JP2009173974A - Alloy for hydrogen generation, hydrogen generation method and fuel cell - Google Patents

Alloy for hydrogen generation, hydrogen generation method and fuel cell Download PDF

Info

Publication number
JP2009173974A
JP2009173974A JP2008011769A JP2008011769A JP2009173974A JP 2009173974 A JP2009173974 A JP 2009173974A JP 2008011769 A JP2008011769 A JP 2008011769A JP 2008011769 A JP2008011769 A JP 2008011769A JP 2009173974 A JP2009173974 A JP 2009173974A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen generation
water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008011769A
Other languages
Japanese (ja)
Inventor
Hidekazu Ido
秀和 井戸
Shun Sakamoto
俊 坂本
Takanari Okuda
隆成 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2008011769A priority Critical patent/JP2009173974A/en
Publication of JP2009173974A publication Critical patent/JP2009173974A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide alloy for hydrogen generation which can generate hydrogen at relatively low temperature and high efficiency, to provide a hydrogen generation method using the alloy, and to provide a fuel cell which uses the hydrogen generated by the method as fuel. <P>SOLUTION: The alloy for hydrogen generation is obtained by adding ≥0.1wt% Al to Ga alloy containing, in Ga, 0.05-1wt% at least one element selected from a group consisting of Ge, Fe, Cu and Sb. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水から水素を製造するのに用いられる水素発生用合金とこれを用いた水素発生方法、およびこの方法により発生した水素を燃料として用いる燃料電池に関する。   The present invention relates to an alloy for hydrogen generation used for producing hydrogen from water, a hydrogen generation method using the same, and a fuel cell using hydrogen generated by this method as a fuel.

従来、水素を得る方法としては、(1)水の電気分解法、(2)天然ガスや石油等の炭化水素を酸素、空気または水蒸気などと高温で反応させる部分酸化法や改質法、(3)水と炭素による熱分解反応を用いる方法、(4)亜鉛などの金属を酸に溶解する方法、などが知られている。しかしながら、(1)の方法では電力を多量に消費するため製造コストが高くなる、(2)および(3)の方法では水素とともにCO等が副生するため高純度の水素が得られない、(4)の方法では酸を必要とするため取り扱いに難点がある、等の問題がある。   Conventionally, methods for obtaining hydrogen include (1) electrolysis of water, (2) partial oxidation and reforming methods in which hydrocarbons such as natural gas and petroleum are reacted with oxygen, air or water vapor at high temperatures, 3) A method using a thermal decomposition reaction between water and carbon, and (4) a method of dissolving a metal such as zinc in an acid are known. However, the method (1) consumes a large amount of electric power and thus increases the production cost. In the methods (2) and (3), CO and the like are by-produced together with hydrogen, so high-purity hydrogen cannot be obtained. In the method 4), since an acid is required, there are problems such as difficulty in handling.

また、近年、水から水素を得る方法が多数提案されている。   In recent years, many methods for obtaining hydrogen from water have been proposed.

例えば、特許文献1には、インジウム・ガリウム合金に0.1重量%以上のアルミニウム等を拡散してなる組成物、又は該合金をアルミニウム等の表面に付着させて得た水素ガス生成用材料を水と接触せしめ、水素ガスを生成させる方法が開示されている。   For example, Patent Document 1 discloses a composition obtained by diffusing 0.1 wt% or more of aluminum or the like into an indium / gallium alloy, or a hydrogen gas generating material obtained by adhering the alloy to the surface of aluminum or the like. A method for producing hydrogen gas by contacting with water is disclosed.

また、特許文献2には、燃料電池に供給する水素ガスを発生させるための水素発生セルであって、外形が平板状の直方体に形成され、その内部に純鉄の粉末を収容する容器と、この容器の一側面に設けられた開口部を閉鎖するための蓋と、蓋に設けられ、純鉄と反応させるための水または水蒸気を導入するための導入部と、純鉄と水または水蒸気を反応させることで発生した水素ガスを導出するための導出部とを備えた水素発生セルが開示されている。   Patent Document 2 discloses a hydrogen generation cell for generating hydrogen gas to be supplied to a fuel cell, the outer shape of which is formed into a flat rectangular parallelepiped, and a container containing pure iron powder therein, A lid for closing an opening provided on one side of the container; an introduction part for introducing water or water vapor to react with pure iron; and pure iron and water or water vapor; There is disclosed a hydrogen generation cell including a deriving unit for deriving hydrogen gas generated by reacting.

しかしながら、上記特許文献1、2に開示された技術には以下のような問題点が存在する。   However, the techniques disclosed in Patent Documents 1 and 2 have the following problems.

すなわち、特許文献1に記載の方法では添加した原料金属の量に対する水素の発生効率が低いという問題がある。   That is, the method described in Patent Document 1 has a problem that the generation efficiency of hydrogen is low with respect to the amount of the added raw material metal.

また、特許文献2に記載の装置では、純鉄と水を反応させるために水を100〜400℃といった高温に加熱する必要があり、加熱装置を必須とする。
特開2003−12301号公報 特開2005−317443号公報
Moreover, in the apparatus of patent document 2, in order to make pure iron and water react, it is necessary to heat water to high temperature of 100-400 degreeC, and a heating apparatus is essential.
JP 2003-12301 A JP 2005-317443 A

そこで本発明の目的は、比較的低温で、高効率に水素を発生しうる水素発生用合金と、それを用いた水素発生方法、およびその方法により発生した水素を燃料とする燃料電池を提供することにある。   Accordingly, an object of the present invention is to provide a hydrogen generating alloy capable of generating hydrogen at a relatively low temperature and high efficiency, a hydrogen generating method using the same, and a fuel cell using hydrogen generated by the method as fuel. There is.

請求項1に記載の発明は、GaにGe、Fe、Cu、Sbからなる群から選ばれる少なくとも1種以上を0.05〜1wt%含有するGa合金にAlを0.1wt%以上添加してなることを特徴とする水素発生用合金である。   According to the first aspect of the present invention, Al is added in an amount of 0.1 wt% or more to a Ga alloy containing 0.05 to 1 wt% of at least one selected from the group consisting of Ge, Fe, Cu, and Sb. This is an alloy for hydrogen generation.

請求項2に記載の発明は、請求項1に記載の水素発生用合金に水を接触させることによって水素を発生させることを特徴とする水素発生方法である。   A second aspect of the present invention is a hydrogen generation method, wherein hydrogen is generated by bringing water into contact with the hydrogen generation alloy according to the first aspect.

請求項3に記載の発明は、請求項2に記載の水素発生方法により発生した水素を燃料として用いることを特徴とする燃料電池である。   A third aspect of the present invention is a fuel cell characterized in that hydrogen generated by the hydrogen generation method according to the second aspect is used as a fuel.

本発明によれば、Ge、Fe、Cu、Sbからなる群から選ばれる1種以上を0.05〜1wt%含有するGa合金にAlを所定量以上添加してなる水素発生用合金を用いたことで、以下の効果が奏される。
低温の水との接触にても水素生成反応が進行するので、取り扱いが容易で、しかも高効率で水素が製造できる。
According to the present invention, an alloy for hydrogen generation is used in which a predetermined amount or more of Al is added to a Ga alloy containing 0.05 to 1 wt% of one or more selected from the group consisting of Ge, Fe, Cu, and Sb. Thus, the following effects are produced.
Since the hydrogen generation reaction proceeds even in contact with low-temperature water, handling is easy and hydrogen can be produced with high efficiency.

以下、本発明の実施形態についてさらに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

本発明に係る水素発生用合金は、GaにGe、Fe、Cu、Sbからなる群から選ばれる少なくとも1種以上を0.05〜1wt%含有するGa合金にAlを0.1wt%以上添加してなることを特徴とする。   The alloy for hydrogen generation according to the present invention is obtained by adding 0.1 wt% or more of Al to a Ga alloy containing 0.05 to 1 wt% of at least one selected from the group consisting of Ge, Fe, Cu, and Sb. It is characterized by.

ここで、アルミニウムは酸やアルカリによって溶解し、水素を発生する。しかしながら、アルミニウムは中性近傍の水に対してはほとんど反応しない。これは、中性近傍の水に含まれる水素イオン濃度が低いためと、アルミニウムの表面に酸化皮膜が形成されて内部を保護するためである。   Here, aluminum is dissolved by acid or alkali to generate hydrogen. However, aluminum hardly reacts with water near neutrality. This is because the concentration of hydrogen ions contained in water near neutrality is low and an oxide film is formed on the surface of aluminum to protect the inside.

従って、この酸化皮膜の形成を防止することができれば、中性近傍の水に対する反応が促進でき、水素を発生させることができると考えられる。   Therefore, if the formation of this oxide film can be prevented, it is considered that the reaction with water near neutrality can be promoted and hydrogen can be generated.

以上のことに鑑み、本発明者は、鋭意検討の結果、GaにGe、Fe、Cu、Sbからなる群から選ばれる少なくとも1種以上を0.05〜1wt%含み、さらに、Alを0.1wt%以上含んだ水素発生用合金によれば、比較的低温で水に対する反応性に優れる水素発生用合金を作製できることを見出した。   In view of the above, as a result of intensive studies, the present inventor contains 0.05 to 1 wt% of at least one selected from the group consisting of Ge, Fe, Cu, and Sb in Ga, and further contains 0.1% Al. It has been found that an alloy for hydrogen generation containing 1 wt% or more can produce an alloy for hydrogen generation having excellent reactivity with water at a relatively low temperature.

上記水素発生用合金を用いた水素発生の機構は、次のように推定される。   The mechanism of hydrogen generation using the hydrogen generating alloy is estimated as follows.

水素発生反応に伴い上記水素発生用合金中のアルミニウムが選択的に消費され、上記水素発生用合金の体積変化等が生ずる。この体積変化等によって上記水素発生用合金の表面の酸化皮膜が破壊されることと、酸化皮膜自体の膜応力によって酸化皮膜に亀裂が生じることとにより、上記水素発生用合金と水との接触が増加し、水素発生反応が促進されたものと思われる。   Along with the hydrogen generation reaction, aluminum in the hydrogen generation alloy is selectively consumed, resulting in a volume change of the hydrogen generation alloy. Contact between the hydrogen generating alloy and water is caused by the fact that the oxide film on the surface of the hydrogen generating alloy is destroyed by this volume change and the oxide film is cracked by the film stress of the oxide film itself. It seems that the hydrogen generation reaction was promoted.

水素発生反応は、以下の反応式の通りである。   The hydrogen generation reaction is as shown in the following reaction formula.

6HO+2Al→2Al(OH)+3H ・・・式(1) 6H 2 O + 2Al → 2Al (OH) 3 + 3H 2 Formula (1)

アルミニウムは純アルミニウムだけでなく、各種アルミニウム合金を用いることができ、その添加量は0.1wt%以上であればよい。何故ならば、0.1wt%未満では水素発生速度が小さいためである。また、20wt%を超えて添加しても水素発生速度はあまり上昇しないため、その添加量は0.1〜20wt%が好ましい。より好ましくは、0.1〜10wt%である。   As aluminum, not only pure aluminum but also various aluminum alloys can be used, and the addition amount may be 0.1 wt% or more. This is because the hydrogen generation rate is low at less than 0.1 wt%. Moreover, even if it adds exceeding 20 wt%, since the hydrogen generation rate does not increase so much, the addition amount is preferably 0.1 to 20 wt%. More preferably, it is 0.1-10 wt%.

また、Ge、Fe、Cu、Sbからなる群から選ばれる少なくとも1種以上をGaに0.05〜1wt%含有していればよい。何故ならば、0.05wt%未満では、水素発生速度が小さく、1wt%を超えても水素発生速度は上昇しないためである。好ましくは、0.1〜1wt%である。   Moreover, it is sufficient that at least one selected from the group consisting of Ge, Fe, Cu, and Sb is contained in Ga at 0.05 to 1 wt%. This is because if it is less than 0.05 wt%, the hydrogen generation rate is small, and even if it exceeds 1 wt%, the hydrogen generation rate does not increase. Preferably, it is 0.1-1 wt%.

また、上記水素発生用合金と接触させる水としては、完全に中性であるpH7の純水を用いることも可能であるが、水道水や地下水をそのまま用いることもできる。また、水は液体状に限らず、気体状であっても構わない。   Moreover, as the water to be brought into contact with the hydrogen generating alloy, it is possible to use pure water of pH 7 that is completely neutral, but tap water or ground water can be used as it is. Further, the water is not limited to a liquid form, and may be a gaseous form.

水素発生用合金と水との接触方法としては、どのような方式でもよい。例えば、容器内に水素発生用合金を収容しておき、この容器に水を循環させ、水との反応で発生した水素を取り出して回収するとともに、水との反応で生成した金属水酸化物を主体とする副生物を除去する方式を採用することにより、連続的に高効率で水素を発生させることができる。   As a method for contacting the hydrogen generating alloy with water, any method may be used. For example, an alloy for hydrogen generation is stored in a container, water is circulated in the container, hydrogen generated by reaction with water is taken out and recovered, and metal hydroxide generated by reaction with water is recovered. By adopting a method for removing the main by-product, hydrogen can be continuously generated with high efficiency.

本発明に係る燃料電池は、上記水素発生方法により発生した水素を燃料として用いることを特徴とする。   The fuel cell according to the present invention is characterized in that hydrogen generated by the hydrogen generation method is used as a fuel.

上記のようにして発生させた水素は、極めて純度が高くCO等の不純物ガスを含まないため、燃料電池の燃料として用いることで、電極の劣化等を防止しつつ高効率で発電を行うことができる。   Since the hydrogen generated as described above has a very high purity and does not contain impurity gases such as CO, it can be used as a fuel for a fuel cell to generate electricity with high efficiency while preventing electrode deterioration and the like. it can.

本発明の作用効果を確証するため、以下のラボ試験を実施した。   In order to confirm the effects of the present invention, the following laboratory tests were conducted.

下記表1に示す成分組成のガリウム−X(Ga−X)合金10gに対し、所定量のアルミニウム(Al)を添加して作製した水素発生用合金を容器に収容し、40℃の純水20gを加え、発生する気体を水上置換で捕集し、試験開始から15minの間に発生した気体の体積を測定した。なお、発生した気体は、水素検知管にて吸引して検知した結果、いずれの試験条件においても、水素であることを確認した(試験No.1〜6)。試験No.1〜5におけるGa−X合金を構成するXは、それぞれゲルマニウム(Ge)、アンチモン(Sb)、鉄(Fe)、銅(Cu)またはインジウム(In)である。ただし、試験No.6は、Xに相当する元素を含んでいない。   A hydrogen generation alloy prepared by adding a predetermined amount of aluminum (Al) to 10 g of a gallium-X (Ga-X) alloy having the composition shown in Table 1 below is contained in a container, and 20 g of pure water at 40 ° C. And the generated gas was collected by water replacement, and the volume of the gas generated during 15 min from the start of the test was measured. In addition, as a result of sucking and detecting the generated gas with a hydrogen detector tube, it was confirmed that it was hydrogen under any test condition (Test Nos. 1 to 6). Test No. X which comprises the Ga-X alloy in 1-5 is germanium (Ge), antimony (Sb), iron (Fe), copper (Cu), or indium (In), respectively. However, test no. 6 does not contain an element corresponding to X.

Figure 2009173974
Figure 2009173974

上記表1に示すように、試験No.1〜4(発明例)では、本発明に係る水素発生用合金の要件をすべて満足し、15min間の水素発生量が373〜433mLであった。これに対して、試験No.5、6(比較例)では、本発明に係る水素発生用合金の要件の少なくとも一部を満足せず、15min間の水素発生量が159mL、239mLであった。   As shown in Table 1 above, Test No. In 1-4 (invention example), all the requirements for the alloy for hydrogen generation according to the present invention were satisfied, and the hydrogen generation amount for 15 min was 373 to 433 mL. In contrast, test no. In Nos. 5 and 6 (comparative examples), at least part of the requirements for the alloy for generating hydrogen according to the present invention was not satisfied, and the hydrogen generation amounts for 15 min were 159 mL and 239 mL.

上記水素発生量を発生効率の点から考察したところ、試験No.5、6(比較例)がそれぞれ32%、48%であるのに対して、試験No.1〜4(発明例)は75〜87%と極めて高効率であることが判明した(表1参照)。これは、上記水素発生用合金中にGe、Sb、FeまたはCuを含有することで、上記水素発生用合金の表面の酸化皮膜に亀裂が入る等が生じ、その結果として水と上記水素発生用合金との接触が促進されたためと考えられる。   When the hydrogen generation amount was considered from the viewpoint of generation efficiency, the test No. 5 and 6 (comparative examples) were 32% and 48%, respectively. 1 to 4 (invention examples) were found to be 75 to 87% and very efficient (see Table 1). This is because the inclusion of Ge, Sb, Fe or Cu in the hydrogen generating alloy causes a crack in the oxide film on the surface of the hydrogen generating alloy, resulting in water and the hydrogen generating This is probably because contact with the alloy was promoted.

試験No.3の試験で水上置換に用いた管から取り出された水素を公知の燃料電池に供給し、発電したところ、市販の高純度水素(純度:5N)を用いた場合とほぼ同等の0.5V、0.1A/cmの発電能力が得られた。 Test No. When hydrogen taken out from the tube used for water replacement in the test of No. 3 was supplied to a known fuel cell and generated electricity, 0.5 V, which was almost equivalent to the case of using commercially available high purity hydrogen (purity: 5N), A power generation capacity of 0.1 A / cm 2 was obtained.

本実施例の発明では、Ga−X合金を構成するXとして、Ge、Sb、FeまたはCuのいずれかを0.1wt%含有する試験のみを実施し、2種以上を一緒に含有する試験は割愛したが、2種以上を一緒に含有するものでも本願発明としての作用効果が得られる。すなわち、Ga−X合金を構成するXとして、Ge、Fe、Cu、Sbからなる群から選ばれる少なくとも1種以上を0.05〜1wt%含有しさえすれば、本願発明としての作用効果が得られる。また、添加金属元素としてのAlも、上記表1に示す各Ga−X合金に対して4wt%加える試験のみを実施したが、必ずしもこれに限定されるものではなく、Ga−X合金(ただし、XはGe、Fe、Cu、Sbからなる群から選ばれる少なくとも1種以上を0.05〜1wt%含有する)に対して、0.1wt%以上である条件を満足しさえすれば、本願発明としての作用効果が得られる。   In the invention of this example, only the test containing 0.1 wt% of Ge, Sb, Fe or Cu as X constituting the Ga-X alloy was conducted, and the test containing two or more kinds together was Although omitted, the effect of the present invention can be obtained even when two or more of them are contained together. That is, as long as X constituting the Ga—X alloy contains 0.05 to 1 wt% of at least one selected from the group consisting of Ge, Fe, Cu, and Sb, the effect of the present invention can be obtained. It is done. In addition, Al as an additive metal element was also subjected to a test of adding 4 wt% to each Ga-X alloy shown in Table 1 above, but is not necessarily limited to this, and a Ga-X alloy (however, X contains 0.05 to 1 wt% of at least one selected from the group consisting of Ge, Fe, Cu, and Sb). As a result, the following effects can be obtained.

本実施例では、水素発生用合金と接触させる水として、純水を用いた試験のみを実施したが、必ずしもこれに限定されるものではなく、水道水や地下水を用いることもできる。また、水は液体状に限らず、気体状であっても構わない。   In this example, only the test using pure water was performed as the water to be brought into contact with the alloy for generating hydrogen, but it is not necessarily limited to this, and tap water or groundwater can also be used. Further, the water is not limited to a liquid form, and may be a gaseous form.

以上の結果より、本発明に係る水素発生用合金を用いることで、燃料電池や水素エンジンの燃料として使用しうる高純度の水素が高効率で得られることが確認できた。   From the above results, it was confirmed that by using the hydrogen generating alloy according to the present invention, high-purity hydrogen that can be used as fuel for fuel cells and hydrogen engines can be obtained with high efficiency.

Claims (3)

GaにGe、Fe、Cu、Sbからなる群から選ばれる少なくとも1種以上を0.05〜1wt%含有するGa合金にAlを0.1wt%以上添加してなることを特徴とする水素発生用合金。   For hydrogen generation characterized by adding 0.1 wt% or more of Al to a Ga alloy containing 0.05 to 1 wt% of at least one selected from the group consisting of Ge, Fe, Cu, and Sb in Ga alloy. 請求項1に記載の水素発生用合金に水を接触させることによって水素を発生させることを特徴とする水素発生方法。   A method for generating hydrogen, comprising generating hydrogen by bringing water into contact with the hydrogen generating alloy according to claim 1. 請求項2に記載の水素発生方法により発生した水素を燃料として用いることを特徴とする燃料電池。   A fuel cell using the hydrogen generated by the hydrogen generation method according to claim 2 as a fuel.
JP2008011769A 2008-01-22 2008-01-22 Alloy for hydrogen generation, hydrogen generation method and fuel cell Pending JP2009173974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011769A JP2009173974A (en) 2008-01-22 2008-01-22 Alloy for hydrogen generation, hydrogen generation method and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011769A JP2009173974A (en) 2008-01-22 2008-01-22 Alloy for hydrogen generation, hydrogen generation method and fuel cell

Publications (1)

Publication Number Publication Date
JP2009173974A true JP2009173974A (en) 2009-08-06

Family

ID=41029368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011769A Pending JP2009173974A (en) 2008-01-22 2008-01-22 Alloy for hydrogen generation, hydrogen generation method and fuel cell

Country Status (1)

Country Link
JP (1) JP2009173974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112945A (en) * 2015-09-18 2015-12-02 安徽工业大学 Method for preparing hydrogen production aluminum-gallium alloy by utilizing molten salt electrolysis codeposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112945A (en) * 2015-09-18 2015-12-02 安徽工业大学 Method for preparing hydrogen production aluminum-gallium alloy by utilizing molten salt electrolysis codeposition

Similar Documents

Publication Publication Date Title
Du Preez et al. Hydrogen generation by the hydrolysis of mechanochemically activated aluminum-tin-indium composites in pure water
Huang et al. A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications
ES2415235T3 (en) Procedures and apparatus for electrochemical production of carbon monoxide, and uses thereof
US20060102491A1 (en) Processes for separating metals from metal salts
Huang et al. Effects of amalgam on hydrogen generation by hydrolysis of aluminum with water
JP2017512736A (en) Method for producing graphene
JP5226331B2 (en) Hydrogen generating alloy, hydrogen generating method and fuel cell
JP6011014B2 (en) Carbon dioxide gas decomposition apparatus and decomposition method
JP2013122084A (en) Ironworks operation method and carbon dioxide gas decomposition device
JP2009096707A (en) Method for generating hydrogen, method for producing hydrogen-generating material, hydrogen production apparatus, and fuel cell system
Watanabe et al. Enhancing the efficiency of direct carbon fuel cells by bubbling Ar gas in carbon/carbonate slurry
CN103572318A (en) Deoxidized anode, fluoride fused salt electrolysis deoxidizing device and electrolytic method
WO2005086262A1 (en) Carbon-fueled fuel cell
JP2009137795A (en) Method for producing nickel oxide
JP2018131351A (en) Method for recovering co2 in air to separate carbon
Li et al. Molten salt-enhanced production of hydrogen by using skimmed hot dross from aluminum remelting at high temperature
JP2009173974A (en) Alloy for hydrogen generation, hydrogen generation method and fuel cell
KR102259107B1 (en) Process of producing hydrogen and the non-diaphragm hydrogen producing system
JP5883240B2 (en) Hydrogen production method
US9297082B2 (en) Process for synthesis of calcium oxide
JP2011098861A (en) Method and apparatus for producing solar cell silicon
Laude et al. Electrolysis of LiOH for hydrogen supply
JP4589779B2 (en) Generation method of hydrogen gas
JP6202520B2 (en) Calcium-deficient calcium-silicon compound thin film and method for producing calcium-deficient calcium-silicon compound
Telgerafchi et al. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation