JP5226331B2 - Hydrogen generating alloy, hydrogen generating method and fuel cell - Google Patents

Hydrogen generating alloy, hydrogen generating method and fuel cell Download PDF

Info

Publication number
JP5226331B2
JP5226331B2 JP2008015278A JP2008015278A JP5226331B2 JP 5226331 B2 JP5226331 B2 JP 5226331B2 JP 2008015278 A JP2008015278 A JP 2008015278A JP 2008015278 A JP2008015278 A JP 2008015278A JP 5226331 B2 JP5226331 B2 JP 5226331B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
gallium
water
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008015278A
Other languages
Japanese (ja)
Other versions
JP2008266777A (en
Inventor
俊樹 佐藤
護 長尾
佳寿美 柳澤
淳 久本
桂 梶原
秀和 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Research Institute Inc
Original Assignee
Kobe Steel Ltd
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Research Institute Inc filed Critical Kobe Steel Ltd
Priority to JP2008015278A priority Critical patent/JP5226331B2/en
Publication of JP2008266777A publication Critical patent/JP2008266777A/en
Application granted granted Critical
Publication of JP5226331B2 publication Critical patent/JP5226331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、水から水素を製造するのに用いられる水素発生用合金とこれを用いた水素発生方法、およびこの方法により発生した水素を燃料として用いる燃料電池に関する。   The present invention relates to an alloy for hydrogen generation used for producing hydrogen from water, a hydrogen generation method using the same, and a fuel cell using hydrogen generated by this method as a fuel.

従来、水素を得る方法としては、(1)水の電気分解法、(2)天然ガスや石油等の炭化水素を酸素、空気または水蒸気などと高温で反応させる部分酸化法や改質法、(3)水と炭素による熱分解反応を用いる方法、(4)亜鉛などの金属を酸に溶解する方法、などが知られている。しかしながら、(1)の方法では電力を多量に消費するため製造コストが高くなる、(2)および(3)の方法では水素とともにCO等が副生するため高純度の水素が得られない、(4)の方法では酸を必要とするため取り扱いに難点がある、等の問題がある。   Conventionally, methods for obtaining hydrogen include (1) electrolysis of water, (2) partial oxidation and reforming methods in which hydrocarbons such as natural gas and petroleum are reacted with oxygen, air or water vapor at high temperatures, 3) A method using a thermal decomposition reaction between water and carbon, and (4) a method of dissolving a metal such as zinc in an acid are known. However, the method (1) consumes a large amount of electric power and thus increases the production cost. In the methods (2) and (3), CO and the like are by-produced together with hydrogen, so high-purity hydrogen cannot be obtained. In the method 4), since an acid is required, there are problems such as difficulty in handling.

また、近年、水から水素を得る方法が多数提案されている。   In recent years, many methods for obtaining hydrogen from water have been proposed.

例えば、特許文献1には、インジウム・ガリウム合金に0.1重量%以上のアルミニウム等を拡散してなる組成物、又は該合金をアルミニウム等の表面に付着させて得た水素ガス生成用材料を水と接触せしめ、水素ガスを生成させる方法が開示されている。   For example, Patent Document 1 discloses a composition obtained by diffusing 0.1 wt% or more of aluminum or the like into an indium / gallium alloy, or a hydrogen gas generating material obtained by adhering the alloy to the surface of aluminum or the like. A method for producing hydrogen gas by contacting with water is disclosed.

また、特許文献2には、燃料電池に供給する水素ガスを発生させるための水素発生セルであって、外形が平板状の直方体に形成され、その内部に純鉄の粉末を収容する容器と、この容器の一側面に設けられた開口部を閉鎖するための蓋と、蓋に設けられ、純鉄と反応させるための水または水蒸気を導入するための導入部と、純鉄と水または水蒸気を反応させることで発生した水素ガスを導出するための導出部とを備えた水素発生セルが開示されている。   Patent Document 2 discloses a hydrogen generation cell for generating hydrogen gas to be supplied to a fuel cell, the outer shape of which is formed into a flat rectangular parallelepiped, and a container containing pure iron powder therein, A lid for closing an opening provided on one side of the container; an introduction part for introducing water or water vapor to react with pure iron; and pure iron and water or water vapor; There is disclosed a hydrogen generation cell including a deriving unit for deriving hydrogen gas generated by reacting.

また、特許文献3には、水を収納するためのタンクと、水との化学反応により水素を生成する金属を収納する反応容器と、該反応容器を収納するための収納部と、該収納部に接して設けられ、前記反応容器を加熱するための加熱手段と、前記タンクから前記収納部に収納された反応容器に水を供給する導入管と、前記反応容器内で生成した水素及び未反応の水を前記タンク内に導入するための戻り管と、該タンク内の水素及び水を排出するための前記タンクから延びる排出管とを含んでなり、前記反応容器が前記収納部に対して着脱可能である水素発生装置が開示され、前記水との反応により水素を生成する金属として、鉄、インジウム、スズ、マグネシウム、セリウムのいずれか1つ又はその酸化物等が例示されている。   Patent Document 3 discloses a tank for storing water, a reaction container for storing a metal that generates hydrogen by a chemical reaction with water, a storage unit for storing the reaction container, and the storage unit. A heating means for heating the reaction vessel, an introduction pipe for supplying water from the tank to the reaction vessel housed in the housing portion, hydrogen generated in the reaction vessel and unreacted A return pipe for introducing water into the tank and a discharge pipe extending from the tank for discharging hydrogen and water in the tank, wherein the reaction vessel is attached to and detached from the storage section A possible hydrogen generator is disclosed, and examples of the metal that generates hydrogen by the reaction with water include iron, indium, tin, magnesium, cerium, or an oxide thereof.

また、特許文献4には、アルミニウムおよびアルミニウム合金のうちの1種以上のアルミニウム金属とその界面に接する金属酸化物とを有する複合材であって水との接触時の水素ガス発生能を備えている水素発生用複合材が開示されている。   Further, Patent Document 4 is a composite material having one or more kinds of aluminum metals of aluminum and aluminum alloys and a metal oxide in contact with the interface thereof, and has a hydrogen gas generating ability when in contact with water. A hydrogen generating composite is disclosed.

また、特許文献5には、水素と熱を生成する水素発生装置と、ガスを生成するのに常温以上の温度を必要とするガス発生装置とを備え、水素発生装置にて生成される熱量をガス発生装置3に供給する水素製造装置が開示され、水素発生装置として、シリコン又はアルミニウムとアルカリ液との混合により水素を発生させるものが例示されている。   Patent Document 5 includes a hydrogen generator that generates hydrogen and heat, and a gas generator that requires a temperature equal to or higher than room temperature to generate gas, and the amount of heat generated by the hydrogen generator is as follows. A hydrogen production apparatus to be supplied to the gas generator 3 is disclosed, and an example of a hydrogen generator that generates hydrogen by mixing silicon or aluminum with an alkaline liquid is illustrated.

しかしながら、上記特許文献1〜5に開示された技術には以下のような問題点が存在する。   However, the techniques disclosed in Patent Documents 1 to 5 have the following problems.

すなわち、特許文献1に記載の組成物に用いられるインジウムは高価であるとともに、水に対する耐食性が低いため、水との接触により腐食し消耗する。   That is, indium used in the composition described in Patent Document 1 is expensive and has low corrosion resistance to water, and thus corrodes and wears out due to contact with water.

また、特許文献2および3に記載の装置では、鉄等の金属と水を反応させるために水を100〜400℃といった高温に加熱する必要があり、加熱装置を必須とする。   In addition, in the apparatuses described in Patent Documents 2 and 3, it is necessary to heat water to a high temperature such as 100 to 400 ° C. in order to cause a metal such as iron to react with water, and a heating apparatus is essential.

また、特許文献4に記載の装置では、アルミニウム金属と水との反応性が低いため、反応完了まで50時間という長時間を要する。   Moreover, in the apparatus described in Patent Document 4, since the reactivity between aluminum metal and water is low, it takes a long time of 50 hours to complete the reaction.

また、特許文献5に記載の装置では、アルカリ液を必要とするため、取り扱いが面倒である。
特開2003−12301号公報 特開2005−317443号公報 特開2004−149394号公報 特開2005−162552号公報 特開2005−200283号公報
Moreover, since the apparatus described in Patent Document 5 requires an alkaline liquid, handling is troublesome.
JP 2003-12301 A JP 2005-317443 A JP 2004-149394 A JP 2005-162552 A JP 2005-200823 A

そこで本発明の目的は、低コストでかつ取り扱いが容易で、しかも高効率で水素を発生しうる水素発生用合金と、それを用いた水素発生方法、およびその方法により発生した水素を燃料とする燃料電池を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to use a hydrogen generating alloy that is low in cost, easy to handle, and capable of generating hydrogen with high efficiency, a hydrogen generation method using the same, and hydrogen generated by the method as a fuel. It is to provide a fuel cell.

請求項1に記載の発明は、スズ含有量が93原子%以下(0原子%を含まず)のスズ−ガリウム合金に、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素を、前記スズ−ガリウム合金基準にて合計量で0.1質量%以上で25質量%以下添加してなることを特徴とする水素発生用合金である。 The invention described in claim 1 is a tin-gallium alloy having a tin content of 93 atomic% or less (not including 0 atomic%), and at least one selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium. It is an alloy for hydrogen generation characterized by adding a total of 0.1% by mass to 25 % by mass in terms of the total amount of seed metal elements based on the above tin-gallium alloy.

請求項2に記載の発明は、前記標準電極電位がガリウムより低い金属元素が、アルミニウム、マグネシウム、シリコンおよび亜鉛である請求項1に記載の水素発生用合金である。また、請求項3に記載の発明は、前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素をアルミニウムとした請求項1または2に記載の水素発生用合金である。 The invention according to claim 2 is the alloy for hydrogen generation according to claim 1, wherein the metal element whose standard electrode potential is lower than that of gallium is aluminum, magnesium, silicon and zinc. Further, according to the invention described in claim 3, hydrogen generation alloy according to at least one metallic element the standard electrode potential is selected from the group consisting of lower metal element than the gallium to claim 1 or 2 and an aluminum It is.

請求項に記載の発明は、請求項1乃至3のいずれかに記載の水素発生用合金に水を接触させることによって水素を発生させることを特徴とする水素発生方法である。 A fourth aspect of the present invention is a hydrogen generation method characterized in that hydrogen is generated by bringing water into contact with the hydrogen generation alloy according to any one of the first to third aspects .

請求項に記載の発明は、請求項に記載の水素発生方法により発生した水素を燃料として用いることを特徴とする燃料電池である。 The invention according to claim 5 is a fuel cell characterized in that hydrogen generated by the hydrogen generation method according to claim 4 is used as a fuel.

本発明によれば、スズ−ガリウム合金に、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素を所定量以上添加してなる水素発生用合金を用いたことで、以下の効果が奏される。
(1)インジウムに比べて安価でかつ水に対する耐食性に優れるスズとガリウムを合金元素として用いるので、低コストで水素が製造できる。
(2)低温の中性水との接触にても水素生成反応が進行するので、取り扱いが容易で、しかも高効率で水素が製造できる。
According to the present invention, an alloy for hydrogen generation is used in which at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than gallium is added to tin-gallium alloy in a predetermined amount or more. Thus, the following effects are produced.
(1) Since tin and gallium, which are cheaper than indium and have excellent corrosion resistance to water, are used as alloy elements, hydrogen can be produced at low cost.
(2) Since the hydrogen generation reaction proceeds even in contact with low-temperature neutral water, it is easy to handle and can produce hydrogen with high efficiency.

以下、本発明の実施形態についてさらに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

本発明に係る水素発生用合金は、スズ含有量が93原子%以下(0原子%を含まず)のスズ−ガリウム合金に、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素を、前記スズ−ガリウム合金基準にて合計量で0.1質量%以上添加してなることを特徴とする。   The hydrogen generating alloy according to the present invention is a tin-gallium alloy having a tin content of 93 atomic% or less (not including 0 atomic%), and at least a standard electrode potential selected from the group consisting of metal elements lower than gallium. One type of metal element is added in a total amount of 0.1% by mass or more on the basis of the tin-gallium alloy.

ここで、アルミニウム、マグネシウムおよび亜鉛は酸によって、アルミニウム、亜鉛およびシリコンはアルカリによって、それぞれ溶解し水素を発生する。しかしながら、こられの単体金属は中性の水に対してはほとんど反応しない。これは、中性の水に含まれる水素イオン濃度が低いためと、各単体金属の表面に酸化皮膜(または水酸化物皮膜)が形成されて内部を保護するためである。   Here, aluminum, magnesium and zinc are dissolved by acid, and aluminum, zinc and silicon are dissolved by alkali to generate hydrogen. However, these simple metals hardly react to neutral water. This is because the concentration of hydrogen ions contained in neutral water is low and an oxide film (or hydroxide film) is formed on the surface of each single metal to protect the inside.

これに対して、上記本発明に係る水素発生用合金は、中性の水を用いても水素が発生する。この水素発生の機構は以下のように考えられる。   In contrast, the hydrogen generating alloy according to the present invention generates hydrogen even when neutral water is used. The mechanism of this hydrogen generation is considered as follows.

すなわち、上記特許文献1で合金構成元素として提案されているインジウムは、通常のpH5程度の弱酸性の水でも腐食し消耗するが、スズはpH1〜2、ガリウムはpH3程度までの強酸性の水に対しても安定であり、ほとんど消耗しない。そして、このように水に対して安定なスズ−ガリウム合金に、標準電極電位がガリウム(−0.56V)より低い(当然、スズ(−0.1375V)よりも低い)金属元素を添加すると、添加金属元素が選択的に水と反応することになる。また、水との反応によって添加金属の表面に形成される酸化皮膜(または水酸化物皮膜)は、添加金属元素を単体で用いたときにその表面に生成されるような通常の緻密な酸化皮膜ではなく、欠陥の多い疎な酸化皮膜になると推定される。さらに、この疎な酸化皮膜は、上記添加金属元素の選択的な消費による体積変化等によって容易に破壊され、内部の添加金属と水とが容易に接触して反応が進行し、水素が発生するようになると考えられる。また、酸化皮膜自体の膜応力によって酸化皮膜に亀裂が生じることとにより、上記合金と水との接触が増加し、水素発生反応が促進されたことも考えられる。   That is, indium proposed as an alloy constituent element in Patent Document 1 is corroded and consumed even in ordinary weakly acidic water having a pH of about 5, but strongly acidic water having a pH of about 1-2 for tin and a pH of about 3 for gallium. It is stable and hardly consumed. When a metal element having a standard electrode potential lower than gallium (−0.56 V) (which is naturally lower than tin (−0.1375 V)) is added to the water-stable tin-gallium alloy, The added metal element selectively reacts with water. In addition, the oxide film (or hydroxide film) formed on the surface of the additive metal by reaction with water is a normal dense oxide film that is formed on the surface when the additive metal element is used alone. Rather, it is estimated that the oxide film is a sparse oxide film with many defects. Further, this sparse oxide film is easily destroyed by a volume change due to the selective consumption of the additive metal element, and the internal additive metal and water easily come into contact with each other to react and generate hydrogen. It is thought that it will become. It is also conceivable that the contact between the alloy and water increased due to the occurrence of cracks in the oxide film due to the film stress of the oxide film itself, and the hydrogen generation reaction was promoted.

ここで、スズ−ガリウム合金のスズ含有量を93原子%以下に限定したのは、スズ含有量が93原子%を超えると、後記実施例で示すように、水素発生速度が急激に低下するためである。このようにスズ含有量が高くなると水素発生速度が急激に低下する理由は、現在のところ不明であるが、スズ−ガリウム合金の組織等が変化することによる可能性も考えられる。なお、後記実施例に示す様に、93原子%以下の範囲では水素発生効率の差異はあまり無いが、スズの含有量が多くなってくると組成物の粘度が上昇し、合金調整に時間を要する様になってくるので、合金調整のしやすさの点から、スズを好ましくは40原子%以下、より好ましくは20原子%以下とする。   Here, the reason why the tin content of the tin-gallium alloy is limited to 93 atomic% or less is that when the tin content exceeds 93 atomic%, as shown in the examples described later, the hydrogen generation rate rapidly decreases. It is. The reason why the hydrogen generation rate rapidly decreases as the tin content increases is unknown at present, but it is also possible that the structure of the tin-gallium alloy changes. As shown in the examples below, there is not much difference in hydrogen generation efficiency in the range of 93 atomic% or less, but as the tin content increases, the viscosity of the composition increases, and it takes time to adjust the alloy. From the viewpoint of ease of alloy adjustment, tin is preferably set to 40 atomic% or less, more preferably 20 atomic% or less.

標準電極電位がガリウム(−0.56V)より低い金属元素としては、アルミニウム(−1.66V)、マグネシウム(−2.37V)、シリコン(−0.86V)および亜鉛(−0.7628V)が、比較的安価で入手も容易なことから、好適なものとして例示できる。   Examples of the metal element whose standard electrode potential is lower than that of gallium (−0.56 V) include aluminum (−1.66 V), magnesium (−2.37 V), silicon (−0.86 V), and zinc (−0.7628 V). Since it is relatively inexpensive and easily available, it can be exemplified as a suitable one.

これらの添加金属元素に水を接触させることによって、下記の反応式により水素が発生する。   By bringing water into contact with these additional metal elements, hydrogen is generated according to the following reaction formula.

6HO+2Al→2Al(OH)+3H … 式(1)
2HO+Mg→Mg(OH)+H … 式(2)
4HO+Si→Si(OH)+2H … 式(3)
2HO+Zn→Zn(OH)+2H … 式(4)
6H 2 O + 2Al → 2Al (OH) 3 + 3H 2 Formula (1)
2H 2 O + Mg → Mg (OH) 2 + H 2 Formula (2)
4H 2 O + Si → Si (OH) 4 + 2H 2 Formula (3)
2H 2 O + Zn → Zn (OH) 2 + 2H 2 Formula (4)

上記金属元素は、1種のみを単独で添加してもよいし、2種以上を一緒に添加してもよいが、その添加量は、上記推定機構による水素発生効果を発揮させるため、合計量で0.1質量%以上とする。なお、添加量の上限は特に限定されないが、後記実施例で示すように、過剰に添加すると水素発生速度が飽和する傾向を示すので、20質量%以下、さらには10質量%以下とするのが好ましい。   The above metal elements may be added alone or in combination of two or more, but the amount added is a total amount in order to exert the hydrogen generation effect by the above estimation mechanism. And 0.1 mass% or more. The upper limit of the addition amount is not particularly limited, but as shown in the examples below, the hydrogen generation rate tends to saturate when added excessively, so it is 20% by mass or less, and further 10% by mass or less. preferable.

このような水素発生用合金は、例えば、所定配合割合のスズとガリウムを、その配合割合に応じて数十℃〜200℃程度に加熱し溶融して合金化し、このスズ−ガリウム溶融合金に所定量の添加金属元素を添加して、攪拌混合し、添加金属元素をスズ−ガリウム溶融合金中に拡散させることで容易に製造することができる。   Such an alloy for hydrogen generation is, for example, a mixture of tin and gallium with a predetermined mixing ratio heated to about several tens of degrees Celsius to 200 ° C. according to the mixing ratio to be alloyed. It can be easily manufactured by adding a certain amount of added metal element, stirring and mixing, and diffusing the added metal element into the molten tin-gallium alloy.

本発明に係る水素発生方法は、上記のような水素発生用合金に水を接触させることによって水素を発生させることを特徴とする。   The hydrogen generation method according to the present invention is characterized in that hydrogen is generated by bringing water into contact with the above-described alloy for generating hydrogen.

水素発生用合金と接触させる水としては、完全に中性であるpH7の純水を用いることも可能であるが、当然、安価な水道水を用いることが推奨される。さらに、水素発生反応を促進するため、スズ−ガリウム合金が腐食しない程度に弱酸性または弱アルカリ性としてもよい。   As the water to be brought into contact with the alloy for generating hydrogen, it is possible to use pure water having a pH of 7 which is completely neutral, but it is naturally recommended to use inexpensive tap water. Furthermore, in order to accelerate the hydrogen generation reaction, it may be weakly acidic or weakly alkaline so that the tin-gallium alloy does not corrode.

また、水の温度は常温でもよいが、水素発生反応を促進させるため、40〜60℃程度に加熱したものを用いるのがより好ましい。   Moreover, although the temperature of water may be normal temperature, in order to promote hydrogen generation reaction, it is more preferable to use what was heated at about 40-60 degreeC.

水素発生用合金と水との接触方法としては、どのような方式でもよい。例えば、容器内に水素発生用合金を収容しておき、この容器に水を循環させ、水との反応で発生した水素を取り出して回収するとともに、水との反応で生成した金属水酸化物を主体とする副生物を除去する方式を採用することにより、連続的に高効率で水素を発生させることができる。   As a method for contacting the hydrogen generating alloy with water, any method may be used. For example, an alloy for hydrogen generation is stored in a container, water is circulated in the container, hydrogen generated by reaction with water is taken out and recovered, and metal hydroxide generated by reaction with water is recovered. By adopting a method for removing the main by-product, hydrogen can be continuously generated with high efficiency.

本発明に係る燃料電池は、上記水素発生方法により発生した水素を燃料して用いることを特徴とする。   The fuel cell according to the present invention is characterized in that the hydrogen generated by the hydrogen generation method is used as a fuel.

上記のようにして発生させた水素は、極めて純度が高くCO等の不純物ガスを含まないため、燃料電池の燃料として用いることで、電極の劣化等を防止しつつ高効率で発電を行うことができる。   Since the hydrogen generated as described above has a very high purity and does not contain impurity gases such as CO, it can be used as a fuel for a fuel cell to generate electricity with high efficiency while preventing electrode deterioration and the like. it can.

本発明の作用効果を確証するため、以下のラボ試験を実施した。   In order to confirm the effects of the present invention, the following laboratory tests were conducted.

下記表1に示す成分組成のスズ−ガリウム(Sn−Ga)合金10gに対し、所定量のアルミニウム(Al)、マグネシウム(Mg)および亜鉛(Zn)をそれぞれ1種ずつ添加して作製した合金を容器に収容し、40℃の純水20gを加え、発生する気体を水上置換で捕集し、試験開始から15minの間に発生した気体の体積を測定した。なお、発生した気体は、水素検知管にて吸引して検知した結果、いずれの試験条件においても、水素であることを確認した(試験No.1〜16)。   An alloy prepared by adding a predetermined amount of aluminum (Al), magnesium (Mg), and zinc (Zn) to each 10 g of a tin-gallium (Sn—Ga) alloy having the composition shown in Table 1 below. It accommodated in the container, 20g of 40 degreeC pure water was added, the gas which generate | occur | produced was collected by the water substitution, and the volume of the gas which generate | occur | produced for 15 minutes from the test start was measured. In addition, as a result of sucking and detecting the generated gas with a hydrogen detector tube, it was confirmed that it was hydrogen under any test condition (Test Nos. 1 to 16).

また、比較例として、スズ単体、ガリウム単体、アルミニウム単体、スズ−ガリウム合金に標準電極電位がガリウム(−0.56V)より高いニッケル(Ni;−0.23V)を添加した合金、インジウム−ガリウム合金に対してアルミニウムを添加したものおよびガリウム単体に対してアルミニウムを添加したものについても、上記と同様の試験を行った(試験No.17〜22)。

Figure 0005226331
In addition, as a comparative example, tin, gallium, aluminum alone, an alloy obtained by adding nickel (Ni; -0.23 V) whose standard electrode potential is higher than gallium (-0.56 V) to indium-gallium, indium-gallium The same test as described above was performed for the alloy added with aluminum and the gallium simple substance added with aluminum (Test Nos. 17 to 22).
Figure 0005226331

上記表1に示すように、試験No.1〜10、13および14では、本発明に係る水素発生用合金の要件をすべて満足し、15min間で添加金属元素量に見合う水素量(発生効率:98〜100%)が発生した。試験No.11および12では、上記と同様、本発明に係る水素発生用合金の要件をすべて満足しているものの、15min間では添加金属元素量に見合う水素量に到達していない(発生効率がそれぞれ10%、8%)。これは、Al含有量が多いため粘度が上昇し、水素発生速度が遅くなったためと考えられる。   As shown in Table 1 above, Test No. In 1 to 10, 13 and 14, all the requirements for the alloy for hydrogen generation according to the present invention were satisfied, and a hydrogen amount (generation efficiency: 98 to 100%) corresponding to the amount of the added metal element was generated in 15 minutes. Test No. 11 and 12 satisfy all the requirements of the alloy for hydrogen generation according to the present invention as described above, but have not reached the hydrogen amount commensurate with the amount of the added metal element for 15 min (the generation efficiency is 10% each). 8%). This is presumably because the viscosity increased because the Al content was high, and the hydrogen generation rate slowed down.

これに対し、試験No.15および16では、スズ−ガリウム合金中のスズ含有量が93原子%を超えており、本発明に係る水素発生用合金の要件の少なくとも一部を満足せず、上記試験No.1〜14の発明例に比べて水素発生量が大幅に少なくなっており、水素発生速度が著しく低下することが認められる。   In contrast, test no. 15 and 16, the tin content in the tin-gallium alloy exceeds 93 atomic%, and does not satisfy at least a part of the requirements of the hydrogen generating alloy according to the present invention. Compared with the invention examples 1 to 14, the amount of hydrogen generation is greatly reduced, and it is recognized that the hydrogen generation rate is significantly reduced.

また、試験No.17〜19では、スズ、ガリウムおよびアルミニウムを、合金としてではなく、それぞれ単体で用いており、本発明に係る水素発生用合金の要件の少なくとも一部を満足せず、水素発生は全く見られなかった。   In addition, Test No. In Nos. 17 to 19, tin, gallium, and aluminum are used alone, not as an alloy, and at least part of the requirements of the hydrogen generating alloy according to the present invention is not satisfied, and no hydrogen generation is observed. It was.

また、試験No.20では、標準電極電位がガリウムより高いニッケルを添加金属元素として用いており、本発明に係る水素発生用合金の要件の少なくとも一部を満足せず、水素発生は全く見られなかった。   In addition, Test No. In No. 20, nickel having a higher standard electrode potential than gallium was used as the additive metal element, and at least part of the requirements for the hydrogen generating alloy according to the present invention was not satisfied, and no hydrogen generation was observed.

また、試験No.21は、スズ−ガリウム合金の代わりにインジウム−ガリウム合金を用いた例であるが、同等レベルの量のスズおよびアルミニウムを含有した試験No.2などと比較して、水素の発生効率がかなり劣っている。   In addition, Test No. 21 is an example in which an indium-gallium alloy is used instead of a tin-gallium alloy, but test No. 21 containing equivalent amounts of tin and aluminum. Compared with 2 etc., the generation efficiency of hydrogen is considerably inferior.

また、試験No.22は、ガリウム単体にアルミニウムを添加した例であるが、この場合もスズ−ガリウム合金に同じ1質量%のアルミニウムを添加した試験No.1〜8などと比較して、水素の発生効率がかなり劣っている。   In addition, Test No. No. 22 is an example in which aluminum is added to gallium alone. In this case, test No. 22 in which the same 1% by mass of aluminum is added to the tin-gallium alloy is also shown. Compared with 1-8 etc., the generation efficiency of hydrogen is considerably inferior.

試験No.5の試験で水上置換に用いた管から取り出された水素ガスを公知の空気水素燃料電池に供給し、発電したところ、市販の高純度水素ガス(純度:5N)を用いた場合とほぼ同等の0.5V、0.1A/cmの発電能力が得られた。 Test No. When hydrogen gas taken out from the pipe used for water replacement in the test of No. 5 was supplied to a known air hydrogen fuel cell and generated electricity, it was almost equivalent to the case of using commercially available high-purity hydrogen gas (purity: 5N). A power generation capacity of 0.5 V and 0.1 A / cm 2 was obtained.

本実施例では、添加金属元素(Al、Mg、Zn)は、それぞれ1種ずつを単独で添加する試験のみを実施し、2種以上を一緒に添加する試験は割愛したが、2種以上を一緒に添加しても、いずれの添加金属元素もガリウムより標準電極電位が低いため、当然、一緒に添加した金属元素すべてが選択的に水と反応するので、上記発明例と同様の作用効果が得られることが明らかである。また、添加金属元素として、Siを添加する試験も割愛したが、Siも上記他の添加元素(Al、Mg、Zn)と同様、ガリウムより標準電極電位が低いため、当然、選択的に水と反応するので、上記発明例と同様の作用効果が得られることが明らかである。   In this example, the additive metal elements (Al, Mg, Zn) were only subjected to the test of adding one kind each, and the test of adding two kinds or more together was omitted, but two kinds or more were omitted. Even if they are added together, since the standard electrode potential of any added metal element is lower than that of gallium, naturally, all of the metal elements added together react selectively with water. It is clear that it is obtained. In addition, although the test of adding Si as an additive metal element was omitted, Si, like the other additive elements (Al, Mg, Zn), has a standard electrode potential lower than that of gallium. Since it reacts, it is clear that the same effect as the above invention example can be obtained.

以上の結果より、本発明に係る水素発生用合金を用いることで、燃料電池の燃料として使用しうる高純度の水素ガスが高効率で得られることが確認できた。   From the above results, it was confirmed that by using the hydrogen generating alloy according to the present invention, high-purity hydrogen gas that can be used as fuel for the fuel cell can be obtained with high efficiency.

Claims (5)

スズ含有量が93原子%以下(0原子%を含まず)のスズ−ガリウム合金に、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素を、前記スズ−ガリウム合金基準にて合計量で0.1質量%以上で25質量%以下添加してなることを特徴とする水素発生用合金。 At least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium is added to the tin-gallium alloy having a tin content of 93 atomic% or less (not including 0 atomic%). An alloy for hydrogen generation, characterized by being added in a total amount of 0.1% by mass to 25 % by mass based on gallium alloy. 前記標準電極電位がガリウムより低い金属元素が、アルミニウム、マグネシウム、シリコンおよび亜鉛である請求項1に記載の水素発生用合金。   The alloy for hydrogen generation according to claim 1, wherein the metal element having a standard electrode potential lower than that of gallium is aluminum, magnesium, silicon and zinc. 前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素をアルミニウムとした請求項1または2に記載の水素発生用合金。 Wherein at least one of the hydrogen generating alloy according to claim 1 or 2 metal element was aluminum standard electrode potential is selected from the group consisting of lower metal elements than gallium. 請求項1乃至3のいずれかに記載の水素発生用合金に水を接触させることによって水素を発生させることを特徴とする水素発生方法。 A method for generating hydrogen, comprising generating hydrogen by bringing water into contact with the hydrogen generating alloy according to any one of claims 1 to 3 . 請求項に記載の水素発生方法により発生した水素を燃料として用いることを特徴とする燃料電池。 A fuel cell, wherein hydrogen generated by the hydrogen generation method according to claim 4 is used as a fuel.
JP2008015278A 2007-03-29 2008-01-25 Hydrogen generating alloy, hydrogen generating method and fuel cell Active JP5226331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015278A JP5226331B2 (en) 2007-03-29 2008-01-25 Hydrogen generating alloy, hydrogen generating method and fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007088801 2007-03-29
JP2007088801 2007-03-29
JP2008015278A JP5226331B2 (en) 2007-03-29 2008-01-25 Hydrogen generating alloy, hydrogen generating method and fuel cell

Publications (2)

Publication Number Publication Date
JP2008266777A JP2008266777A (en) 2008-11-06
JP5226331B2 true JP5226331B2 (en) 2013-07-03

Family

ID=40046644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015278A Active JP5226331B2 (en) 2007-03-29 2008-01-25 Hydrogen generating alloy, hydrogen generating method and fuel cell

Country Status (1)

Country Link
JP (1) JP5226331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753987B1 (en) * 2014-06-06 2015-07-22 合同会社エネオン総合研究所 Hydrogen generating alloy, method for producing hydrogen generating alloy, hydrogen generating cartridge, hydrogen producing apparatus, hydrogen producing method, and fuel cell system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208532B2 (en) * 2007-11-06 2013-06-12 株式会社コベルコ科研 Hydrogen generator
JP2011122202A (en) * 2009-12-10 2011-06-23 Central Glass Co Ltd Alloy for hydrogen generation and method for producing the same
JP2018066034A (en) * 2016-10-18 2018-04-26 株式会社コベルコ科研 Metal mixture for hydrogen generation and hydrogen generation method
CN109988944A (en) * 2017-12-29 2019-07-09 吉林大学 A kind of hydrolytic hydrogen production aluminium alloy and the method for improving aluminium alloy hydrogen production rate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089296A (en) * 1973-12-12 1975-07-17
JPS62287032A (en) * 1986-06-03 1987-12-12 Ofic Co Aluminum alloy for producing hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753987B1 (en) * 2014-06-06 2015-07-22 合同会社エネオン総合研究所 Hydrogen generating alloy, method for producing hydrogen generating alloy, hydrogen generating cartridge, hydrogen producing apparatus, hydrogen producing method, and fuel cell system

Also Published As

Publication number Publication date
JP2008266777A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
Kurley et al. Enabling chloride salts for thermal energy storage: implications of salt purity
Huang et al. Preparation of Al-Ga-In-Sn-Bi quinary alloy and its hydrogen production via water splitting
JP5226331B2 (en) Hydrogen generating alloy, hydrogen generating method and fuel cell
Du Preez et al. Hydrogen generation by the hydrolysis of mechanochemically activated aluminum-tin-indium composites in pure water
ES2415235T3 (en) Procedures and apparatus for electrochemical production of carbon monoxide, and uses thereof
JP2006306700A5 (en) Hydrogen generating material, hydrogen production cartridge, hydrogen production apparatus, hydrogen production method and fuel cell system
JP2009051714A (en) Hydrogen gas generating member and method for producing hydrogen gas
KR20140027177A (en) Magnesium fuel cell
Sah Corrosion of 304 stainless steel in carbonates melt–a state of enhanced dissolution of corrosion products
Eom et al. Design of Al–Fe alloys for fast on-board hydrogen production from hydrolysis
JPWO2009031578A1 (en) Hydrogen generating material composition, hydrogen generating material molded body, and method for producing hydrogen
JP2009298679A (en) Production method of aluminum-containing nickel hydroxide particle
Watanabe et al. Enhancing the efficiency of direct carbon fuel cells by bubbling Ar gas in carbon/carbonate slurry
CN103572318A (en) Deoxidized anode, fluoride fused salt electrolysis deoxidizing device and electrolytic method
JP2003012301A (en) Composition for hydrogen gas generation, production method for hydrogen gas, production apparatus for hydrogen gas and generator
JP5883240B2 (en) Hydrogen production method
JP2004002754A (en) Gas hydrate, method for producing the same and agent for suppressing decomposition of gas hydrate
Lee et al. Gasification of bamboo carbon with molten alkali carbonates
JP4846075B2 (en) HYDROGEN GENERATOR, HYDROGEN GENERATION METHOD AND HYDROGEN GENERATOR USING THE GENERATOR
CN115571854A (en) Hydrogen-generating composition for fuel cell
US8420267B2 (en) Methods and systems for producing hydrogen and system for producing power
JP2016509570A (en) Method for producing hydrogen by reaction with aluminum
JP2009084130A (en) Composition for hydrogen generation, hydrogen generation method and fuel cell
JP2009173974A (en) Alloy for hydrogen generation, hydrogen generation method and fuel cell
Telgerafchi et al. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Ref document number: 5226331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350