JPH0556355A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPH0556355A
JPH0556355A JP3217075A JP21707591A JPH0556355A JP H0556355 A JPH0556355 A JP H0556355A JP 3217075 A JP3217075 A JP 3217075A JP 21707591 A JP21707591 A JP 21707591A JP H0556355 A JPH0556355 A JP H0556355A
Authority
JP
Japan
Prior art keywords
signal
picture element
area
focus detection
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3217075A
Other languages
Japanese (ja)
Inventor
Akira Akashi
彰 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3217075A priority Critical patent/JPH0556355A/en
Priority to US07/936,010 priority patent/US5428420A/en
Publication of JPH0556355A publication Critical patent/JPH0556355A/en
Priority to US08/411,287 priority patent/US5784655A/en
Priority to US08/516,412 priority patent/US5615399A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a precise photoelectric conversion signal processing by replacing the signal of a defective picture element existing in an area sensor with the signal of the normal picture element in the neighborhood. CONSTITUTION:The fourth picture element from the right of a video signal 522 corresponds to the defective picture element, and the signal of the picture element is deteriorated. Then, when the position of the defective picture element is preliminarily recognized in the checking process or the like, the position information is stored in an EEPROM in a microcomputer. Then, at the time of operating the adding processing of the video signal, the video signal corresponding to the defective picture element is replaced with the signal of an another adjacent normal picture element by using the information. That is, the signal of the fourth picture element from the right of a signal 522' is prepared by replacing the video signal corresponding to the defective picture element with the fourth picture signal from the right of a signal 523, and a signal 531 is prepared by adding signals 521, 522', and 523-525 at every horizontal picture element. At that time, the signal 531' is approximate to the actual one, so that an error can be reduced by operating a focus detecting processing by using the signal 531'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電変換装置及び該変
換装置を用いて撮影画面内の任意の複数領域で焦点検出
を行うことが可能な焦点検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device and a focus detection device capable of performing focus detection in an arbitrary plurality of areas within a photographic screen using the conversion device.

【0002】[0002]

【従来の技術】従来、カメラの自動焦点検出装置とし
て、撮影画面内の複数点の焦点検出が可能な装置が多数
提案されている。
2. Description of the Related Art Conventionally, as an automatic focus detecting device for a camera, there have been proposed a lot of devices capable of detecting focus at a plurality of points on a photographing screen.

【0003】かかる装置に用いられる従来の光電変換セ
ンサは、上記焦点検出点各々に対応した有限個のセンサ
列を同一基板上に配置したものである。具体的構成とし
ては、例えば特開昭63−11906号、特開昭63−
172209号、特開平1−271716号公報等に詳
しく記載されている。
A conventional photoelectric conversion sensor used in such a device is one in which a finite number of sensor rows corresponding to the respective focus detection points are arranged on the same substrate. Specific configurations include, for example, JP-A-63-1906 and JP-A-63-1906.
No. 172209, JP-A 1-271716, and the like.

【0004】その内の一つの従来例を図9の焦点検出光
学系を用いて簡単に説明する。フイールドレンズ40、
多孔視野マスク41、正レンズ2枚を並設した2次結像
レンズ42そしてセンサ列対が複数配列されたセンサチ
ップ43から構成される。多孔視野マスク41は不図示
の撮影レンズの予定結像面近傍の位置に設けられ、各開
口41a、41b、41cはそれぞれ撮影画面中の焦点
検出すべき領域を決定している。2次結像レンズ42は
開口41aで制限された被写体像の一部をセンサ列対4
3a,43b上に再結像する。同様に開口41b、ある
いは41cで制限された被写体像は、それぞれセンサ列
対43c,43dあるいは43e,43f上に再結像さ
れる。各センサ列対の被写体像信号は電気信号として読
み出され、処理装置内で焦点検出演算が実行される。こ
のようにして各開口で決定された焦点検出視野内の被写
体に対する撮影レンズの焦点状態が検出される。3個の
開口が決定する焦点検出視野を撮影画面に当てはめる
と、例えば図10の撮影画面47の49L,49C,4
9Rの位置に相当する。
One of the conventional examples will be briefly described with reference to the focus detection optical system shown in FIG. Field lens 40,
It is composed of a porous field mask 41, a secondary imaging lens 42 in which two positive lenses are arranged in parallel, and a sensor chip 43 in which a plurality of pairs of sensor rows are arranged. The porous field mask 41 is provided at a position in the vicinity of a planned image forming surface of a photographing lens (not shown), and the openings 41a, 41b, and 41c respectively determine the focus detection area in the photographing screen. The secondary imaging lens 42 uses a sensor array pair 4 for a part of the subject image limited by the opening 41a.
The image is re-formed on 3a and 43b. Similarly, the subject image limited by the opening 41b or 41c is re-imaged on the sensor row pair 43c, 43d or 43e, 43f, respectively. The subject image signal of each sensor array pair is read as an electric signal, and focus detection calculation is executed in the processing device. In this way, the focus state of the photographing lens with respect to the subject within the focus detection visual field determined by each aperture is detected. When the focus detection fields determined by the three openings are applied to the photographing screen, for example, 49L, 49C, 4 of the photographing screen 47 of FIG.
Corresponds to the 9R position.

【0005】焦点検出視野が高々数個程度で、また視野
位置が固定の場合には、上記例のようにセンサチップ上
に各検出視野位置に対応してセンサ列を離散的に配し、
チップ上の各センサ列の間の領域にはセンサ駆動用の回
路を設ける構成をとることが一般的である。
When the number of focus detection visual fields is at most several and the visual field position is fixed, the sensor array is discretely arranged on the sensor chip corresponding to each detection visual field position as in the above example.
Generally, a structure for providing a sensor driving circuit is provided in a region between each sensor array on the chip.

【0006】従来以上に焦点検出視野の数を増やしたい
場合や、視野位置を状況に応じて変更したい場合には、
縦横2次元的に光電変換素子を規則正しく配列させた、
いわゆるエリアセンサを用いることが望ましい。特に視
野位置を変更したい場合、視野マスクは前述したような
焦点検出視野に対応する開口を有する多孔視野マスクで
はなく、図8の視野マスク41に示したように、複数の
焦点検出視野総てを包含する大きな開口41Rを1つだ
け有するものを使用する。
When it is desired to increase the number of focus detection fields of view more than before or to change the field of view position according to the situation,
Photoelectric conversion elements are arranged regularly in two dimensions vertically and horizontally,
It is desirable to use a so-called area sensor. Especially when it is desired to change the visual field position, the visual field mask is not the porous visual field mask having the opening corresponding to the focus detection visual field as described above, but all the plural focus detection visual fields as shown in the visual field mask 41 of FIG. The one having only one large opening 41R included is used.

【0007】図8の形態の焦点検出系の基本原理は前述
図9の従来形を踏襲しているので、同一構成部材には同
一の番号を付している。視野マスク41は不図示の撮影
レンズの予定結像面近傍の位置に設けられ、単一の広い
開口41Rの制限する領域が焦点検出可能な範囲とな
る。2次結像レンズ42の手前には絞り板44が置か
れ、絞り孔44P,44Q各々が各正レンズに入射する
光束を規制している。絞り板44の位置はフイールドレ
ンズ40のパワーにより撮影レンズの射出瞳の位置に略
々結像関係に置かれている。一対の正レンズ2枚からな
る2次結像レンズ42は開口41Rで決定された被写体
像をエリアセンサの対43Pと43Q上に再結像する2
つのエリアセンサ上の被写体像信号は電気情報として読
み出され、処理装置内で焦点検出演算が実行される。
Since the basic principle of the focus detection system of the form shown in FIG. 8 follows the conventional form shown in FIG. 9, the same components are designated by the same reference numerals. The field mask 41 is provided at a position in the vicinity of the planned image forming surface of the photographing lens (not shown), and the area limited by the single wide opening 41R is the focus detectable range. A diaphragm plate 44 is placed in front of the secondary imaging lens 42, and each of the diaphragm holes 44P and 44Q regulates a light beam incident on each positive lens. The position of the diaphragm plate 44 is substantially in an image forming relationship with the position of the exit pupil of the photographing lens by the power of the field lens 40. The secondary imaging lens 42 including a pair of positive lenses reimages the subject image determined by the opening 41R on the pair 43P and 43Q of the area sensor.
The subject image signal on one of the area sensors is read as electrical information, and focus detection calculation is executed in the processing device.

【0008】図8ではエリアセンサ43は2個の隔てら
れた受光領域43P,43Qを有するものとして表わさ
れているが、所定の制御性が得られるものならば、一続
きの受光領域であってももちろん良い。
In FIG. 8, the area sensor 43 is shown as having two light receiving areas 43P and 43Q separated from each other, but if the predetermined controllability is obtained, it is a continuous light receiving area. But of course it's good.

【0009】ところで、一般に撮影画面内には主たる被
写体とその背景が同時に並存しているので、焦点検出の
対象となる画面領域は何らかの形で限定されなくてはな
らない。
By the way, in general, a main subject and its background coexist in the photographing screen at the same time, so that the screen region targeted for focus detection must be limited in some way.

【0010】図9に示した従来例では視野マスク41の
各開口が光学的な領域限定の役目を果たしている。ま
た、それ故に2次結像レンズの予定結像面上には、各開
口に対応した形状のセンサ列だけを配すれば良いのであ
る。
In the conventional example shown in FIG. 9, each opening of the field mask 41 serves to limit the optical area. Further, therefore, only the sensor array having a shape corresponding to each aperture needs to be arranged on the expected image forming surface of the secondary image forming lens.

【0011】エリアセンサを用いた図8のような形態で
は、光学的に領域を限定する手段を持たないため、電気
的な手段を構じなければならない。具体的には、例え
ば、エリアセンサの受光領域の一部分の被写体像情報を
選択的に読み出したり、あるいは広い範囲で読み出した
被写体像情報のなかの特定の領域の情報を選択的に演算
処理することによって、撮影画面の局所領域に於ける焦
点状態の検出が行われる。
In the form as shown in FIG. 8 using the area sensor, there is no means for optically limiting the area, so an electric means must be provided. Specifically, for example, the subject image information of a part of the light receiving area of the area sensor is selectively read out, or the information of a specific area in the subject image information read out in a wide range is selectively processed. Thus, the focus state is detected in the local area of the photographing screen.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、焦点検
出用センサとしてエリアセンサを用いると次のような問
題が生じる。
However, when the area sensor is used as the focus detection sensor, the following problems occur.

【0013】即ち、エリアセンサチップはチップ面上に
光電変換素子がラインセンサに較べ多数配置されてお
り、画素数の絶対量が多い分、画素不良が発生し易い。
エリアセンサを使用する上で1つの不良画素も許されな
いとなると歩留りが極めて悪くなり、ひいては製品のコ
ストアップにもつながるため実現的ではなく、ある程度
の画素不良は許容しつつ使用しなければならない。しか
し、正に焦点検出処理を行う領域内に不良画素が存在し
ていると、当然のことながらその領域に対する処理結果
には誤差が混入し、正確な焦点検出動作が保証出来なく
なってしまう。
That is, the area sensor chip has a large number of photoelectric conversion elements arranged on the chip surface as compared with the line sensor, and the number of pixels is large in absolute amount, so that pixel defects are likely to occur.
If one defective pixel is not allowed when using the area sensor, the yield becomes extremely low, which leads to an increase in product cost, which is not feasible, and it is necessary to allow some defective pixels. However, if there is a defective pixel in the area where the focus detection processing is performed, an error is naturally included in the processing result for that area, and an accurate focus detection operation cannot be guaranteed.

【0014】[0014]

【課題を解決するための手段】本発明は前述の問題点の
解消を目的としており、エリアセンサーの一部に不良画
素が存在している場合にその画素の信号は用いずに、代
りに近傍の正常な画素の信号を代用することによって、
エリアセンサの歩留りを下げることなく、精度の高い画
素信号を取り出すことの出来る充電変換装置を提供しよ
うとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems. When a defective pixel is present in a part of the area sensor, the signal of that pixel is not used but instead the neighborhood signal is used. By substituting the normal pixel signal of
An object of the present invention is to provide a charge conversion device that can take out highly accurate pixel signals without reducing the yield of the area sensor.

【0015】[0015]

【実施例】以下本発明に係る光電変換装置についての説
明を焦点検出に採用した場合を例として説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The photoelectric conversion device according to the present invention will be described below by taking the case where it is adopted for focus detection as an example.

【0016】図1は本発明に係る充電変換装置を焦点検
出装置に用いた場合の一実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing an embodiment in which the charge conversion device according to the present invention is used in a focus detection device.

【0017】図において、43はエリアセンサで該エリ
アセンサ43にはインターフェイス回路60が接続さ
れ、後述する領域指定や蓄積制御が行われる。インター
フェイス回路60は処理装置であるマイクロコンピュー
タ61に接続される。マイクロコンピュータ61はCP
U(中央処理部)、ROM,RAM,EEPROM(電
気的消去可能プログラマブルROM)を有し、ROMに
格納されているプログラムに従って焦点検出処理を実行
してゆく。
In the figure, 43 is an area sensor, and an interface circuit 60 is connected to the area sensor 43 to perform area designation and accumulation control which will be described later. The interface circuit 60 is connected to a microcomputer 61 which is a processing device. Microcomputer 61 is CP
It has a U (central processing unit), a ROM, a RAM, and an EEPROM (electrically erasable programmable ROM), and executes focus detection processing according to a program stored in the ROM.

【0018】EEPROMには焦点検出領域の位置情報
やエリアセンサの不良画素の位置情報が、調整工程等に
よってあらかじめ格納されている。
Position information of the focus detection area and position information of the defective pixel of the area sensor are stored in advance in the EEPROM in the adjustment process and the like.

【0019】ROMに格納されている焦点検出処理のプ
ログラムの概略フローを図2に示す。
FIG. 2 shows a schematic flow of a program for focus detection processing stored in the ROM.

【0020】マイクロコンピュータ61が焦点検出処理
を開始すると、ステップ(01)を経て、ステップ(0
2)のセンサ蓄積を実行し、次のステップ(03)にて
センサに蓄積された被写体像信号の読み出しを行う。
When the microcomputer 61 starts the focus detection process, it goes through step (01) to step (0
The sensor accumulation of 2) is executed, and the subject image signal accumulated in the sensor is read in the next step (03).

【0021】像信号の読み出しが完了すると、次のステ
ップ(04)へ移行する。
When the reading of the image signal is completed, the process proceeds to the next step (04).

【0022】ステップ(04)では焦点検出すべき領域
の決定を行う。
In step (04), the area for focus detection is determined.

【0023】撮影画面上での焦点検出すべき領域が決ま
れば、EEPROMに格納されている情報に基づいてセ
ンサチップ上での選択領域を算出する。そして、その領
域の被写体像信号を実際に焦点検出処理に適した形に変
換する。
When the focus detection area on the photographing screen is determined, the selection area on the sensor chip is calculated based on the information stored in the EEPROM. Then, the subject image signal in that area is actually converted into a shape suitable for focus detection processing.

【0024】ここのプロセスについてもう少し詳しく説
明する。
The process here will be described in a little more detail.

【0025】図3の画面210上で、焦点検出すべき領
域が仮に領域210Cに決定されたとする。ここでの領
域の選定は、画面中央領域優先や前回の選択結果優先と
いったルールがよく使われるが、領域の選定に関しては
本発明と直接関係がないので詳しい説明は省略する。
It is assumed that the area for focus detection is temporarily set to the area 210C on the screen 210 of FIG. For the selection of the area here, a rule such as priority of the central area of the screen or priority of the selection result of the previous time is often used, but since the area selection is not directly related to the present invention, detailed description thereof is omitted.

【0026】さて、撮影画面上で焦点検出すべき領域が
210Cに決まると、EEPROMに格納されている情
報から、センサチップ上での対応領域が図4の(230
a,230b)であることが算出される。EEPROM
には、画面各位置について細かい位置情報を格納しても
良いし、あるいは画面上で代表的な何点かの焦点検出領
域の位置と形状をあらかじめ想定し、それに対応するチ
ップ上での領域の位置と形状を記憶しておいても良い。
Now, when the area for focus detection on the photographing screen is determined to be 210C, the corresponding area on the sensor chip is shown in FIG.
a, 230b) is calculated. EEPROM
May store detailed position information for each position on the screen, or assume the positions and shapes of some typical focus detection areas on the screen in advance, and calculate the corresponding areas on the chip. The position and shape may be stored.

【0027】ステップ(04)にてセンサチップ上での
焦点検出領域の形状が算出されると、次のステップ(0
5)ではそれに基づいて被写体像信号の加工処理が行わ
れる。図5を用いてこの加工処理について説明する。
When the shape of the focus detection area on the sensor chip is calculated in step (04), the next step (0
In 5), the subject image signal is processed based on it. This processing will be described with reference to FIG.

【0028】撮影画面上で長方形の被写体領域は、セン
サチップの一部50上では、実線領域52のようにな
る。図5は図4の片側のセンサ受光領域を表している
が、もう一方の受光領域も同様である。
The rectangular subject area on the photographing screen is like a solid line area 52 on the part 50 of the sensor chip. Although FIG. 5 shows the sensor light receiving area on one side of FIG. 4, the other light receiving area is the same.

【0029】さて、実際に焦点検出処理を行う場合、実
施形の位相差検出タイプでは1次元方向の位相差を検出
するものであるから、2次元の方向を有する領域の被写
体情報を1次元の情報に変換する必要がある。そのため
には、図5に示すが如く、マイクココンピュータ内部で
RAMに格納されている被写体像信号を用いて、垂直方
向の画素単位毎に、領域内の水平方向の像信号を加算し
て1次元の像信号53を作ればよい。焦点検出処理演算
は1次元信号53に対して行われる。
When the focus detection process is actually performed, since the phase difference detection type of the embodiment detects the phase difference in the one-dimensional direction, the object information of the area having the two-dimensional direction is converted into the one-dimensional direction. Need to be converted into information. For that purpose, as shown in FIG. 5, the image signal in the horizontal direction in the area is added for each pixel unit in the vertical direction by using the subject image signal stored in the RAM inside the microphone computer to obtain 1 The three-dimensional image signal 53 may be generated. The focus detection processing calculation is performed on the one-dimensional signal 53.

【0030】さて、ここでセンサ上での焦点検出処理の
対象領域52の内部に不良画素54が存在していたとす
る。このとき各垂直方向の並びの映像信号の様子を示し
たのが、図6である。
Now, let us assume that there is a defective pixel 54 inside the target area 52 for focus detection processing on the sensor. At this time, FIG. 6 shows the state of the video signals arranged in each vertical direction.

【0031】図中521〜525がそれぞれ各垂直方向
の並びに読み出した映像信号を表わしている。信号52
2の右から4つめの画素が不良画素54に対応し、この
画素の信号は図のように低下している。信号521〜5
25をそのまま水平方向毎に加算した信号が信号531
のようになる。531の右から4つめの信号は不良画素
の影響で信号が低下している。この信号531に基づい
て焦点検出処理を行うとその処理結果に少なからず誤差
が生じてしまうのは明らかである。
In the figure, reference numerals 521 to 525 represent the read video signals in the respective vertical directions. Signal 52
The fourth pixel from the right of 2 corresponds to the defective pixel 54, and the signal of this pixel is lowered as shown in the figure. Signals 521-5
The signal obtained by adding 25 directly to each horizontal direction is the signal 531.
become that way. The fourth signal from the right of 531 is lowered due to the influence of defective pixels. When the focus detection processing is performed based on this signal 531, it is obvious that the processing result has some errors.

【0032】そこで、あらかじめ工程の検査過程等で不
良画素の位置がわかっていれば、前述図1の61のマイ
クロコンピュータ内のEEPROMにその位置情報を記
憶させておく。そして、映像信号の加算処理を行う際
に、その情報を用いて、不良画素位置に対応する映像信
号は例えば隣接した他の正常な画素の信号と置き換え
る。これを図7で説明すると、信号522′の右から4
つ目の画素の信号は信号523の右から4つ目の画素信
号をもって置き換えたものであり、これらの信号52
1,522′,523〜525を水平画素毎に加算した
信号が531′である。この場合531′は図6の信号
531に比べ実際に近い信号となり、この信号531′
を用いて焦点検出処理を行えば、誤差は極めて小さく押
えることができる。
Therefore, if the position of the defective pixel is known in advance during the inspection process or the like, the position information is stored in the EEPROM in the microcomputer 61 shown in FIG. Then, when the addition processing of the video signals is performed, the information is used to replace the video signal corresponding to the defective pixel position with, for example, a signal of another normal pixel adjacent to the defective pixel position. This will be explained with reference to FIG. 7.
The signal of the fourth pixel is obtained by replacing the signal 523 with the fourth pixel signal from the right.
A signal obtained by adding 1,522 ′ and 523 to 525 for each horizontal pixel is 531 ′. In this case, the signal 531 'is closer to the actual signal than the signal 531 of FIG.
If the focus detection processing is performed by using, the error can be suppressed to be extremely small.

【0033】エリアセンサ上に不良画素が存在しない場
合、あるいは存在したとしても焦点検出処理の対象領域
が図5で破線で示した領域51のように領域内には不良
画素が存在しない場合には、前置した置き換え処理は必
要としないことは言うまでもない。
If there is no defective pixel on the area sensor, or if there is no defective pixel in the area such as the area 51 indicated by the broken line in FIG. Needless to say, the pre-replacement process is not necessary.

【0034】図2に戻って、次のステップ(06)で
は、先のステップ(05)で作られた1次元の像信号か
ら、公知の焦点検出演算を使って、目的とする撮影画面
領域の焦点状態を検出する。
Returning to FIG. 2, in the next step (06), a well-known focus detection calculation is used from the one-dimensional image signal generated in the previous step (05) to determine the target photographing screen area. Detect focus condition.

【0035】尚、上記実施例では本発明の光電変換装置
を焦点検出用に用いたことを例示して説明しているが、
本発明は焦点検出用以外の測定装置にも用いられること
はもちろんである。
In the above-mentioned embodiment, the photoelectric conversion device of the present invention is used for focus detection, but it is explained.
It goes without saying that the present invention can be used in measuring devices other than those for focus detection.

【0036】[0036]

【発明の効果】以上説明したように、本発明によればエ
リアセンサに不良な画素が存在していたとしても、その
画素の信号に代って近傍の正常な画素の信号を代用する
ことによって、エリアセンサチップの歩留りを下げるこ
となく、精度良い光電変換信号処理が可能となる。
As described above, according to the present invention, even if there is a defective pixel in the area sensor, the signal of the neighboring pixel is used instead of the signal of the defective pixel. Therefore, the photoelectric conversion signal processing can be performed with high accuracy without lowering the yield of the area sensor chip.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光電変換装置の一実施例を示すブ
ロック図である。
FIG. 1 is a block diagram showing an embodiment of a photoelectric conversion device according to the present invention.

【図2】図1の装置を用いて焦点検出処理を行なわせる
際の一例を示すプログラムフロー図である。
FIG. 2 is a program flow chart showing an example when performing focus detection processing using the apparatus of FIG.

【図3】測定対象領域を示す説明図である。FIG. 3 is an explanatory diagram showing a measurement target region.

【図4】図3の対象領域に対応するセンサー領域を示す
説明図である。
FIG. 4 is an explanatory diagram showing a sensor area corresponding to the target area of FIG. 3;

【図5】センサーの画素出力処理を説明する説明図であ
る。
FIG. 5 is an explanatory diagram illustrating pixel output processing of a sensor.

【図6】センサーの出力を示す説明図である。FIG. 6 is an explanatory diagram showing an output of a sensor.

【図7】図6とともにセンサーの出力を示す説明図であ
る。
FIG. 7 is an explanatory diagram showing the output of the sensor together with FIG.

【図8】本発明に係る光電変換装置を焦点検出装置に採
用する場合の光学系を示す構成図である。
FIG. 8 is a configuration diagram showing an optical system when the photoelectric conversion device according to the present invention is used in a focus detection device.

【図9】従来の光電変換装置における光学系を示す構成
図である。
FIG. 9 is a configuration diagram showing an optical system in a conventional photoelectric conversion device.

【図10】図9に示した光電変換装置における測定対象
領域を示す説明図である。
10 is an explanatory diagram showing a measurement target region in the photoelectric conversion device shown in FIG.

【符号の説明】[Explanation of symbols]

43 センサチップ 61 マイクロコンピューター 43 Sensor chip 61 Microcomputer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光電変換画素部が2次元的に配設された
エリアセンサーと、該センサーの所定範囲からの信号を
取り出し処理を行なう処理回路を有する充電変換装置に
おいて、 前記センサーにおける画素のうち不良画素からの信号を
他の画素からの信号に置き換えて処理を行なうことを特
徴とする光電変換装置
1. A charge conversion device having an area sensor in which photoelectric conversion pixel sections are two-dimensionally arranged and a processing circuit for extracting and processing a signal from a predetermined range of the sensor. A photoelectric conversion device characterized in that a signal from a defective pixel is replaced with a signal from another pixel for processing.
【請求項2】 前記センサーにおける画素のうち不良画
素からの信号を該画素に近接する画素からの信号に置き
換えて処理を行なう請求項1に記載の光電変換装置。
2. The photoelectric conversion device according to claim 1, wherein a signal from a defective pixel among the pixels in the sensor is replaced with a signal from a pixel adjacent to the defective pixel for processing.
【請求項3】 前記処理回路は取り出された信号に基づ
いて焦点状態の検出を行なう焦点検出処理回路である請
求項1に記載の光電変換装置。
3. The photoelectric conversion device according to claim 1, wherein the processing circuit is a focus detection processing circuit that detects a focus state based on the extracted signal.
JP3217075A 1991-08-28 1991-08-28 Photoelectric converter Pending JPH0556355A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3217075A JPH0556355A (en) 1991-08-28 1991-08-28 Photoelectric converter
US07/936,010 US5428420A (en) 1991-08-28 1992-08-27 Focus detecting apparatus having photoelectric area sensors
US08/411,287 US5784655A (en) 1991-08-28 1995-03-27 Focus detecting apparatus having photoelectric area sensors
US08/516,412 US5615399A (en) 1991-08-28 1995-08-17 Focus detecting apparatus having photoelectric area sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3217075A JPH0556355A (en) 1991-08-28 1991-08-28 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPH0556355A true JPH0556355A (en) 1993-03-05

Family

ID=16698443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3217075A Pending JPH0556355A (en) 1991-08-28 1991-08-28 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPH0556355A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009163229A (en) * 2007-12-10 2009-07-23 Canon Inc Image capturing apparatus and control method therefor
JP2010091848A (en) * 2008-10-09 2010-04-22 Nikon Corp Focus detecting apparatus and imaging apparatus
WO2010067693A1 (en) * 2008-12-10 2010-06-17 Canon Kabushiki Kaisha Focus detection apparatus and method for controlling the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009163229A (en) * 2007-12-10 2009-07-23 Canon Inc Image capturing apparatus and control method therefor
US8441545B2 (en) 2007-12-10 2013-05-14 Canon Kabushiki Kaisha Image capturing apparatus and control method therefor having pixel signals for focus detection and pixel signals for image recording
US8890968B2 (en) 2007-12-10 2014-11-18 Canon Kabushiki Kaisha Image capturing apparatus and control method therefor with defect correction information used both for defective pixel and detection pixel identification
JP2010091848A (en) * 2008-10-09 2010-04-22 Nikon Corp Focus detecting apparatus and imaging apparatus
WO2010067693A1 (en) * 2008-12-10 2010-06-17 Canon Kabushiki Kaisha Focus detection apparatus and method for controlling the same
CN102246079A (en) * 2008-12-10 2011-11-16 佳能株式会社 Focus detection apparatus and method for controlling the same
US8531560B2 (en) 2008-12-10 2013-09-10 Canon Kabushiki Kaisha Focus detection apparatus and method for controlling the same

Similar Documents

Publication Publication Date Title
EP3098638B1 (en) Adaptive autofocusing system
JP2020505863A (en) Image sensor, imaging method, and electronic device
EP1986045A2 (en) Focus detection device, focus detection method and imaging apparatus
CN103837959B (en) Focus detection, focus detecting method and picture pick-up device
JPH10253351A (en) Range finder
JP2014063142A (en) Distance detection device, imaging apparatus, program, recording medium, and distance detection method
JP6214271B2 (en) Distance detection device, imaging device, distance detection method, program, and recording medium
CN102870402B (en) Imaging device and formation method
JPH0556355A (en) Photoelectric converter
JP2006245891A (en) Chart for inspecting image of camera module, and image inspecting method and image inspecting device for the camera module using the chart for inspecting image
JP2022553726A (en) Method for generating the output signal of a PDAF pixel
JP6583565B2 (en) Counting system and counting method
JP2009264894A (en) Inspection device
JP2006343143A (en) Inspection system for imaging device
JPH11153751A (en) Distance detecting device
JP2006322970A (en) Focus detector
JPH051950A (en) Illuminance measuring method for vehicle light
JP3632315B2 (en) Distance detector
JP2001166202A (en) Focus detection method and focus detector
JP3730322B2 (en) Shape measuring device and image input device used therefor
JPH11153749A (en) Distance detector
WO2023204423A1 (en) Focal length measuring device and method
JPS63222247A (en) Correction of image distortion
JPH07306038A (en) Distance measuring instrument
JP2013218062A (en) Focus detector