JP5685892B2 - Focus detection device, focus adjustment device, and imaging device - Google Patents

Focus detection device, focus adjustment device, and imaging device Download PDF

Info

Publication number
JP5685892B2
JP5685892B2 JP2010246587A JP2010246587A JP5685892B2 JP 5685892 B2 JP5685892 B2 JP 5685892B2 JP 2010246587 A JP2010246587 A JP 2010246587A JP 2010246587 A JP2010246587 A JP 2010246587A JP 5685892 B2 JP5685892 B2 JP 5685892B2
Authority
JP
Japan
Prior art keywords
focus detection
signal
pair
focus
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010246587A
Other languages
Japanese (ja)
Other versions
JP2012098550A (en
Inventor
日下 洋介
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010246587A priority Critical patent/JP5685892B2/en
Publication of JP2012098550A publication Critical patent/JP2012098550A/en
Application granted granted Critical
Publication of JP5685892B2 publication Critical patent/JP5685892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Description

本発明は焦点検出装置、焦点調節装置および撮像装置に関する。   The present invention relates to a focus detection device, a focus adjustment device, and an imaging device.

以下のような、いわゆる瞳分割型位相差検出方式の焦点検出装置が知られている。その焦点検出装置においては、マイクロレンズとその背後に配置された一対の光電変換部とからなる焦点検出画素が撮影レンズの予定焦点面上に配列されている。その焦点検出画素は、光学系を通る一対の焦点検出光束が形成する一対の像に応じた一対の像信号を生成する。その焦点検出装置は、この一対の像信号間の像ズレ量を検出することによって撮影レンズの焦点調節状態を検出する。   A focus detection apparatus of the so-called pupil division type phase difference detection method as described below is known. In the focus detection device, focus detection pixels including a microlens and a pair of photoelectric conversion units disposed behind the microlens are arranged on a planned focal plane of the photographing lens. The focus detection pixel generates a pair of image signals corresponding to the pair of images formed by the pair of focus detection light beams passing through the optical system. The focus detection device detects the focus adjustment state of the photographing lens by detecting the amount of image shift between the pair of image signals.

この種の焦点検出装置では、一対の像信号間の像ズレ量(位相差)を検出する際に、一対の像信号の一方を固定し(基準とし)、他方の像信号を固定された像信号に対し1画素ずつシフトしながら相関度を算出する。こうして算出された相関度のうちで最大の相関度を示すシフト量に応じて光学系のデフォーカス量(焦点調節状態)を検出している(例えば、特許文献1参照)。   In this type of focus detection device, when detecting an image shift amount (phase difference) between a pair of image signals, one of the pair of image signals is fixed (as a reference), and the other image signal is fixed. The degree of correlation is calculated while shifting the signal one pixel at a time. The defocus amount (focus adjustment state) of the optical system is detected according to the shift amount showing the maximum correlation degree among the correlation degrees thus calculated (see, for example, Patent Document 1).

特開2009−151155号公報JP 2009-151155 A

しかしながら、上述した従来の焦点検出装置では、焦点検出位置が撮影画面の周辺にあった場合には、一対の焦点検出光束の光量バランスが崩れて一対の像信号の出力レベルが相違することがある。このような場合、像ズレ量の検出精度が低下する虞があるという問題がある。   However, in the conventional focus detection apparatus described above, when the focus detection position is in the vicinity of the shooting screen, the light amount balance between the pair of focus detection light beams may be lost and the output levels of the pair of image signals may be different. . In such a case, there is a problem that the detection accuracy of the image shift amount may be lowered.

(1)請求項1に記載の焦点検出装置は、光学系の射出瞳の一対の領域をそれぞれ通過する、一方の光束である第1光束と、他方の光束であり前記第1光束よりもケラレの大きな第2光束とを受光し、前記第2光束よりも光量の大きい前記第1光束に対応する第1信号と前記第2光束に対応する第2信号とを出力する受光部と、前記第1信号を基準とし、前記第2信号を前記第1信号に対して変位させながら、前記第1信号と前記第2信号との相関量を相関演算によって算出して、前記第1及び第2信号のズレ量を検出するズレ量検出手段と、前記ズレ量に基づいて前記光学系の焦点調節状態を検出する焦点検出手段とを備えることを特徴とする。
(2)請求項1に記載の焦点調節装置は、請求項1〜11のいずれか一項に記載の焦点検出装置と、前記焦点検出手段により検出された前記焦点調節状態に応じて前記光学系の焦点調節を行う焦点調節手段とを備えることを特徴とする。
(3)請求項1に記載の撮像装置は、請求項1に記載の焦点調節装置を備えることを特徴とする。
(1) focus detecting apparatus according to claim 1, passing through the respective regions of a pair of the exit pupil of the optical system, a first light beam, which is one of the light beam, and the other light flux than the first light flux A light receiving unit that receives a second light beam having a large amount of vignetting, and outputs a first signal corresponding to the first light beam and a second signal corresponding to the second light beam, the light amount being larger than the second light beam; Using the first signal as a reference, the correlation between the first signal and the second signal is calculated by correlation calculation while displacing the second signal with respect to the first signal, and the first and second signals are calculated. A shift amount detecting means for detecting a shift amount of the signal and a focus detecting means for detecting a focus adjustment state of the optical system based on the shift amount are provided.
(2) the focusing device according to claim 1 2, and the focus detection device according to any one of claims 1 to 11, wherein the optical in accordance with the focusing condition detected by the focus detection means And a focus adjusting means for adjusting the focus of the system.
(3) The imaging apparatus according to claim 1 3, characterized in that it comprises a focusing device according to claim 1 2.

本発明によれば、光学系の焦点調節状態の検出精度の低下を防止できる。   According to the present invention, it is possible to prevent a decrease in detection accuracy of the focus adjustment state of the optical system.

一実施の形態の焦点検出装置を有するデジタルスチルカメラの構成を示す図である。It is a figure which shows the structure of the digital still camera which has the focus detection apparatus of one Embodiment. 交換レンズの予定結像面に設定した撮影画面上における焦点検出エリアを示す図である。It is a figure which shows the focus detection area on the imaging | photography screen set to the scheduled image formation surface of an interchangeable lens. 撮像素子の詳細な構成を示す正面図である。It is a front view which shows the detailed structure of an image pick-up element. 焦点検出画素が受光する焦点検出光束の状態を説明するための断面図である。It is sectional drawing for demonstrating the state of the focus detection light beam which a focus detection pixel receives. 焦点検出画素が受光する焦点検出光束の状態を説明するための断面図である。It is sectional drawing for demonstrating the state of the focus detection light beam which a focus detection pixel receives. 一対の測距瞳から各焦点検出エリアに到来する一対の焦点検出光束の関係を示す図である。It is a figure which shows the relationship of a pair of focus detection light beam which arrives at each focus detection area from a pair of ranging pupil. 一対の焦点検出光束が交換レンズの射出瞳によりどのように制限されるかを示した図である。It is the figure which showed how a pair of focus detection light flux was restrict | limited by the exit pupil of an interchangeable lens. 焦点検出領域に到来する一対の焦点検出光束を射出瞳が配置された面における断面で示した図である。It is the figure which showed the pair of focus detection light flux which arrives at a focus detection area in the cross section in the surface where the exit pupil is arrange | positioned. 焦点検出領域に到来する一対の焦点検出光束を射出瞳が配置された面における断面で示した図である。It is the figure which showed the pair of focus detection light flux which arrives at a focus detection area in the cross section in the surface where the exit pupil is arrange | positioned. デジタルスチルカメラの動作を示すフローチャートである。It is a flowchart which shows operation | movement of a digital still camera. 一対の焦点検出光束を受光する一対の焦点検出画素の配列が出力する像データを示した図である。It is the figure which showed the image data which the arrangement | sequence of a pair of focus detection pixel which light-receives a pair of focus detection light beam outputs. 交換レンズの予定結像面に設定した撮影画面上における焦点検出エリアを示す図である。It is a figure which shows the focus detection area on the imaging | photography screen set to the scheduled image formation surface of an interchangeable lens. 撮像素子の詳細な構成を示す正面図である。It is a front view which shows the detailed structure of an image pick-up element. 再結像瞳分割型位相差検出方式の焦点検出装置の構成例を示す図である。It is a figure which shows the structural example of the focus detection apparatus of a re-imaging pupil division type phase difference detection system.

本発明の一実施の形態の焦点検出装置を有する撮像装置として、レンズ交換式のデジタルスチルカメラを例に挙げて説明する。図1は一実施の形態のデジタルスチルカメラの構成を示す横断面図である。本実施の形態のデジタルスチルカメラ201は、交換レンズ202とカメラボディ203とから構成され、交換レンズ202がマウント部204を介してカメラボディ203に装着される。カメラボディ203にはマウント部204を介して種々の撮影光学系を有する交換レンズ202が装着可能である。   As an imaging apparatus having a focus detection apparatus according to an embodiment of the present invention, an interchangeable lens digital still camera will be described as an example. FIG. 1 is a cross-sectional view showing a configuration of a digital still camera according to an embodiment. A digital still camera 201 according to the present embodiment includes an interchangeable lens 202 and a camera body 203, and the interchangeable lens 202 is attached to the camera body 203 via a mount unit 204. An interchangeable lens 202 having various photographing optical systems can be attached to the camera body 203 via a mount unit 204.

交換レンズ202は、レンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り211、レンズ駆動制御装置206などを備えている。レンズ駆動制御装置206は不図示のマイクロコンピューター、メモリ、駆動制御回路などから構成され、フォーカシング用レンズ210の焦点調節、絞り211の開口径調節のための駆動制御、ズーミング用レンズ208、フォーカシング用レンズ210および絞り211の状態検出などを行う。また、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報(デフォーカス量や絞り値など)の受信とを行う。絞り211は、光量およびボケ量調整のために光軸中心に開口径が可変な開口を形成する。   The interchangeable lens 202 includes a lens 209, a zooming lens 208, a focusing lens 210, a diaphragm 211, a lens drive control device 206, and the like. The lens drive control device 206 includes a microcomputer (not shown), a memory, a drive control circuit, and the like, and adjusts the focus of the focusing lens 210, drive control for adjusting the aperture diameter of the stop 211, zooming lens 208, and focusing lens. 210 and the state of the diaphragm 211 are detected. In addition, transmission of lens information and reception of camera information (defocus amount, aperture value, etc.) are performed by communication with a body drive control device 214 described later. The aperture 211 forms an aperture having a variable aperture diameter at the center of the optical axis in order to adjust the amount of light and the amount of blur.

カメラボディ203は、撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には、撮像画素が二次元状に配置されるとともに、焦点検出位置(焦点検出エリア)に対応した部分に焦点検出画素が組み込まれている。この撮像素子212については詳細を後述する。   The camera body 203 includes an image sensor 212, a body drive control device 214, a liquid crystal display element drive circuit 215, a liquid crystal display element 216, an eyepiece lens 217, a memory card 219, and the like. In the imaging element 212, imaging pixels are two-dimensionally arranged, and focus detection pixels are incorporated in portions corresponding to focus detection positions (focus detection areas). Details of the image sensor 212 will be described later.

ボディ駆動制御装置214は、マイクロコンピューター、メモリ、駆動制御回路などから構成される。ボディ駆動制御装置214は、撮像素子212の露光制御および撮像素子212からの画素信号の読み出しと、焦点検出画素の画素信号に基づく焦点検出演算と、交換レンズ202の焦点調節とを繰り返し行うとともに、画像信号の処理および記録、カメラの動作制御などを行う。また、ボディ駆動制御装置214は電気接点213を介してレンズ駆動制御装置206との通信を行い、レンズ情報の受信およびカメラ情報の送信を行う。   The body drive control device 214 includes a microcomputer, a memory, a drive control circuit, and the like. The body drive control device 214 repeatedly performs exposure control of the image sensor 212 and readout of the pixel signal from the image sensor 212, focus detection calculation based on the pixel signal of the focus detection pixel, and focus adjustment of the interchangeable lens 202, Processing and recording of image signals, camera operation control, etc. The body drive control device 214 communicates with the lens drive control device 206 via the electrical contact 213 to receive lens information and send camera information.

液晶表示素子216は電気的なビューファインダー(EVF:Electronic View Finder)として機能する。液晶表示素子駆動回路215は撮像素子212から読み出された画像データに基づき、スルー画像を液晶表示素子216に表示し、撮影者は接眼レンズ217を介してスルー画像を観察することができる。メモリカード219は、撮像素子212により撮像された画像データを記憶する画像ストレージである。   The liquid crystal display element 216 functions as an electric view finder (EVF). The liquid crystal display element driving circuit 215 displays a through image on the liquid crystal display element 216 based on the image data read from the image sensor 212, and the photographer can observe the through image through the eyepiece 217. The memory card 219 is an image storage that stores image data captured by the image sensor 212.

交換レンズ202を通過した光束により、撮像素子212の受光面上に被写体像が形成される。この被写体像は撮像素子212により光電変換され、撮像画素の画素信号(撮像信号)および焦点検出画素の画素信号(焦点検出信号)がボディ駆動制御装置214へ送られる。   A subject image is formed on the light receiving surface of the image sensor 212 by the light beam that has passed through the interchangeable lens 202. This subject image is photoelectrically converted by the image sensor 212, and the pixel signal (imaging signal) of the imaging pixel and the pixel signal (focus detection signal) of the focus detection pixel are sent to the body drive control device 214.

ボディ駆動制御装置214は、図10を用いて後述するように、撮像素子212の焦点検出画素からの画素信号(焦点検出信号)に基づいて一対の像データの像ズレ量を算出し、像ズレ量に基づいてデフォーカス量を算出する。像ズレ量の算出の際、一対の像データのうちの一方を固定データとして選択する。ボディ駆動制御装置214は、デフォーカス量に基づいて交換レンズ202の焦点調節状態を検出し、合焦近傍でないと判定したとき、このデフォーカス量をレンズ駆動制御装置206へ送り、レンズ駆動制御装置206にフォーカシング用レンズ210および絞り211を駆動させる。また、ボディ駆動制御装置214は、撮像素子212からの画素信号を処理して画像データを生成し、メモリカード219に格納するとともに、撮像素子212から読み出されたスルー画像信号を液晶表示素子駆動回路215へ送り、スルー画像を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送って絞り211の開口制御を行う。   As will be described later with reference to FIG. 10, the body drive control device 214 calculates the image shift amount of the pair of image data based on the pixel signal (focus detection signal) from the focus detection pixel of the image sensor 212, and the image shift. A defocus amount is calculated based on the amount. When calculating the image shift amount, one of the pair of image data is selected as fixed data. When the body drive control device 214 detects the focus adjustment state of the interchangeable lens 202 based on the defocus amount, and determines that the focus adjustment state is not close to the in-focus state, the body drive control device 214 sends this defocus amount to the lens drive control device 206. In 206, the focusing lens 210 and the aperture 211 are driven. The body drive control device 214 processes the pixel signal from the image sensor 212 to generate image data, stores it in the memory card 219, and drives the through image signal read from the image sensor 212 to drive the liquid crystal display element. The image is sent to the circuit 215 and the through image is displayed on the liquid crystal display element 216. Further, the body drive control device 214 sends aperture control information to the lens drive control device 206 to control the aperture of the aperture 211.

レンズ駆動制御装置206は、フォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じてレンズ情報を更新する。具体的には、ズーミング用レンズ208とフォーカシング用レンズ210の位置と絞り211の絞り値とを検出し、これらのレンズ位置と絞り値とに応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからレンズ位置と絞り値とに応じたレンズ情報を選択する。   The lens drive controller 206 updates the lens information according to the focusing state, zooming state, aperture setting state, aperture opening F value, and the like. Specifically, the positions of the zooming lens 208 and the focusing lens 210 and the aperture value of the aperture 211 are detected, and lens information is calculated according to these lens positions and aperture values, or prepared in advance. Lens information corresponding to the lens position and aperture value is selected from the look-up table.

レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に応じてフォーカシング用レンズ210を合焦位置へ駆動する。また、レンズ駆動制御装置206は受信した絞り値に応じて絞り211を駆動する。   The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to the in-focus position according to the lens drive amount. Further, the lens drive control device 206 drives the diaphragm 211 in accordance with the received diaphragm value.

図2は、交換レンズ202の予定結像面に規定した撮影画面上における焦点検出エリア(焦点検出位置)の一例を示す図である。焦点検出エリアは、後述する撮像素子212上の焦点検出画素列が焦点検出の際に撮影画面上で像をサンプリングする領域の一例を示す。この例では、矩形の撮影画面100上の中央および上下の3箇所に焦点検出エリア101、102、103が配置される。焦点検出エリア101、102、103においては、長方形で示す焦点検出エリアの長手方向、すなわち図2の撮影画面100の垂直方向(縦方向)に対応するように、焦点検出画素が直線的に配列される。   FIG. 2 is a diagram illustrating an example of a focus detection area (focus detection position) on a shooting screen defined on the planned imaging plane of the interchangeable lens 202. The focus detection area indicates an example of a region where an image is sampled on the shooting screen when a focus detection pixel row on the image sensor 212 described later performs focus detection. In this example, focus detection areas 101, 102, and 103 are arranged at the center and three locations on the top and bottom of the rectangular shooting screen 100. In the focus detection areas 101, 102, and 103, the focus detection pixels are linearly arranged so as to correspond to the longitudinal direction of the focus detection area indicated by a rectangle, that is, the vertical direction (vertical direction) of the photographing screen 100 in FIG. The

図3は撮像素子212の詳細な構成を示す正面図であり、図2の焦点検出エリア101、102、103に対応する撮像素子212上の領域の近傍を拡大して示す。撮像素子212には撮像画素310が二次元正方格子状に稠密に配列されるとともに、焦点検出エリア101、102、103に対応する位置には焦点検出用の焦点検出画素312、313が垂直方向(縦方向)の直線上に隣接して交互に配列され、焦点検出画素列が形成されている。   FIG. 3 is a front view showing a detailed configuration of the image sensor 212, and shows an enlarged vicinity of a region on the image sensor 212 corresponding to the focus detection areas 101, 102, and 103 in FIG. The imaging pixels 310 are densely arranged in a two-dimensional square lattice pattern on the imaging device 212, and focus detection pixels 312 and 313 for focus detection are arranged in a vertical direction (positions corresponding to the focus detection areas 101, 102, and 103). The focus detection pixel columns are formed alternately and adjacently on a straight line in the vertical direction.

撮像画素310は、マイクロレンズ10、遮光マスク(不図示)で受光領域を正方形に制限された光電変換部11、および色フィルタ(不図示)から構成される。色フィルタは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの色に対応する分光感度特性を有している。撮像素子212には、各色フィルタを備えた撮像画素310がベイヤー配列されている。   The imaging pixel 310 includes the microlens 10, the photoelectric conversion unit 11 whose light receiving area is limited to a square by a light shielding mask (not shown), and a color filter (not shown). The color filters include three types of red (R), green (G), and blue (B), and have spectral sensitivity characteristics corresponding to the respective colors. In the image pickup device 212, image pickup pixels 310 having respective color filters are arranged in a Bayer array.

焦点検出画素312、313には全ての色に対して焦点検出を行うために全ての可視光を透過する白色フィルタが設けられている。その白色フィルタは、緑画素、赤画素および青画素の分光感度特性を加算したような分光感度特性を有し、高い感度を示す光波長領域は緑画素、赤画素および青画素の各々において各色フィルタが高い感度を示す光波長領域を包括している。   The focus detection pixels 312 and 313 are provided with white filters that transmit all visible light in order to perform focus detection for all colors. The white filter has a spectral sensitivity characteristic such that the spectral sensitivity characteristics of the green pixel, the red pixel, and the blue pixel are added, and the light wavelength region exhibiting high sensitivity is each color filter in each of the green pixel, the red pixel, and the blue pixel. Includes a light wavelength region exhibiting high sensitivity.

焦点検出画素312は、マイクロレンズ10、遮光マスク(不図示)で受光領域を矩形(正方形を水平線で2等分した場合の略上半分)に制限された光電変換部12、および白色フィルタ(不図示)から構成される。焦点検出画素313は、マイクロレンズ10、遮光マスク(不図示)で受光領域を矩形(正方形を水平線で2等分した場合の略下半分)に制限された光電変換部13、および白色フィルタ(不図示)から構成される。焦点検出画素312と焦点検出画素313とをマイクロレンズ10を基準として重ね合わせて表示すると、遮光マスクで受光領域を制限された光電変換部12と13とが垂直方向に並ぶ。   The focus detection pixel 312 includes a microlens 10, a photoelectric conversion unit 12 in which a light receiving region is limited to a rectangle (substantially upper half when a square is divided into two equal parts by a horizontal line) by a light shielding mask (not shown), and a white filter (not shown). (Illustrated). The focus detection pixel 313 includes a microlens 10, a photoelectric conversion unit 13 whose light receiving area is limited to a rectangle (substantially lower half when a square is divided into two equal parts by a horizontal line), and a white filter (not shown). (Illustrated). When the focus detection pixel 312 and the focus detection pixel 313 are superimposed and displayed with the microlens 10 as a reference, the photoelectric conversion units 12 and 13 in which the light receiving area is limited by the light shielding mask are arranged in the vertical direction.

図4は、撮影画面100の中央近傍にて垂直方向(縦方向)に延在する焦点検出エリア101に対応して撮像素子212に配置された焦点検出画素列を形成する焦点検出画素312,313が受光する焦点検出光束の状態を説明するための断面図である。   FIG. 4 shows focus detection pixels 312 and 313 that form focus detection pixel rows arranged in the image sensor 212 corresponding to the focus detection area 101 extending in the vertical direction (longitudinal direction) in the vicinity of the center of the photographing screen 100. It is sectional drawing for demonstrating the state of the focus detection light beam which light-receives.

図4には、交換レンズの光軸91、マイクロレンズ10a〜10d、遮光マスク開口により受光領域を制限された光電変換部12a、12b、13a、13b、焦点検出画素312a、312b、313a、313b、焦点検出光束72、73、82、83が示されている。   In FIG. 4, the optical axis 91 of the interchangeable lens, the microlenses 10a to 10d, the photoelectric conversion units 12a, 12b, 13a, and 13b, the focus detection pixels 312a, 312b, 313a, and 313b, whose light receiving areas are limited by the light shielding mask opening, Focus detection light beams 72, 73, 82 and 83 are shown.

撮像素子212上に配列された全ての焦点検出画素312、313の光電変換部12,13は、光電変換部12,13に近接して配置された遮光マスク開口を通過した光束を受光する。各焦点検出画素312の光電変換部12に近接して配置された遮光マスク開口の形状は、マイクロレンズ10によりマイクロレンズ10から測距瞳距離dだけ離間した測距瞳面90上の、焦点検出画素312の全てに共通した領域92に投影される。同じく各焦点検出画素313の光電変換部13に近接して配置された遮光マスク開口の形状は、マイクロレンズ10によりマイクロレンズ10から測距瞳距離dだけ離間した測距瞳面90上の、焦点検出画素313の全てに共通した領域93に投影される。一対の領域92,93を測距瞳と呼ぶ。   The photoelectric conversion units 12 and 13 of all the focus detection pixels 312 and 313 arranged on the image sensor 212 receive the light flux that has passed through the light shielding mask opening disposed in the vicinity of the photoelectric conversion units 12 and 13. The shape of the light-shielding mask opening arranged close to the photoelectric conversion unit 12 of each focus detection pixel 312 is the focus detection on the distance measurement pupil plane 90 separated from the microlens 10 by the distance measurement pupil distance d by the microlens 10. Projection is performed on a region 92 common to all of the pixels 312. Similarly, the shape of the light-shielding mask opening disposed in the vicinity of the photoelectric conversion unit 13 of each focus detection pixel 313 is a focus on the distance measurement pupil plane 90 that is separated from the microlens 10 by the distance measurement pupil distance d by the microlens 10. Projection is performed on a region 93 common to all the detection pixels 313. The pair of areas 92 and 93 is called a distance measuring pupil.

焦点検出画素312a、312bの光電変換部12a、12bは、測距瞳92と各撮像画素のマイクロレンズ10a,10cとを通過する焦点検出光束72,82を受光し、焦点検出光束72,82によって各マイクロレンズ10a,10c上に形成される像の強度に対応した信号を出力する。また焦点検出画素313a、313bの光電変換部13a、13bは、測距瞳93と各撮像画素のマイクロレンズ10b,10dとを通過する焦点検出光束73,83を受光し、焦点検出光束73,83によって各マイクロレンズ10b,10d上に形成される像の強度に対応した信号を出力する。   The photoelectric conversion units 12a and 12b of the focus detection pixels 312a and 312b receive the focus detection light beams 72 and 82 that pass through the distance measuring pupil 92 and the microlenses 10a and 10c of the imaging pixels, and are received by the focus detection light beams 72 and 82. A signal corresponding to the intensity of the image formed on each microlens 10a, 10c is output. The photoelectric conversion units 13a and 13b of the focus detection pixels 313a and 313b receive focus detection light beams 73 and 83 that pass through the distance measuring pupil 93 and the microlenses 10b and 10d of the imaging pixels, and focus detection light beams 73 and 83 are received. To output a signal corresponding to the intensity of the image formed on each of the microlenses 10b and 10d.

図4においては、撮影光軸91に隣接する4つの焦点検出画素(画素312a、313a、312b、313b)を模式的に例示しているが、焦点検出エリア101に含まれるその他の焦点検出画素においても、光電変換部はそれぞれ対応した測距瞳92、93から各マイクロレンズに到来する光束を受光する。焦点検出画素の配列方向は一対の測距瞳の並び方向すなわち一対の光電変換部の並び方向と一致している。   In FIG. 4, four focus detection pixels (pixels 312 a, 313 a, 312 b, and 313 b) adjacent to the photographing optical axis 91 are schematically illustrated, but other focus detection pixels included in the focus detection area 101 are illustrated. In addition, the photoelectric conversion units receive the light fluxes that arrive at the microlenses from the corresponding distance measurement pupils 92 and 93, respectively. The arrangement direction of the focus detection pixels coincides with the arrangement direction of the pair of distance measuring pupils, that is, the arrangement direction of the pair of photoelectric conversion units.

図5は、撮影画面100の周辺領域にて垂直方向(縦方向)に延在する焦点検出エリア102に対応して撮像素子212に配置された焦点検出画素列を形成する焦点検出画素312,313が受光する焦点検出光束の状態を説明するための図である。   FIG. 5 shows focus detection pixels 312 and 313 that form focus detection pixel rows arranged in the image sensor 212 corresponding to the focus detection area 102 extending in the vertical direction (longitudinal direction) in the peripheral region of the shooting screen 100. It is a figure for demonstrating the state of the focus detection light beam which light-receives.

図5には、マイクロレンズ10e〜10h、遮光マスク開口により受光領域を制限された光電変換部12c、12d、13c、13d、焦点検出画素312c、312d、313c、313d、焦点検出光束172、173、182、183が示されている。   FIG. 5 shows photoelectric conversion units 12c, 12d, 13c, and 13d whose focus areas are limited by the microlenses 10e to 10h, light shielding mask openings, focus detection pixels 312c, 312d, 313c, and 313d, focus detection light beams 172 and 173, 182, 183 are shown.

焦点検出画素312c、312dの光電変換部12c、12dは、測距瞳92と各撮像画素のマイクロレンズ10e,10gとを通過する焦点検出光束172,182を受光し、焦点検出光束172,182によって各マイクロレンズ10e,10g上に形成される像の強度に対応した信号を出力する。また焦点検出画素313c、313dの光電変換部13c、13dは、測距瞳93と各撮像画素のマイクロレンズ10f,10hとを通過する焦点検出光束173,183を受光し、焦点検出光束173,183によって各マイクロレンズ10f,10h上に形成される像の強度に対応した信号を出力する。   The photoelectric conversion units 12c and 12d of the focus detection pixels 312c and 312d receive the focus detection light beams 172 and 182 that pass through the distance measuring pupil 92 and the microlenses 10e and 10g of the respective imaging pixels, and are received by the focus detection light beams 172 and 182. A signal corresponding to the intensity of the image formed on each microlens 10e, 10g is output. The photoelectric conversion units 13c and 13d of the focus detection pixels 313c and 313d receive the focus detection light beams 173 and 183 that pass through the distance measuring pupil 93 and the microlenses 10f and 10h of the imaging pixels, and focus detection light beams 173 and 183. To output a signal corresponding to the intensity of the image formed on each of the microlenses 10f and 10h.

図5においては、焦点検出エリア102内の隣接する4焦点検出画素(画素312a、313a、312b、313b)を模式的に例示しているが、焦点検出エリア102に含まれるその他の焦点検出画素においても、光電変換部はそれぞれ対応した測距瞳92、93から各マイクロレンズに到来する光束を受光する。   In FIG. 5, adjacent four focus detection pixels (pixels 312 a, 313 a, 312 b, and 313 b) in the focus detection area 102 are schematically illustrated, but other focus detection pixels included in the focus detection area 102 are illustrated. In addition, the photoelectric conversion units receive the light fluxes that arrive at the microlenses from the corresponding distance measurement pupils 92 and 93, respectively.

なお図4,図5において一対の測距瞳92、93は光軸91に対して対称に配置されており、図5のように焦点検出エリアが撮影画面周辺に配置されている場合、一対の測距瞳92、93の中心を通る光線は測距瞳距離において光軸91と交わることになる。   4 and 5, the pair of distance measuring pupils 92 and 93 are arranged symmetrically with respect to the optical axis 91. When the focus detection area is arranged around the photographing screen as shown in FIG. The light beam passing through the centers of the distance measurement pupils 92 and 93 intersects the optical axis 91 at the distance measurement distance.

なお、焦点検出エリア103に対応する焦点検出画素の配列も、焦点検出エリア102に対応する焦点検出画素の配列と同様な配置となっており、焦点検出エリア103に対応する焦点検出画素も測距瞳92、93を通る光束を受光する。   The arrangement of the focus detection pixels corresponding to the focus detection area 103 is the same as the arrangement of the focus detection pixels corresponding to the focus detection area 102, and the focus detection pixels corresponding to the focus detection area 103 are also distance-measured. A light beam passing through the pupils 92 and 93 is received.

上述したように焦点検出エリア101〜103に対応する領域においては一対の焦点検出画素312、313が交互にかつ直線状に多数配置される。各焦点検出画素の光電変換部の出力を測距瞳92および測距瞳93に対応した一対の出力グループにまとめることによって、測距瞳92と測距瞳93をそれぞれ通過する一対の焦点検出光束が垂直方向の焦点検出画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に、一対の測距瞳の重心間隔と測距瞳距離との比例関係に応じた変換係数を用いた変換演算を行うことによって、各焦点検出エリアにおける焦点調節状態(デフォーカス量)が算出される。   As described above, in the region corresponding to the focus detection areas 101 to 103, a large number of the pair of focus detection pixels 312 and 313 are arranged alternately and linearly. The output of the photoelectric conversion unit of each focus detection pixel is grouped into a pair of output groups corresponding to the distance measurement pupil 92 and the distance measurement pupil 93, so that a pair of focus detection light beams passing through the distance measurement pupil 92 and the distance measurement pupil 93, respectively. Information on the intensity distribution of a pair of images formed on the vertical focus detection pixel column. By applying an image shift detection calculation process (correlation calculation process, phase difference detection process), which will be described later, to this information, an image shift amount of a pair of images is detected by a so-called pupil division type phase difference detection method. Further, by performing a conversion calculation using a conversion coefficient corresponding to the proportional relationship between the distance between the center of gravity of the pair of distance measurement pupils and the distance measurement pupil distance to the image shift amount, the focus adjustment state (defocusing) in each focus detection area is performed. Amount) is calculated.

図6は、一対の測距瞳から各焦点検出エリアに到来する一対の焦点検出光束の関係を示す図である。図4および図5に示す構成によって、焦点検出エリア101,102,103に対応する焦点検出領域101A,102A,103Aには一対の測距瞳92、93を通過する一対の焦点検出光束により一対の像が形成される。該一対の像に対応する画素信号を各焦点検出領域101A,102A,103Aに対応して配置された焦点検出画素が出力することになる。測距瞳92を通る焦点検出光束272と測距瞳93を通る焦点検出光束273とが、焦点検出領域101Aに一対の像を形成する。測距瞳92を通る焦点検出光束282と測距瞳93を通る焦点検出光束283とが、焦点検出領域102Aに一対の像を形成する。測距瞳92を通る焦点検出光束292と測距瞳93を通る焦点検出光束293とが、焦点検出領域103Aに一対の像を形成する。   FIG. 6 is a diagram illustrating a relationship between a pair of focus detection light beams that arrive at each focus detection area from a pair of distance measurement pupils. 4 and 5, the focus detection areas 101A, 102A, and 103A corresponding to the focus detection areas 101, 102, and 103A have a pair of focus detection light beams that pass through the pair of distance measurement pupils 92 and 93. An image is formed. The focus detection pixels arranged corresponding to the focus detection areas 101A, 102A, and 103A output pixel signals corresponding to the pair of images. The focus detection light beam 272 passing through the distance measurement pupil 92 and the focus detection light beam 273 passing through the distance measurement pupil 93 form a pair of images in the focus detection region 101A. The focus detection light beam 282 passing through the distance measurement pupil 92 and the focus detection light beam 283 passing through the distance measurement pupil 93 form a pair of images in the focus detection region 102A. The focus detection light beam 292 passing through the distance measurement pupil 92 and the focus detection light beam 293 passing through the distance measurement pupil 93 form a pair of images in the focus detection region 103A.

図7は図6に対応した図であって、撮像素子212から交換レンズの射出瞳95までの射出瞳距離dnが測距瞳距離dより短い場合、および射出瞳距離dfが測距瞳距離dより長い場合において、各焦点検出領域101A,102A,103Aに到来する各一対の焦点検出光束(272,273)、(282,283)、(292,293)が、交換レンズの射出瞳95による口径蝕、ケラレによりどのように制限されるかを示した図である。なお、交換レンズの射出瞳95は、絞り開口を撮像素子側から見た時の像である。   FIG. 7 is a diagram corresponding to FIG. 6, where the exit pupil distance dn from the image sensor 212 to the exit pupil 95 of the interchangeable lens is shorter than the distance measurement pupil distance d, and the exit pupil distance df is the distance measurement pupil distance d. In a longer case, each pair of focus detection light fluxes (272, 273), (282, 283), (292, 293) arriving at the focus detection regions 101A, 102A, 103A is the aperture due to the exit pupil 95 of the interchangeable lens. It is a figure showing how it was restricted by erosion and vignetting. The exit pupil 95 of the interchangeable lens is an image when the aperture stop is viewed from the image sensor side.

交換レンズの射出瞳95が撮像素子212から測距瞳距離dの位置にある射出瞳95Aの場合は、一対の測距瞳92,93は光軸上に中心を持つ円形の射出瞳に制限されるため、各焦点検出領域101A,102A,103Aに到来する各一対の焦点検出光束(272,273)、(282,283)、(292,293)は、光軸に対して対称に制限される。   When the exit pupil 95 of the interchangeable lens is an exit pupil 95A at a distance d from the image sensor 212, the pair of distance measurement pupils 92 and 93 is limited to a circular exit pupil centered on the optical axis. Therefore, each pair of focus detection light beams (272, 273), (282, 283), (292, 293) arriving at the focus detection regions 101A, 102A, 103A is limited symmetrically with respect to the optical axis. .

図7において交換レンズの射出瞳95が撮像素子212から射出瞳距離dnの位置にある射出瞳95Bの場合は、焦点検出領域101Aに到来する一対の焦点検出光束(272,273)は光軸に対して対称に制限されるが、焦点検出領域102A,103Aに到来する各一対の焦点検出光束(282,283)、(292,293)は光軸に対して非対称となっているため、光軸対称な射出瞳95Bにより非対称に制限される。   In FIG. 7, when the exit pupil 95 of the interchangeable lens is the exit pupil 95B located at the exit pupil distance dn from the image sensor 212, the pair of focus detection light beams (272, 273) arriving at the focus detection region 101A are on the optical axis. The pair of focus detection light fluxes (282, 283) and (292, 293) arriving at the focus detection regions 102A and 103A are asymmetric with respect to the optical axis. It is limited to be asymmetric by the symmetric exit pupil 95B.

図8(a)は焦点検出領域102Aに到来する一対の焦点検出光束(282,283)を射出瞳95Bが配置された面における断面で示した図である。射出瞳95Bによって、焦点検出画素313の受光する焦点検出光束283が焦点検出画素312の受光する焦点検出光束282より多く制限されている。したがって、射出瞳95Bが配置された面における断面で見ると、射出瞳95Bによって制限されていない焦点検出光束282の通過する領域の方が、射出瞳95Bによって制限されていない焦点検出光束283の通過する領域よりも大きい。   FIG. 8A is a diagram showing a pair of focus detection light beams (282, 283) arriving at the focus detection region 102A in a cross section on the surface where the exit pupil 95B is arranged. The exit pupil 95B limits the focus detection light beam 283 received by the focus detection pixel 313 more than the focus detection light beam 282 received by the focus detection pixel 312. Accordingly, when viewed in a cross section on the plane where the exit pupil 95B is disposed, the region through which the focus detection light beam 282 that is not limited by the exit pupil 95B passes is the passage of the focus detection light beam 283 that is not limited by the exit pupil 95B. It is bigger than the area to be.

図8(b)は焦点検出領域103Aに到来する一対の焦点検出光束(292,293)を射出瞳95Bが配置された面における断面で示した図である。射出瞳95Bによって、焦点検出画素312の受光する焦点検出光束292が焦点検出画素313の受光する焦点検出光束293より多く制限されている。したがって、射出瞳95Bが配置された面における断面で見ると、射出瞳95Bによって制限されていない焦点検出光束293の通過する領域の方が、射出瞳95Bによって制限されていない焦点検出光束292の通過する領域よりも大きい。   FIG. 8B is a view showing a pair of focus detection light beams (292, 293) arriving at the focus detection region 103A in a cross section on the plane where the exit pupil 95B is arranged. The exit pupil 95B limits the focus detection light beam 292 received by the focus detection pixel 312 more than the focus detection light beam 293 received by the focus detection pixel 313. Therefore, when viewed in a cross-section on the plane where the exit pupil 95B is disposed, the region through which the focus detection light beam 293 that is not limited by the exit pupil 95B passes is the passage of the focus detection light beam 292 that is not limited by the exit pupil 95B. It is bigger than the area to be.

交換レンズの射出瞳95が撮像素子212から射出瞳距離dfの位置にある射出瞳95Cの場合は、焦点検出領域101Aに到来する一対の焦点検出光束(272,273)は光軸に対して対称に制限されるが、焦点検出領域102A,103Aに到来する各一対の焦点検出光束(282,283)、(292,293)は光軸に対して非対称となっているため、光軸対称な射出瞳95Cにより図8の場合とは反対方向に非対称に制限される。   When the exit pupil 95 of the interchangeable lens is the exit pupil 95C located at the exit pupil distance df from the image sensor 212, the pair of focus detection light beams (272, 273) arriving at the focus detection region 101A are symmetrical with respect to the optical axis. However, each pair of focus detection light fluxes (282, 283) and (292, 293) arriving at the focus detection areas 102A and 103A are asymmetric with respect to the optical axis, and thus are symmetric with respect to the optical axis. The pupil 95C is asymmetrically limited in the opposite direction to that of FIG.

図9(a)は焦点検出領域102Aに到来する一対の焦点検出光束(282,283)を射出瞳95Cが配置された面における断面で示した図である。射出瞳95Cによって、焦点検出画素312の受光する焦点検出光束282が焦点検出画素313の受光する焦点検出光束283より多く制限されている。したがって、射出瞳95Cが配置された面における断面で見ると、射出瞳95Cによって制限されていない焦点検出光束283の通過する領域の方が、射出瞳95Cによって制限されていない焦点検出光束282の通過する領域よりも大きい。   FIG. 9A is a diagram showing a pair of focus detection light beams (282, 283) arriving at the focus detection region 102A in a cross section on the plane where the exit pupil 95C is arranged. The exit pupil 95C limits the focus detection light beam 282 received by the focus detection pixel 312 more than the focus detection light beam 283 received by the focus detection pixel 313. Accordingly, when viewed in a cross section on the plane where the exit pupil 95C is arranged, the region through which the focus detection light beam 283 that is not limited by the exit pupil 95C passes is the passage of the focus detection light beam 282 that is not limited by the exit pupil 95C. It is bigger than the area to be.

図9(b)は焦点検出領域103Aに到来する一対の焦点検出光束(292,293)を射出瞳95Cが配置された面における断面で示した図である。射出瞳95Cによって、焦点検出画素313の受光する焦点検出光束293が焦点検出画素312の受光する焦点検出光束292より多く制限されている。したがって、射出瞳95Cが配置された面における断面で見ると、射出瞳95Cによって制限されていない焦点検出光束292の通過する領域の方が、射出瞳95Cによって制限されていない焦点検出光束293の通過する領域よりも大きい。   FIG. 9B is a diagram showing a pair of focus detection light beams (292, 293) arriving at the focus detection region 103A in a cross section on the plane where the exit pupil 95C is arranged. The exit pupil 95C restricts the focus detection light beam 293 received by the focus detection pixel 313 more than the focus detection light beam 292 received by the focus detection pixel 312. Accordingly, when viewed in a cross section on the plane where the exit pupil 95C is disposed, the region through which the focus detection light beam 292 that is not restricted by the exit pupil 95C passes is the passage of the focus detection light beam 293 that is not restricted by the exit pupil 95C. It is bigger than the area to be.

以上のように一対の焦点検出光束が交換レンズの射出瞳95により対称に制限された場合は、焦点検出画素312,313の受光する光量が同じとなり、一対の焦点検出光束によって形成される一対の像に対応した強度分布も同じ出力レベルとなる。しかし、一対の焦点検出光束が交換レンズの射出瞳95により非対称に制限された場合は、焦点検出画素312,313の受光する光量が異なるため、一対の焦点検出光束によって形成される一対の像に対応した強度分布もレベル差を生じることになる。   As described above, when the pair of focus detection light beams are symmetrically limited by the exit pupil 95 of the interchangeable lens, the light amounts received by the focus detection pixels 312 and 313 are the same, and the pair of focus detection light beams formed by the pair of focus detection light beams The intensity distribution corresponding to the image also has the same output level. However, when the pair of focus detection light fluxes are asymmetrically limited by the exit pupil 95 of the interchangeable lens, the amount of light received by the focus detection pixels 312 and 313 differs, so that the pair of focus detection light fluxes form a pair of images. Corresponding intensity distributions will also produce level differences.

図10は、図1に示すデジタルスチルカメラ201の動作を示すフローチャートである。図10に示す各処理ステップは、ボディ駆動制御装置214によって実行される。ボディ駆動制御装置214は、ステップS100でデジタルスチルカメラ201の電源がオンされると、ステップS110以降の動作を開始する。ステップS110で撮像画素のデータを間引き読み出しし、液晶表示素子216に表示する。続くステップS120では焦点検出画素列から一対の像に対応した一対の像データを読み出す。なお、焦点検出エリアは、エリア選択スイッチ(不図示)を用いて撮影者により選択されているものとする。   FIG. 10 is a flowchart showing the operation of the digital still camera 201 shown in FIG. Each processing step shown in FIG. 10 is executed by the body drive control device 214. When the power of the digital still camera 201 is turned on in step S100, the body drive control device 214 starts the operation after step S110. In step S <b> 110, the image pickup pixel data is read out and displayed on the liquid crystal display element 216. In subsequent step S120, a pair of image data corresponding to the pair of images is read from the focus detection pixel array. Note that the focus detection area is selected by the photographer using an area selection switch (not shown).

ステップS130において、読み出された一対の像データのうち、焦点検出エリアの位置とレンズ通信により得られた交換レンズの射出瞳距離と測距瞳距離とに応じて、焦点検出エリアに入射する一対の焦点検出光束のうち、射出瞳によるケラレ(制限)が少ない、すなわち光量の大きな焦点検出光束により形成された像に対応する像データを固定データとして決定し、もう一方の像データを変位データとして決定する。撮影のたびごとに、図2の撮影画面100上の複数の焦点検出エリア101〜103のうちから、撮影者によって任意の焦点検出エリアが選択されるが、いずれの焦点検出エリアが選択されても、選択された焦点検出エリアごとに固定データおよび変位データが決定される。決定された固定データに対してその変位データを変位させて後述する像ズレ検出演算処理(相関演算処理)を行い、像ズレ量を演算してデフォーカス量に変換する。図8および9を用いて上述したように、一対の焦点検出光束のうち、射出瞳によるケラレ(制限)の少ない一方の光束が射出瞳面を通過する領域は、他方の光束が射出瞳面を通過する領域よりも大きいため、該一方の光束は該他方の光束よりも光量が大きくなる。光量の大きな焦点検出光束により形成された像に対応する像データを固定データとすることにより、コントラストが高くなるため、焦点検出精度の低下を防止できる。   In step S130, out of the read pair of image data, the pair incident on the focus detection area according to the position of the focus detection area and the exit pupil distance and distance measurement pupil distance of the interchangeable lens obtained by lens communication. Image data corresponding to an image formed by a focus detection light beam with a small amount of vignetting (i.e., a large amount of light) is determined as fixed data, and the other image data is used as displacement data. decide. The photographer selects an arbitrary focus detection area from among the plurality of focus detection areas 101 to 103 on the shooting screen 100 in FIG. 2 every time shooting is performed, but any focus detection area is selected. Fixed data and displacement data are determined for each selected focus detection area. The displacement data is displaced with respect to the determined fixed data, and an image shift detection calculation process (correlation calculation process) described later is performed to calculate the image shift amount and convert it into a defocus amount. As described above with reference to FIGS. 8 and 9, in the region where one of the pair of focus detection light fluxes with less vignetting (restriction) by the exit pupil passes through the exit pupil plane, the other light flux passes through the exit pupil plane. Since it is larger than the region through which it passes, the amount of light of the one light beam is larger than that of the other light beam. By using image data corresponding to an image formed by a focus detection light beam with a large amount of light as fixed data, the contrast becomes high, so that a decrease in focus detection accuracy can be prevented.

具体的には図7,図8、図9に示したようにまず射出瞳距離と測距瞳距離の大小比較に応じて場合分けした後に、焦点検出エリアの位置(像高)が、図7の光軸91より上か下かのどちら側にあるかに応じて、射出瞳によるケラレ(制限)が少ない、すなわち光量の大きな焦点検出光束により形成された像に対応する像データを固定データとして選択する。   Specifically, as shown in FIGS. 7, 8, and 9, after first classifying the cases according to the size comparison between the exit pupil distance and the distance measurement pupil distance, the position (image height) of the focus detection area is as shown in FIG. 7. The image data corresponding to the image formed by the focus detection light beam with a small amount of vignetting (restriction) by the exit pupil, that is, a large amount of light, is set as fixed data depending on whether the optical axis 91 is above or below the optical axis 91 select.

ステップS140で、合焦近傍か否か、つまり算出されたデフォーカス量の絶対値が所定値以内であるか否かを調べる。合焦近傍でないと判定された場合は、ステップS150へ進み、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ用210を合焦位置に駆動させ、ステップS110へ戻って上述した動作を繰り返す。焦点検出不能な場合もこのステップに分岐し、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシング用レンズ210を無限から至近までの間でスキャン駆動させる。その後、ステップS110へ戻って上述した動作を繰り返す。   In step S140, it is checked whether or not the focus is close, that is, whether or not the calculated absolute value of the defocus amount is within a predetermined value. If it is determined that the focus is not close, the process proceeds to step S150, the defocus amount is transmitted to the lens drive control unit 206, the focusing lens 210 of the interchangeable lens 202 is driven to the focus position, and the process returns to step S110. The above operation is repeated. Even when focus detection is impossible, the process branches to this step, a scan drive command is transmitted to the lens drive control device 206, and the focusing lens 210 of the interchangeable lens 202 is driven to scan from infinity to the nearest. Then, it returns to step S110 and repeats the operation | movement mentioned above.

一方、ステップS140で合焦近傍であると判定された場合はステップS160へ進み、シャッターボタン(不図示)の操作によりシャッターレリーズがなされたか否かを判定する。シャッターレリーズがなされていないと判定された場合はステップS110へ戻り、上述した動作を繰り返す。シャッターレリーズがなされた場合はステップS170へ進み、レンズ駆動制御装置206へ絞り調整命令を送信し、交換レンズ202の絞り値を制御F値(撮影者により設定されたF値または自動設定されたF値)に設定する。   On the other hand, if it is determined in step S140 that the focus is close to the in-focus state, the process proceeds to step S160, and it is determined whether or not a shutter release has been performed by operating a shutter button (not shown). If it is determined that the shutter release has not been performed, the process returns to step S110 and the above-described operation is repeated. If the shutter has been released, the process proceeds to step S170, where an aperture adjustment command is transmitted to the lens drive control device 206, and the aperture value of the interchangeable lens 202 is controlled to an F value (an F value set by the photographer or an automatically set F value). Value).

絞り制御が終了した時点で、撮像素子212に撮像動作を行わせ、撮像素子212の撮像画素およびすべての焦点検出画素から画像データを読み出す。ステップS180では、焦点検出画素列の各画素位置の画素データを、焦点検出画素の周囲の撮像画素の画素データに基づく画素補間により生成する。続くステップS190で、撮像画素の画素データおよび画素補間により生成された画素データからなる画像データを、メモリカード219に保存し、ステップS110へ戻って上述した動作を繰り返す。   When the aperture control is finished, the image sensor 212 is caused to perform an imaging operation, and image data is read from the imaging pixels of the image sensor 212 and all focus detection pixels. In step S180, pixel data at each pixel position in the focus detection pixel column is generated by pixel interpolation based on pixel data of imaging pixels around the focus detection pixel. In subsequent step S190, the image data including the pixel data of the imaging pixel and the pixel data generated by the pixel interpolation is stored in the memory card 219, and the process returns to step S110 to repeat the above-described operation.

図10のステップS130における像ズレ検出演算処理(相関演算処理)の詳細を説明する。像ズレ検出演算処理においては一対の像データのうち、光量の大きな焦点検出光束に対応する一方の像データから所定のデータ範囲を持つ一部分を切り出し、該一部分のデータを固定データとする。次にもう一方の像データを変位データとし、その中から上記固定データと同じ大きさのデータ範囲を有する一部分をシフトしながら切り出し、固定データと切り出された変位データとの間の相関度を相関演算によって算出する。こうして算出した相関度のうち、もっとも相関度の高いシフト量を一対の像データの像ズレ量としている。一対の像データの一方から切り出される固定データは、相関演算の誤差を小さくするため、高コントラストな像データを含むように切り出される。   Details of the image shift detection calculation process (correlation calculation process) in step S130 of FIG. 10 will be described. In the image shift detection calculation processing, a part of the pair of image data having a predetermined data range is cut out from one image data corresponding to the focus detection light beam having a large light amount, and the part of the data is set as fixed data. Next, the other image data is used as displacement data, and a portion having a data range of the same size as the fixed data is extracted while shifting, and the degree of correlation between the fixed data and the extracted displacement data is correlated. Calculate by calculation. Of the correlation degrees calculated in this way, the shift amount having the highest correlation degree is set as the image shift amount of the pair of image data. Fixed data cut out from one of the pair of image data is cut out so as to include high-contrast image data in order to reduce an error in correlation calculation.

一対の像データから、固定データとして用いる像データと、変位データとして用いる像データとを選択する手法を説明する。   A method of selecting image data used as fixed data and image data used as displacement data from a pair of image data will be described.

図2において、撮影画面101の中央、すなわち光軸上にある焦点検出エリア101が選択されている場合は、図7に示したように、焦点検出領域101Aに到来する一対の焦点検出光束は交換レンズの射出瞳により、射出瞳距離によらず対称にケラレている。焦点検出画素312の配列が出力する像データと焦点検出画素313の配列が出力する像データとのレベル差は生じず、一対の像データのコントラストは等しい。従ってどちらか一方の像データ、たとえば焦点検出画素312の配列が出力する像データを一律に固定データとし、もう一方の像データ、たとえば焦点検出画素313の配列が出力する像データを一律に変位データとする。   In FIG. 2, when the focus detection area 101 in the center of the photographing screen 101, that is, on the optical axis is selected, as shown in FIG. 7, the pair of focus detection light fluxes arriving at the focus detection area 101A are exchanged. Due to the exit pupil of the lens, the vignetting is symmetric regardless of the exit pupil distance. There is no level difference between the image data output from the array of focus detection pixels 312 and the image data output from the array of focus detection pixels 313, and the contrast of the pair of image data is equal. Accordingly, either one of the image data, for example, the image data output from the array of the focus detection pixels 312 is uniformly fixed data, and the other image data, for example, the image data output from the array of the focus detection pixels 313 is uniformly displaced data. And

図2において、撮影画面101の周辺、すなわち光軸外にある焦点検出エリア102,103が選択されている場合は、図7に示したように、焦点検出領域102A,103Aに到来する一対の焦点検出光束は交換レンズの射出瞳により、射出瞳距離に応じて非対称にケラレている。焦点検出画素312の配列が出力する像データと焦点検出画素313の配列が出力する像データとのレベル差が生じ、コントラストも相違する。このような場合、焦点検出エリア101が選択されている場合と同じように一律に固定データと変位データとを決定すると、ケラレが多い焦点検出光束による低コントラストな像データを固定データとしてしまい、相関演算の誤差が大きくなり、焦点検出誤差を生じる場合がある。   In FIG. 2, when focus detection areas 102 and 103 around the photographing screen 101, that is, outside the optical axis, are selected, as shown in FIG. 7, a pair of focal points that arrive at the focus detection areas 102A and 103A. The detected light beam is asymmetrically vignetted by the exit pupil of the interchangeable lens according to the exit pupil distance. There is a level difference between the image data output from the array of focus detection pixels 312 and the image data output from the array of focus detection pixels 313, and the contrast is also different. In such a case, if fixed data and displacement data are uniformly determined as in the case where the focus detection area 101 is selected, low-contrast image data due to a focus detection light beam with a lot of vignetting is used as fixed data, and correlation is performed. In some cases, the calculation error becomes large and a focus detection error occurs.

そこで、焦点検出エリア102,103が選択されている場合は、焦点検出領域の位置と交換レンズの射出瞳距離dpとに応じてそれぞれ表1、表2のように、光量が多く高コントラストとなる像データを固定データとして選択し、もう一方の像データを変位データとして選択する。表1は、焦点検出エリア102が選択されている場合に選択される固定データおよび変位データを示し、表2は、焦点検出エリア103が選択されている場合に選択される固定データおよび変位データを示す。

Figure 0005685892
Figure 0005685892
Therefore, when the focus detection areas 102 and 103 are selected, the amount of light is large and the contrast is high as shown in Tables 1 and 2, respectively, according to the position of the focus detection area and the exit pupil distance dp of the interchangeable lens. The image data is selected as fixed data, and the other image data is selected as displacement data. Table 1 shows fixed data and displacement data selected when the focus detection area 102 is selected, and Table 2 shows fixed data and displacement data selected when the focus detection area 103 is selected. Show.
Figure 0005685892
Figure 0005685892

図11はたとえば焦点検出エリア102が選択されており、交換レンズの射出瞳距離dp<dの場合の焦点検出画素312の配列が出力する像データ410(実線)と焦点検出画素313の配列が出力する像データ420(破線)とを示した図である。焦点検出画素312の配列が出力する像データ410のうち、高コントラスト部を含む範囲R0が切り出され、固定データとして設定される。範囲R0は、例えば焦点検出画素312の像データ410のうち、出力の微分値が極大値を示す画素位置を含む所定範囲として定まる。範囲R0は、例えば焦点検出画素312の配列が出力する像データ410の一端からサーチして閾値以上の出力を示す画素位置を含む所定範囲として定めてもよい。焦点検出画素313の配列が出力する像データ420は受光量が少ないので焦点検出画素312の配列が出力する像データ410より低コントラストとなっており、変位データとして用いられる。焦点検出画素313の配列が出力する像データ420は片方のデータ端から固定データと同じ大きさのデータ範囲R1が設定される。またデータ範囲R1から1画素分のデータだけシフトしたデータ範囲R2が設定される。さらにデータ範囲R2から1画素分のデータだけシフトしたデータ範囲R3が設定される。このようにして1画素分のデータずつシフトされたデータ範囲がもう一方のデータ端まで設定される。   In FIG. 11, for example, the focus detection area 102 is selected, and the image data 410 (solid line) output from the array of focus detection pixels 312 and the array of focus detection pixels 313 are output when the exit pupil distance dp <d of the interchangeable lens is output. It is the figure which showed the image data 420 (dashed line) to perform. Of the image data 410 output from the array of focus detection pixels 312, a range R0 including a high contrast portion is cut out and set as fixed data. The range R0 is determined as a predetermined range including, for example, a pixel position in the image data 410 of the focus detection pixel 312 where the output differential value exhibits a maximum value. For example, the range R0 may be determined as a predetermined range including a pixel position that is searched from one end of the image data 410 output from the array of the focus detection pixels 312 and indicates an output that is equal to or greater than a threshold value. The image data 420 output from the array of focus detection pixels 313 has a lower contrast than the image data 410 output from the array of focus detection pixels 312 because the amount of received light is small, and is used as displacement data. In the image data 420 output from the array of focus detection pixels 313, a data range R1 having the same size as the fixed data is set from one data end. In addition, a data range R2 is set that is shifted from the data range R1 by one pixel of data. Further, a data range R3 is set which is shifted from the data range R2 by one pixel of data. In this way, the data range shifted by one pixel of data is set up to the other data end.

次に固定データ範囲R0の焦点検出画素312の配列が出力する像データ410と、変位データの複数の変位データ範囲R1〜Rmの焦点検出画素313の配列が出力する像データ420との間の相関度が演算される。演算された相関度のうち、もっとも相関度が高い変位データ範囲の位置(シフト)に応じて、焦点検出画素312の配列が出力する像データ410と焦点検出画素313の配列が出力する像データ420との間の像ズレ量Zが決定される。一対の像データの相関度を算出するための相関演算の具体例を以下に説明する。   Next, the correlation between the image data 410 output from the array of focus detection pixels 312 in the fixed data range R0 and the image data 420 output from the array of focus detection pixels 313 in the plurality of displacement data ranges R1 to Rm of the displacement data. The degree is calculated. Among the calculated correlation degrees, the image data 410 output by the array of focus detection pixels 312 and the image data 420 output by the array of focus detection pixels 313 according to the position (shift) of the displacement data range having the highest correlation degree. Is determined. A specific example of correlation calculation for calculating the degree of correlation between a pair of image data will be described below.

1つの焦点検出エリアにおいて焦点検出画素312、313がそれぞれm個あり、固定データとして選択された像データ列を(A1〜A1)、変位データとして選択された像データ列を(A1〜A1)とする。固定データから切り出された高コントラスト部分の像データ列(データ数r+1)を(A1〜A1s+r)とし、該データ列と変位データから切り出された所定範囲(データ数r+1)のデータ列との相関量C(k)を、式(1)に示す相関演算によって演算する。この像ズレ検出演算(相関演算)において、パラメータkは固定データのデータ範囲に対する変位データのデータ範囲のシフト量(ズレ量)に相当する。
C(k)=Σ|A1・A2n+l+k−A2n+k・A1n+1| ・・・(1)
There are m focus detection pixels 312 and 313 in one focus detection area, the image data sequence selected as fixed data (A1 1 to A1 m ), and the image data sequence selected as displacement data (A1 l to A1 m ). An image data string (data number r + 1) of a high contrast portion cut out from fixed data is (A1 s to A1 s + r ), and the data string and a data string in a predetermined range (data number r + 1) cut out from the displacement data The correlation amount C (k) is calculated by the correlation calculation shown in Expression (1). In this image shift detection calculation (correlation calculation), the parameter k corresponds to the shift amount (shift amount) of the data range of the displacement data with respect to the data range of the fixed data.
C (k) = Σ | A1 n · A2 n + 1 + k− A2 n + k · A1 n + 1 | (1)

式(1)において、変数n、n+1は固定データの範囲(s〜s+r)に限定されるとともに、Σ演算はnについて累積される。またシフト量kはデータ間隔を単位とした整数であり、n+k,n+k+1の値が1〜mの中に収まる範囲内に制限される。   In equation (1), variables n and n + 1 are limited to a fixed data range (s to s + r), and Σ operations are accumulated for n. The shift amount k is an integer with the data interval as a unit, and is limited to a range in which the values of n + k and n + k + 1 fall within 1 to m.

なお、相関演算式としては式(1)に限定されず、例えば以下の演算式(2)を用いてもよい。
C(k)=Σ|A1−A2n+k| ・・・(2)
The correlation calculation formula is not limited to the formula (1), and for example, the following calculation formula (2) may be used.
C (k) = Σ | A1 n −A2 n + k | (2)

特開2009−141791号公報に開示された算出方法によると、相関量C(k)の極小値C(ks)を与える像ずらし量ksの信頼性があると判定された場合は、式(3)により、像ズレ量shftを算出することができる。式(3)において、PYは検出ピッチ(焦点検出画素のピッチ)である。
shft=PY・ks ・・・(3)
According to the calculation method disclosed in Japanese Patent Laid-Open No. 2009-141791, when it is determined that the image shift amount ks that gives the minimum value C (ks) of the correlation amount C (k) is reliable, the expression (3 ) To calculate the image shift amount shft. In equation (3), PY is a detection pitch (pitch of focus detection pixels).
shft = PY · ks (3)

式(4)に示すように、式(3)で算出された像ズレ量に所定の変換係数kdを乗じてデフォーカス量defへ変換する。
def=kd・shft・Q ・・・(4)
As shown in Expression (4), the image shift amount calculated in Expression (3) is multiplied by a predetermined conversion coefficient kd to be converted into a defocus amount def.
def = kd · shft · Q (4)

式(4)において、符号係数Qは固定データの選択に応じた値をとる。例えば固定データとして焦点検出画素312の配列が出力する像データ410が選択された場合はQ=+1、焦点検出画素313の配列が出力する像データ420が選択された場合はQ=−1とする。符号係数Qを乗ずることにより、固定データの選択によらず同一符号のデフォーカスを得ることができる。   In equation (4), the sign coefficient Q takes a value corresponding to the selection of fixed data. For example, Q = + 1 when image data 410 output from the array of focus detection pixels 312 is selected as fixed data, and Q = −1 when image data 420 output from the array of focus detection pixels 313 is selected. . By multiplying by the code coefficient Q, defocus of the same code can be obtained regardless of the selection of fixed data.

−−−変形例−−−
(1)撮像素子における焦点検出エリアの配置は図2に示す配置に限定されず、画面上の任意の位置において、水平方向や垂直方向や対角方向に焦点検出エリアを配置することも可能である。例えば水平方向に焦点検出画素を配置した場合には、図3に示す撮像素子を90度回転したような配置となる。
---- Modified example ---
(1) The arrangement of the focus detection areas in the image sensor is not limited to the arrangement shown in FIG. 2, and the focus detection areas can be arranged in a horizontal direction, a vertical direction, or a diagonal direction at any position on the screen. is there. For example, when the focus detection pixels are arranged in the horizontal direction, the arrangement is such that the image sensor shown in FIG. 3 is rotated 90 degrees.

(2)例えば図12に示すように、撮影画面100の右上に焦点検出エリア104を配置した場合には、これに対応して垂直方向(縦方向)に配列される焦点検出画素列に含まれる一対の焦点検出画素が受光する一対の焦点検出光束の射出瞳によるケラレの大小関係は、上述した一実施の形態において撮影画面100上で水平方向(横方向)の中心線より上にある焦点検出エリア102が選択された場合と同じになる。固定データおよび変位データは表1にしたがって選択すればよい。 (2) For example, as shown in FIG. 12, when the focus detection area 104 is arranged at the upper right of the photographing screen 100, it is included in the focus detection pixel array arranged in the vertical direction (vertical direction) corresponding to this. The magnitude relationship of vignetting due to the exit pupil of the pair of focus detection light beams received by the pair of focus detection pixels is the focus detection above the horizontal (lateral) center line on the photographing screen 100 in the above-described embodiment. This is the same as when the area 102 is selected. The fixed data and the displacement data may be selected according to Table 1.

すなわち焦点検出画素列が垂直方向に配列されている焦点検出エリアにおいては、焦点検出エリアの位置が撮影画面100上で水平方向の中心線より上にあるか下にあるかに応じて、表1または表2に応じて固定データおよび変位データを選択することができる。また焦点検出画素列が水平方向に配列されている焦点検出エリアにおいては、撮影画面中心の周りに90度回転して考えれば同じようにして固定データおよび変位データを選択することができる。また焦点検出画素列が対角方向に配列されている焦点検出エリアにおいても同様にして、固定データおよび変位データを選択することができる。すなわち、焦点検出エリアの中央に対応する焦点検出領域の焦点検出画素が受光する一対の焦点検出光束の射出瞳によるケラレ(上述した一実施の形態における図8,図9に示すような焦点検出光束の大きさ)を、関連する情報(測距瞳距離d、射出瞳距離dp、マイクロレンズの倍率、光電変換部の大きさなど)から直接計算する。ケラレの少ない焦点検出光束に対応する像データを固定データとし、もう一方の焦点検出光束に対応する像データを変位データとする。   That is, in the focus detection area in which the focus detection pixel rows are arranged in the vertical direction, depending on whether the position of the focus detection area is above or below the horizontal center line on the photographing screen 100, Table 1 Alternatively, fixed data and displacement data can be selected according to Table 2. Further, in the focus detection area where the focus detection pixel rows are arranged in the horizontal direction, fixed data and displacement data can be selected in the same manner as long as it is rotated 90 degrees around the center of the shooting screen. Similarly, fixed data and displacement data can be selected in a focus detection area in which focus detection pixel rows are arranged in a diagonal direction. That is, vignetting by the exit pupil of a pair of focus detection light beams received by the focus detection pixel in the focus detection area corresponding to the center of the focus detection area (focus detection light beams as shown in FIGS. 8 and 9 in the above-described embodiment). Is directly calculated from related information (ranging pupil distance d, exit pupil distance dp, microlens magnification, photoelectric converter size, etc.). Image data corresponding to a focus detection light beam with less vignetting is set as fixed data, and image data corresponding to the other focus detection light beam is set as displacement data.

(3)直接焦点検出画素が受光する一対の焦点検出光束の射出瞳によるケラレを計算する代わりに、一対の像データを出力する各焦点検出画素列について、焦点検出画素の出力データの平均値を算出してもよい。平均値が大きい方の焦点検出画素列の出力する像データを固定データ、平均値が小さい方の焦点検出画素列の出力する像データを変位データとする。例えば図11において焦点検出画素312の配列が出力する像データ410の平均値A1が焦点検出画素313の配列が出力する像データ420の平均値A2よりも大きい。そこで、焦点検出画素312の配列が出力する像データ410を固定データとし、焦点検出画素313の配列が出力する像データ420を変位データとする。このように像データの平均値により固定データおよび変位データを選択するようにすれば、比較的簡易な演算処理で固定データおよび変位データを選択することができる。 (3) Instead of calculating the vignetting due to the exit pupil of the pair of focus detection light beams received by the direct focus detection pixels, the average value of the output data of the focus detection pixels is calculated for each focus detection pixel column that outputs a pair of image data. It may be calculated. Image data output from the focus detection pixel array having the larger average value is fixed data, and image data output from the focus detection pixel array having the smaller average value is displacement data. For example, in FIG. 11, the average value A1 of the image data 410 output by the array of focus detection pixels 312 is larger than the average value A2 of the image data 420 output by the array of focus detection pixels 313. Therefore, the image data 410 output from the array of focus detection pixels 312 is fixed data, and the image data 420 output from the array of focus detection pixels 313 is displacement data. As described above, if the fixed data and the displacement data are selected based on the average value of the image data, the fixed data and the displacement data can be selected by a relatively simple calculation process.

(4)図3に示す撮像素子212では、焦点検出画素312、313がひとつの画素内にひとつの光電変換部を備えた例を示したが、ひとつの画素内に一対の光電変換部を備えてもよい。図13は、図3に示す撮像素子212に対応する変形例の撮像素子212Bを示し、焦点検出画素311ではひとつの画素内に一対の光電変換部を備える。図13に示す焦点検出画素311が、図3に示す焦点検出画素312と焦点検出画素313とのペアに相当した機能を果たす。 (4) In the imaging device 212 shown in FIG. 3, the focus detection pixels 312 and 313 are provided with one photoelectric conversion unit in one pixel, but a pair of photoelectric conversion units is provided in one pixel. May be. FIG. 13 shows an image sensor 212B of a modification corresponding to the image sensor 212 shown in FIG. 3, and the focus detection pixel 311 includes a pair of photoelectric conversion units in one pixel. The focus detection pixel 311 illustrated in FIG. 13 performs a function corresponding to the pair of the focus detection pixel 312 and the focus detection pixel 313 illustrated in FIG.

焦点検出画素311は、マイクロレンズ10、一対の光電変換部22,23からなる。焦点検出画素311には光量をかせぐために色フィルタが配置されていない。焦点検出画素311の示す分光感度特性は、光電変換を行うフォトダイオードの分光感度特性、赤外カットフィルタ(不図示)の分光感度特性とを総合した分光感度特性となる。すなわち、焦点検出画素311は、緑画素、赤画素、青画素の分光感度特性を加算したような分光感度特性を示す。高い感度を示す光波長領域は、緑画素、赤画素、青画素の各々において各色フィルタが高い感度を示す光波長領域を包括している。   The focus detection pixel 311 includes a microlens 10 and a pair of photoelectric conversion units 22 and 23. The focus detection pixel 311 is not provided with a color filter in order to increase the amount of light. The spectral sensitivity characteristic indicated by the focus detection pixel 311 is a spectral sensitivity characteristic that combines the spectral sensitivity characteristic of a photodiode that performs photoelectric conversion and the spectral sensitivity characteristic of an infrared cut filter (not shown). That is, the focus detection pixel 311 exhibits spectral sensitivity characteristics that are obtained by adding the spectral sensitivity characteristics of green pixels, red pixels, and blue pixels. The light wavelength region exhibiting high sensitivity includes the light wavelength region in which each color filter exhibits high sensitivity in each of the green pixel, red pixel, and blue pixel.

(5)上述した一実施の形態では、マイクロレンズを用いた瞳分割方式による焦点検出動作を説明したが、本発明はこのような方式の焦点検出に限定されず、再結像瞳分割方式の焦点検出にも適用可能である。図14は、図2に示す撮影画面100の中央、上下の3カ所に焦点検出位置を有する再結像瞳分割型位相差検出方式の焦点検出装置の構成例を示す。図14を用いて、再結像瞳分割方式の焦点検出動作を説明する。図14には、交換レンズの光軸191、コンデンサレンズ110,120、絞りマスク111、121、絞り開口112,113、122,123、再結像レンズ114、115、124,125、焦点検出用のイメージセンサ(CCD)116、126が示されている。 (5) In the above-described embodiment, the focus detection operation by the pupil division method using the microlens has been described. However, the present invention is not limited to such a focus detection method, and the re-imaging pupil division method is used. It can also be applied to focus detection. FIG. 14 shows a configuration example of a focus detection apparatus of a re-imaging pupil division type phase difference detection method having focus detection positions at three positions on the upper and lower sides of the photographing screen 100 shown in FIG. The focus detection operation of the re-imaging pupil division method will be described with reference to FIG. In FIG. 14, the optical axis 191 of the interchangeable lens, the condenser lenses 110 and 120, the aperture masks 111 and 121, the aperture apertures 112, 113, 122 and 123, the re-imaging lenses 114, 115, 124 and 125, and the focus detection lens. Image sensors (CCD) 116, 126 are shown.

また、図14には、焦点検出光束132,133、142,143、交換レンズの予定結像面の前方へ測距瞳距離d5の位置に設定された射出瞳190も示されている。ここで、測距瞳距離d5は、コンデンサレンズ110,120の焦点距離、およびコンデンサレンズ110,120と絞り開口112,113、122,123との間の距離などに応じて決まる。測距瞳192は、コンデンサレンズ110,120により投影された絞り開口112,122の領域である。同様に、測距瞳193は、コンデンサレンズ110,120により投影された絞り開口113,123の領域である。コンデンサレンズ110、絞りマスク111、絞り開口112,113、再結像レンズ114、115およびイメージセンサ116が、撮影画面100の中央の焦点検出エリア101で焦点検出を行う再結像方式の瞳分割方位相差検出の焦点検出ユニット207を構成する。   FIG. 14 also shows the focus detection light beams 132, 133, 142, and 143, and the exit pupil 190 that is set to the position of the distance measurement pupil distance d5 in front of the scheduled imaging surface of the interchangeable lens. Here, the distance measurement pupil distance d5 is determined according to the focal length of the condenser lenses 110 and 120, the distance between the condenser lenses 110 and 120 and the aperture openings 112, 113, 122, and 123, and the like. The distance measuring pupil 192 is an area of the aperture openings 112 and 122 projected by the condenser lenses 110 and 120. Similarly, the distance measuring pupil 193 is an area of the aperture openings 113 and 123 projected by the condenser lenses 110 and 120. Re-imaging pupil division orientation in which the condenser lens 110, aperture mask 111, aperture openings 112 and 113, re-imaging lenses 114 and 115, and image sensor 116 perform focus detection in the focus detection area 101 at the center of the imaging screen 100. A focus detection unit 207 for phase difference detection is configured.

コンデンサレンズ110は、交換レンズの予定結像面近傍に配置される。イメージセンサ116は、コンデンサレンズ110の背後に配置される。予定結像面近傍に結像された1次像をイメージセンサ116上に再結像する一対の再結像レンズ114、115は、コンデンサレンズ110とイメージセンサ116との間に配置される。絞りマスク111は、一対の再結像レンズ114、115の近傍(図14では前面)に配置された一対の絞り開口112、113を有する。   The condenser lens 110 is disposed in the vicinity of the planned imaging plane of the interchangeable lens. The image sensor 116 is disposed behind the condenser lens 110. A pair of re-imaging lenses 114 and 115 for re-imaging the primary image formed in the vicinity of the planned imaging plane on the image sensor 116 are disposed between the condenser lens 110 and the image sensor 116. The aperture mask 111 has a pair of aperture openings 112 and 113 disposed in the vicinity of the pair of re-imaging lenses 114 and 115 (the front surface in FIG. 14).

イメージセンサ116は、複数の光電変換部が直線に沿って密に配置されたラインセンサであり、光電変換部の配置方向は一対の測距瞳192および193による瞳分割方向と一致させる。一対の測距瞳192および193による瞳分割方向は、一対の絞り開口112および113の並び方向と一致する。イメージセンサ116上に再結像された一対の像の強度分布に対応した情報がイメージセンサ116から出力され、この情報に対して上述した像ズレ検出演算処理(相関処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式(再結像方式)による一対の像の像ズレ量の検出が行われる。さらに、像ズレ量に所定の変換係数を乗ずることによって、予定結像面に対する現在の結像面の偏差(デフォーカス量)が算出される。   The image sensor 116 is a line sensor in which a plurality of photoelectric conversion units are densely arranged along a straight line, and the arrangement direction of the photoelectric conversion units is made to coincide with the pupil division direction by the pair of distance measuring pupils 192 and 193. The pupil division direction by the pair of distance measuring pupils 192 and 193 coincides with the arrangement direction of the pair of aperture openings 112 and 113. Information corresponding to the intensity distribution of the pair of images re-imaged on the image sensor 116 is output from the image sensor 116, and the above-described image shift detection calculation processing (correlation processing, phase difference detection processing) is performed on this information. As a result, the amount of image shift between a pair of images is detected by a so-called pupil division type phase difference detection method (re-imaging method). Further, the deviation (defocus amount) of the current imaging plane with respect to the planned imaging plane is calculated by multiplying the image shift amount by a predetermined conversion coefficient.

イメージセンサ116は再結像レンズ114、115により予定結像面上に投影されており、デフォーカス量(像ズレ量)の検出精度は、像ズレ量の検出ピッチにより決まる。再結像方式の場合、像ズレ量の検出ピッチは、予定結像面上に投影された光電変換部の配列ピッチである。   The image sensor 116 is projected onto the planned imaging plane by the re-imaging lenses 114 and 115, and the detection accuracy of the defocus amount (image shift amount) is determined by the detection pitch of the image shift amount. In the case of the re-imaging method, the detection pitch of the image shift amount is the arrangement pitch of the photoelectric conversion units projected on the planned imaging plane.

コンデンサレンズ110は、絞りマスク111の絞り開口112、113を、測距瞳距離d5に位置する射出瞳190上に一対の測距瞳192、193として投影している。すなわち、イメージセンサ116上に再結像される一対の像は、射出瞳190上の一対の測距瞳192,193を通過する焦点検出用光束132、133によって形成される。   The condenser lens 110 projects the aperture openings 112 and 113 of the aperture mask 111 as a pair of distance measuring pupils 192 and 193 on the exit pupil 190 positioned at the distance measuring pupil distance d5. That is, the pair of images re-imaged on the image sensor 116 is formed by the focus detection light beams 132 and 133 that pass through the pair of distance measuring pupils 192 and 193 on the exit pupil 190.

コンデンサレンズ120、絞りマスク121、絞り開口122,123、再結像レンズ124、125、イメージセンサ126が、撮影画面100上の焦点検出エリア102で焦点検出を行う再結像方式の瞳分割型位相差検出の焦点検出ユニット207を構成する。   The condenser lens 120, the diaphragm mask 121, the diaphragm apertures 122 and 123, the re-imaging lenses 124 and 125, and the image sensor 126 perform a focus detection in the focus detection area 102 on the photographing screen 100, and a re-imaging pupil division type position. A focus detection unit 207 for phase difference detection is configured.

コンデンサレンズ120は、交換レンズの予定結像面近傍に配置される。イメージセンサ126は、コンデンサレンズ120の背後に配置される。予定結像面近傍に結像された1次像をイメージセンサ126上に再結像する一対の再結像レンズ124、125は、コンデンサレンズ120とイメージセンサ126の間に配置される。絞りマスク121は、一対の再結像レンズ124、125の近傍(図14では前面)に配置された一対の絞り開口122、123を有する。   The condenser lens 120 is disposed in the vicinity of the planned imaging surface of the interchangeable lens. The image sensor 126 is disposed behind the condenser lens 120. A pair of re-imaging lenses 124 and 125 for re-imaging the primary image formed in the vicinity of the planned imaging plane on the image sensor 126 are disposed between the condenser lens 120 and the image sensor 126. The diaphragm mask 121 has a pair of diaphragm openings 122 and 123 disposed in the vicinity of the pair of re-imaging lenses 124 and 125 (the front surface in FIG. 14).

イメージセンサ126は複数の光電変換部が直線に沿って密に配置されたラインセンサであり、光電変換部の配置方向は一対の測距瞳192および193による瞳分割方向と一致させる。一対の測距瞳192および193による瞳分割方向は、一対の絞り開口122および123の並び方向と一致する。イメージセンサ126上に再結像された一対の像の強度分布に対応した情報がイメージセンサ126から出力され、該情報に対して上述した像ズレ検出演算処理(相関処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式(再結像方式)による一対の像の像ズレ量の検出が行われる。像ズレ量に所定の変換係数を乗ずることによって、予定結像面に対する現在の結像面の偏差(デフォーカス量)が算出される。   The image sensor 126 is a line sensor in which a plurality of photoelectric conversion units are densely arranged along a straight line, and the arrangement direction of the photoelectric conversion units is made to coincide with the pupil division direction by the pair of distance measuring pupils 192 and 193. The pupil division direction by the pair of distance measuring pupils 192 and 193 coincides with the arrangement direction of the pair of aperture openings 122 and 123. Information corresponding to the intensity distribution of the pair of images re-imaged on the image sensor 126 is output from the image sensor 126, and the above-described image shift detection calculation processing (correlation processing, phase difference detection processing) is performed on the information. As a result, the amount of image shift between a pair of images is detected by a so-called pupil division type phase difference detection method (re-imaging method). By multiplying the image shift amount by a predetermined conversion coefficient, the deviation (defocus amount) of the current image plane with respect to the planned image plane is calculated.

イメージセンサ126は再結像レンズ124、125により予定結像面上に投影されており、デフォーカス量(像ズレ量)の検出精度は、上述したように予定結像面上に投影された光電変換部の配列ピッチにより決まる。   The image sensor 126 is projected onto the planned imaging plane by the re-imaging lenses 124 and 125, and the detection accuracy of the defocus amount (image shift amount) is the photoelectric that is projected onto the planned imaging plane as described above. It is determined by the arrangement pitch of the conversion units.

コンデンサレンズ120は、絞りマスク121の絞り開口122、123を、測距瞳距離d5に位置する射出瞳190上に一対の測距瞳192、193として投影している。すなわち、イメージセンサ126上に再結像される一対の像は、射出瞳190上の一対の測距瞳192,193を通過する焦点検出光束142、143によって形成される。   The condenser lens 120 projects the aperture openings 122 and 123 of the aperture mask 121 as a pair of distance measurement pupils 192 and 193 on the exit pupil 190 located at the distance measurement pupil distance d5. That is, a pair of images re-imaged on the image sensor 126 is formed by the focus detection light beams 142 and 143 that pass through the pair of distance measuring pupils 192 and 193 on the exit pupil 190.

このような構成においても、焦点検出エリアの位置と交換レンズの射出瞳距離とに応じて固定データおよび変位データを選択することができる。例えば焦点検出エリア102については、交換レンズの射出瞳距離dpが測距瞳距離d5より短ければ、再結像レンズ124によりイメージセンサ126上に形成された像に対応する像データを固定データとし、再結像レンズ125によりイメージセンサ126上に形成された像に対応する像データを変位データとする。また、交換レンズの射出瞳距離dpが測距瞳距離d5より長ければ、再結像レンズ125によりイメージセンサ126上に形成された像に対応する像データを固定データとし、再結像レンズ124によりイメージセンサ126上に形成された像に対応する像データを変位データとする。交換レンズの射出瞳距離dpが測距瞳距離d5と等しい場合も、再結像レンズ125によりイメージセンサ126上に形成された像に対応する像データを固定データとし、再結像レンズ124によりイメージセンサ126上に形成された像に対応する像データを変位データとすることができる。   Even in such a configuration, it is possible to select fixed data and displacement data according to the position of the focus detection area and the exit pupil distance of the interchangeable lens. For example, for the focus detection area 102, if the exit pupil distance dp of the interchangeable lens is shorter than the distance measuring pupil distance d5, the image data corresponding to the image formed on the image sensor 126 by the re-imaging lens 124 is set as fixed data. Image data corresponding to an image formed on the image sensor 126 by the re-imaging lens 125 is set as displacement data. If the exit pupil distance dp of the interchangeable lens is longer than the distance measuring pupil distance d5, the image data corresponding to the image formed on the image sensor 126 by the re-imaging lens 125 is set as fixed data, and the re-imaging lens 124 Image data corresponding to an image formed on the image sensor 126 is set as displacement data. Even when the exit pupil distance dp of the interchangeable lens is equal to the distance measuring pupil distance d5, the image data corresponding to the image formed on the image sensor 126 by the re-imaging lens 125 is set as fixed data, and the image is obtained by the re-imaging lens 124. Image data corresponding to an image formed on the sensor 126 can be used as displacement data.

焦点検出エリア101については、交換レンズの射出瞳による一対の焦点検出光束132および133のケラレは対称になるので、再結像レンズ114によりイメージセンサ116上に形成された像に対応する像データと、再結像レンズ115によりイメージセンサ126上に形成された像に対応する像データとのいずれを固定データ、変位データとしてもかまわない。   For the focus detection area 101, the vignetting of the pair of focus detection light beams 132 and 133 due to the exit pupil of the interchangeable lens is symmetric, so that image data corresponding to the image formed on the image sensor 116 by the re-imaging lens 114 and Any of the image data corresponding to the image formed on the image sensor 126 by the re-imaging lens 115 may be fixed data or displacement data.

(6)図3に示す撮像素子212において、撮像画素310はベイヤー配列の色フィルタを備えた例を示したが、色フィルタの構成や配列はこれに限定されることはない。たとえば、補色フィルタ(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)の配列を採用してもよい。 (6) In the imaging device 212 shown in FIG. 3, the imaging pixel 310 is provided with a Bayer color filter, but the configuration and arrangement of the color filter are not limited to this. For example, an array of complementary color filters (green: G, yellow: Ye, magenta: Mg, cyan: Cy) may be employed.

(7)図3に示す撮像素子212において、焦点検出画素312および313には色フィルタを設けない例を示したが、撮像画素310が有する色フィルタのうちのひとつのフィルタ(たとえば緑フィルタ)を備えるようにした場合でも、本発明を適用することができる。 (7) In the image sensor 212 shown in FIG. 3, the focus detection pixels 312 and 313 are not provided with color filters. However, one of the color filters of the image pickup pixel 310 (for example, a green filter) is used. The present invention can be applied even when provided.

(8)図3、図13において、焦点検出画素312、313および311の光電変換部12、13、22および23の形状を矩形にした例を示したが、光電変換部の形状はこれに限定されず、他の形状であってもよい。例えば、焦点検出画素の光電変換部の形状を楕円や半円形や多角形にすることも可能である。 (8) Although FIGS. 3 and 13 show examples in which the photoelectric conversion units 12, 13, 22, and 23 of the focus detection pixels 312, 313, and 311 are rectangular, the shape of the photoelectric conversion unit is limited to this. It may not be another shape. For example, the shape of the photoelectric conversion unit of the focus detection pixel may be an ellipse, a semicircle, or a polygon.

(9)図3に示す撮像素子212では撮像画素310、焦点検出画素312および313を稠密正方格子配列に配置した例を示したが、稠密六方格子配列であってもよい。 (9) In the imaging device 212 shown in FIG. 3, the example in which the imaging pixels 310 and the focus detection pixels 312 and 313 are arranged in a dense square lattice arrangement is shown, but a dense hexagonal lattice arrangement may be used.

(10)撮像装置としては、上述したような、カメラボディに交換レンズが装着される構成のデジタルスチルカメラやフィルムスチルカメラに限定されない。例えば、レンズ一体型のデジタルスチルカメラ、フィルムスチルカメラ、あるいはビデオカメラにも本発明を適用することができる。さらには、携帯電話などに内蔵される小型カメラモジュール、監視カメラやロボット用の視覚認識装置などにも適用できる。カメラ以外の焦点検出装置や測距装置、さらにはステレオ測距装置にも適用できる。 (10) The imaging device is not limited to the digital still camera or the film still camera having the configuration in which the interchangeable lens is mounted on the camera body as described above. For example, the present invention can also be applied to a lens-integrated digital still camera, film still camera, or video camera. Furthermore, the present invention can be applied to a small camera module built in a mobile phone, a surveillance camera, a visual recognition device for a robot, and the like. The present invention can also be applied to a focus detection device other than a camera, a distance measuring device, and a stereo distance measuring device.

10 マイクロレンズ、11、12、13、22、23 光電変換部、
72、73、82、83 焦点検出光束、
90 測距瞳面、 91 光軸、 92、93 測距瞳、95 射出瞳、
100 撮影画面、101、102、103、104 焦点検出エリア、
110、120 コンデンサレンズ、
111、121 絞りマスク、112、113、122、123 絞り開口、
114、115、124、125 再結像レンズ、116、126 イメージセンサ、
132、133、142、143 焦点検出光束、
172、173、182、183 焦点検出光束、
190 射出瞳、191 光軸、192、193 測距瞳、
201 デジタルスチルカメラ、202 交換レンズ、203 カメラボディ、
204 マウント部、206 レンズ駆動制御装置、207 焦点検出ユニット、
208 ズーミング用レンズ、209 レンズ、210 フォーカシング用レンズ、
211 絞り、212 撮像素子、213 電気接点、
214 ボディ駆動制御装置、
215 液晶表示素子駆動回路、216 液晶表示素子、217 接眼レンズ、
219 メモリカード、
272、273、282、283、292、293 焦点検出光束、
310 撮像画素、311、312、313 焦点検出画素、
410、420 像データ
10 microlens, 11, 12, 13, 22, 23 photoelectric conversion unit,
72, 73, 82, 83 Focus detection luminous flux,
90 Distance pupil plane, 91 Optical axis, 92, 93 Distance pupil, 95 Exit pupil,
100 shooting screen, 101, 102, 103, 104 focus detection area,
110, 120 condenser lens,
111, 121 Aperture mask, 112, 113, 122, 123 Aperture aperture,
114, 115, 124, 125 Re-imaging lens, 116, 126 Image sensor,
132, 133, 142, 143 Focus detection light flux,
172, 173, 182, 183 Focus detection light flux,
190 Exit pupil, 191 Optical axis, 192, 193 Distance pupil,
201 digital still camera, 202 interchangeable lens, 203 camera body,
204 mount unit, 206 lens drive control device, 207 focus detection unit,
208 zooming lens, 209 lens, 210 focusing lens,
211 Aperture, 212 Image sensor, 213 Electrical contact,
214 body drive control device,
215 liquid crystal display element driving circuit, 216 liquid crystal display element, 217 eyepiece,
219 memory card,
272, 273, 282, 283, 292, 293, focus detection light flux,
310 imaging pixels, 311, 312, 313 focus detection pixels,
410, 420 Image data

Claims (13)

光学系の射出瞳の一対の領域をそれぞれ通過する、一方の光束である第1光束と、他方の光束であり前記第1光束よりもケラレの大きな第2光束とを受光し、前記第2光束よりも光量の大きい前記第1光束に対応する第1信号と前記第2光束に対応する第2信号とを出力する受光部と、
前記第1信号を基準とし、前記第2信号を前記第1信号に対して変位させながら、前記第1信号と前記第2信号との相関量を相関演算によって算出して、前記第1及び第2信号のズレ量を検出するズレ量検出手段と、
前記ズレ量に基づいて前記光学系の焦点調節状態を検出する焦点検出手段とを備えることを特徴とする焦点検出装置。
Through each one pair of regions of the exit pupil of the optical system, and light receiving one of the first light flux is a light flux, a second light flux big vignetting than the other is a light beam said first light flux, the second A light receiving unit that outputs a first signal corresponding to the first light flux and a second signal corresponding to the second light flux, the light amount of which is greater than the light flux;
The correlation between the first signal and the second signal is calculated by correlation calculation while displacing the second signal with respect to the first signal with the first signal as a reference, and the first and second signals are calculated. A deviation amount detecting means for detecting a deviation amount of the two signals ;
A focus detection device comprising: focus detection means for detecting a focus adjustment state of the optical system based on the shift amount.
請求項1に記載の焦点検出装置において、The focus detection apparatus according to claim 1,
前記焦点検出手段は、前記光学系の焦点調節状態としてデフォーカス量を検出することを特徴とする焦点検出装置。  The focus detection apparatus, wherein the focus detection unit detects a defocus amount as a focus adjustment state of the optical system.
請求項1又は2に記載の焦点検出装置において
第1及び第2信号の中から前記第1信号を選択する選択手段を備え、
前記光学系の撮影画面には複数の焦点検出エリアが設定され、
前記受光部は、前記複数の焦点検出エリア毎に前記第1及び第2信号を出力し、
前記選択手段は、前記焦点検出エリアに関する前記第1及び第2信号の中から前記第1信号を選択する際に、前記撮影画面の中央からの当該焦点検出エリアの位置に基づいて、前記第1信号を選択することを特徴とする焦点検出装置。
In the focus detection apparatus according to claim 1 or 2 ,
A selection means for selecting the first signal from the previous SL first and second signals,
A plurality of focus detection areas are set on the photographing screen of the optical system,
The light receiving unit outputs the first and second signals for each of the plurality of focus detection areas,
The selection means selects the first signal from the first and second signals related to the focus detection area based on the position of the focus detection area from the center of the shooting screen. A focus detection apparatus that selects a signal .
請求項に記載の焦点検出装置において、
前記光学系は、交換レンズであり、
前記選択手段は、前記焦点検出エリアの位置と前記交換レンズの射出瞳距離と測距瞳距離とに基づき、前記第1信号選択することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 3 ,
The optical system is an interchangeable lens,
Said selecting means, based on the exit pupil distance and the range-finding pupil distance position and the interchangeable lens of the focus detection area, the focus detection device, characterized by selecting said first signal.
請求項1又は2に記載の焦点検出装置において、
前記第1及び第2信号の中から前記第1信号を選択する選択手段を備え、
前記選択手段は、前記第1及び第2信号のうちの平均出力が大きい方の信号を前記第1信号として選択することを特徴とする焦点検出装置。
In the focus detection apparatus according to claim 1 or 2,
Selecting means for selecting the first signal from the first and second signals;
The focus detection apparatus, wherein the selection unit selects a signal having a larger average output of the first and second signals as the first signal.
請求項1〜5のいずれか一項に記載の焦点検出装置において、
前記ズレ量検出手段は、前記第1信号のうち、所定値よりも高いコントラストを構成する部分信号に対して前記第2信号を変位させることにより、前記ズレ量を検出することを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 5,
The shift amount detecting means detects the shift amount by displacing the second signal with respect to a partial signal having a contrast higher than a predetermined value in the first signal. Detection device.
請求項1〜6のいずれか一項に記載の焦点検出装置において、
前記ズレ量検出手段は、前記第1信号に対して前記第2信号を複数の変位量で変位させながら前記第1及び第2信号の相関を求め、前記複数の変位量のうち、前記相関が極となる変位量に基づいて前記ズレ量を検出することを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 6,
The deviation amount detecting means obtains a correlation amount between the first and second signals while displacing the second signal with a plurality of displacement amounts with respect to the first signal, and among the plurality of displacement amounts, the correlation amount is calculated. the amount focus detection device and detects the shift amount based on the displacement amount becomes very small.
請求項3または4に記載の焦点検出装置において、
前記受光部は、前記撮影画面の周辺の位置に対応して配置されることを特徴とする焦点検出装置。
The focus detection apparatus according to claim 3 or 4 ,
The light receiving unit, the focus detection apparatus characterized by being arranged to correspond to the position of the periphery of the photographing screen.
請求項1〜のいずれか一項に記載の焦点検出装置において、
前記受光部は焦点検出画素を含み、
前記焦点検出画素は、マイクロレンズと複数の光電変換部とを有することを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 8 ,
The light receiving unit includes a focus detection pixel,
The focus detection device, wherein the focus detection pixel includes a microlens and a plurality of photoelectric conversion units.
請求項1〜9のいずれか一項に記載の焦点検出装置において、
前記受光部は第1焦点検出用画素と第2焦点検出用画素とを含み、
前記第1焦点検出用画素は、第1マイクロレンズと、前記第1マイクロレンズに対して配置された第1光電変換部とを有し、前記第1及び第2光束の一方を受光し、
前記第2焦点検出用画素は、第2マイクロレンズと、前記第2マイクロレンズに対して配置された第2光電変換部とを有し、前記第1及び第2光束の他方を受光することを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 9,
The light receiving unit includes a first focus detection pixel and a second focus detection pixel,
The first focus detection pixel includes a first microlens and a first photoelectric conversion unit disposed with respect to the first microlens, and receives one of the first and second light beams,
The second focus detection pixel includes a second microlens and a second photoelectric conversion unit disposed with respect to the second microlens, and receives the other of the first and second light beams. Feature focus detection device.
請求項1〜9のいずれか一項に記載の焦点検出装置において、
前記受光部は、前記第1及び第2光束により形成される第1の一対の像を第2の一対の像として再結像する一対の再結像光学系と、前記第2の一対の像の強度に応じた一対のデータを出力するイメージセンサとを有することを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 9,
The light receiving unit includes a pair of re-imaging optical systems that re-images the first pair of images formed by the first and second light beams as a second pair of images, and the second pair of images. And an image sensor that outputs a pair of data corresponding to the intensity of the focus detection device.
請求項1〜11のいずれか一項に記載の焦点検出装置と、
前記焦点検出手段により検出された前記焦点調節状態に応じて前記光学系の焦点調節を行う焦点調節手段とを備えることを特徴とする焦点調節装置。
The focus detection device according to any one of claims 1 to 11 ,
A focus adjustment device comprising: a focus adjustment unit that performs focus adjustment of the optical system in accordance with the focus adjustment state detected by the focus detection unit.
請求項1に記載の焦点調節装置を備えることを特徴とする撮像装置。
Imaging apparatus characterized by comprising a focusing device according to claim 1 2.
JP2010246587A 2010-11-02 2010-11-02 Focus detection device, focus adjustment device, and imaging device Active JP5685892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010246587A JP5685892B2 (en) 2010-11-02 2010-11-02 Focus detection device, focus adjustment device, and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010246587A JP5685892B2 (en) 2010-11-02 2010-11-02 Focus detection device, focus adjustment device, and imaging device

Publications (2)

Publication Number Publication Date
JP2012098550A JP2012098550A (en) 2012-05-24
JP5685892B2 true JP5685892B2 (en) 2015-03-18

Family

ID=46390500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010246587A Active JP5685892B2 (en) 2010-11-02 2010-11-02 Focus detection device, focus adjustment device, and imaging device

Country Status (1)

Country Link
JP (1) JP5685892B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021780B2 (en) * 2013-10-07 2016-11-09 キヤノン株式会社 Image data processing device, distance calculation device, imaging device, and image data processing method
GB2548462B (en) * 2016-01-29 2020-06-17 Canon Kk Image sensor and image capturing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148910A (en) * 1985-12-23 1987-07-02 Minolta Camera Co Ltd Focus detector
JP2002014277A (en) * 2000-06-29 2002-01-18 Canon Inc Focus detecting device, image pickup device, focus detecting method, and medium presenting processing program
JP2004191629A (en) * 2002-12-11 2004-07-08 Canon Inc Focus detector
JP5399627B2 (en) * 2007-12-21 2014-01-29 株式会社ニコン Focus detection device, focus adjustment device, and imaging device

Also Published As

Publication number Publication date
JP2012098550A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5942697B2 (en) Focus detection apparatus and imaging apparatus
JP5012495B2 (en) IMAGING ELEMENT, FOCUS DETECTION DEVICE, FOCUS ADJUSTMENT DEVICE, AND IMAGING DEVICE
JP5857547B2 (en) Focus detection device and focus adjustment device
JP5067148B2 (en) Imaging device, focus detection device, and imaging device
JP5381472B2 (en) Imaging device
JP5866760B2 (en) Imaging device
JP5278123B2 (en) Imaging device
JP2011128302A (en) Imaging apparatus
JP2018174542A (en) Image pickup device and image pickup apparatus
JP5338112B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5685892B2 (en) Focus detection device, focus adjustment device, and imaging device
JP2011142464A (en) Focus detecting device and imaging device
JP5407314B2 (en) Focus detection apparatus and imaging apparatus
JP5962830B2 (en) Focus detection device
JP5804104B2 (en) Focus adjustment device
JP5399627B2 (en) Focus detection device, focus adjustment device, and imaging device
JP5332384B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5614227B2 (en) Focus detection apparatus and imaging apparatus
JP5338119B2 (en) Correlation calculation device, focus detection device, and imaging device
JP6477597B2 (en) Focus detection apparatus and imaging apparatus
JP5949893B2 (en) Imaging device
JP5338118B2 (en) Correlation calculation device, focus detection device, and imaging device
JP4968009B2 (en) Correlation calculation method, correlation calculation device, focus detection device, and imaging device
JP6699768B2 (en) Focus detection device and camera
JP4968010B2 (en) Correlation calculation method, correlation calculation device, focus detection device, and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5685892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250