JP2009162845A - Imaging device, focus detecting device and imaging apparatus - Google Patents

Imaging device, focus detecting device and imaging apparatus Download PDF

Info

Publication number
JP2009162845A
JP2009162845A JP2007339755A JP2007339755A JP2009162845A JP 2009162845 A JP2009162845 A JP 2009162845A JP 2007339755 A JP2007339755 A JP 2007339755A JP 2007339755 A JP2007339755 A JP 2007339755A JP 2009162845 A JP2009162845 A JP 2009162845A
Authority
JP
Japan
Prior art keywords
focus detection
pixel
pixels
imaging
detection pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007339755A
Other languages
Japanese (ja)
Inventor
Toru Takagi
徹 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007339755A priority Critical patent/JP2009162845A/en
Publication of JP2009162845A publication Critical patent/JP2009162845A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the circuit configuration and control of an imaging device where a focus detecting pixel array is partly disposed in the two-dimensional arrays of imaging pixels. <P>SOLUTION: In the imaging device where the imaging pixels 310 for imaging an image formed by an optical system are two-dimensionally arrayed, first focus detecting elements 312 and second focus detecting elements 313 for detecting the focusing state of the optical system are partly and linearly arrayed by turns in place of the imaging pixels 310. The first focus detecting element 312 includes a first photoelectric conversion section for receiving light passing through one of a pair of areas of the exit pupil of the optical system through a microlens. The second focus detecting pixel 313 includes a second photoelectric conversion section for receiving the light passing through the other area through the microlens. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は撮像素子、焦点検出装置および撮像装置に関する。   The present invention relates to an imaging element, a focus detection device, and an imaging device.

光学系により結像された像の撮像と光学系の焦点検出とを行うために、撮像画素の二次元配列の一部に焦点検出画素を配列した撮像素子が知られている(例えば、特許文献1参照)。
この撮像素子は、一つの焦点検出画素の中に一対の光電変換部を設け、光学系の射出瞳の一対の領域を通過した一対の光束により結像される一対の像のズレ量を検出し、このズレ量に基づいて光学系の焦点調節状態を検出する、いわゆる瞳分割型位相差検出方式の焦点検出を行うために用いられている。
In order to perform imaging of an image formed by an optical system and focus detection of the optical system, an imaging device in which focus detection pixels are arranged in a part of a two-dimensional array of imaging pixels is known (for example, Patent Documents). 1).
This image sensor is provided with a pair of photoelectric conversion units in one focus detection pixel, and detects a deviation amount of a pair of images formed by a pair of light beams that have passed through a pair of areas of an exit pupil of an optical system. This is used to perform focus detection by a so-called pupil division type phase difference detection system that detects the focus adjustment state of the optical system based on this shift amount.

この出願の発明に関連する先行技術文献としては次のものがある。
特開2003−244712号公報
Prior art documents related to the invention of this application include the following.
JP 2003-244712 A

しかしながら、上述した従来の撮像素子では、一つの焦点検出画素の中に二個の光電変換部を設けているので、一つの画素の中に一つの光電変換部を有する撮像画素とは異なる出力信号読み出し回路が必要となり、焦点検出画素周りの信号回路が複雑になる上に、信号読み出し制御も煩雑になるという問題がある。   However, in the conventional imaging device described above, since two photoelectric conversion units are provided in one focus detection pixel, an output signal different from that of an imaging pixel having one photoelectric conversion unit in one pixel. There is a problem that a readout circuit is required, the signal circuit around the focus detection pixel is complicated, and signal readout control is complicated.

(1) 請求項1の発明は、光学系により結像された像を撮像するための撮像画素が二次元配列された撮像素子の一部に、撮像画素の代わりに光学系の焦点調節状態を検出するための第1焦点検出画素と第2焦点検出画素とを直線状に交互に配列した撮像素子であって、第1焦点検出画素は、マイクロレンズを介して光学系の射出瞳の一対の領域の内の一方の領域を通過した光を受光する第1光電変換部を備え、第2焦点検出画素は、マイクロレンズを介して他方の領域を通過した光を受光する第2光電変換部を備える。
(2) 請求項2の発明は、請求項1に記載の撮像素子において、第1焦点検出画素と第2焦点検出画素とを同数個ずつ配列した。
(3) 請求項3の発明は、請求項1に記載の撮像素子において、第1焦点検出画素と第2焦点検出画素とを異なる個数配列した。
(4) 請求項4の発明は、請求項1〜3のいずれか一項に記載の撮像素子において、第1焦点検出画素と第2焦点検出画素の配列には撮像画素が含まれる。
(5) 請求項5の発明は、請求項1〜4のいずれか一項に記載の撮像素子と、第1焦点検出画素と第2焦点検出画素の配列の中から同数個の第1焦点検出画素と第2焦点検出画素を抽出し、抽出した第1焦点検出画素と第2焦点検出画素の画素信号を読み出す信号読み出し手段と、信号読み出し手段により読み出された第1焦点検出画素と第2焦点検出画素の画素信号に基づいて光学系の焦点調節状態を検出する焦点検出手段とを備える焦点検出装置である。
(6) 請求項6の発明は、請求項1〜4のいずれか一項に記載の撮像素子と、第1焦点検出画素と第2焦点検出画素の配列の中から異なる個数の第1焦点検出画素と第2焦点検出画素を抽出し、抽出した第1焦点検出画素と第2焦点検出画素の画素信号を読み出す信号読み出し手段と、信号読み出し手段により読み出された第1焦点検出画素と第2焦点検出画素の画素信号に基づいて光学系の焦点調節状態を検出する焦点検出手段とを備える。
(7) 請求項7の発明は、請求項1〜4のいずれか一項に記載の撮像素子と、撮像画素、第1焦点検出画素および第2焦点検出画素から画素信号を読み出す信号読み出し手段と、第1焦点検出画素および第2焦点検出画素の位置の撮像用の画素信号を、第1焦点検出画素および第2焦点検出画素の周囲の撮像画素の画素信号に基づいて補間により算出する補間手段とを備え、撮像画素の画素信号と、補間手段による補間後の第1焦点検出画素および第2焦点検出画素の位置の撮像用の画素信号とにより画像を生成する撮像装置である。
(1) According to the first aspect of the present invention, the focus adjustment state of the optical system is set in place of the imaging pixel in a part of the imaging element in which imaging pixels for imaging an image formed by the optical system are two-dimensionally arranged. An image sensor in which first focus detection pixels and second focus detection pixels for detection are alternately arranged in a straight line, and the first focus detection pixels are a pair of exit pupils of an optical system via a microlens. A first photoelectric conversion unit that receives light that has passed through one of the regions, and the second focus detection pixel includes a second photoelectric conversion unit that receives light that has passed through the other region via the microlens. Prepare.
(2) According to the invention of claim 2, in the imaging device according to claim 1, the same number of first focus detection pixels and second focus detection pixels are arranged.
(3) According to a third aspect of the present invention, in the imaging device according to the first aspect, different numbers of first focus detection pixels and second focus detection pixels are arranged.
(4) According to a fourth aspect of the present invention, in the imaging device according to any one of the first to third aspects, the array of the first focus detection pixels and the second focus detection pixels includes an image pickup pixel.
(5) The invention of claim 5 provides the same number of first focus detections from the image sensor according to any one of claims 1 to 4 and an array of first focus detection pixels and second focus detection pixels. The pixel and the second focus detection pixel are extracted, the signal readout means for reading out the pixel signals of the extracted first focus detection pixel and the second focus detection pixel, the first focus detection pixel and the second read out by the signal readout means The focus detection apparatus includes a focus detection unit that detects a focus adjustment state of the optical system based on a pixel signal of the focus detection pixel.
(6) A sixth aspect of the present invention is the imaging element according to any one of the first to fourth aspects, and a different number of first focus detections from an array of first focus detection pixels and second focus detection pixels. The pixel and the second focus detection pixel are extracted, the signal readout means for reading out the pixel signals of the extracted first focus detection pixel and the second focus detection pixel, the first focus detection pixel and the second read out by the signal readout means Focus detection means for detecting the focus adjustment state of the optical system based on the pixel signal of the focus detection pixel.
(7) The invention of claim 7 is an image pickup device according to any one of claims 1 to 4, and a signal reading unit that reads out a pixel signal from the image pickup pixel, the first focus detection pixel, and the second focus detection pixel. Interpolating means for calculating pixel signals for imaging at the positions of the first focus detection pixel and the second focus detection pixel by interpolation based on pixel signals of imaging pixels around the first focus detection pixel and the second focus detection pixel And an imaging device that generates an image using pixel signals of the imaging pixels and pixel signals for imaging at the positions of the first focus detection pixels and the second focus detection pixels after interpolation by the interpolation unit.

本発明によれば、焦点検出画素周りの信号読み出し回路を撮像画素周りの信号読み出し回路と同様に構成することができる上に、焦点検出画素からの信号読み出し制御も撮像画素からの信号読み出し制御と同様に扱うことができ、回路および制御を簡略に構成することができる。   According to the present invention, the signal readout circuit around the focus detection pixel can be configured in the same manner as the signal readout circuit around the imaging pixel, and the signal readout control from the focus detection pixel is also the signal readout control from the imaging pixel. It can be handled in the same way, and the circuit and control can be configured simply.

撮像画素の二次元配列中の一部に二種類の焦点検出画素を配列した一実施の形態の撮像素子と、その撮像素子を用いた焦点検出装置および撮像装置を説明する。一実施の形態の撮像素子を備えた焦点検出装置および撮像装置として、レンズ交換式一眼レフデジタルスチルカメラを例に上げて説明する。なお、本発明の撮像素子は、一眼レフカメラスチルカメラに限定されず、例えばコンパクトカメラやビデオカメラなどの焦点検出装置および撮像装置にも適用することができる。   An imaging device according to an embodiment in which two types of focus detection pixels are arranged in a part of a two-dimensional array of imaging pixels, and a focus detection device and an imaging device using the imaging device will be described. As a focus detection apparatus and an imaging apparatus provided with an imaging device according to an embodiment, a lens interchangeable single-lens reflex digital still camera will be described as an example. The imaging device of the present invention is not limited to a single-lens reflex camera still camera, and can be applied to a focus detection device and an imaging device such as a compact camera and a video camera, for example.

図1は一実施の形態のカメラ(撮像装置)の構成を示すカメラの横断面図である。一実施の形態のデジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、交換レンズ202がマウント部204を介してカメラボディ203に装着される。カメラボディ203にはマウント部204を介して種々の撮影光学系を有する交換レンズ202が装着可能である。   FIG. 1 is a cross-sectional view of a camera showing a configuration of a camera (imaging device) according to an embodiment. A digital still camera 201 according to an embodiment includes an interchangeable lens 202 and a camera body 203, and the interchangeable lens 202 is attached to the camera body 203 via a mount unit 204. An interchangeable lens 202 having various photographing optical systems can be attached to the camera body 203 via a mount unit 204.

交換レンズ202はレンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り211、レンズ駆動制御装置206などを備えている。レンズ駆動制御装置206は不図示のマイクロコンピューター、メモリ、駆動制御回路などから構成され、フォーカシング用レンズ210の焦点調節と絞り211の開口径調節のための駆動制御や、ズーミング用レンズ208、フォーカシング用レンズ210および絞り211の状態検出などを行う他、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報の受信を行う。絞り211は、光量およびボケ量調整のために光軸中心に開口径が可変な開口を形成する。   The interchangeable lens 202 includes a lens 209, a zooming lens 208, a focusing lens 210, an aperture 211, a lens drive control device 206, and the like. The lens drive control device 206 includes a microcomputer (not shown), a memory, a drive control circuit, and the like. The lens drive control device 206 includes drive control for adjusting the focus of the focusing lens 210 and the aperture diameter of the aperture 211, zooming lens 208, and focusing. In addition to detecting the state of the lens 210 and the aperture 211, the lens information is transmitted and the camera information is received through communication with a body drive control device 214 described later. The aperture 211 forms an aperture having a variable aperture diameter at the center of the optical axis in order to adjust the amount of light and the amount of blur.

カメラボディ203は撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には、撮像画素が二次元状に配置されるとともに、焦点検出位置に対応した部分に焦点検出画素が組み込まれている。この撮像素子212については詳細を後述する。   The camera body 203 includes an imaging element 212, a body drive control device 214, a liquid crystal display element drive circuit 215, a liquid crystal display element 216, an eyepiece lens 217, a memory card 219, and the like. In the imaging element 212, imaging pixels are two-dimensionally arranged, and focus detection pixels are incorporated in portions corresponding to focus detection positions. Details of the image sensor 212 will be described later.

ボディ駆動制御装置214はマイクロコンピューター、メモリ、駆動制御回路などから構成され、撮像素子212の駆動制御と画像信号および焦点検出信号の読み出しと、焦点検出信号に基づく焦点検出演算と交換レンズ202の焦点調節を繰り返し行うとともに、画像信号の処理と記録、カメラの動作制御などを行う。また、ボディ駆動制御装置214は電気接点213を介してレンズ駆動制御装置206と通信を行い、レンズ情報の受信とカメラ情報(デフォーカス量や絞り値など)の送信を行う。   The body drive control device 214 includes a microcomputer, a memory, a drive control circuit, and the like, and controls the drive of the image sensor 212, reads out the image signal and the focus detection signal, performs the focus detection calculation based on the focus detection signal, and the focus of the interchangeable lens 202. The adjustment is repeated, and image signal processing and recording, camera operation control, and the like are performed. The body drive control device 214 communicates with the lens drive control device 206 via the electrical contact 213 to receive lens information and send camera information (defocus amount, aperture value, etc.).

液晶表示素子216は電気的なビューファインダー(EVF:Electronic View Finder)として機能する。液晶表示素子駆動回路215は撮像素子212によるスルー画像を液晶表示素子216に表示し、撮影者は接眼レンズ217を介してスルー画像を観察することができる。メモリカード219は、撮像素子212により撮像された画像を記憶する画像ストレージである。   The liquid crystal display element 216 functions as an electric view finder (EVF). The liquid crystal display element driving circuit 215 displays a through image by the imaging element 212 on the liquid crystal display element 216, and the photographer can observe the through image through the eyepiece lens 217. The memory card 219 is an image storage that stores an image captured by the image sensor 212.

交換レンズ202を通過した光束により、撮像素子212の受光面上に被写体像が形成される。この被写体像は撮像素子212により光電変換され、画像信号と焦点検出信号がボディ駆動制御装置214へ送られる。   A subject image is formed on the light receiving surface of the image sensor 212 by the light beam that has passed through the interchangeable lens 202. This subject image is photoelectrically converted by the image sensor 212, and an image signal and a focus detection signal are sent to the body drive control device 214.

ボディ駆動制御装置214は、撮像素子212の焦点検出画素からの焦点検出信号に基づいてデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像素子212からの画像信号を処理して画像を生成し、メモリカード219に格納するとともに、撮像素子212からのスルー画像信号を液晶表示素子駆動回路215へ送り、スルー画像を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送って絞り211の開口制御を行う。   The body drive control device 214 calculates the defocus amount based on the focus detection signal from the focus detection pixel of the image sensor 212 and sends the defocus amount to the lens drive control device 206. The body drive control device 214 processes the image signal from the image sensor 212 to generate an image, stores the image in the memory card 219, and sends the through image signal from the image sensor 212 to the liquid crystal display element drive circuit 215. The through image is displayed on the liquid crystal display element 216. Further, the body drive control device 214 sends aperture control information to the lens drive control device 206 to control the aperture of the aperture 211.

レンズ駆動制御装置206は、フォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じてレンズ情報を更新する。具体的には、ズーミング用レンズ208とフォーカシング用レンズ210の位置と絞り211の絞り値を検出し、これらのレンズ位置と絞り値に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからレンズ位置と絞り値に応じたレンズ情報を選択する。   The lens drive controller 206 updates the lens information according to the focusing state, zooming state, aperture setting state, aperture opening F value, and the like. Specifically, the positions of the zooming lens 208 and the focusing lens 210 and the aperture value of the aperture 211 are detected, and lens information is calculated according to these lens positions and aperture values, or a lookup prepared in advance. Lens information corresponding to the lens position and aperture value is selected from the table.

レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に応じてフォーカシング用レンズ210を合焦位置へ駆動する。また、レンズ駆動制御装置206は受信した絞り値に応じて絞り211を駆動する。   The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to the in-focus position according to the lens drive amount. Further, the lens drive control device 206 drives the diaphragm 211 in accordance with the received diaphragm value.

図2は、交換レンズ202の撮影画面上における焦点検出位置を示す図であり、後述する撮像素子212上の焦点検出画素列が焦点検出の際に撮影画面上で像をサンプリングする領域、すなわち焦点検出エリア、焦点検出位置の一例を示す。この例では、矩形の撮影画面100内の中央および上下左右の5箇所に焦点検出エリア101〜105が配置される。焦点検出エリア101〜103では画面100の左右方向(横方向)に焦点検出画素が直線的に配列され、焦点検出エリア104、105では画面100の上下方向(縦方向)に焦点検出画素が直線的に配列されている。   FIG. 2 is a diagram showing a focus detection position on the photographing screen of the interchangeable lens 202. A focus detection pixel row on the image sensor 212 described later samples an image on the photographing screen when focus detection, that is, a focus. An example of a detection area and a focus detection position is shown. In this example, focus detection areas 101 to 105 are arranged at the center of the rectangular shooting screen 100 and at five locations on the top, bottom, left and right. In the focus detection areas 101 to 103, focus detection pixels are linearly arranged in the horizontal direction (horizontal direction) of the screen 100, and in the focus detection areas 104 and 105, the focus detection pixels are linear in the vertical direction (vertical direction) of the screen 100. Is arranged.

なお、焦点検出エリアの位置、個数、方向(焦点検出画素配列の方向)は図2に示すそれらに限定されるものではなく、例えば斜め方向でもよく、あるいは2方向の焦点検出エリアが交わる十字型としてもよい。   Note that the position, number, and direction of the focus detection areas (the direction of the focus detection pixel array) are not limited to those shown in FIG. 2, and may be, for example, an oblique direction or a cross shape in which two focus detection areas intersect. It is good.

図3は撮像素子212の詳細な構成を示す正面図であり、撮像素子212上の焦点検出エリア104の近傍を拡大して示す。なお、焦点検出エリア105の近傍の画素配列は図3に示す焦点検出エリア104近傍の画素配列と同様である。図3において、撮像素子212には撮像画素310が二次元正方格子状に稠密に配列されるとともに、焦点検出エリア104に対応する位置には撮像画素310の代わりに焦点検出用の焦点検出画素312、313が上下方向の直線上に隣接して交互に配列される。また、図2に示す画面100の左右方向に配列された焦点検出エリア101〜103においては、焦点検出画素312、313が左右方向の直線上に配列され、その周囲に撮像画素310が配列されている。   FIG. 3 is a front view showing a detailed configuration of the image sensor 212, and shows the vicinity of the focus detection area 104 on the image sensor 212 in an enlarged manner. The pixel array in the vicinity of the focus detection area 105 is the same as the pixel array in the vicinity of the focus detection area 104 shown in FIG. In FIG. 3, imaging pixels 310 are densely arranged in a two-dimensional square lattice pattern on the imaging element 212, and focus detection pixels 312 for focus detection are provided at positions corresponding to the focus detection area 104 instead of the imaging pixels 310. 313 are alternately arranged adjacent to each other on a straight line in the vertical direction. Further, in the focus detection areas 101 to 103 arranged in the left and right direction of the screen 100 shown in FIG. 2, focus detection pixels 312 and 313 are arranged on a straight line in the left and right direction, and the imaging pixels 310 are arranged around the focus detection pixels 312 and 313. Yes.

図4は撮像画素310の正面図である。撮像画素310は、マイクロレンズ10、光電変換部11、色フィルター(不図示)および出力回路(不図示)などから構成される。色フィルターは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの分光感度は図5に示す特性になっている。撮像素子212には、各色フィルターを備えた撮像画素310がベイヤー配列されている。撮像画素310の光電変換部11は、マイクロレンズ10によって最も明るい交換レンズの射出瞳径(例えばF1.0)を通過する光束をすべて受光するような形状に設計される。   FIG. 4 is a front view of the imaging pixel 310. The imaging pixel 310 includes the microlens 10, the photoelectric conversion unit 11, a color filter (not shown), an output circuit (not shown), and the like. There are three types of color filters, red (R), green (G), and blue (B), and the respective spectral sensitivities have the characteristics shown in FIG. In the image pickup device 212, image pickup pixels 310 having respective color filters are arranged in a Bayer array. The photoelectric conversion unit 11 of the imaging pixel 310 is designed so as to receive all the light beams that pass through the exit pupil diameter (for example, F1.0) of the brightest interchangeable lens by the microlens 10.

図6は撮像画素310の断面図である。撮像画素310では撮像用の光電変換部11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部11の形状が前方に投影される。光電変換部11は半導体回路基板29上に形成される。なお、不図示の色フィルターはマイクロレンズ10と光電変換部11の中間に配置される。   FIG. 6 is a cross-sectional view of the imaging pixel 310. In the imaging pixel 310, the microlens 10 is disposed in front of the photoelectric conversion unit 11 for imaging, and the shape of the photoelectric conversion unit 11 is projected forward by the microlens 10. The photoelectric conversion unit 11 is formed on the semiconductor circuit substrate 29. A color filter (not shown) is arranged between the microlens 10 and the photoelectric conversion unit 11.

図7は焦点検出画素312,313を配列方向に並べたときの正面図である。焦点検出画素312は、図7(a)に示すようにマイクロレンズ10と光電変換部12から構成され、光電変換部12の形状は矩形である。同様に、焦点検出画素313は、図7(b)に示すようにマイクロレンズ10と光電変換部13から構成され、光電変換部13の形状は矩形である。   FIG. 7 is a front view when the focus detection pixels 312 and 313 are arranged in the arrangement direction. As shown in FIG. 7A, the focus detection pixel 312 includes the microlens 10 and the photoelectric conversion unit 12, and the photoelectric conversion unit 12 has a rectangular shape. Similarly, the focus detection pixel 313 includes the microlens 10 and the photoelectric conversion unit 13 as illustrated in FIG. 7B, and the photoelectric conversion unit 13 has a rectangular shape.

図2に示す画面100の上下方向の焦点検出エリア104、105において、焦点検出画素312と焦点検出画素313とをマイクロレンズ10を重ね合わせて表示すると、光電変換部12と13が画面100の上下方向に並んでいる。焦点検出画素312と焦点検出画素313は、焦点検出エリア104、105において画面上下方向、すなわち光電変換部12と13の並び方向に交互に配置されている。一方、撮影画面100の左右方向の焦点検出エリア101〜103においては、焦点検出画素312と焦点検出画素313とをマイクロレンズ10を重ね合わせて表示すると、光電変換部12と13が左右方向に並んでいる。焦点検出画素312と焦点検出画素313は、焦点検出エリア101〜103において画面左右方向、すなわち光電変換部12と13の並び方向に交互に配置されている。   In the focus detection areas 104 and 105 in the vertical direction of the screen 100 shown in FIG. 2, when the focus detection pixels 312 and the focus detection pixels 313 are displayed with the microlens 10 superimposed, the photoelectric conversion units 12 and 13 are displayed on the top and bottom of the screen 100. It is lined up in the direction. The focus detection pixels 312 and the focus detection pixels 313 are alternately arranged in the vertical direction of the screen in the focus detection areas 104 and 105, that is, in the arrangement direction of the photoelectric conversion units 12 and 13. On the other hand, in the focus detection areas 101 to 103 in the horizontal direction of the shooting screen 100, when the focus detection pixels 312 and the focus detection pixels 313 are displayed with the microlens 10 superimposed, the photoelectric conversion units 12 and 13 are arranged in the horizontal direction. It is out. The focus detection pixels 312 and the focus detection pixels 313 are alternately arranged in the horizontal direction of the screen, that is, in the alignment direction of the photoelectric conversion units 12 and 13 in the focus detection areas 101 to 103.

焦点検出画素312、313の光電変換部12、13は、マイクロレンズ10によって交換レンズの射出瞳の所定の領域(例えばF2.8)を通過する光束をすべて受光するような形状に設計される。焦点検出画素312、313には光量をかせぐために色フィルターが設けられておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性とを総合した分光特性(図5参照)となる。つまり、図8に示す緑画素、赤画素および青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素および青画素の感度の光波長領域を包括している。   The photoelectric conversion units 12 and 13 of the focus detection pixels 312 and 313 are designed so as to receive all the light beams that pass through a predetermined region (for example, F2.8) of the exit pupil of the interchangeable lens by the microlens 10. The focus detection pixels 312 and 313 are not provided with a color filter in order to increase the amount of light, and the spectral characteristics of the focus detection pixels 312 and 313 include the spectral sensitivity of a photodiode that performs photoelectric conversion and the spectral characteristics of an infrared cut filter (not shown). Spectral characteristics (see FIG. 5). In other words, the spectral characteristics are obtained by adding the spectral characteristics of the green pixel, red pixel, and blue pixel shown in FIG. 8, and the light wavelength region of the sensitivity includes the light wavelength regions of the sensitivity of the green pixel, red pixel, and blue pixel. ing.

焦点検出用の焦点検出画素312、313は、撮像画素310の青画素と緑画素が配置されるべき列に配置されている。焦点検出用の焦点検出画素312、313が撮像画素310の青画素と緑画素が配置されるべき列に配置されているのは、画素補間処理において補間誤差が生じた場合に、人間の視覚特性上、赤画素の補間誤差に比較して青画素の補間誤差が目立たないためである。   Focus detection pixels 312 and 313 for focus detection are arranged in a column in which the blue pixel and the green pixel of the imaging pixel 310 are to be arranged. The focus detection pixels 312 and 313 for focus detection are arranged in a column in which the blue pixel and the green pixel of the imaging pixel 310 should be arranged because human visual characteristics when an interpolation error occurs in the pixel interpolation process. This is because the blue pixel interpolation error is less conspicuous than the red pixel interpolation error.

図9(a)は焦点検出画素312の断面図である。画面中央の焦点検出エリア101に配置された焦点検出画素312において、光電変換部12の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部12の形状が前方に投影される。光電変換部12は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程により一体的かつ固定的に形成される。なお、他の焦点検出エリア102〜105に配置された焦点検出画素312も同様な断面構造を有する。   FIG. 9A is a cross-sectional view of the focus detection pixel 312. In the focus detection pixel 312 disposed in the focus detection area 101 at the center of the screen, the microlens 10 is disposed in front of the photoelectric conversion unit 12, and the shape of the photoelectric conversion unit 12 is projected forward by the microlens 10. The photoelectric conversion unit 12 is formed on the semiconductor circuit substrate 29, and the microlens 10 is integrally and fixedly formed thereon by a semiconductor image sensor manufacturing process. Note that the focus detection pixels 312 disposed in the other focus detection areas 102 to 105 also have the same cross-sectional structure.

図9(b)は焦点検出画素313の断面図である。画面中央の焦点検出エリア101に配置された焦点検出画素313において、光電変換部13の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部13の形状が前方に投影される。光電変換部13は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程により一体的かつ固定的に形成される。なお、他の焦点検出エリア102〜105に配置された焦点検出画素313も同様な断面構造を有する。   FIG. 9B is a cross-sectional view of the focus detection pixel 313. In the focus detection pixel 313 disposed in the focus detection area 101 at the center of the screen, the microlens 10 is disposed in front of the photoelectric conversion unit 13, and the shape of the photoelectric conversion unit 13 is projected forward by the microlens 10. The photoelectric conversion unit 13 is formed on the semiconductor circuit substrate 29, and the microlens 10 is integrally and fixedly formed thereon by a semiconductor image sensor manufacturing process. Note that the focus detection pixels 313 arranged in the other focus detection areas 102 to 105 also have the same cross-sectional structure.

図10は、撮影画面中央におけるマイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す図である。90は交換レンズの予定結像面に配置されたマイクロレンズの前方dの距離に設定された瞳面(以下では測距瞳面と呼ぶ)であり、距離dはマイクロレンズの曲率、屈折率、マイクロレンズと光電変換部の間の距離などに応じて決まる距離(以下では測距瞳距離と呼ぶ)である。91は交換レンズの光軸、10a〜10dはマイクロレンズ、12a、12b、13a、13bは光電変換部、312a、312b、313a、313bは焦点検出画素、72、73、82、83は焦点検出用光束である。92はマイクロレンズ10a、10cにより投影された光電変換部12a、12bの領域であり、以下では測距瞳と呼ぶ。93はマイクロレンズ10b、10dにより投影された光電変換部13a、13bの領域であり、以下では測距瞳と呼ぶ。   FIG. 10 is a diagram showing a configuration of a focus detection optical system of a pupil division type phase difference detection method using a microlens at the center of the photographing screen. Reference numeral 90 denotes a pupil plane (hereinafter referred to as a distance measuring pupil plane) set at a distance d in front of the microlens arranged on the planned imaging plane of the interchangeable lens, and the distance d is the curvature, refractive index, This distance is determined according to the distance between the microlens and the photoelectric conversion unit (hereinafter referred to as distance measuring pupil distance). 91 is an optical axis of the interchangeable lens, 10a to 10d are microlenses, 12a, 12b, 13a and 13b are photoelectric conversion units, 312a, 312b, 313a and 313b are focus detection pixels, and 72, 73, 82 and 83 are for focus detection. Luminous flux. Reference numeral 92 denotes an area of the photoelectric conversion units 12a and 12b projected by the microlenses 10a and 10c, and is hereinafter referred to as a distance measuring pupil. Reference numeral 93 denotes an area of the photoelectric conversion units 13a and 13b projected by the microlenses 10b and 10d, and is hereinafter referred to as a distance measuring pupil.

図10においては、撮影光軸91に隣接する4つの焦点検出画素(画素312a、313a、312b、313b)を模式的に例示しているが、その他の焦点検出画素においても、光電変換部はそれぞれ対応した測距瞳92、93から各マイクロレンズに到来する光束を受光する。焦点検出画素の配列方向は一対の測距瞳の並び方向すなわち一対の光電変換部の並び方向と一致している。   In FIG. 10, four focus detection pixels (pixels 312a, 313a, 312b, and 313b) adjacent to the photographing optical axis 91 are schematically illustrated. However, in other focus detection pixels, the photoelectric conversion units are respectively Light beams coming from the corresponding distance measurement pupils 92 and 93 to each microlens are received. The arrangement direction of the focus detection pixels coincides with the arrangement direction of the pair of distance measuring pupils, that is, the arrangement direction of the pair of photoelectric conversion units.

マイクロレンズ10a〜10dは交換レンズの予定結像面近傍に配置されており、マイクロレンズ10a〜10dによりその背後に配置された光電変換部12a、13a、12b、13bの形状がマイクロレンズ10a〜10dから測距瞳距離dだけ離間した測距瞳面90上に投影され、その投影形状は測距瞳92、93を形成する。すなわち、投影距離dにある測距瞳面90上で各焦点検出画素の光電変換部の投影形状(測距瞳92、93)が一致するように、各焦点検出画素におけるマイクロレンズと光電変換部の相対的位置関係が定められ、それにより各焦点検出画素における光電変換部の投影方向が決定されている。   The microlenses 10a to 10d are arranged in the vicinity of the planned imaging plane of the interchangeable lens, and the shapes of the photoelectric conversion units 12a, 13a, 12b, and 13b arranged behind the microlenses 10a to 10d are the microlenses 10a to 10d. Is projected onto the distance measuring pupil plane 90 separated from the distance measuring pupil distance d by the distance measurement pupil distance d, and the projection shape forms distance measuring pupils 92 and 93. That is, the microlens and the photoelectric conversion unit in each focus detection pixel so that the projection shapes (distance detection pupils 92 and 93) of the photoelectric conversion unit of each focus detection pixel match on the distance measurement pupil plane 90 at the projection distance d. Is determined, and the projection direction of the photoelectric conversion unit in each focus detection pixel is thereby determined.

光電変換部12aは、測距瞳92を通過してマイクロレンズ10aに向かう光束72によりマイクロレンズ10a上に形成される像の強度に対応した信号を出力する。光電変換部12bは、測距瞳92を通過してマイクロレンズ10cに向かう光束82によりマイクロレンズ10c上に形成される像の強度に対応した信号を出力する。また、光電変換部13aは、測距瞳93を通過してマイクロレンズ10bに向かう光束73によりマイクロレンズ10b上に形成される像の強度に対応した信号を出力する。光電変換部13bは、測距瞳93を通過してマイクロレンズ10dに向かう光束83によりマイクロレンズ10d上に形成される像の強度に対応した信号を出力する。   The photoelectric conversion unit 12a outputs a signal corresponding to the intensity of the image formed on the microlens 10a by the light beam 72 that passes through the distance measuring pupil 92 and travels toward the microlens 10a. The photoelectric conversion unit 12b outputs a signal corresponding to the intensity of the image formed on the microlens 10c by the light beam 82 passing through the distance measuring pupil 92 and traveling toward the microlens 10c. In addition, the photoelectric conversion unit 13a outputs a signal corresponding to the intensity of the image formed on the microlens 10b by the light flux 73 that passes through the distance measuring pupil 93 and travels toward the microlens 10b. The photoelectric conversion unit 13b outputs a signal corresponding to the intensity of the image formed on the microlens 10d by the light beam 83 passing through the distance measuring pupil 93 and traveling toward the microlens 10d.

上述したような2種類の焦点検出画素を直線上に多数配置し、各画素の光電変換部の出力を測距瞳92と測距瞳93に対応した出力グループにまとめることによって、測距瞳92と測距瞳93をそれぞれ通過する焦点検出用光束が画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して周知の像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で一対の像の像ズレ量が検出される。像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を行うことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。   A large number of the two types of focus detection pixels as described above are arranged on a straight line, and the output of the photoelectric conversion unit of each pixel is grouped into an output group corresponding to the distance measurement pupil 92 and the distance measurement pupil 93, whereby the distance measurement pupil 92 is obtained. And information on the intensity distribution of a pair of images formed on the pixel array by the focus detection light beams that pass through the distance measuring pupil 93, respectively. By performing a known image shift detection calculation process (correlation calculation process, phase difference detection process) on this information, the image shift amount of a pair of images is detected by a so-called pupil division type phase difference detection method. By converting the image shift amount according to the center of gravity of the pair of distance measuring pupils, the current image plane relative to the planned image plane (the focus detection position corresponding to the position of the microlens array on the planned image plane) The deviation (defocus amount) of the imaging plane) is calculated.

撮像画素310の二次元配列中の一部に二種類の焦点検出画素312と313を配列した撮像素子212において、これら二種類の焦点検出画素312と313は、一つの焦点検出画素312、313の中に1個の光電変換部12または13が設けられ、交換レンズ202の瞳の一対の領域を通過した一対の光束により結像される一対の像を一対の光電変換部12と13で受光し、一対の像に応じた一対の信号を出力する。したがって、二種類の焦点検出画素312と313は一対の焦点検出画素ということができる。この一対の焦点検出画素312,313の出力信号に基づいて一対の像のズレ量を検出し、このズレ量に基づいて交換レンズ202の焦点調節状態を検出する、いわゆる瞳分割型位相差検出方式の焦点検出が行われる。   In the imaging device 212 in which two types of focus detection pixels 312 and 313 are arranged in a part of a two-dimensional array of the imaging pixels 310, these two types of focus detection pixels 312 and 313 are the same as one focus detection pixel 312 and 313. A pair of photoelectric conversion units 12 or 13 is provided therein, and a pair of photoelectric conversion units 12 and 13 receive a pair of images formed by a pair of light beams that have passed through a pair of regions of the pupil of the interchangeable lens 202. A pair of signals corresponding to the pair of images is output. Therefore, the two types of focus detection pixels 312 and 313 can be said to be a pair of focus detection pixels. A so-called pupil division type phase difference detection system that detects a shift amount of a pair of images based on output signals of the pair of focus detection pixels 312 and 313 and detects a focus adjustment state of the interchangeable lens 202 based on the shift amount. Focus detection is performed.

焦点検出画素312、313の配列方法には、次の二通りが考えられる。第1の配列方法は、図11(a)に示すように同数の焦点検出画素312と313を交互に配列する方法であり、第2の配列方法は、図11(b)に示すように焦点検出画素312と313の内の一方を1個だけ余分に用い、それぞれ交互に配列する方法である。図11(b)に示す例では、焦点検出画素312の配列個数が焦点検出313の配列個数より1個だけ多い。なお、図11では、説明を解りやすくするために横8画素、縦5画素の撮像素子として示す。   There are two possible methods for arranging the focus detection pixels 312 and 313 as follows. The first arrangement method is a method of alternately arranging the same number of focus detection pixels 312 and 313 as shown in FIG. 11 (a), and the second arrangement method is a method of focusing as shown in FIG. 11 (b). In this method, only one of the detection pixels 312 and 313 is used in an extra manner, and they are alternately arranged. In the example shown in FIG. 11B, the number of focus detection pixels 312 is one more than the number of focus detection 313 arrays. In FIG. 11, for easy understanding, the image sensor is shown as an image sensor having 8 pixels horizontally and 5 pixels vertically.

一対の焦点検出画素312,313をそれぞれ同数個用い、互いに交互に配列した前者の配列方法によれば、画素の余りがでないので読み出し時、特に撮像画素310がベイヤー配列されている場合には撮像画素310と焦点検出画素312,313の出力信号の処理が容易になり、焦点検出時間を短縮できる上に、撮像画像をビューファインダー表示する際の間引き読み出しにも対応しやすいという利点がある。   According to the former arrangement method in which the same number of pairs of focus detection pixels 312 and 313 are used and arranged alternately with each other, there is no remainder of the pixels, so when reading, particularly when the imaging pixels 310 are arranged in a Bayer array. Processing of output signals from the pixel 310 and the focus detection pixels 312 and 313 is facilitated, and the focus detection time can be shortened. In addition, there is an advantage that it is easy to cope with thinning-out readout when a captured image is displayed in a viewfinder.

一方、一対の焦点検出画素312と313の内の一方を1個だけ余分に用い、それぞれ交互に配列する後者の配列方法によれば、一方の焦点検出画素312の配列の中心位置と、他方の焦点検出画素313の配列の中心位置とが一致し、焦点検出精度が向上するという利点がある。   On the other hand, according to the latter arrangement method in which only one of the pair of focus detection pixels 312 and 313 is used and arranged alternately, the center position of the array of one focus detection pixel 312 and the other There is an advantage that the center position of the array of the focus detection pixels 313 coincides and the focus detection accuracy is improved.

なお、一対の焦点検出画素312,313をそれぞれ同数個用い、互いに交互に配列した長い焦点検出画素配列の中から、あるいは、一対の焦点検出画素312,313のいずれか一方を1個だけ多く用い、互いに交互に配列した長い焦点検出画素配列の中から、撮影条件等に応じて同数個の焦点検出画素312と313の信号を読み出すか、あるいは互いに異なる個数の焦点検出画素312と313の信号を読み出すかを切り換えるようにしてもよい。   Note that the same number of pairs of focus detection pixels 312 and 313 are used, and either one of the pair of focus detection pixels 312 and 313 is used more frequently from the long focus detection pixel array alternately arranged with each other. The signals of the same number of focus detection pixels 312 and 313 are read out from the long focus detection pixel array alternately arranged with each other, or the signals of different numbers of focus detection pixels 312 and 313 are read out according to the shooting conditions. You may make it switch whether it reads.

例えば、移動被写体を捕捉して焦点検出を行うときのように焦点検出の高速応答が必要な場合には、焦点検出画素312と313をそれぞれ同数個ずつ信号読み出しして焦点検出を行い、比較的コントラストが低い被写体を捕捉して焦点検出を行うときのように高精度の焦点検出が必要な場合には、焦点検出画素312と313のいずれか一方を1個だけ多く信号読み出しして焦点検出を行う。   For example, when high-speed response for focus detection is required, such as when a moving subject is captured and focus detection is performed, the same number of focus detection pixels 312 and 313 are read out to perform focus detection. When high-precision focus detection is required, for example, when a subject with low contrast is captured and focus detection is performed, only one of the focus detection pixels 312 and 313 is read out to detect the focus. Do.

上述した焦点検出画素配列では、一対の焦点検出画素312と313を交互に隙間なく配列する例を示したが、焦点検出画素312,313の間に撮像画素310を挟むように配列してもよい。   In the above-described focus detection pixel array, an example in which a pair of focus detection pixels 312 and 313 are alternately arranged without a gap is shown, but the imaging pixels 310 may be sandwiched between the focus detection pixels 312 and 313. .

図12は変形例の焦点検出画素配列を示す。なお、図12では焦点検出画素配列部のみを拡大して示す。図12(a)は、隣接する焦点検出画素312と313を一対として、ある対と隣の対の間に撮像画素310を挟んで配列した焦点検出画素列の例を示す。焦点検出画素312、313は対を組むので、それぞれ同数個用いることになる。また、図12(b)は、一対の焦点検出画素列312,313をそれぞれ同数個用い、これらを交互に、かつ撮像画素310をは挟んで配列した例を示す。さらに、図12(c)は、一対の焦点検出画素312,313の内、一方の焦点検出画素312を1個だけ多く用い、これらを交互に、かつ撮像画素310を挟んで配列した例を示す。   FIG. 12 shows a modified focus detection pixel array. In FIG. 12, only the focus detection pixel array portion is shown enlarged. FIG. 12A shows an example of a focus detection pixel array in which adjacent focus detection pixels 312 and 313 are paired and an imaging pixel 310 is sandwiched between a pair and an adjacent pair. Since the focus detection pixels 312, 313 form a pair, the same number is used. FIG. 12B shows an example in which the same number of the pair of focus detection pixel rows 312 and 313 are used, and these are alternately arranged with the imaging pixels 310 interposed therebetween. Further, FIG. 12C shows an example in which only one focus detection pixel 312 is used in many of the pair of focus detection pixels 312, 313, and these are alternately arranged with the imaging pixel 310 interposed therebetween. .

このように、焦点検出画素312,313の間に撮像画素310を挟んで配列することによって、焦点検出画素312,313の位置の撮像信号を周りの撮像画素310の出力に基づいて補間演算する際に、焦点検出画素列の間に挟んだ撮像画素310を補間演算に用いることができ、焦点検出画素位置の撮像信号を正確に推定することができる。したがって、実際の被写体により近い画像を生成することができる。   As described above, by arranging the imaging pixel 310 between the focus detection pixels 312 and 313 and interpolating the imaging signals at the positions of the focus detection pixels 312 and 313 based on the outputs of the surrounding imaging pixels 310. In addition, the imaging pixel 310 sandwiched between the focus detection pixel rows can be used for the interpolation calculation, and the imaging signal at the focus detection pixel position can be accurately estimated. Therefore, an image closer to an actual subject can be generated.

なお、図12に示す配列以外にも、焦点検出画素312,313の配列に撮像画素310が含まれるような配列であればどのような配列であってもよいが、焦点検出画素312,313の配列に含まれる撮像画素310の個数が多いほど焦点検出画素ピッチが大きくなって、焦点検出における分解能が低下することから、補間により生成する画像と焦点検出分解能とのバランスをとる必要がある。   In addition to the arrangement shown in FIG. 12, any arrangement may be used as long as the imaging pixels 310 are included in the arrangement of the focus detection pixels 312 and 313, but the arrangement of the focus detection pixels 312 and 313 is not limited. As the number of imaging pixels 310 included in the array increases, the focus detection pixel pitch increases and the resolution in focus detection decreases. Therefore, it is necessary to balance the image generated by interpolation and the focus detection resolution.

上述した焦点検出画素312,313では、図7(a)、(b)に示すような矩形の光電変換部12,13を用いた例を示したが、図13(a)、(b)に示すような半円形の光電変換部16,17を有する焦点検出画素314,315を用いてもよい。図14は、このような焦点検出画素314,315を用いて構成した変形例の撮像素子212Aの部分拡大図を示す。焦点検出画素の光電変換部を半円形状にすると、矩形形状の光電変換部に比べ光学系の射出瞳を通過したより多くの光束を受光できるので、被写体が暗い場合の焦点検出性能を向上させることができる。   In the focus detection pixels 312 and 313 described above, an example using rectangular photoelectric conversion units 12 and 13 as shown in FIGS. 7A and 7B is shown, but FIGS. 13A and 13B show examples. Focus detection pixels 314 and 315 having semicircular photoelectric conversion units 16 and 17 as shown may be used. FIG. 14 is a partially enlarged view of an image pickup element 212A of a modified example configured using such focus detection pixels 314 and 315. If the photoelectric conversion unit of the focus detection pixel is semicircular, more light flux that has passed through the exit pupil of the optical system can be received compared to the rectangular photoelectric conversion unit, thus improving the focus detection performance when the subject is dark. be able to.

なお、焦点検出画素の光電変換部の形状は、上述した矩形や半円形の他に種々の形状とすることができる。   The shape of the photoelectric conversion unit of the focus detection pixel can be various shapes in addition to the above-described rectangle or semicircle.

上述した撮像素子では、撮像画素310のカラーフィルターがベイヤー配列されている例を示したが、補色配列としてもよい。   In the image pickup device described above, an example in which the color filters of the image pickup pixels 310 are arranged in a Bayer array is shown, but a complementary color array may be used.

このように、一実施の形態によれば、交換レンズ202により結像された像を撮像するための撮像画素310が二次元配列された撮像素子の一部に、撮像画素310の代わりに交換レンズ202の焦点調節状態を検出するための第1の焦点検出画素312,314と第2の焦点検出画素313,315とを直線状に交互に配列した撮像素子であって、第1の焦点検出画素312,314は、マイクロレンズを介して光学系の射出瞳の一対の領域の内の一方の領域を通過した光を受光する第1の光電変換部12,16を備え、第2の焦点検出画素313,315は、マイクロレンズを介して他方の領域を通過した光を受光する第2の光電変換部13,17を備えるようにしたので、焦点検出画素周りの信号読み出し回路を撮像画素周りの信号読み出し回路と同様に構成することができる上に、焦点検出画素からの信号読み出し制御も撮像画素からの信号読み出し制御と同様に扱うことができ、回路および制御を簡略に構成することができる。   As described above, according to the embodiment, the interchangeable lens is used instead of the image pickup pixel 310 in a part of the image pickup element in which the image pickup pixels 310 for picking up the image formed by the interchangeable lens 202 are two-dimensionally arranged. 202 is an imaging device in which first focus detection pixels 312 and 314 and second focus detection pixels 313 and 315 for detecting a focus adjustment state 202 are alternately arranged in a straight line, and the first focus detection pixels. 312 and 314 include first photoelectric conversion units 12 and 16 that receive light that has passed through one of the pair of regions of the exit pupil of the optical system via the microlens, and the second focus detection pixel. Since 313 and 315 include the second photoelectric conversion units 13 and 17 that receive light that has passed through the other region via the microlens, the signal readout circuit around the focus detection pixel is used as the signal around the imaging pixel. Reading On which can be configured similarly to the out circuit, the signal read-out control from the focus detection pixels also can be treated like signal reading control from the imaging pixels can be briefly form a circuit and control.

一実施の形態の撮像装置の構成を示す図The figure which shows the structure of the imaging device of one embodiment 交換レンズの撮影画面上における焦点検出位置を示す図The figure which shows the focus detection position on the photographing screen of the interchangeable lens 撮像素子の詳細な構成を示す正面図Front view showing detailed configuration of image sensor 撮像画素の正面図Front view of imaging pixels 撮像画素の分光感度特性を示す図Diagram showing spectral sensitivity characteristics of imaging pixels 撮像画素の断面図Cross section of imaging pixel 焦点検出画素の正面図Front view of focus detection pixels 焦点検出画素の分光感度特性を示す図The figure which shows the spectral sensitivity characteristic of a focus detection pixel 焦点検出画素の断面図Cross section of focus detection pixel 撮影画面中央におけるマイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す図The figure which shows the structure of the focus detection optical system of the pupil division type phase difference detection method using the micro lens in the photographing screen center 焦点検出画素の配列方法を示す図The figure which shows the arrangement | sequence method of a focus detection pixel 変形例の焦点検出画素配列を示す図The figure which shows the focus detection pixel arrangement | sequence of a modification. 変形例の焦点検出画素を示す図The figure which shows the focus detection pixel of a modification. 図13に示す焦点検出画素を配列した変形例の撮像素子を示す図The figure which shows the image pick-up element of the modification which arranged the focus detection pixel shown in FIG.

符号の説明Explanation of symbols

10;マイクロレンズ、11,12,13,16,17;光電変換部、201;撮像装置(カメラ)、202;交換レンズ、212,212A;撮像素子、214;ボディ駆動制御装置、310;撮像画素、312,313,314,315;焦点検出画素 DESCRIPTION OF SYMBOLS 10; Micro lens, 11, 12, 13, 16, 17; Photoelectric conversion part, 201; Imaging device (camera), 202; Interchangeable lens, 212, 212A; Imaging element, 214; Body drive control device, 310; , 312, 313, 314, 315; focus detection pixels

Claims (7)

光学系により結像された像を撮像するための撮像画素が二次元配列された撮像素子の一部に、前記撮像画素の代わりに前記光学系の焦点調節状態を検出するための第1焦点検出画素と第2焦点検出画素とを直線状に交互に配列した撮像素子であって、
前記第1焦点検出画素は、マイクロレンズを介して前記光学系の射出瞳の一対の領域の内の一方の領域を通過した光を受光する第1光電変換部を備え、
前記第2焦点検出画素は、マイクロレンズを介して他方の前記領域を通過した光を受光する第2光電変換部を備えることを特徴とする撮像素子。
First focus detection for detecting a focus adjustment state of the optical system instead of the imaging pixel in a part of an imaging element in which imaging pixels for imaging an image formed by the optical system are two-dimensionally arranged An imaging device in which pixels and second focus detection pixels are alternately arranged in a straight line,
The first focus detection pixel includes a first photoelectric conversion unit that receives light that has passed through one region of a pair of regions of the exit pupil of the optical system via a microlens,
The second focus detection pixel includes a second photoelectric conversion unit that receives light that has passed through the other region via a microlens.
請求項1に記載の撮像素子において、
前記第1焦点検出画素と前記第2焦点検出画素とを同数個ずつ配列したことを特徴とする撮像素子。
The imaging device according to claim 1,
An imaging device, wherein the same number of the first focus detection pixels and the second focus detection pixels are arranged.
請求項1に記載の撮像素子において、
前記第1焦点検出画素と前記第2焦点検出画素とを異なる個数配列したことを特徴とする撮像素子。
The imaging device according to claim 1,
An imaging device, wherein a different number of the first focus detection pixels and the second focus detection pixels are arranged.
請求項1〜3のいずれか一項に記載の撮像素子において、
前記第1焦点検出画素と前記第2焦点検出画素の配列には前記撮像画素が含まれることを特徴とする撮像素子。
The imaging device according to any one of claims 1 to 3,
The imaging device, wherein the imaging pixels are included in an array of the first focus detection pixels and the second focus detection pixels.
請求項1〜4のいずれか一項に記載の撮像素子と、
前記第1焦点検出画素と前記第2焦点検出画素の配列の中から同数個の前記第1焦点検出画素と前記第2焦点検出画素を抽出し、抽出した前記第1焦点検出画素と前記第2焦点検出画素の画素信号を読み出す信号読み出し手段と、
前記信号読み出し手段により読み出された前記第1焦点検出画素と前記第2焦点検出画素の画素信号に基づいて前記光学系の焦点調節状態を検出する焦点検出手段とを備えることを特徴とする焦点検出装置。
The imaging device according to any one of claims 1 to 4,
The same number of the first focus detection pixels and the second focus detection pixels are extracted from the array of the first focus detection pixels and the second focus detection pixels, and the extracted first focus detection pixels and the second focus detection pixels are extracted. Signal readout means for reading out the pixel signal of the focus detection pixel;
Focusing means comprising focus detection means for detecting a focus adjustment state of the optical system based on pixel signals of the first focus detection pixels and the second focus detection pixels read by the signal reading means. Detection device.
請求項1〜4のいずれか一項に記載の撮像素子と、
前記第1焦点検出画素と前記第2焦点検出画素の配列の中から異なる個数の前記第1焦点検出画素と前記第2焦点検出画素を抽出し、抽出した前記第1焦点検出画素と前記第2焦点検出画素の画素信号を読み出す信号読み出し手段と、
前記信号読み出し手段により読み出された前記第1焦点検出画素と前記第2焦点検出画素の画素信号に基づいて前記光学系の焦点調節状態を検出する焦点検出手段とを備えることを特徴とする焦点検出装置。
The imaging device according to any one of claims 1 to 4,
Different numbers of the first focus detection pixels and the second focus detection pixels are extracted from the array of the first focus detection pixels and the second focus detection pixels, and the extracted first focus detection pixels and the second focus detection pixels are extracted. Signal readout means for reading out the pixel signal of the focus detection pixel;
Focusing means comprising focus detection means for detecting a focus adjustment state of the optical system based on pixel signals of the first focus detection pixels and the second focus detection pixels read by the signal reading means. Detection device.
請求項1〜4のいずれか一項に記載の撮像素子と、
前記撮像画素、前記第1焦点検出画素および前記第2焦点検出画素から画素信号を読み出す信号読み出し手段と、
前記第1焦点検出画素および前記第2焦点検出画素の位置の撮像用の画素信号を、前記第1焦点検出画素および前記第2焦点検出画素の周囲の前記撮像画素の画素信号に基づいて補間により算出する補間手段とを備え、
前記撮像画素の画素信号と、前記補間手段による補間後の前記第1焦点検出画素および前記第2焦点検出画素の位置の撮像用の画素信号とにより画像を生成することを特徴とする撮像装置。
The imaging device according to any one of claims 1 to 4,
Signal readout means for reading out pixel signals from the imaging pixel, the first focus detection pixel, and the second focus detection pixel;
The pixel signals for imaging at the positions of the first focus detection pixel and the second focus detection pixel are interpolated based on pixel signals of the imaging pixels around the first focus detection pixel and the second focus detection pixel. Interpolating means for calculating,
An image pickup apparatus, wherein an image is generated by the pixel signal of the image pickup pixel and the pixel signal for image pickup at the position of the first focus detection pixel and the second focus detection pixel after interpolation by the interpolation means.
JP2007339755A 2007-12-28 2007-12-28 Imaging device, focus detecting device and imaging apparatus Pending JP2009162845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339755A JP2009162845A (en) 2007-12-28 2007-12-28 Imaging device, focus detecting device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339755A JP2009162845A (en) 2007-12-28 2007-12-28 Imaging device, focus detecting device and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2009162845A true JP2009162845A (en) 2009-07-23

Family

ID=40965577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339755A Pending JP2009162845A (en) 2007-12-28 2007-12-28 Imaging device, focus detecting device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2009162845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191401A (en) * 2011-03-10 2012-10-04 Nikon Corp Imaging apparatus
JP2013003387A (en) * 2011-06-17 2013-01-07 Nikon Corp Imaging device
US8908070B2 (en) 2010-06-18 2014-12-09 Fujifilm Corporation Solid state imaging device and digital camera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908070B2 (en) 2010-06-18 2014-12-09 Fujifilm Corporation Solid state imaging device and digital camera
JP2012191401A (en) * 2011-03-10 2012-10-04 Nikon Corp Imaging apparatus
JP2013003387A (en) * 2011-06-17 2013-01-07 Nikon Corp Imaging device

Similar Documents

Publication Publication Date Title
JP4720508B2 (en) Imaging device and imaging apparatus
JP5012495B2 (en) IMAGING ELEMENT, FOCUS DETECTION DEVICE, FOCUS ADJUSTMENT DEVICE, AND IMAGING DEVICE
JP5169499B2 (en) Imaging device and imaging apparatus
JP2009128892A (en) Imaging sensor and image-capturing device
JP2009141390A (en) Image sensor and imaging apparatus
JP5423111B2 (en) Focus detection apparatus and imaging apparatus
JP2023098917A (en) Imaging element
JP5381472B2 (en) Imaging device
JP5338112B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5228777B2 (en) Focus detection apparatus and imaging apparatus
JP2009162845A (en) Imaging device, focus detecting device and imaging apparatus
JP5407314B2 (en) Focus detection apparatus and imaging apparatus
JP5338113B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5338119B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5332384B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5685892B2 (en) Focus detection device, focus adjustment device, and imaging device
JP7235068B2 (en) Imaging device
JP5338118B2 (en) Correlation calculation device, focus detection device, and imaging device
JP2014139675A (en) Focus adjustment device
JP5949893B2 (en) Imaging device
JP2012226088A (en) Imaging apparatus
JP5929307B2 (en) Imaging device and digital camera
JP4968009B2 (en) Correlation calculation method, correlation calculation device, focus detection device, and imaging device
JP7501696B2 (en) Imaging device
JP2012058747A (en) Digital camera