G, and B are locally estimated from the data of the focus detection pixels and the imaging pixels around the defect focus detection pixel, the following equation (19) is obtained.
A = A0w + A10,
R = (R00 + R01 + R10 + R11) / 4
G = (G00 + G01) / 2
B = (B00 + B01) / 2 (19)

(19)式を(10)式に代入して整理すると、推定値A0wは(20)式で得られる。
A0w=Kr・(R00+R01+R10+R11)/4+Kg・(G00+G01)/2+Kb・(B00+B01)/2−A10 ・・・(20)
When the equation (19) is substituted into the equation (10) and rearranged, the estimated value A0w is obtained by the equation (20).
A0w = Kr. (R00 + R01 + R10 + R11) / 4 + Kg. (G00 + G01) / 2 + Kb. (B00 + B01) / 2-A10 (20)

補間演算例3では、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA0xを正確に推定することができる。なお、2つの推定値A0av、A0wを重み付け平均してもよい(A0x=K1・A0av+K2・A0w、K1,K2は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avとしてもよい(A0x=A0av)。あるいは、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとしてもよい(A0x=A0w)。   In the interpolation calculation example 3, the defect focus detection pixel interpolation data A0x is obtained by estimating the defect focus detection pixel estimated value A0av estimated from the data of the normal focus detection pixel located between the defect focus detection pixels and the defect focus detection pixel. An example is shown in which it is obtained as an average with the estimated value A0w of the defect focus detection pixel estimated from the data of the surrounding normal imaging pixels. According to this calculation method, the interpolation data A0x of the defective focus detection pixel can be accurately estimated. The two estimated values A0av and A0w may be weighted and averaged (A0x = K1 · A0av + K2 · A0w, K1 and K2 are weights). Further, although the estimation accuracy is slightly lowered, the interpolation data A0x of the defect focus detection pixel is also used as the defect focus detection pixel estimation value A0av estimated from the data of the normal focus detection pixel at the position sandwiching the defect focus detection pixel. Good (A0x = A0av). Alternatively, the defect focus detection pixel interpolation data A0x may be the defect focus detection pixel estimated value A0w estimated from the data of normal imaging pixels around the defect focus detection pixel (A0x = A0w).

《欠陥焦点検出画素の補間演算例4》
図20は、欠陥焦点検出画素の一対の光電変換部の内の一方の光電変換部の出力が異常で、他方の光電変換部の出力が正常な場合であって、欠陥焦点検出画素が撮像画素配列の緑画素の位置にあった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の一方の補間データA1xは、下記(21)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとを平均することにより求められる。
A1x=(A1av+A1w)/2 ・・・(21)
(21)式において、右辺第1項のA1avは、(22)式に示すように欠陥焦点検出画素の出力異常の光電変換部と同じ種類の光電変換部であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素の光電変換部のデータの平均データである。
A1av=(A10+A11)/2 ・・・(22)
<< Example 4 of interpolation calculation of defective focus detection pixels >>
FIG. 20 shows a case where the output of one of the pair of photoelectric conversion units of the defect focus detection pixel is abnormal and the output of the other photoelectric conversion unit is normal, and the defect focus detection pixel is an imaging pixel. This shows a pixel arrangement of 5 pixels in the vertical direction and 5 pixels in the horizontal direction with the defective focus detection pixel at the center when the green pixel position is in the array. One interpolation data A1x of the defect focus detection pixel to be obtained is the estimated value of the defect focus detection pixel estimated from the data of the normal focus detection pixel at the position sandwiching the defect focus detection pixel as shown in the following equation (21). It is obtained by averaging A1av and the estimated value A1w of the defect focus detection pixel estimated from the data of normal imaging pixels around the defect focus detection pixel.
A1x = (A1av + A1w) / 2 (21)
In equation (21), A1av in the first term on the right side is the same type of photoelectric conversion unit as the abnormal output photoelectric conversion unit of the defect focus detection pixel as shown in equation (22), and sandwiches the defect focus detection pixel. It is the average data of the data of the photoelectric conversion part of the normal focus detection pixel in a position.
A1av = (A10 + A11) / 2 (22)

また、(21)式において、右辺第2項のA1wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素311の一対の光電変換部の出力データの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(23)式が得られる。
A=A1w+A00,
R=(R00+R01)/2,
G=(G00+G01+G10+G11)/4,
B=(B00+B01+B10+B11)/4 ・・・(23)
In equation (21), A1w in the second term on the right side is an estimated value of defect focus detection pixel data derived based on the equivalent relationship between the focus detection pixel data and the imaging pixel data. As described above, since the output of the focus detection pixel is approximately expressed as a linear sum of the output of the imaging pixel, the sum of the output data of the pair of photoelectric conversion units of the focus detection pixel 311 is the data A of the focus detection pixel. Then, the expression (10) is approximately established between the data A of the focus detection pixel and the sum of the data R, G, and B of the imaging pixel. In the equation (10), when R, G, and B are locally estimated from the data of the focus detection pixels and the imaging pixels around the defect focus detection pixel, the following equation (23) is obtained.
A = A1w + A00,
R = (R00 + R01) / 2
G = (G00 + G01 + G10 + G11) / 4
B = (B00 + B01 + B10 + B11) / 4 (23)

(23)式を(10)式に代入して整理すると、推定値A1wは(24)式で得られる。
A1w=Kr・(R00+R01)/2+Kg・(G00+G01+G10+G11)/4+Kb・(B00+B01+B10+B11)/2−A00 ・・・(24)
When the equation (23) is substituted into the equation (10) and rearranged, the estimated value A1w is obtained by the equation (24).
A1w = Kr · (R00 + R01) / 2 + Kg · (G00 + G01 + G10 + G11) / 4 + Kb · (B00 + B01 + B10 + B11) / 2−A00 (24)

補間演算例4では、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA1xを正確に推定することができる。なお、2つの推定値A1av、A1wを重み付け平均してもよい(A1x=K1・A1av+K2・A1w、K1,K2は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avとしてもよい(A1x=A1av)。あるいは、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとしてもよい(A1x=A1w)。   In the interpolation calculation example 4, the defect focus detection pixel interpolation data A1x, the defect focus detection pixel estimated value A1av estimated from the data of the normal focus detection pixel at the position sandwiching the defect focus detection pixel, and the defect focus detection pixel An example is shown in which it is obtained as an average with the estimated value A1w of the defect focus detection pixel estimated from the data of the surrounding normal imaging pixels. According to this calculation method, the interpolation data A1x of the defective focus detection pixel can be accurately estimated. The two estimated values A1av and A1w may be weighted and averaged (A1x = K1 · A1av + K2 · A1w, K1 and K2 are weights). Further, although the estimation accuracy is slightly lowered, the interpolation data A1x of the defect focus detection pixel is also used as the defect focus detection pixel estimation value A1av estimated from the data of the normal focus detection pixel located between the defect focus detection pixels. Good (A1x = A1av). Alternatively, the defect focus detection pixel interpolation data A1x may be an estimated value A1w of the defect focus detection pixel estimated from data of normal imaging pixels around the defect focus detection pixel (A1x = A1w).

図21および図22は、図16に示す撮像素子212Aの欠陥焦点検出画素付近の拡大図である。これらの図において、各画素に付記したR、G、Bは各撮像画素の分光特性を示しており、A0*(*=0,1,2,・・)は焦点検出画素の一対の光電変換部の内の一方の光電変換部を、A1*(*=0,1,2,・・)は焦点検出画素の他方の光電変換部をそれぞれ示す。   21 and 22 are enlarged views of the vicinity of the defective focus detection pixel of the image sensor 212A shown in FIG. In these figures, R, G, and B added to each pixel indicate spectral characteristics of each imaging pixel, and A0 * (* = 0, 1, 2,...) Indicates a pair of photoelectric conversions of the focus detection pixel. .., A1 * (* = 0, 1, 2,...) Indicates the other photoelectric conversion unit of the focus detection pixel.

《欠陥焦点検出画素の補間演算例5》
図21は、欠陥焦点検出画素の一対の光電変換部の両方の出力が異常な場合であって、欠陥焦点検出画素が撮像画素配列の青画素の位置にあった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の一対の光電変換部の補間データA0x、A1xは、下記(25)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとを平均することにより求めれれる。
A0x=(A0av+A0w)/2,
A1x=(A1av+A1w)/2 ・・・(25)
(25)式において、両式の右辺第1項のA0av、A1avは、下記(26)式に示すように欠陥焦点検出画素の出力異常の光電変換部と同じ種類の光電変換部であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素の光電変換部のデータの平均データである。
A0av=(A00+A01)/2,
A1av=(A10+A01)/2 ・・・(26)
<< Example 5 of interpolation calculation of defective focus detection pixels >>
FIG. 21 shows a case where the outputs of both of the pair of photoelectric conversion units of the defect focus detection pixel are abnormal, and the defect focus detection pixel is detected when the defect focus detection pixel is at the position of the blue pixel in the imaging pixel array. The pixel arrangement for 5 pixels vertically and 5 pixels horizontally is shown at the center. The interpolation data A0x and A1x of the pair of photoelectric conversion units of the defect focus detection pixel to be obtained are the defects estimated from the data of the normal focus detection pixel at the position sandwiching the defect focus detection pixel as shown in the following equation (25). It is obtained by averaging the estimated values A0av and A1av of the focus detection pixels and the estimated values A0w and A1w of the defect focus detection pixels estimated from data of normal imaging pixels around the defect focus detection pixels.
A0x = (A0av + A0w) / 2
A1x = (A1av + A1w) / 2 (25)
In Equation (25), A0av and A1av in the first term on the right side of both equations are the same type of photoelectric conversion unit as the abnormal output photoelectric conversion unit of the defective focus detection pixel, as shown in the following Equation (26): It is the average data of the data of the photoelectric conversion part of the normal focus detection pixel located between the defective focus detection pixels.
A0av = (A00 + A01) / 2
A1av = (A10 + A01) / 2 (26)

また、(25)式において、両式の右辺第2項のA0w、A1wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素311の一対の光電変換部の出力データの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(27)式が得られる。
A=A0w+A1w=(A00+A01+A10+A11)/2,
A0w/A1w=(A00+A01)/(A10+A11),
R=(R00+R01+R10+R11)/4,
G=(G00+G01)/2,
B=(B00+B01)/2 ・・・(27)
In Expression (25), A0w and A1w in the second term on the right side of both expressions are estimated values of defective focus detection pixel data derived based on the equivalent relationship between focus detection pixel data and imaging pixel data. is there. As described above, since the output of the focus detection pixel is approximately expressed as a linear sum of the output of the imaging pixel, the sum of the output data of the pair of photoelectric conversion units of the focus detection pixel 311 is the data A of the focus detection pixel. Then, the expression (10) is approximately established between the data A of the focus detection pixel and the sum of the data R, G, and B of the imaging pixel. In the equation (10), when R, G, and B are locally estimated from the data of the focus detection pixels and the imaging pixels around the defect focus detection pixel, the following equation (27) is obtained.
A = A0w + A1w = (A00 + A01 + A10 + A11) / 2
A0w / A1w = (A00 + A01) / (A10 + A11),
R = (R00 + R01 + R10 + R11) / 4
G = (G00 + G01) / 2
B = (B00 + B01) / 2 (27)

(27)式を(10)式に代入して整理すると、推定値A0w、A1wは(28)式で得られる。
A0w={Kr・(R00+R01+R10+R11)/4+Kg・(G00+G01)/2+Kb・(B00+B01)/2}/{1+(A10+A11)/(A00+A01)},
A1w={Kr・(R00+R01+R10+R11)/4+Kg・(G00+G01)/2+Kb・(B00+B01)/2}/{1+(A00+A01)/(A10+A11)} ・・・(28)
By substituting equation (27) into equation (10) and rearranging, estimated values A0w and A1w can be obtained by equation (28).
A0w = {Kr · (R00 + R01 + R10 + R11) / 4 + Kg · (G00 + G01) / 2 + Kb · (B00 + B01) / 2} / {1+ (A10 + A11) / (A00 + A01)},
A1w = {Kr · (R00 + R01 + R10 + R11) / 4 + Kg · (G00 + G01) / 2 + Kb · (B00 + B01) / 2} / {1+ (A00 + A01) / (A10 + A11)} (28)

補間演算例5では、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA0x、A1xを正確に推定することができる。なお、2組の推定値(A0av、A0w)、(A1av、A1w)をそれぞれ重み付け平均してもよい(A0x=K1・A0av+K2・A0w、A1x=K3・A1av+K4・A1w、K1,K2,K3,K4は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avとしてもよい(A0x=A0av、A1x=A1av)。あるいは、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとしてもよい(A0x=A0w、A1x=A1w)。   In the interpolation calculation example 5, the defect focus detection pixel estimated values A0av and A1av obtained by estimating the defect focus detection pixel interpolation data A0x and A1x from the normal focus detection pixel data at the position sandwiching the defect focus detection pixel, and the defect An example in which the average of the estimated values A0w and A1w of the defect focus detection pixels estimated from the data of normal imaging pixels around the focus detection pixels is shown. According to this calculation method, the interpolation data A0x and A1x of the defective focus detection pixel can be accurately estimated. The two sets of estimated values (A0av, A0w) and (A1av, A1w) may be weighted and averaged (A0x = K1, A0av + K2, A0w, A1x = K3, A1av + K4, A1w, K1, K2, K3, K4). Is weight). Further, although the estimation accuracy is slightly lowered, the defect focus detection pixel estimated value A0av estimated from the defect focus detection pixel interpolation data A0x, A1x from the data of normal focus detection pixels at positions sandwiching the defect focus detection pixel. , A1av may be used (A0x = A0av, A1x = A1av). Alternatively, the defect focus detection pixel interpolation data A0x and A1x may be used as the defect focus detection pixel estimation values A0w and A1w estimated from the data of normal imaging pixels around the defect focus detection pixel (A0x = A0w, A1x = A1w).

《欠陥焦点検出画素の補間演算例6》
図22は、欠陥焦点検出画素の一対の光電変換部の両方の出力が異常な場合であって、欠陥焦点検出画素が撮像画素配列の緑画素の位置にあった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の一対の光電変換部の補間データA0x、A1xは、(29)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとを平均することにより求められる。
A0x=(A0av+A0w)/2,
A1x=(A1av+A1w)/2 ・・・(29)
(29)式において、両式の右辺第1項のA0av、A1avは、下記(30)式に示すように欠陥焦点検出画素の出力異常の光電変換部と同じ種類の光電変換部であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素の光電変換部のデータの平均データである。
A0av=(A00+A01)/2,
A1av=(A10+A01)/2 ・・・(30)
<< Defect focus detection pixel interpolation calculation example 6 >>
FIG. 22 shows a case where the outputs of both of the pair of photoelectric conversion units of the defective focus detection pixel are abnormal, and when the defective focus detection pixel is at the position of the green pixel in the imaging pixel array, The pixel arrangement for 5 pixels vertically and 5 pixels horizontally is shown at the center. The interpolation data A0x and A1x of the pair of photoelectric conversion units of the defect focus detection pixel to be obtained are the defect focus estimated from the data of the normal focus detection pixel at the position sandwiching the defect focus detection pixel as shown in the equation (29). It is obtained by averaging the estimated values A0av and A1av of the detected pixels and the estimated values A0w and A1w of the defect focus detection pixels estimated from the data of normal imaging pixels around the defect focus detection pixels.
A0x = (A0av + A0w) / 2
A1x = (A1av + A1w) / 2 (29)
In Equation (29), A0av and A1av in the first term on the right side of both equations are the same type of photoelectric conversion unit as the abnormal output photoelectric conversion unit of the defective focus detection pixel as shown in the following Equation (30): It is the average data of the data of the photoelectric conversion part of the normal focus detection pixel located between the defective focus detection pixels.
A0av = (A00 + A01) / 2
A1av = (A10 + A01) / 2 (30)

また、(29)式において、両式の右辺第2項のA0w、A1wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素311の一対の光電変換部の出力データの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(31)式が得られる。
A=A0w+A1w=(A00+A01+A10+A11)/2,
A0w/A1w=(A00+A01)/(A10+A11),
R=(R00+R01)/2,
G=(G00+G01+G10+G11)/4,
B=(B00+B01+B10+B11)/4 ・・・(31)
In Equation (29), A0w and A1w in the second term on the right side of both equations are estimated values of defective focus detection pixel data derived based on the equivalent relationship between the focus detection pixel data and the imaging pixel data. is there. As described above, since the output of the focus detection pixel is approximately expressed as a linear sum of the output of the imaging pixel, the sum of the output data of the pair of photoelectric conversion units of the focus detection pixel 311 is the data A of the focus detection pixel. Then, the expression (10) is approximately established between the data A of the focus detection pixel and the sum of the data R, G, and B of the imaging pixel. In the equation (10), when R, G, and B are locally estimated from the data of the focus detection pixels and the imaging pixels around the defect focus detection pixel, the following equation (31) is obtained.
A = A0w + A1w = (A00 + A01 + A10 + A11) / 2
A0w / A1w = (A00 + A01) / (A10 + A11),
R = (R00 + R01) / 2
G = (G00 + G01 + G10 + G11) / 4
B = (B00 + B01 + B10 + B11) / 4 (31)

(31)式を(10)式に代入して整理すると、推定値A0w、A1wは(32)式で得られる。
A0w={Kr・(R00+R01)/2+Kg・(G00+G01+G10+G11)/4+Kb・(B00+B01+B10+B11)/4}/{1+(A10+A11)/(A00+A01)},
A1w={Kr・(R00+R01)/2+Kg・(G00+G01+G10+G11)/4+Kb・(B00+B01+B10+B11)/4}/{1+(A00+A01)/(A10+A11)} ・・・(32)
By substituting equation (31) into equation (10) and rearranging, estimated values A0w and A1w can be obtained by equation (32).
A0w = {Kr · (R00 + R01) / 2 + Kg · (G00 + G01 + G10 + G11) / 4 + Kb · (B00 + B01 + B10 + B11) / 4} / {1+ (A10 + A11) / (A00 + A01)},
A1w = {Kr · (R00 + R01) / 2 + Kg · (G00 + G01 + G10 + G11) / 4 + Kb · (B00 + B01 + B10 + B11) / 4} / {1+ (A00 + A01) / (A10 + A11)} (32)

補間演算例6では、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとの平均として求める例を示した。この方法によれば欠陥焦点検出画素の補間データA0x、A1xを正確に推定することができる。なお、2組の推定値(A0av、A0w)、(A1av、A1w)をそれぞれ重み付け平均してもよい(A0x=K1・A0av+K2・A0w、A1x=K3・A1av+K4・A1w、K1,K2,K3,K4は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avとしてもよい(A0x=A0av、A1x=A1av)。あるいは、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとしてもよい(A0x=A0w、A1x=A1w)。   In the interpolation calculation example 6, the defect focus detection pixel estimated values A0av and A1av estimated from the defect focus detection pixel interpolation data A0x and A1x from the normal focus detection pixel data at the position sandwiching the defect focus detection pixel, and the defect An example in which the average of the estimated values A0w and A1w of the defect focus detection pixels estimated from the data of normal imaging pixels around the focus detection pixels is shown. According to this method, the interpolation data A0x and A1x of the defective focus detection pixel can be accurately estimated. The two sets of estimated values (A0av, A0w) and (A1av, A1w) may be weighted and averaged (A0x = K1, A0av + K2, A0w, A1x = K3, A1av + K4, A1w, K1, K2, K3, K4). Is weight). Further, although the estimation accuracy is slightly lowered, the defect focus detection pixel estimated value A0av estimated from the defect focus detection pixel interpolation data A0x, A1x from the data of normal focus detection pixels at positions sandwiching the defect focus detection pixel. , A1av may be used (A0x = A0av, A1x = A1av). Alternatively, the defect focus detection pixel interpolation data A0x and A1x may be used as the defect focus detection pixel estimation values A0w and A1w estimated from the data of normal imaging pixels around the defect focus detection pixel (A0x = A0w, A1x = A1w).

以上説明した一実施の形態では、焦点検出画素が連続的にかつ1直線上に配列された場合の欠陥焦点検出画素のデータ補間について述べたが、同様な考え方を適用することによって、焦点検出画素が間引かれて配置された場合や、焦点検出画素がジグザグに配置された場合においても、欠陥焦点検出画素のデータ補間を行うことができる。   In the embodiment described above, the data interpolation of the defective focus detection pixels when the focus detection pixels are continuously arranged on one straight line has been described. However, by applying the same concept, the focus detection pixels Even when the pixels are thinned out and arranged, or when the focus detection pixels are arranged in a zigzag manner, data interpolation of the defective focus detection pixels can be performed.

図3および図16に示す撮像素子212、212Aでは、撮像画素310がベイヤー配列の色フィルターを備えた例を示したが、色フィルターの構成や配列はこれに限定されることはなく、補色フィルター(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)の配列やベイヤー配列以外の配列にも本発明を適用することができる。また、図3および図16に示す撮像素子212、212Aでは、焦点検出画素313、314に色フィルターを設けない例を示したが、撮像画素310と同色の色フィルターの内のひとつのフィルター(例えば緑フィルター)を設けるようにした場合でも、本発明を適用することができる。   In the imaging devices 212 and 212A shown in FIGS. 3 and 16, the imaging pixel 310 includes a Bayer color filter, but the configuration and arrangement of the color filter are not limited to this, and the complementary color filter The present invention can also be applied to an arrangement other than (Green: G, Yellow: Ye, Magenta: Mg, Cyan: Cy) or an array other than the Bayer array. In the imaging elements 212 and 212A shown in FIGS. 3 and 16, an example in which the focus detection pixels 313 and 314 are not provided with a color filter is shown. However, one of the color filters of the same color as the imaging pixel 310 (for example, Even when a green filter is provided, the present invention can be applied.

また、上述した一実施の形態の図5、図17に示す焦点検出画素311、313、314では、光電変換部の形状を半円形や矩形にした例を示したが、焦点検出画素の光電変換部の形状はこれらに限定されず、他の形状であってもよい。例えば焦点検出画素の光電変換部の形状を楕円や多角形にすることも可能である。   Further, in the focus detection pixels 311, 313, and 314 shown in FIGS. 5 and 17 of the embodiment described above, an example in which the shape of the photoelectric conversion unit is semicircular or rectangular is shown. The shape of the part is not limited to these, and may be other shapes. For example, the shape of the photoelectric conversion unit of the focus detection pixel can be an ellipse or a polygon.

さらに、図3および図16に示す撮像素子212、212Aでは、撮像画素と焦点検出画素を稠密正方格子配列に配置した例を示したが、稠密六方格子配列(ハニカム状配列)としてもよい。   Further, in the imaging elements 212 and 212A shown in FIGS. 3 and 16, the example in which the imaging pixels and the focus detection pixels are arranged in a dense square lattice arrangement is shown, but a dense hexagonal lattice arrangement (honeycomb arrangement) may be used.

上述した一実施の形態では、撮像画素と焦点検出画素とが二次元状に配列された撮像素子212(図3参照)、212A(図16参照)を例に挙げて説明したが、焦点検出画素が平面上に配列された焦点検出専用素子に対しても本願発明を適用することができ、同様な効果を得ることができる。なお、この場合には図1に示す交換レンズ202と撮像素子212の間にハーフミラー等の光透過反射部材を設けるとともに、撮像素子212を撮像画素を二次元状に配列した撮像専用素子とし、光透過反射部材からの透過光を撮像専用素子で受光するとともに、光透過反射部材からの反射光を焦点検出専用素子で受光する構成とすればよい。   In the above-described embodiment, the imaging elements 212 (see FIG. 3) and 212A (see FIG. 16) in which the imaging pixels and the focus detection pixels are two-dimensionally arranged have been described as an example. The present invention can also be applied to the focus detection dedicated elements arranged on a plane, and similar effects can be obtained. In this case, a light transmitting / reflecting member such as a half mirror is provided between the interchangeable lens 202 and the image sensor 212 shown in FIG. 1, and the image sensor 212 is an image-capturing element in which imaging pixels are two-dimensionally arranged. The transmission light from the light transmission reflection member may be received by the imaging dedicated element, and the reflection light from the light transmission reflection member may be received by the focus detection dedicated element.

上述した一実施の形態では、マイクロレンズを用いた瞳分割方式による焦点検出動作を説明したが、本発明はこのような方式の焦点検出に限定されず、特開2008−015157号公報に開示された偏光素子による瞳分割型位相差検出方式の焦点検出装置にも適用可能である。   In the above-described embodiment, the focus detection operation by the pupil division method using the microlens has been described. However, the present invention is not limited to the focus detection of such a method, and is disclosed in Japanese Patent Laid-Open No. 2008-015157. The present invention can also be applied to a pupil detection type phase difference detection type focus detection apparatus using a polarizing element.

なお、撮像装置としては、上述したようなカメラボディに交換レンズが装着される構成のデジタルスチルカメラやフィルムスチルカメラに限定されない。例えばレンズ一体型のデジタルスチルカメラ、フィルムスチルカメラ、あるいはビデオカメラにも本発明を適用することができる。さらには、携帯電話などに内蔵される小型カメラモジュール、監視カメラやロボット用の視覚認識装置、車載カメラなどにも適用できる。   Note that the imaging apparatus is not limited to a digital still camera or a film still camera in which an interchangeable lens is mounted on the camera body as described above. For example, the present invention can be applied to a lens-integrated digital still camera, film still camera, or video camera. Furthermore, the present invention can be applied to a small camera module built in a mobile phone, a surveillance camera, a visual recognition device for a robot, an in-vehicle camera, and the like.

上述した実施の形態とその変形例によれば以下のような作用効果を奏することができる。まず、一実施の形態は、撮像画素310と焦点検出画素311,313,314とが二次元状に配列された撮像素子であって、複数の焦点検出画素311,313,314の配列により交換レンズ202を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子212,212Aと、複数の焦点検出画素311,313,314の中に欠陥焦点検出画素がある場合に、欠陥焦点検出画素の周囲の画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算するとともに、焦点検出画素311,313,314の出力信号と演算された欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、一対の像の相対的なズレ量を検出し、検出された前記一対の像のズレ量に基づいて交換レンズ202の焦点調節状態を演算するボディ駆動制御装置214を備えている。このような構成を備えることにより、欠陥焦点検出画素を含んだ撮像素子を使用しても正常に焦点検出を行うことが可能になるとともに、撮像素子の歩留まりの低下を防ぐことができる、という優れた効果を得ることができる。特に、被写体像のコントラスト変化が大きい、つまり空間周波数が高いほど、欠陥焦点検出画素の存在が焦点検出精度を低下させるが、一実施の形態によれば焦点検出精度の低下を防ぐことができる。   According to the above-described embodiment and its modifications, the following operational effects can be achieved. First, an embodiment is an image pickup device in which an image pickup pixel 310 and focus detection pixels 311, 313, and 314 are two-dimensionally arranged, and an interchangeable lens is formed by arranging a plurality of focus detection pixels 311, 313, and 314. When there are defective focus detection pixels among the imaging elements 212 and 212A that generate a pair of image signals corresponding to a pair of images formed by a pair of light beams that pass through 202 and a plurality of focus detection pixels 311, 313, and 314 In addition, the output signal of the defective focus detection pixel is calculated by interpolation based on the output signals of the pixels around the defective focus detection pixel, and the output signals of the focus detection pixels 311, 313, and 314 are calculated. Based on the pair of image signals generated by the output signal, a relative shift amount of the pair of images is detected, and an exchange lens is detected based on the detected shift amount of the pair of images. And a body drive control device 214 which calculates a focusing state of 202. By providing such a configuration, it is possible to perform focus detection normally even if an image sensor including defective focus detection pixels is used, and to prevent a decrease in the yield of the image sensor. Effects can be obtained. In particular, the presence of defective focus detection pixels decreases the focus detection accuracy as the contrast change of the subject image increases, that is, the spatial frequency increases. However, according to one embodiment, it is possible to prevent a decrease in focus detection accuracy.

次に、一実施の形態によれば、欠陥焦点検出画素の周囲の撮像画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算するようにしたので、焦点検出画素の周辺に配置される多くの撮像画素の出力信号を利用して欠陥焦点検出画素の出力信号を補間により求めることができる。   Next, according to one embodiment, since the output signal of the defective focus detection pixel is calculated by interpolation based on the output signal of the imaging pixels around the defective focus detection pixel, it is arranged around the focus detection pixel. The output signal of the defective focus detection pixel can be obtained by interpolation using the output signals of many imaging pixels.

さらに、一実施の形態によれば、欠陥焦点検出画素の周囲の撮像画素と焦点検出画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算するようにしたので、欠陥焦点検出画素の出力信号を補間により正確に求めることができる。   Furthermore, according to one embodiment, since the output signal of the defective focus detection pixel is calculated by interpolation based on the output signals of the imaging pixels around the defective focus detection pixel and the focus detection pixel, the defective focus detection pixel Can be accurately obtained by interpolation.

一実施の形態によれば、色フィルターが設けられていない欠陥焦点検出画素の出力信号を、それぞれの色フィルターが設けられた撮像画素の出力信号の線形和として演算するようにしたので、焦点検出画素の周辺に配置される多くの撮像画素の出力信号を利用して欠陥焦点検出画素の出力信号を正確に補間することができる。   According to one embodiment, since the output signal of the defective focus detection pixel not provided with the color filter is calculated as a linear sum of the output signals of the imaging pixels provided with the respective color filters, focus detection is performed. The output signals of the defective focus detection pixels can be accurately interpolated using the output signals of many imaging pixels arranged around the pixels.

一実施の形態によれば、一対の像信号の内の一方の像信号を出力する第1焦点検出画素313と他方の像信号を出力する第2焦点検出画素314とを備えた撮像素子212(図3参照)に対し、欠陥焦点検出画素の周囲に配置された第1焦点検出画素313と第2焦点検出画素314の内、欠陥焦点検出画素と同一種類の第1焦点検出画素313または第2焦点検出画素314の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算するようにしたので、欠陥焦点検出画素の出力信号を正確に補間することができる。   According to one embodiment, an image sensor 212 (a first focus detection pixel 313 that outputs one image signal of a pair of image signals and a second focus detection pixel 314 that outputs the other image signal. 3), the first focus detection pixel 313 or the second focus detection pixel 313 of the same type as the defect focus detection pixel out of the first focus detection pixel 313 and the second focus detection pixel 314 arranged around the defect focus detection pixel. Since the output signal of the defective focus detection pixel is calculated by interpolation based on the output signal of the focus detection pixel 314, the output signal of the defective focus detection pixel can be accurately interpolated.

一実施の形態のカメラの構成を示すカメラの横断面図Cross-sectional view of the camera showing the configuration of the camera of one embodiment 交換レンズの撮影画面上における焦点検出位置を示す図The figure which shows the focus detection position on the photographing screen of the interchangeable lens 撮像素子の詳細な構成を示す正面図Front view showing detailed configuration of image sensor 撮像画素の構成を示す正面図Front view showing configuration of imaging pixel 焦点検出画素の構成を示す正面図Front view showing configuration of focus detection pixel 撮像画素の分光特性を示す図Diagram showing spectral characteristics of imaging pixels 焦点検出画素の分光特性を示す図Diagram showing spectral characteristics of focus detection pixels 撮像画素の構造を示す断面図Sectional view showing structure of imaging pixel 焦点検出画素の構造を示す断面図Sectional view showing structure of focus detection pixel マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す図The figure which shows the structure of the focus detection optical system of the pupil division type phase difference detection method using a micro lens 撮像素子の回路構成の概念を示す図The figure which shows the concept of the circuit structure of an image sensor 一実施の形態のデジタルスチルカメラ(撮像装置)の撮像動作を示すフローチャートThe flowchart which shows the imaging operation of the digital still camera (imaging device) of one embodiment 焦点検出結果の信頼性を説明する図Diagram explaining the reliability of focus detection results 欠陥焦点検出画素の補間演算例1を説明するための図The figure for demonstrating the interpolation calculation example 1 of a defect focus detection pixel 欠陥焦点検出画素の補間演算例2を説明するための図The figure for demonstrating the interpolation calculation example 2 of a defect focus detection pixel 変形例の撮像素子の正面図Front view of image sensor of modification 焦点検出画素の構成を示す正面図Front view showing configuration of focus detection pixel マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す図The figure which shows the structure of the focus detection optical system of the pupil division type phase difference detection method using a micro lens 欠陥焦点検出画素の補間演算例3を説明するための図The figure for demonstrating the interpolation calculation example 3 of a defect focus detection pixel 欠陥焦点検出画素の補間演算例4を説明するための図The figure for demonstrating the interpolation calculation example 4 of a defect focus detection pixel 欠陥焦点検出画素の補間演算例5を説明するための図The figure for demonstrating the interpolation calculation example 5 of a defect focus detection pixel 欠陥焦点検出画素の補間演算例6を説明するための図The figure for demonstrating the interpolation calculation example 6 of a defect focus detection pixel

符号の説明Explanation of symbols

201;カメラ、202;交換レンズ、212、212A;撮像素子、214;ボディ駆動制御装置、310;撮像画素、311、313、314;焦点検出画素 201; Camera, 202; Interchangeable lens, 212, 212A; Imaging element, 214; Body drive control device, 310; Imaging pixel, 311, 313, 314;

Claims (10)

撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の前記焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子と、
前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素の周囲の画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、
前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、
前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段と、を備え、
前記補間手段は、前記欠陥焦点検出画素の周囲の前記撮像画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算し、
前記撮像画素には複数種類の色フィルターが設けられており、
前記補間手段は、前記色フィルターが設けられていない前記欠陥焦点検出画素の出力信号を、それぞれの前記色フィルターが設けられた前記撮像画素の出力信号の線形和として演算することを特徴とする焦点検出装置。
An image pickup device in which an image pickup pixel and a focus detection pixel are two-dimensionally arranged, and a pair corresponding to a pair of images formed by a pair of light beams passing through an imaging optical system by the arrangement of the plurality of focus detection pixels An image sensor for generating an image signal of
An interpolation means for calculating an output signal of the defective focus detection pixel by interpolation based on an output signal of a pixel around the defective focus detection pixel when there is a defective focus detection pixel among the plurality of focus detection pixels;
Detection for detecting a relative shift amount of the pair of images based on a pair of image signals generated by the output signal of the focus detection pixel and the output signal of the defective focus detection pixel calculated by the interpolation means. Means,
Calculating means for calculating a focus adjustment state of the imaging optical system based on a shift amount of the pair of images detected by the detecting means;
The interpolation means calculates the output signal of the defective focus detection pixel by interpolation based on the output signal of the imaging pixel around the defective focus detection pixel,
The imaging pixel is provided with a plurality of types of color filters,
The interpolating unit calculates an output signal of the defective focus detection pixel not provided with the color filter as a linear sum of output signals of the imaging pixels provided with the color filters. Detection device.
撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の前記焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子と、
前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素の周囲の画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、
前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、
前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段と、を備え、
前記補間手段は、前記欠陥焦点検出画素の周囲の前記撮像画素と前記焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算し、
前記撮像画素には複数種類の色フィルターが設けられており、
前記補間手段は、前記色フィルターが設けられていない前記欠陥焦点検出画素の出力信号を、それぞれの前記色フィルターが設けられた前記撮像画素の出力信号の線形和として演算することを特徴とする焦点検出装置。
An image pickup device in which an image pickup pixel and a focus detection pixel are two-dimensionally arranged, and a pair corresponding to a pair of images formed by a pair of light beams passing through an imaging optical system by the arrangement of the plurality of focus detection pixels An image sensor for generating an image signal of
An interpolation means for calculating an output signal of the defective focus detection pixel by interpolation based on an output signal of a pixel around the defective focus detection pixel when there is a defective focus detection pixel among the plurality of focus detection pixels;
Detection for detecting a relative shift amount of the pair of images based on a pair of image signals generated by the output signal of the focus detection pixel and the output signal of the defective focus detection pixel calculated by the interpolation means. Means,
Calculating means for calculating a focus adjustment state of the imaging optical system based on a shift amount of the pair of images detected by the detecting means;
The interpolation means calculates an output signal of the defective focus detection pixel by interpolation based on an output signal of the imaging pixel and the focus detection pixel around the defective focus detection pixel,
The imaging pixel is provided with a plurality of types of color filters,
The interpolating unit calculates an output signal of the defective focus detection pixel not provided with the color filter as a linear sum of output signals of the imaging pixels provided with the color filters. Detection device.
撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の前記焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子と、
前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素の周囲に位置する前記撮像画素及び前記焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、
前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、
前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段とを備えることを特徴とする焦点検出装置。
An image pickup device in which an image pickup pixel and a focus detection pixel are two-dimensionally arranged, and a pair corresponding to a pair of images formed by a pair of light beams passing through an imaging optical system by the arrangement of the plurality of focus detection pixels An image sensor for generating an image signal of
When there is a defective focus detection pixel among the plurality of focus detection pixels, an output signal of the defective focus detection pixel based on an output signal of the imaging pixel and the focus detection pixel located around the defective focus detection pixel Interpolation means for calculating by interpolation,
Detection for detecting a relative shift amount of the pair of images based on a pair of image signals generated by the output signal of the focus detection pixel and the output signal of the defective focus detection pixel calculated by the interpolation means. Means,
A focus detection apparatus comprising: a calculation unit that calculates a focus adjustment state of the imaging optical system based on a shift amount of the pair of images detected by the detection unit.
撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、前記焦点検出画素は結像光学系を通過する一対の焦点検出光束の一方及び他方をそれぞれ受光する第1及び第2の焦点検出画素を有し、前記第1及び第2の焦点検出画素は一方向に互いに隣接して交互にそれぞれ3個以上配置され、前記一対の焦点検出光束による一対の像に対応した一対の像信号を出力する撮像素子と、
前記第1の焦点検出画素が欠陥焦点検出画素である場合に、少なくとも前記欠陥焦点検出画素の両隣にそれぞれ位置する第2の焦点検出画素にそれぞれ隣接する第1の焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、
前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、
前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段と、を備え
前記補間手段は、前記欠陥焦点検出画素の両隣にそれぞれ位置する第2の焦点検出画素にそれぞれ隣接する第1の焦点検出画素の出力信号と、前記欠陥焦点検出画素の周囲の前記撮像画素の出力信号とに基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
An imaging device in which an imaging pixel and a focus detection pixel are two-dimensionally arranged, and the focus detection pixel receives a first and a second of a pair of focus detection light beams passing through an imaging optical system, respectively. A pair corresponding to a pair of images formed by the pair of focus detection light beams, each having three or more focus detection pixels alternately arranged adjacent to each other in one direction. An image sensor that outputs an image signal of
When the first focus detection pixel is a defective focus detection pixel, at least based on the output signal of the first focus detection pixel adjacent to each of the second focus detection pixels located on both sides of the defective focus detection pixel. Interpolation means for calculating the output signal of the defective focus detection pixel by interpolation,
Detection for detecting a relative shift amount of the pair of images based on a pair of image signals generated by the output signal of the focus detection pixel and the output signal of the defective focus detection pixel calculated by the interpolation means. Means,
Calculating means for calculating a focus adjustment state of the imaging optical system based on a shift amount of the pair of images detected by the detecting means ;
The interpolation means outputs an output signal of a first focus detection pixel adjacent to each of second focus detection pixels located on both sides of the defective focus detection pixel, and an output of the imaging pixels around the defective focus detection pixel. A focus detection apparatus that calculates an output signal of the defective focus detection pixel by interpolation based on a signal .
撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、前記焦点検出画素は、一方向に複数個配列され、結像光学系を通過する一対の焦点検出光束の一方及び他方をそれぞれ受光する第1及び第2の光電変換部を有し、前記結像光学系を通過する一対の焦点検出光束が形成する一対の像に対応した一対の像信号を出力する撮像素子と、
前記焦点検出画素の第1の光電変換部からの出力信号に欠陥がある場合に、前記欠陥焦点検出画素の両隣にそれぞれ位置する焦点検出画素の第1の光電変換部の出力信号に基づいて前記欠陥焦点検出画素の第1の光電変換部の出力信号を補間により演算する補間手段と、
前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、
前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段とを備え
前記補間手段は、前記欠陥焦点検出画素の両隣にそれぞれ位置する焦点検出画素の第1の光電変換部の出力信号と、前記欠陥焦点検出画素の周囲の前記撮像画素の出力信号とに基づいて前記欠陥焦点検出画素の第1の光電変換部の出力信号を補間により演算することを特徴とする焦点検出装置。
An imaging device in which imaging pixels and focus detection pixels are two-dimensionally arranged, wherein a plurality of the focus detection pixels are arranged in one direction, and one of a pair of focus detection light beams passing through the imaging optical system and An imaging device having first and second photoelectric conversion units for receiving the other and outputting a pair of image signals corresponding to a pair of images formed by a pair of focus detection light beams passing through the imaging optical system; ,
When there is a defect in the output signal from the first photoelectric conversion unit of the focus detection pixel, the output signal from the first photoelectric conversion unit of the focus detection pixel located on both sides of the defective focus detection pixel, respectively. Interpolation means for calculating an output signal of the first photoelectric conversion unit of the defective focus detection pixel by interpolation;
Detection for detecting a relative shift amount of the pair of images based on a pair of image signals generated by the output signal of the focus detection pixel and the output signal of the defective focus detection pixel calculated by the interpolation means. Means,
Based on the shift amount of the pair of images detected by the detection means, and a calculation means for calculating a focusing state of the imaging optical system,
The interpolation means is based on an output signal of a first photoelectric conversion unit of a focus detection pixel located on both sides of the defective focus detection pixel and an output signal of the imaging pixel around the defective focus detection pixel. A focus detection apparatus that calculates an output signal of a first photoelectric conversion unit of a defective focus detection pixel by interpolation .
撮像画素と結像光学系を通過する一対の焦点検出光束を受光する焦点検出画素とが二次元状に配列された撮像素子であって、前記焦点検出画素が互いに隣接して複数個一直線上に配置されて前記一対の焦点検出光束が形成する一対の像に対応した一対の像信号を出力する撮像素子と、
前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素に近接する周囲の前記撮像画素と前記焦点検出画素との少なくとも一方の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、
前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、
前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段と、を備え
前記補間手段は、前記撮像画素と前記焦点検出画素との両方の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
An imaging element in which an imaging pixel and a pair of focus detection pixels that receive a pair of focus detection light beams passing through an imaging optical system are two-dimensionally arranged, and a plurality of the focus detection pixels are adjacent to each other on a straight line An image sensor that is disposed and outputs a pair of image signals corresponding to a pair of images formed by the pair of focus detection light beams;
When there is a defect focus detection pixel among the plurality of focus detection pixels, the defect focus detection is performed based on an output signal of at least one of the imaging pixel and the focus detection pixel in the vicinity of the defect focus detection pixel. Interpolation means for calculating pixel output signals by interpolation;
Detection for detecting a relative shift amount of the pair of images based on a pair of image signals generated by the output signal of the focus detection pixel and the output signal of the defective focus detection pixel calculated by the interpolation means. Means,
Calculating means for calculating a focus adjustment state of the imaging optical system based on a shift amount of the pair of images detected by the detecting means ;
The focus detection apparatus characterized in that the interpolation means calculates an output signal of the defective focus detection pixel by interpolation based on output signals of both the imaging pixel and the focus detection pixel .
請求項に記載の焦点検出装置において、
前記焦点検出画素は、前記結像光学系を通過する一対の焦点検出光束の一方及び他方をそれぞれ受光する第1及び第2の焦点検出画素を有し、
前記第1焦点検出画素と前記第2焦点検出画素が交互に隣接して配置されることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 6 ,
The focus detection pixel includes first and second focus detection pixels that respectively receive one and the other of a pair of focus detection light beams that pass through the imaging optical system,
The focus detection apparatus, wherein the first focus detection pixels and the second focus detection pixels are alternately arranged adjacent to each other.
請求項に記載の焦点検出装置において、
前記補間手段は、前記欠陥焦点検出画素の周囲に配置された前記第1焦点検出画素と前記第2焦点検出画素の内、前記欠陥焦点検出画素と同一種類の前記第1焦点検出画素または前記第2焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 7 ,
The interpolation means includes the first focus detection pixel of the same type as the defective focus detection pixel or the first focus detection pixel of the first focus detection pixel and the second focus detection pixel arranged around the defective focus detection pixel. A focus detection apparatus, wherein an output signal of the defective focus detection pixel is calculated by interpolation based on an output signal of a bifocal detection pixel.
請求項1〜8のいずれか一項に記載の焦点検出装置において、
前記欠陥焦点検出画素の位置情報を記憶する記憶手段を備え、
前記補間手段は、前記記憶手段に記憶された前記欠陥焦点検出画素の位置情報に基づいて、前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 8 ,
Storage means for storing position information of the defective focus detection pixels;
The focus detection apparatus characterized in that the interpolation means calculates an output signal of the defect focus detection pixel by interpolation based on position information of the defect focus detection pixel stored in the storage means.
請求項1〜9のいずれか一項に記載の焦点検出装置を備えることを特徴とする撮像装置。 Imaging apparatus characterized by comprising the focus detection apparatus according to any one of claims 1-9.
JP2008262735A 2008-10-09 2008-10-09 Focus detection apparatus and imaging apparatus Active JP5228777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262735A JP5228777B2 (en) 2008-10-09 2008-10-09 Focus detection apparatus and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262735A JP5228777B2 (en) 2008-10-09 2008-10-09 Focus detection apparatus and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2010091848A JP2010091848A (en) 2010-04-22
JP5228777B2 true JP5228777B2 (en) 2013-07-03

Family

ID=42254621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262735A Active JP5228777B2 (en) 2008-10-09 2008-10-09 Focus detection apparatus and imaging apparatus

Country Status (1)

Country Link
JP (1) JP5228777B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230388B2 (en) 2008-12-10 2013-07-10 キヤノン株式会社 Focus detection apparatus and control method thereof
JP5697433B2 (en) * 2010-12-22 2015-04-08 キヤノン株式会社 Image processing apparatus and image processing method
CN105008976B (en) 2013-03-13 2017-07-11 富士胶片株式会社 Camera head, signal processing method, signal handler
JP5775918B2 (en) * 2013-09-27 2015-09-09 オリンパス株式会社 Imaging apparatus, image processing method, and image processing program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556355A (en) * 1991-08-28 1993-03-05 Canon Inc Photoelectric converter
JP2001177756A (en) * 1999-12-21 2001-06-29 Canon Inc Image pickup device and camera system provided with it
JP5023480B2 (en) * 2005-12-02 2012-09-12 株式会社ニコン Electronic camera
JP4835136B2 (en) * 2005-12-06 2011-12-14 株式会社ニコン Solid-state imaging device having a function for generating a focus detection signal, and an electronic camera
JP4935162B2 (en) * 2006-04-11 2012-05-23 株式会社ニコン Imaging apparatus, camera, and image processing method
JP4992481B2 (en) * 2007-03-09 2012-08-08 株式会社ニコン Focus detection apparatus and imaging apparatus
JP5180795B2 (en) * 2007-12-10 2013-04-10 キヤノン株式会社 Imaging apparatus and control method thereof
JP5322561B2 (en) * 2008-09-25 2013-10-23 キヤノン株式会社 Imaging apparatus and control method thereof

Also Published As

Publication number Publication date
JP2010091848A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5012495B2 (en) IMAGING ELEMENT, FOCUS DETECTION DEVICE, FOCUS ADJUSTMENT DEVICE, AND IMAGING DEVICE
JP5092685B2 (en) Imaging device and imaging apparatus
JP5163068B2 (en) Imaging device
JP5029274B2 (en) Imaging device
JP4770560B2 (en) Imaging apparatus, camera, and image processing method
JP4952060B2 (en) Imaging device
JP5157400B2 (en) Imaging device
JP5374862B2 (en) Focus detection apparatus and imaging apparatus
JP5256711B2 (en) Imaging device and imaging apparatus
US7586072B2 (en) Correlation operation method, correlation operation device, focus detection device and imaging device
US7586588B2 (en) Correlation operation method, correlation operation device, focus detection device and imaging device
JP4935161B2 (en) Imaging apparatus, camera, and image processing method
JP5045007B2 (en) Imaging device
JP4826507B2 (en) Focus detection apparatus and imaging apparatus
JP5167783B2 (en) Focus detection apparatus and imaging apparatus
JP5211590B2 (en) Image sensor and focus detection apparatus
JP5381472B2 (en) Imaging device
JP5228777B2 (en) Focus detection apparatus and imaging apparatus
JP5278123B2 (en) Imaging device
JP5338112B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5407314B2 (en) Focus detection apparatus and imaging apparatus
JP5481914B2 (en) Correlation calculation method, correlation calculation device, focus detection device, and imaging device
JP5338113B2 (en) Correlation calculation device, focus detection device, and imaging device
JP2009162845A (en) Imaging device, focus detecting device and imaging apparatus
JP5476702B2 (en) Imaging device and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250