JP5224180B2 - Antistatic water repellent structure and antistatic water repellent structure - Google Patents

Antistatic water repellent structure and antistatic water repellent structure Download PDF

Info

Publication number
JP5224180B2
JP5224180B2 JP2009034298A JP2009034298A JP5224180B2 JP 5224180 B2 JP5224180 B2 JP 5224180B2 JP 2009034298 A JP2009034298 A JP 2009034298A JP 2009034298 A JP2009034298 A JP 2009034298A JP 5224180 B2 JP5224180 B2 JP 5224180B2
Authority
JP
Japan
Prior art keywords
water
repellent
antistatic
water repellent
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009034298A
Other languages
Japanese (ja)
Other versions
JP2010188582A (en
Inventor
雄司 野口
孝之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009034298A priority Critical patent/JP5224180B2/en
Publication of JP2010188582A publication Critical patent/JP2010188582A/en
Application granted granted Critical
Publication of JP5224180B2 publication Critical patent/JP5224180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、水滴の付着を防ぐ撥水機能を発揮する微細な凹凸構造を備え、撥水性と共に、静電気の発生を防ぐ帯電防止機能を備えた帯電防止撥水構造と、このような構造を備えた帯電防止撥水構造体に関するものである。   The present invention has a fine concavo-convex structure that exhibits a water repellency function that prevents adhesion of water droplets, and has an antistatic water repellency structure that has an antistatic function that prevents the occurrence of static electricity as well as water repellency, and such a structure. The present invention relates to an antistatic water repellent structure.

車両、船舶、航空機などの各種ウインドウパネルにおいては、雨を除去するためにワイパーシステムが導入されているが、ウインドウパネルの撥水化によって、ワイパーの要らないウインドウパネルを実現し、コスト削減や生産工数削減する試みがある。   Various types of window panels for vehicles, ships, airplanes, etc. have introduced wiper systems to remove rain. However, by making the window panels water repellent, it is possible to achieve window panels that do not require wipers, thereby reducing costs and production. There are attempts to reduce man-hours.

このようなパネルの撥水化技術としては、プラスチック基板の表面に形成したナノサイズの微細凹凸表面上に、さらにPTFEのような低表面エネルギーを有する撥水被膜を形成することによって、超撥水性を備えた反射防止構造体が得られることが開示されている(特許文献1参照)。   As a water repellency technique for such a panel, a super-water-repellent film is formed by forming a water-repellent film having a low surface energy such as PTFE on a nano-sized fine uneven surface formed on the surface of a plastic substrate. It is disclosed that an antireflection structure including the above can be obtained (see Patent Document 1).

特開2003−172808号公報Japanese Patent Laid-Open No. 2003-172808

しかしながら、上記した特許文献1に記載された超撥水性反射防止構造体においては、その表面を水滴が転がるために、水を介して電荷を逃がすことができずに帯電する結果、静電気の作用によって微細凹凸表面に細かな水滴やほこりを引き寄せてしまうという問題があった。   However, in the super water-repellent antireflection structure described in Patent Document 1 described above, since water droplets roll on the surface, the charge cannot be released through the water, and as a result, the static electricity acts. There was a problem that fine water droplets and dust were attracted to the surface of the fine irregularities.

本発明は、上記課題を解決すべくなされたものであって、その目的とするところは、優れた撥水機能を備えると共に、撥水性凹凸表面への水滴やほこりの付着を防止することができる帯電防止撥水構造を提供することにある。また、このような構造を備えた構造体、例えば、ディスプレイやウインドウパネルなどの自動車部品を提供することにある。   The present invention has been made to solve the above-described problems, and the object of the present invention is to provide an excellent water repellent function and to prevent water droplets and dust from adhering to the water repellent uneven surface. The object is to provide an antistatic water repellent structure. It is another object of the present invention to provide a structure having such a structure, for example, an automobile part such as a display or a window panel.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、撥水機能を発揮する凹凸表面に、撥水層と共に導電層を形成することによって、上記目的が達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by forming a conductive layer together with the water repellent layer on the uneven surface that exhibits the water repellent function, The present invention has been completed.

すなわち、本発明は上記知見に基づくものであって、本発明の帯電防止撥水構造は、400nm以下のピッチで配列された無数の錐体状突起から成る撥水性凹凸構造を備えた基材の表面に、抵抗率が1.0×10Ω・cm以下の導電層を備え、当該導電層の表面に撥水層がさらに設けてあることを特徴とする。
また、本発明の帯電防止撥水構造体は、上記撥水構造を基板の少なくとも一方の面に備えていることを特徴としている。
That is, the present invention is based on the above knowledge, and the antistatic water-repellent structure of the present invention is a base material provided with a water-repellent uneven structure composed of innumerable cone-shaped protrusions arranged at a pitch of 400 nm or less . A conductive layer having a resistivity of 1.0 × 10 8 Ω · cm or less is provided on the surface, and a water repellent layer is further provided on the surface of the conductive layer.
The antistatic water-repellent structure of the present invention is characterized in that the water-repellent structure is provided on at least one surface of the substrate.

本発明によれば、撥水機能を発揮する凹凸構造の最表面に撥水層を備え、さらにその直下層に導電層を備えたものとしたため、生じた電荷を導電層によって逃がすことができ、撥水性能を損なうことなく、静電気による水滴やほこりの付着を防止することができる。   According to the present invention, since the water repellent layer is provided on the outermost surface of the concavo-convex structure that exhibits the water repellent function, and the conductive layer is further provided immediately below the surface, the generated charges can be released by the conductive layer, Without impairing the water repellency, water droplets and dust can be prevented from adhering due to static electricity.

本発明の帯電防止撥水構造の一例を示す断面図である。It is sectional drawing which shows an example of the antistatic water-repellent structure of this invention. (a)本発明に用いる基材の代表例として円錐状突起から成る撥水性凹凸構造を備え基材の形状を示す斜視図である。(b)本発明に用いる基材の他の代表例として角錐状突起から成る撥水性凹凸構造を備え基材の形状を示す斜視図である。(A) It is a perspective view which shows the shape of a base material provided with the water-repellent concavo-convex structure which consists of a conical protrusion as a typical example of the base material used for this invention. (B) It is a perspective view which shows the shape of a base material provided with the water-repellent concavo-convex structure which consists of a pyramidal projection as another representative example of the base material used for this invention.

以下、本発明の帯電防止撥水構造やこの構造を備えた構造体について、その製造方法や実施形態などと共に、さらに詳細に説明する。   Hereinafter, the antistatic water-repellent structure of the present invention and the structure provided with this structure will be described in more detail together with the manufacturing method and embodiments thereof.

本発明の帯電防止撥水構造は、図1に示すように、撥水機能を発現する微細な凹凸、すなわち撥水性凹凸構造を備えた基材1の凹凸表面に、抵抗率が1.0×10Ω・cm以下の導電層2と、さらにその表面に撥水層3を備えたものである。 As shown in FIG. 1, the antistatic water-repellent structure of the present invention has a resistivity of 1.0 × on the uneven surface of the substrate 1 having a water-repellent uneven structure that exhibits a water-repellent function. The conductive layer 2 is 10 8 Ω · cm or less, and further has a water-repellent layer 3 on the surface thereof.

本発明において、撥水性凹凸構造とは、図2(a)や(b)に例示するように、円錐や角錐など、無数の錐体状突起1aから成るものであって、撥水性を発揮するためには、突起間の間隔(ピッチ)Pを水滴の径よりも小さい1mm以下とする必要がある。
また、ディスプレイのカバーやウインドウパネルとして用いるべく、透明性を確保するためには、間隔Pを400μm以下とすることが望ましい。また、外の景色や照明の映り込みを防止することを目的として、反射防止機能を得るためには400nm以下とすることが望ましいが、好ましくは380nm以下であり、更に好ましくは250nm以下である。250nm以下であれば、回折光はほとんど観測できなくなる。ピッチPが400nmを超えると、回折光が発生し、反射率が大きくなる傾向がある。
In the present invention, the water-repellent concavo-convex structure is composed of innumerable conical projections 1a such as a cone and a pyramid, as illustrated in FIGS. 2A and 2B, and exhibits water repellency. For this purpose, the interval (pitch) P between the protrusions needs to be 1 mm or less, which is smaller than the diameter of the water droplet.
Further, in order to ensure transparency so as to be used as a display cover or a window panel, it is desirable that the interval P is set to 400 μm or less. Further, for the purpose of preventing reflection of outside scenery and illumination, in order to obtain an antireflection function, the thickness is desirably 400 nm or less, preferably 380 nm or less, and more preferably 250 nm or less. If it is 250 nm or less, almost no diffracted light can be observed. When the pitch P exceeds 400 nm, diffracted light is generated and the reflectance tends to increase.

なお、図2においては、撥水性凹凸構造を構成する錐体状突起1aの形状例として、円錐形及び四角錐のものを示したが、その底面形状としては、三角形や六角形など、他の多角形であっても良い。
また、本発明における錐体状突起1aの形状としては、正確な円錐(母線が直線)や角錐(稜が直線、側面が平面)のみならず、底面から先端側に向かって断面積が順次小さくなるような形状である限り、母線が曲線である円錐状のものや、側面が曲面をなす角錐状であってもよい。
In addition, in FIG. 2, although the thing of the cone shape and the quadrangular pyramid was shown as a shape example of the cone-shaped processus | protrusion 1a which comprises a water-repellent uneven | corrugated structure, as the bottom face shape, other shapes, such as a triangle and a hexagon, are shown. It may be a polygon.
In addition, the shape of the cone-shaped protrusion 1a in the present invention is not only an accurate cone (a straight line on the generatrix) or a pyramid (a straight line on the ridge and a flat side), but also has a cross-sectional area that gradually decreases from the bottom to the tip. As long as it has such a shape, it may be a cone having a curved bus line or a pyramid having a curved side surface.

さらに、成形性や耐破損性を考慮して、先端部を平坦にしたり、丸みをつけたりすることも可能であるが、撥水性の観点からは、先端部が鋭い方が好ましい。
加えて、錐体状突起1aの底面の中心と頂点を結ぶ直線は、必ずしも底面に対して垂直である必要もない。
Furthermore, in consideration of moldability and breakage resistance, the tip portion can be flattened or rounded, but from the viewpoint of water repellency, it is preferable that the tip portion is sharp.
In addition, the straight line connecting the center and the apex of the bottom surface of the cone-shaped protrusion 1a does not necessarily need to be perpendicular to the bottom surface.

このように、本発明において『錐体状』とは、正確な円錐や角錐のみならず、釣り鐘形や椎の実形の変形円錐状や、曲面から成る側面を有する変形角錐状のもの、先端が丸みを帯びたもの、傾斜したものをも含めた形状を意味する。   Thus, in the present invention, “conical shape” means not only an accurate cone or pyramid, but also a bell-shaped or vertebral deformed cone shape, a deformed pyramid shape having a curved side surface, a tip Means rounded and slanted shapes.

本発明の帯電防止撥水構造において、上記のような撥水性凹凸構造を成形する方法としては、特に限定されるものではないが、熱プレス法(ホットエンボス法)、射出成形法などを挙げることができる。
特に、光の波長以下の微細凹凸を容易に成形するための方法としては、ナノインプリントが好適に用いられる。このナノインプリントによる成形方法としては、熱や活性エネルギー線のいずれを用いる方法であってもよい。
In the antistatic water-repellent structure of the present invention, the method for forming the water-repellent concavo-convex structure as described above is not particularly limited, and examples thereof include a hot press method (hot embossing method) and an injection molding method. Can do.
In particular, nanoimprint is preferably used as a method for easily forming fine irregularities having a wavelength of light or less. As a forming method by this nanoimprint, any method using heat or active energy rays may be used.

熱を用いる方法については、熱可塑性樹脂を加熱して、金型を押し当てることによって当該樹脂に上記のような錐体状突起を転写する方法である。また、活性エネルギー線を用いる方法は、型に活性エネルギー線により重合し硬化するポリマー又はオリゴマー、モノマーなどを入れ、紫外線やX線などの活性エネルギー線を照射することによって固化させる方法である。   The method using heat is a method of transferring the cone-shaped projections as described above to the resin by heating the thermoplastic resin and pressing the mold. The method using active energy rays is a method in which a polymer, oligomer, monomer or the like that is polymerized and cured by active energy rays is put in a mold and solidified by irradiation with active energy rays such as ultraviolet rays or X-rays.

上記の成形に用いられるスタンパとしては、上記のような微細な錐体状突起を形成できる方法であれば、特にその製造方法に限定はなく、生産性やコストなどを考慮して適宜なものを使用することができる。
なお、本発明において、ナノインプリントとは、数nmから数10μm程度の範囲の転写を言う。
The stamper used for the above molding is not particularly limited as long as it is a method capable of forming the above-mentioned fine cone-shaped projections, and an appropriate one is considered in consideration of productivity and cost. Can be used.
In the present invention, nanoimprint means transfer in the range of several nanometers to several tens of micrometers.

本発明に使用するプレス装置としては、加熱・加圧機構を有するものや、光透過性スタンパの上方より活性エネルギー線を照射できる機構を有するものがパターン転写を効率良く行う上で好ましい。   As the press apparatus used in the present invention, a press machine having a heating / pressurizing mechanism and a press machine having a mechanism capable of irradiating an active energy ray from above the light transmissive stamper are preferable for efficient pattern transfer.

上記スタンパは、転写されるべき微細なパターンを有するものであり、スタンパにパターンを形成する方法については、特に制限ななく、例えばフォトリソグラフィや電子線描画法等を所望する加工精度に応じて選択することができる。
また、スタンパの材料としては、シリコンウエハ、各種金属材料、ガラス、セラミック、プラスチック、炭素材料等、強度と要求される精度の加工性を有するものであればよく、 具体的には、Si、SiC、SiN、多結晶Si、ガラス、Ni、Cr、Cu、C、さらにはこれらを1種以上含むものを例示することができる。
The stamper has a fine pattern to be transferred, and the method for forming the pattern on the stamper is not particularly limited. For example, photolithography, electron beam drawing method, or the like is selected according to the desired processing accuracy. can do.
The stamper material may be a silicon wafer, various metal materials, glass, ceramics, plastics, carbon materials, etc., as long as it has strength and workability with the required accuracy. Specifically, Si, SiC , SiN, polycrystalline Si, glass, Ni, Cr, Cu, C, and those containing one or more of these.

上記凹凸構造を形成するための材料としては、上記に示すいずれかの方法により上記錐体状突起から成る微細な撥水性凹凸構造を付与できる基材であればよい。例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、液晶性ポリマー、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、さらにはこれらを2種以上ブレンドした材料を用いることが可能であって、とりわけ透明性があるものは、例えば窓(ウインドシールド)や計器類のカバーなどに好適に用いることができる。   As a material for forming the concavo-convex structure, any substrate can be used as long as it can provide a fine water-repellent concavo-convex structure composed of the cone-shaped projections by any of the methods described above. For example, polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polybutylene terephthalate, glass reinforced polyethylene terephthalate, polycarbonate, modified polyphenylene ether, Thermoplastic resins such as polyphenylene sulfide, polyether ether ketone, liquid crystalline polymer, fluororesin, polyarate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, thermoplastic polyimide, phenol resin, melamine resin, urea resin, epoxy Resin, unsaturated polyester resin, alkyd resin, silicone resin, diallyl phthalate resin, polyamid It is possible to use thermosetting resins such as bismaleimide and polybisamidotriazole, and further blended materials of two or more of them, and those that are particularly transparent include, for example, windows (windshields) and instruments. It can be suitably used for a cover or the like.

活性エネルギー線を用いる場合は、活性エネルギー線により重合を開始できる樹脂が用いられる。このような樹脂としては、例えば紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、紫外線硬化型エポキシ樹脂などを例示することができ、必要に応じて、活性エネルギー線を照射することによりラジカルを発生する重合開始剤を用いることもでき、より強固に固めるためイソシアネートのような硬化剤を加えることもできる。
また、ここで用いられる活性エネルギー線としては、一般に紫外線やX線、その他電子線、電磁波などが挙げられるが、特に限定されるものではない。
When using an active energy ray, a resin capable of initiating polymerization by the active energy ray is used. Examples of such resins include UV curable acrylic urethane resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, and UV curable epoxy resins. If necessary, a polymerization initiator that generates radicals by irradiating active energy rays can be used, and a curing agent such as isocyanate can be added in order to solidify more firmly.
In addition, examples of the active energy ray used here generally include ultraviolet rays, X-rays, other electron beams, electromagnetic waves, and the like, but are not particularly limited.

本発明においては、上記のような撥水性凹凸構造を備えた基材1の凹凸表面上に、第1層として、導電層2が形成されている。
当該導電層2としては、その抵抗率(比抵抗)が1.0×10Ω・cm以下でありさえすれば、どのような材料から成るものでもよく、例えば、薄い膜状の金属や、金属酸化物などからなる半導体膜、π電子共役をもつ導電性高分子膜や、グラフェン、グラファイトなど炭素膜を用いることができる。なお、導電層2の抵抗率を1.0×10Ω・cm以下とするのは、この値を超えると、伝導率が悪くなって導電層として機能しなくなることによる。
In the present invention, the conductive layer 2 is formed as the first layer on the uneven surface of the substrate 1 having the water-repellent uneven structure as described above.
The conductive layer 2 may be made of any material as long as its resistivity (specific resistance) is 1.0 × 10 8 Ω · cm or less, for example, a thin film-like metal, A semiconductor film made of a metal oxide or the like, a conductive polymer film having π electron conjugation, or a carbon film such as graphene or graphite can be used. The reason why the resistivity of the conductive layer 2 is 1.0 × 10 8 Ω · cm or less is that when this value is exceeded, the conductivity deteriorates and the conductive layer 2 does not function.

上記した導電層2の厚さとしては、1nm〜30nmの薄膜状に形成することが望ましい。これは、導電層2の厚みが1nmに満たない場合は、抵抗値が大きくなって、本来の電導機能が低下し、逆に30nmを超えると、着色して透明性が損なわれる傾向があることによる。
なお、このような導電層2の形成方法としては、特に限定されないが、例えば、LB法、PVD法、CVD法、スパッタ法、金属ナノ粒子や導電性高分子の塗布等を用いることができる。
As the thickness of the conductive layer 2 described above, it is desirable to form a thin film of 1 nm to 30 nm. This is because when the thickness of the conductive layer 2 is less than 1 nm, the resistance value becomes large and the original conductive function is lowered. Conversely, when the thickness exceeds 30 nm, there is a tendency that the transparency is deteriorated by coloring. by.
The method for forming the conductive layer 2 is not particularly limited, and for example, LB method, PVD method, CVD method, sputtering method, application of metal nanoparticles or conductive polymer, and the like can be used.

上記導電層2の表面には、さらに撥水層3が形成される。
この撥水層3を構成する撥水材料としては、例えば長鎖アルコキシシラン、フルオロアルコキシシラン、ポリジメチルシロキサン等を挙げることができる。
A water repellent layer 3 is further formed on the surface of the conductive layer 2.
Examples of the water repellent material constituting the water repellent layer 3 include long chain alkoxysilane, fluoroalkoxysilane, polydimethylsiloxane and the like.

ここで、上記撥水層3は、導電層2と化学的に結合していることが望ましく、これによって両者の結合強度が増し、乾拭き等に対する耐久性が向上する。
なお、ここで言う『化学結合』とは、微細構造の表面の導電層と撥水層が化学的に結合することを意味し、具体的には共有結合やイオン結合といった結合が例示される。
導電層の表面に直接撥水層を化学結合できない場合は、導電層と撥水層の間に密着性を向上させる層を設けても良い。特に限定されないが密着層として、樹脂などに対し吸着性のよい酸化ケイ素などが用いられる。
Here, it is desirable that the water repellent layer 3 is chemically bonded to the conductive layer 2, thereby increasing the bonding strength between the two and improving the durability against dry wiping and the like.
The “chemical bond” referred to here means that the conductive layer on the surface of the fine structure and the water-repellent layer are chemically bonded, and specifically, bonds such as covalent bonds and ionic bonds are exemplified.
In the case where the water repellent layer cannot be chemically bonded directly to the surface of the conductive layer, a layer for improving adhesion may be provided between the conductive layer and the water repellent layer. Although not particularly limited, silicon oxide having good adsorptivity to a resin or the like is used as the adhesion layer.

なお、上記撥水層3の形成方法としては、錐体状突起1aによって形成される撥水性凹凸構造を埋めてしまうことのない方法であれば特に限定されず、例えば、LB法、PVD法、CVD法、自己組織化法、スパッタ法、単分子を溶剤で希釈したものを塗布する方法などが挙げられる。   The method for forming the water-repellent layer 3 is not particularly limited as long as it does not fill the water-repellent concavo-convex structure formed by the conical protrusions 1a. For example, the LB method, the PVD method, Examples thereof include a CVD method, a self-assembly method, a sputtering method, and a method in which a single molecule diluted with a solvent is applied.

本発明の帯電防止撥水構造体は、上記した帯電防止撥水構造を基板の少なくとも一方の面に備えたものである。すなわち、例えば接着剤などを用いて、撥水性凹凸構造を備えた基材1の凹凸面に導電層2と撥水層3を形成したものをガラスや他の樹脂材料などから成る基板上に貼り付けることによって、帯電防止撥水構造体が得られる。
このとき、撥水性凹凸構造を備えた基材1と上記基板とが別体構造である必要は必ずしもなく、撥水性凹凸構造を備えた基板上に、導電層2と撥水層3を形成することによって、本発明の帯電防止撥水構造体とすることも可能である。
The antistatic water-repellent structure of the present invention comprises the above-described antistatic water-repellent structure on at least one surface of the substrate. That is, for example, by using an adhesive or the like, a conductive layer 2 and a water-repellent layer 3 formed on the concavo-convex surface of a base material 1 having a water-repellent concavo-convex structure are attached on a substrate made of glass or other resin material. By applying, an antistatic water-repellent structure can be obtained.
At this time, the base material 1 having the water-repellent concavo-convex structure and the substrate need not necessarily be separate structures, and the conductive layer 2 and the water-repellent layer 3 are formed on the substrate having the water-repellent concavo-convex structure. Thus, the antistatic water-repellent structure of the present invention can also be obtained.

上記帯電防止撥水構造体においては、基材や基板として、例えばガラスやアクリル樹脂、ポリカーボネートなどの透明材料を用い、構造体全体を透明なものとすることが望ましく、これによって当該構造体の窓材などへの適用が可能になる。   In the antistatic water-repellent structure, it is desirable to use a transparent material such as glass, acrylic resin, or polycarbonate as a base material or a substrate, and to make the entire structure transparent. Application to materials is possible.

本発明の自動車部品は、本発明の上記帯電防止撥水構造を備えたものであるから、優れた撥水性能を発揮すると共に、静電気による水滴やほこりの付着を防止することができる。したがって、例えば自動車のウインドシールドに当該構造を適用することによって、ワイパーの不要なウインドシールドの実現が可能になる。   Since the automobile part of the present invention has the antistatic water-repellent structure of the present invention, it exhibits excellent water-repellent performance and can prevent adhesion of water droplets and dust due to static electricity. Therefore, for example, by applying the structure to a windshield of an automobile, it is possible to realize a windshield that does not require a wiper.

以下に、本発明を実施例に基づいて、さらに具体的に説明するが、本発明はこれらの実施例のみに限定されないことは言うまでもない。   Hereinafter, the present invention will be described more specifically based on examples. However, it is needless to say that the present invention is not limited to these examples.

(実施例1)
市販の電子線描画装置を用いて、開口径100nm、深さ200nmの円錐状凹部が100nmの間隔に六方最密配列した金型を作製した。この金型に紫外線硬化アクリル樹脂(屈折率:1.50)を流し込み、基材であるアクリルを押し当てて、紫外線を照射することによって、底面径D=100nm、高さH=200nmの円錐状微細突起1aが頂点間距離P=100nmに六方最密配列された撥水性凹凸構造をその両面に備えた基材1を得た。
Example 1
Using a commercially available electron beam drawing apparatus, a mold was prepared in which conical recesses having an opening diameter of 100 nm and a depth of 200 nm were arranged in a hexagonal close-packed manner at an interval of 100 nm. A UV-curing acrylic resin (refractive index: 1.50) is poured into this mold, and the acrylic substrate is pressed against it and irradiated with ultraviolet rays to form a conical shape with a bottom diameter D = 100 nm and a height H = 200 nm. A base material 1 having a water-repellent concavo-convex structure in which fine protrusions 1a are arranged in a hexagonal close-packed manner at a distance P between apexes of 100 = 100 nm was obtained.

次に、この基材の凹凸表面に、スパッタリングによってアルミニウム(抵抗率:2.65×10−6Ω・cm)を10nmの厚さに成膜して導電層2とした。さらに、この導電層2の表面にパーフルオロアルキルシランを蒸着させて、撥水層3を形成し、本例の帯電防止撥水構造体を得た。
なお、アルミニウムから成る導電層2とパーフルオロアルキルシランから成る撥水層3の間には、アルミニウムの表面酸化による酸化アルミニウムとパーフルオロアルキルシランのシラノールが縮合したシロキサン結合が形成される。
Next, the conductive layer 2 was formed by depositing aluminum (resistivity: 2.65 × 10 −6 Ω · cm) to a thickness of 10 nm on the uneven surface of the substrate by sputtering. Further, perfluoroalkylsilane was deposited on the surface of the conductive layer 2 to form a water repellent layer 3 to obtain an antistatic water repellent structure of this example.
Between the conductive layer 2 made of aluminum and the water repellent layer 3 made of perfluoroalkylsilane, a siloxane bond is formed by condensation of aluminum oxide and silanol of perfluoroalkylsilane by surface oxidation of aluminum.

このようにして得られた帯電防止撥水構造体について、下記の要領によって、水付着性及び耐摩耗性について評価し、その結果を表1に示す。   The antistatic water-repellent structure thus obtained was evaluated for water adhesion and abrasion resistance according to the following procedure, and the results are shown in Table 1.

(実施例2)
上記実施例1と同様の金型を用いて、底面径D=100nm、高さH=200nmの円錐状微細突起1aが頂点間距離P=100nmに六方最密配列された撥水性凹凸構造を両面に備えた基材1を得た。
次いで、アルミニウムの代わりに、ニオブ(抵抗率:17.0×10−6Ω・cm)を5nmの厚さに成膜して導電層2としたこと以外は、実施例1と同様の操作を繰り返し、本例の帯電防止撥水構造体を得た。
(Example 2)
Using the same mold as in Example 1, both sides have a water-repellent concavo-convex structure in which conical fine protrusions 1a having a bottom diameter D = 100 nm and a height H = 200 nm are arranged in a hexagonal close-packed manner with a distance P between apexes of P = 100 nm. The base material 1 prepared for was obtained.
Next, the same operation as in Example 1 was performed except that niobium (resistivity: 17.0 × 10 −6 Ω · cm) was formed to a thickness of 5 nm to form the conductive layer 2 instead of aluminum. Repeatedly, the antistatic water-repellent structure of this example was obtained.

そして、このようにして得られた帯電防止撥水構造体について、上記実施例1と同様の性能評価を行い、その結果を表1に併せて示す。   And about the antistatic water-repellent structure obtained in this way, performance evaluation similar to the said Example 1 was performed, and the result is combined with Table 1, and is shown.

(実施例3)
市販の電子線描画装置を用いて、開口径300nm、深さ600nmの円錐状凹部が300nmの間隔に六方最密配列した金型を作製した。この金型に同様の紫外線硬化アクリル樹脂を流し込み、基材であるアクリルを押し当て、紫外線を照射することによって、底面径D=300nm、高さH=600nmの円錐状微細突起1aが頂点間距離P=300nmに六方最密配列された撥水性凹凸構造をその両面に備えた基材1を得た。
次に、アルミニウム(抵抗率:2.65×10−6Ω・cm)を20nmの厚さに成膜して導電層2とたこと以外は、実施例1と同様の操作を繰り返し、本例の帯電防止撥水構造体を得た。
(Example 3)
Using a commercially available electron beam drawing apparatus, a mold was prepared in which conical concave portions having an opening diameter of 300 nm and a depth of 600 nm were arranged in a hexagonal close-packed manner at intervals of 300 nm. By pouring the same ultraviolet curable acrylic resin into this mold, pressing the acrylic as the base material, and irradiating with ultraviolet rays, the conical fine protrusions 1a having a bottom surface diameter D = 300 nm and a height H = 600 nm are formed between the apexes. A base material 1 having a water-repellent concavo-convex structure arranged in a hexagonal close-packed manner at P = 300 nm on both sides was obtained.
Next, the same operation as in Example 1 was repeated except that aluminum (resistivity: 2.65 × 10 −6 Ω · cm) was formed to a thickness of 20 nm to form the conductive layer 2, and this example was repeated. An antistatic water-repellent structure was obtained.

そして、このようにして得られた帯電防止撥水構造体について、上記実施例1と同様の性能評価を行い、その結果を表1に併せて示す。   And about the antistatic water-repellent structure obtained in this way, performance evaluation similar to the said Example 1 was performed, and the result is combined with Table 1, and is shown.

(実施例4)
市販の電子線描画装置を用いて、開口径350nm、深さ600nmの円錐状凹部が350nmの間隔に六方最密配列した金型を作製した。この金型に同様の紫外線硬化アクリル樹脂を流し込み、基材であるアクリルを押し当てて、紫外線を照射することにより、底面径D=350nm、高さH=600nmの円錐状微細突起1aが頂点間距離P=350nmに六方最密配列された撥水性凹凸構造を両面に備えた基材1を得た。
次いで、アルミニウムに替えて、チタン(抵抗率:42.0×10−6Ω・cm)を15nmの厚さに成膜して導電層2としたこと以外は、実施例1と同様の操作を繰り返し、本例の帯電防止撥水構造体を得た。
Example 4
Using a commercially available electron beam drawing apparatus, a mold was prepared in which conical recesses having an opening diameter of 350 nm and a depth of 600 nm were arranged in a hexagonal close-packed manner at intervals of 350 nm. By pouring the same ultraviolet curable acrylic resin into this mold, pressing the acrylic substrate, and irradiating with ultraviolet rays, the conical fine protrusions 1a having a bottom diameter D = 350 nm and a height H = 600 nm are formed between the apexes. A base material 1 having a water-repellent concavo-convex structure arranged in a hexagonal close-packed manner at a distance P = 350 nm on both sides was obtained.
Next, the same operation as in Example 1 was performed except that titanium (resistivity: 42.0 × 10 −6 Ω · cm) was formed to a thickness of 15 nm to form the conductive layer 2 instead of aluminum. Repeatedly, the antistatic water-repellent structure of this example was obtained.

そして、このようにして得られた帯電防止撥水構造体について、上記実施例1と同様の性能評価を行い、その結果を表1に併せて示す。   And about the antistatic water-repellent structure obtained in this way, performance evaluation similar to the said Example 1 was performed, and the result is combined with Table 1, and is shown.

(比較例1)
上記実施例1と同様の金型を用いて、同様の撥水性凹凸構造(底面径D=100nm、高さH=200nm、頂点間距離P=100nm)を両面に備えた基材1に導電層を形成することなく、酸化ケイ素を5nmの厚さに成膜した密着層の上に、パーフルオロアルキルシランを同様に蒸着させて、撥水層3を形成した。
そして、このようにして得られた構造体について、同様の性能評価を行い、その結果を表1に併せて示す。
(Comparative Example 1)
Using the same mold as in Example 1, the conductive layer was formed on the base material 1 having the same water-repellent uneven structure (bottom diameter D = 100 nm, height H = 200 nm, vertex distance P = 100 nm) on both surfaces. On the adhesion layer in which silicon oxide was formed to a thickness of 5 nm, perfluoroalkylsilane was similarly deposited to form the water repellent layer 3.
And about the structure obtained in this way, the same performance evaluation is performed and the result is combined with Table 1, and is shown.

〔性能評価方法〕
(1)水付着性
上記各実施例及び比較例によって得られた各構造体について、JIS L 1092に規定された方法に基づき、スプレーテスタ(東洋精器製)を用いて、以下の基準によって撥水度を3段階評価した。
○:全く水滴が付着しない
△:10個以上30個未満の水滴が付着する
×:30個以上の水滴が付着する
[Performance evaluation method]
(1) Water adhesion The structure obtained in each of the above Examples and Comparative Examples was repelled according to the following criteria using a spray tester (manufactured by Toyo Seiki) based on the method defined in JIS L 1092. The water level was evaluated in three stages.
○: No water droplets adhere △: 10 or more and less than 30 water droplets adhere ×: 30 or more water droplets adhere

(2)耐摩耗性
上記各実施例及び比較例によって得られた各構造体について、トラバース式摩耗試験機を用い、キャンバス布(JIS L 3102)から成る摩擦布によって、荷重9.8kPa、ストローク長100mm、摩擦速度30往復/分の条件のもとに、200回往復払拭作動させた。そして、目視にて各構造体の払拭表面を観察し、傷付きがない場合を○とした。
(2) Abrasion resistance For each structure obtained in each of the above examples and comparative examples, a load of 9.8 kPa and a stroke length were obtained with a friction cloth made of canvas cloth (JIS L 3102) using a traverse type wear tester. Under the conditions of 100 mm and a friction speed of 30 reciprocations / minute, the reciprocating wiping operation was performed 200 times. And the wiping surface of each structure was observed visually, and the case where there was no damage was set as (circle).

Figure 0005224180
Figure 0005224180

1 基材
1a 錐体状突起
2 導電層
3 撥水層
DESCRIPTION OF SYMBOLS 1 Base material 1a Cone-shaped protrusion 2 Conductive layer 3 Water-repellent layer

Claims (8)

400nm以下のピッチで配列された無数の錐体状突起から成る撥水性凹凸構造を備えた基材の表面に、抵抗率が1.0×10Ω・cm以下の導電層を備え、当該導電層の表面にさらに撥水層が設けてあることを特徴とする帯電防止撥水構造。 A conductive layer having a resistivity of 1.0 × 10 8 Ω · cm or less is provided on the surface of a substrate having a water-repellent concavo-convex structure composed of innumerable conical protrusions arranged at a pitch of 400 nm or less, An antistatic water repellent structure, wherein a water repellent layer is further provided on the surface of the layer. 上記導電層に撥水層が化学的に結合していることを特徴とする請求項1に記載の帯電防止撥水構造。   The antistatic water repellent structure according to claim 1, wherein a water repellent layer is chemically bonded to the conductive layer. 上記導電層の厚さが1〜30nmであることを特徴とする請求項1又は2に記載の帯電防止撥水構造。   The antistatic water-repellent structure according to claim 1 or 2, wherein the conductive layer has a thickness of 1 to 30 nm. 上記導電層がアルミニウム、ニオブ、チタンのいずれか1種であり、上記撥水層がパーフルオロアルキルシランであることを特徴とする請求項1〜3のいずれか1つの項に記載の帯電防止撥水構造。 The antistatic repellent according to any one of claims 1 to 3, wherein the conductive layer is any one of aluminum, niobium, and titanium, and the water repellent layer is perfluoroalkylsilane. Water structure. 上記導電層がアルミニウム、上記撥水層がパーフルオロアルキルシランであって、これらの間にシロキサン結合が形成されていることを特徴とする請求項1〜4のいずれか1つの項に記載の帯電防止撥水構造。The charging according to any one of claims 1 to 4, wherein the conductive layer is aluminum, the water repellent layer is perfluoroalkylsilane, and a siloxane bond is formed therebetween. Prevent water repellent structure. 請求項1〜のいずれか1つの項に記載の帯電防止撥水構造を基板の少なくとも一方の面に備えていることを特徴とする帯電防止撥水構造体。 An antistatic water repellent structure comprising the antistatic water repellent structure according to any one of claims 1 to 5 on at least one surface of a substrate. 透明材料から構成されていることを特徴とする請求項に記載の帯電防止撥水構造体。 The antistatic water-repellent structure according to claim 6 , which is made of a transparent material. 請求項1〜7のいずれか1つの項に記載の帯電防止撥水構造を備えていることを特徴とする自動車部品。   An automobile part comprising the antistatic water repellent structure according to any one of claims 1 to 7.
JP2009034298A 2009-02-17 2009-02-17 Antistatic water repellent structure and antistatic water repellent structure Expired - Fee Related JP5224180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034298A JP5224180B2 (en) 2009-02-17 2009-02-17 Antistatic water repellent structure and antistatic water repellent structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034298A JP5224180B2 (en) 2009-02-17 2009-02-17 Antistatic water repellent structure and antistatic water repellent structure

Publications (2)

Publication Number Publication Date
JP2010188582A JP2010188582A (en) 2010-09-02
JP5224180B2 true JP5224180B2 (en) 2013-07-03

Family

ID=42815181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034298A Expired - Fee Related JP5224180B2 (en) 2009-02-17 2009-02-17 Antistatic water repellent structure and antistatic water repellent structure

Country Status (1)

Country Link
JP (1) JP5224180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295604B2 (en) 2018-01-22 2023-06-21 株式会社三井E&S Axis of rotation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617895B2 (en) * 2012-10-31 2014-11-05 大日本印刷株式会社 Antireflection transparent conductive film, touch panel and image display device
JP6171788B2 (en) * 2013-09-25 2017-08-02 日産自動車株式会社 Antifouling body and method for producing the same
JP6171801B2 (en) * 2013-09-30 2017-08-02 日産自動車株式会社 Antifouling body and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330378A (en) * 1994-06-01 1995-12-19 Nippon Sheet Glass Co Ltd Water repellent film
JP3413286B2 (en) * 1994-08-01 2003-06-03 セントラル硝子株式会社 Water repellent glass and method for producing the same
JPH11115112A (en) * 1997-10-15 1999-04-27 Shin Etsu Polymer Co Ltd Thermoplastic resin sheet with water repellency and conductivity
JP2001329363A (en) * 2000-05-18 2001-11-27 Bridgestone Corp Method form forming laminated film and laminated film
JP2003136622A (en) * 2001-11-06 2003-05-14 Asti Ltd Advanced Systems Of Technology Incubation Water-repellent solid material with low surface resistance and method for manufacturing the solid material
JP2003172808A (en) * 2001-12-06 2003-06-20 Hitachi Maxell Ltd Super water-repellent plastic substrate and reflection preventive film
JP2003279706A (en) * 2002-03-25 2003-10-02 Sanyo Electric Co Ltd Antireflection member
JP4175919B2 (en) * 2003-03-06 2008-11-05 大日本印刷株式会社 Anti-stain film with high scratch resistance
JP2007144917A (en) * 2005-11-30 2007-06-14 Asahi Glass Co Ltd Super-water repellent film and super-water repellent automobile window using the same, super-water repellent sticking film and method for manufacturing the same, method for manufacturing super-water repellent transparent substrate, and method for super-water repellence treatment of automobile window
JP2009042714A (en) * 2006-11-08 2009-02-26 Nissan Motor Co Ltd Water repellent anti-reflective structure and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295604B2 (en) 2018-01-22 2023-06-21 株式会社三井E&S Axis of rotation

Also Published As

Publication number Publication date
JP2010188582A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5267798B2 (en) Scratch-resistant water-repellent structure and scratch-resistant water-repellent structure
JP5522339B2 (en) Water repellent structure and water repellent structure
JP4894663B2 (en) Water-repellent structure and water-repellent molded product
JP4978188B2 (en) Manufacturing method of fine structure
WO2011024947A1 (en) Molded structure
JP5224180B2 (en) Antistatic water repellent structure and antistatic water repellent structure
JP2009042714A (en) Water repellent anti-reflective structure and method of manufacturing the same
JP2007187868A (en) Wetting control antireflection optical structure and automotive window glass
WO2010101250A1 (en) Fine structure, process for producing the fine structure, and automotive component comprising the fine structure
KR101866501B1 (en) Superhydrophobic electromagnetic field sheilding material and method of preparing the same
WO2012087352A2 (en) Superhydrophobic and superoleophobic nanosurfaces
JP2002210821A (en) Method for emboss processing of hydrophobic polymer using embossing template or embossing roll made of metal, embossing template and embossing roll
CN102365164A (en) Water-repellent film and automotive part equipped with same
JP2013003383A (en) Abrasion-resistant fine structure and method of manufacturing the same
JP2006257249A (en) Liquid droplets guide structure
JP2008203473A (en) Antireflection structure and structure
JP2011169961A (en) Hydrophilic antireflection structure and method of manufacturing the same
JP2007322763A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP5769957B2 (en) Fine structure
JP2009294341A (en) Water-repellent antireflection structure and water-repellent antireflection molding
CN108611601B (en) Interface-reinforced composite material and application thereof
JP2017047626A (en) Molding
WO2015037601A1 (en) Article bearing rugged mold pattern transferred thereto, process for producing article, and process for producing optical panel
JP5987172B1 (en) Compact
JP5948616B1 (en) Compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees