JP5220581B2 - X線解析装置 - Google Patents

X線解析装置 Download PDF

Info

Publication number
JP5220581B2
JP5220581B2 JP2008328238A JP2008328238A JP5220581B2 JP 5220581 B2 JP5220581 B2 JP 5220581B2 JP 2008328238 A JP2008328238 A JP 2008328238A JP 2008328238 A JP2008328238 A JP 2008328238A JP 5220581 B2 JP5220581 B2 JP 5220581B2
Authority
JP
Japan
Prior art keywords
support member
unit cell
measurement object
pressing force
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008328238A
Other languages
English (en)
Other versions
JP2010151532A (ja
Inventor
透流 古沢
哲也 小井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008328238A priority Critical patent/JP5220581B2/ja
Publication of JP2010151532A publication Critical patent/JP2010151532A/ja
Application granted granted Critical
Publication of JP5220581B2 publication Critical patent/JP5220581B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、測定物にX線を照射して透過させることで前記測定物の内部の断層撮影(CT)像を得るX線解析装置に関する。
X線を測定物に透過させて該測定物の内部のCT像を得、これにより該測定物の内部状況を観察することが従来から行われている。例えば、特許文献1には、一対の掴み具に挟持された測定物に圧縮荷重(押圧力)を付与するとともに、モータの作用下に該測定物を前記一対の掴み具ごと回転させながらX線を照射し、透過X線の検出結果からCT像を得るX線解析装置についての開示がある。
近年、燃料電池の発電時における単位セル内の状態を観察・評価することについての要望がある。この要望に関連し、非特許文献1には、燃料電池の発電中に生成する水が如何なる分布状態にあるのかを、X線解析装置によって得られた単位セルのCT像によって定量的に調査する試みがなされている。
ここで、単位セルは、一対のプレートで挟持され、該プレート同士が金属ボルトで緊締された状態で発電に供されるのが通例である。緊締によって単位セルの構成部品同士の電気的接触抵抗を低減するとともに、酸化剤ガス及び燃料ガス(以下、双方を含めていうときには「反応ガス」と表記する)が漏洩することを防止するためである。
この観点から、非特許文献1においては、360°回転可能な台座上に載置された単位セルの上方に板状部材を配置し、この板状部材と前記台座とを樹脂ボルトで緊締することで圧縮荷重を付与するようにしている。樹脂ボルトを使用する理由は、金属ボルトであるとX線の吸収散乱が増大されてノイズが増えることになるので、これを回避するためであると推察される。
さらに、非特許文献1記載の技術では、単位セルに対し、台座側から酸化剤ガスとしての空気を供給及び排出する一方で、板状部材側から燃料ガスとしての水素を供給及び排出し、これにより前記単位セルを発電させながら前記台座ごと回転させ、同時に、X線照射と透過X線検出を行ってCT像を得ることを試みている。なお、非特許文献1によれば、この場合の空間分解能は10μmであるとのことである。
特開2001−153821号公報 ジャーナル・オブ・マテリアルズ・ケミストリー(Journal of Materials Chemistry) 2007年第17号第3089頁〜第3103頁 Puneet K. Sinhaら、「Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells」(特に、第3102頁の図16)
特許文献1記載の技術では、前記一対の掴み具同士を同期回転させるべく、モータとスプライン機構を含む回転駆動力伝達機構を構築している。このため、回転駆動力伝達機構の構成が複雑である。
また、非特許文献1記載の技術では、上記したように緊締用ボルトとして樹脂ボルトが採用されているが、周知のように樹脂ボルトは耐熱性が十分であるとは言い難く、単位セルを比較的低温域、例えば、40〜50℃で発電させざるを得ない。すなわち、燃料電池の通常の発電温度域での評価が困難である。
また、単位セルを発電させる際の反応ガスとしては、電解質に十分な伝導度を発電させるべく湿潤ガスが用いられるが、上記したように発電温度が低い場合、反応ガス供給路内で結露が起こる懸念がある。このような事態が生じると電解質の伝導度が低下するので、この場合も単位セルの発電時の精確な評価を行うことが困難である。
さらに、樹脂ボルトは金属ボルトに比して強度が低い。従って、該樹脂ボルトが損傷することを回避するべく、緊締時の緊締力や、単位セルに運転時に付与する押圧力を小さくせざるを得ない。勿論、この場合、電気的接触抵抗が大きくなったり、シール性能が低減する懸念がある。
本発明は上記した問題を解決するためになされたもので、構成が簡素でありながら測定物を支持する支持部材を容易に回転させることが可能であり、しかも、測定物が燃料電池の単位セルである場合には、単位セルの電気的接触抵抗を低減し得るとともにシール性能を確保し得、さらに、X線の吸収散乱を効果的に抑制するために空間分解能が高いX線解析装置を提供することを目的とする。
前記の目的を達成するために、本発明は、測定物にX線を照射する一方、前記測定物を透過した透過X線を検出して前記測定物の内部の断層撮影像を得るX線解析装置であって、
前記測定物の位置を調整可能な位置決めステージと、
前記位置決めステージによって位置決めされ、且つ180°以上回転可能な回転台座を有する回転ステージと、
前記測定物を一端部から支持する第1支持部材と、
前記測定物を前記一端部とは別の端部から支持する第2支持部材と、
前記回転ステージと前記第1支持部材の間に介在され、前記回転台座の回転に追従して従動転することで前記測定物を前記第1支持部材ごと回転動作させる回転用支持部材と、
前記第2支持部材に対し、前記回転台座の回転に追従して従動回転する押圧力伝達部材を介して押圧力を付与する押圧力付与手段と、
前記押圧力伝達部材を回転自在に支持する受部材と、
前記押圧力付与手段が付与する押圧力を測定する押圧力測定手段と、
前記測定物に対してX線を照射するX線照射手段と、
前記測定物を透過したX線を検出するX線検出手段と、
前記X線検出手段からのデータに基づいて前記測定物の断層撮影像を作成するデータ処理部と、
を備えることを特徴とする。
本発明においては、押圧力付与手段(例えば、エアシリンダ等)によって測定物に押圧力(圧縮荷重)を付与する。この押圧力によって測定物のシール性が確保されるので、金属ボルト等の緊締部材を特に必要としない。従って、緊締部材によってX線が吸収散乱されることがなく、このため、ノイズが低減されて空間分解能が高いCT像を得ることができる。
しかも、本発明では、受部材以降の部材が回転することがない。従って、構成を簡素にすることができる。その上、回転させるべき部材の個数が少ないので、測定物を回転させるために大きな回転トルクを付与する必要がない。換言すれば、小さい回転トルクを付与することで第1支持部材及び第2支持部材とともに測定物を同期回転させることが容易である。
ここで、前記回転用支持部材に、該回転用支持部材の回転方向と交差する方向に押圧力を伝達する押圧面を形成するとともに、前記第1支持部材に、前記押圧面に当接して該押圧面から伝達された押圧力を受ける受圧面を形成することが好ましい。この場合、前記回転台座の回転トルクが前記第1支持部材に対して容易に伝達されるので、該第1支持部材、ひいては測定物を容易に回転させることができる。
例えば、前記回転用支持部材に矩形状の凸部を設ける一方、前記第1支持部材に、前記凸部の形状に対応する形状の凹部を設ければよい。勿論、その逆であってもよい。さらに、前記回転用支持部材と前記第1支持部材とをスプライン結合によって連結するようにしてもよい。
本発明によれば、燃料電池を構成する単位セルを測定物として断層撮影像を作成することも可能である。この場合においては、反応ガス供給管・排出管を設けるとともに、これら反応ガス供給管・排出管を介して単位セルに反応ガスを供給・排出して単位セルを発電させればよい。
より具体的には、前記第1支持部材に、前記単位セルに酸化剤ガス又は燃料ガスのいずれか一方を供給及び排出するための第1ガス供給管及び第1ガス排出管を設け、且つ前記第2支持部材に、前記単位セルに燃料ガス又は酸化剤ガスの残余の一方を供給及び排出するための第2ガス供給管及び第2ガス排出管を設ければよい。勿論、これらの供給管・排出管は、単位セルに対して照射されたX線を遮ることのない位置に配置される。
上記したように、本発明においては、エアシリンダ等の押圧力付与手段によって単位セルに押圧力が付与される。従って、緊締部材で緊締することなく、単位セルから反応ガスが漏洩することが回避される。しかも、単位セルが押圧されているので、電気的接触抵抗が大きくなることも回避される。
そして、この場合、緊締部材を用いないので、単位セル内の精確なCT像を得ることができ、結局、単位セルを精確に評価することが可能となる。
なお、単位セルに、一部が露呈した2個の集電板を含めるようにしてもよい。この場合、単位セルが発電することで得られる電流を前記露呈した部位から得ることができるので、第1支持部材や第2支持部材に電流が流れることを回避することが容易となり、その結果、単位セルの精確な評価を行うことが容易となる。なお、集電板に接続されるリード線は、単位セルに対して照射されたX線を遮ることのない位置に配置される。
さらに、前記第1支持部材及び前記第2支持部材の各々に加熱手段を設け、これにより単位セルを加熱するようにしてもよい。これにより、単位セルを実際の運転温度と略同程度の温度にして発電させた上で該単位セルの評価を行うことが可能となる。なお、加熱手段に接続されて該加熱手段を発熱させるための通電リード線もまた、単位セルに対して照射されたX線を遮ることのない位置に配置される。
以上の構成において、単位セルを測定物保持機構に保持する前、すなわち、押圧力付与手段によって押圧力を付与する前に、前記第1支持部材から前記第2支持部材にわたってる緊締部材(例えば、金属ボルト等)を橋架し、これにより仮止めを行うようにしてもよい。この場合、緊締部材を、前記第1支持部材及び前記第2支持部材に貫通形成されて側部が開口した挿入孔に着脱自在に挿入すればよい。
このように構成することにより、単位セルに対して押圧力を付与した後に緊締部材を取り外すことが可能となる。従って、残留した緊締部材によってX線の吸収散乱が惹起される懸念がない。
さらに、前記第1支持部材及び前記第2支持部材に挿通孔を貫通形成することが好ましい。この場合、単位セルを組み立てる際に、前記挿通孔に位置決め部材が着脱自在に挿入することができる。この位置決め部材によって単位セルを位置決めすれば、組み立てが著しく容易となる。
また、前記第1ガス供給管、前記第1ガス排出管、前記第2ガス供給管及び前記第2ガス排出管を前記測定物から離間させてX線照射位置以外に迂回させるための迂回部材を設けることが好ましい。上記した管やリード線等をこの迂回部材に伝わらせることにより、X線の照射及び検出中に管やリード線がX線の照射位置等に回り込むこと、換言すれば、測定物に向かうX線が遮られることを回避することができる。
本発明によれば、押圧力付与手段にて測定物に押圧力を付与するようにしているので、測定物に押圧力を付与するべく金属ボルト等の緊締部材を用いる必要は特にない。このため、緊締部材によってX線が吸収散乱されることを回避することができるので、ノイズが低減されて空間分解能が高いCT像を得ることができる。
しかも、本発明では、回転させるべき部材の点数が少なく、このために構成を簡素にすることができる。加えて、このために測定物を回転させる際に大きな回転トルクを付与する必要がない。すなわち、小さい回転トルクを付与することで第1支持部材及び第2支持部材とともに測定物を容易に同期回転させることができる。
以下、本発明に係るX線解析装置につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。
本実施の形態に係るX線解析装置の全体概略システム構成図を図1に示す。このX線解析装置10は、X線コントローラ12及び電源14の作用下にX線L1を照射するX線照射源16と、測定物としての単位セル18を保持した測定物保持機構20と、単位セル18を透過した透過X線L2を受ける透過X線検出部22と、前記透過X線L2に基づいて画像を形成する画像処理演算部24とを有する。なお、図1中の参照符号26、28は、それぞれ、測定物保持機構20を構成する位置決めステージ30(図2参照)の動作を制御するステージコントローラ、形成された画像を表示するディスプレイを示す。この中、X線照射源16、透過X線検出部22、画像処理演算部24及びディスプレイ28は公知であり、従って、詳細な説明を省略する。
図2に示すように、位置決めステージ30は、X軸ステージ32、Y軸ステージ34及びZ軸ステージ36を有する、いわゆるXYZステージである。すなわち、Y軸ステージ34はX軸に沿って、Y軸ステージ34の台座38はY軸に沿って、Z軸ステージ36の台座40はZ軸に沿ってそれぞれ変位する。
具体的には、X軸ステージ32は、2本のガイドレール42、42と、これらガイドレール42、42に対して平行に延在するボールねじ44とを有し、2本のガイドレール42、42はY軸ステージ34の下面に形成された係合溝46、46に係合されている。一方、ボールねじ44はY軸ステージ34に挿通されており、従って、ステージコントローラ26の作用下にモータ48が付勢されることに伴ってボールねじ44が回転動作すると、Y軸ステージ34がボールねじ44の延在方向、換言すれば、X軸方向に沿ってガイドレール42、42に案内されながら変位する。
Y軸ステージ34は、2本のガイドレール50、50と、ガイドレール50、50に対して平行に延在するボールねじ52と、前記台座38とを有する。この中のガイドレール50、50は、台座38の下面に形成された係合溝53、53に係合されている。また、ボールねじ52は台座38に挿通され、このため、ステージコントローラ26の作用下にモータ54が付勢された際には、ボールねじ52が回転動作することに追従して台座38がボールねじ52の延在方向であるY軸方向に沿ってガイドレール50、50に案内されながら変位する。
前記台座38の上端面には、Z軸ステージ36を構成する略直方体形状の柱状部材56と、該柱状部材56を支持する断面略T字状の補助部材58とが立設されている。この中、柱状部材56の一側面には、図示しない1本のガイドレールが敷設されるとともに、ボールねじ60が設けられている。勿論、ボールねじ60を回転動作させるためのモータ62は、前記ガイドレールに干渉しない位置に配置されている。
ボールねじ60は、Z軸ステージ36を構成する前記台座40に挿通されており、このため、該台座40は、ステージコントローラ26の作用下にモータ62が付勢されることによってボールねじ60が回転動作を開始することに伴い、前記ガイドレールが延在する鉛直方向、すなわち、Z軸方向に沿って変位する。
台座40には、Z軸に略直交する方向に突出するようにして載置用板部材64が連結されている。この載置用板部材64は、その下端面側から、支持補強部材66によって支持されている。
そして、載置用板部材64の先端部には、前記測定物保持機構20が載置・支持される(なお、図2においては、測定物保持機構20を構成する回転ステージ68のみを示している)。回転ステージ68を構成する平板状基盤70と載置用板部材64とを、図示しない連結ボルトによって互いに連結するようにしてもよい。
次に、測定物保持機構20につき説明する。
図3に示すように、回転ステージ68は、上記した平板状基盤70と、この平板状基盤70の上端面に設置された円柱形状のハウジング72と、該ハウジング72の開口から露呈した回転台座74とを有する。
回転台座74は、モータ76を含む回転機構によって180°以上、好ましくは360°回転することが可能である。すなわち、モータ76の回転軸の先端には図示しない歯部が形成され、この歯部は、ハウジング72内で回転台座74に設けられた軸部の歯部に噛合されている(いずれも図示せず)。従って、モータ76が付勢されることにより、その回転駆動力が回転台座74に伝達される。
回転台座74の略中心には、四角柱形状の回転用支持部材78が立設されている。すなわち、回転用支持部材78を長手方向(延在方向)に対して直交する方向に沿って切断した場合、その断面は矩形状である。後述するように、この回転台座74が回転動作すると、この回転用支持部材78も回転動作する。
回転用支持部材78の上方には、図3〜図5に示すように、測定物としての単位セル18が第1支持部材80と第2支持部材82とで挟持された状態で配置される。なお、図3〜図5においては、第1支持部材80から第2支持部材82にわたって4本の金属ボルト84(緊締部材)が橋架され、且つ各金属ボルト84にはナット86が螺合された状態を示しているが、後述するように、X線L1を照射する際には、これら金属ボルト84及びナット86は全て取り外される(図1参照)。
図4から諒解されるように、第1支持部材80は湾曲した側周壁を有し、この側周壁の4箇所が下端面から上端面に至るまで切り欠かれている。これにより、第1支持部材80の下端面から上端面に貫通形成され、且つ側方の一部が開口した4本の挿入孔88が形成された形態となっている。
第1支持部材80の湾曲した側周壁の中の2個には、平面部が形成される。これら平面部には、加熱手段としてのヒータ90が接合される。
図4のV−V線矢視断面図である図5に示すように、第1支持部材80の下端面には、前記回転用支持部材78を嵌合するための矩形状の嵌合用凹部92が形成されるとともに、単位セル18のアノード側電極136(図6及び図7参照)に燃料ガスを供給するための第1ガス供給通路94(図5参照)と、アノード側電極から排出された燃料ガスを排出するための第1ガス排出通路96とが開口する。各開口には管継手97、97がそれぞれ設けられ、これら管継手97、97の各々には、図示しない燃料ガス供給管(第1ガス供給管)、燃料ガス排出管(第1ガス排出管)が接続される。また、前記第1ガス供給通路94及び前記第1ガス排出通路96は、第1支持部材80の内部で互いに接近するように傾斜して設けられている。
一方の第2支持部材82は、第1支持部材80と略同様に構成されている。すなわち、第2支持部材82には、第1支持部材80の挿入孔88(図4参照)に対応する位置に、側周壁で開口した4本の挿入孔98が形成される。また、側周壁に形成された2つの平面部には、ヒータ90が接合され、さらに、第2支持部材82の上端面には、押圧力伝達部材である支持軸100(図3参照)を嵌合するための矩形状の嵌合用凹部102(図5参照)が形成される。
そして、第2支持部材82には、第1ガス供給通路94及び第1ガス排出通路96に代え、単位セル18のカソード側電極138(図6及び図7参照)に酸化剤ガスを供給するための第2ガス供給通路104(図5参照)と、カソード側電極から排出された酸化剤ガスを排出するための第2ガス排出通路106とが設けられる。これら第2ガス供給通路104、第2ガス排出通路106の各開口に嵌合された管継手108、108には、それぞれ、図示しない酸化剤ガス供給管(第2ガス供給管)、酸化剤ガス排出管(第2ガス排出管)が接続される。
第1支持部材80及び第2支持部材82には、単位セル18を組み立てる際に該単位セル18を位置決めするための位置決め部材である位置決めピン112(図8参照)が挿入される複数個のピン用挿通孔114、116が貫通形成されている。すなわち、位置決めピン112は、第1支持部材80のピン用挿通孔114に通された後、第2支持部材82のピン用挿通孔116に通される。
第1支持部材80の上端面、及び第2支持部材82の下端面には、それぞれ、直径方向に沿って延在する柱状突起部117、118が突出形成されており(図4参照)、これら柱状突起部117、118及びスペーサ120、122を介して単位セル18が挟持されている。なお、第1支持部材80、第2支持部材82と単位セル18との間には絶縁シート124、126(図5参照)がそれぞれ介装され、これら絶縁シート124、126により、第1支持部材80及び第2支持部材82を経由して電流が単位セル18の外方に流れることが防止される。勿論、絶縁シート124には、第1ガス供給通路94、第1ガス排出通路96に連通する第1供給貫通孔128、第1排出貫通孔130が形成され、絶縁シート126には、第2ガス供給通路104、第2ガス排出通路106に連通する第2供給貫通孔132、第2排出貫通孔134が形成される。
この場合、単位セル18は、図6及び図7に示すように、アノード側電極136とカソード側電極138の間に電解質140が介装されて形成された電解質・電極接合体142が第1セパレータ144と第2セパレータ146で挟持され、さらに、第1セパレータ144及び第2セパレータ146の外方に第1集電板148、第2集電板150がそれぞれ配設されることによって構成されている。このような構成は周知であり、従って、その詳細な説明は省略する。
この場合、電解質・電極接合体142は、両端部にタブ部152、152(図6参照)が突出形成された電解質140の各端面にアノード側電極136及びカソード側電極138のいずれか一方がそれぞれ形成されることで構成されている。ここで、図7に示すように、アノード側電極136及びカソード側電極138は、それぞれ、ガス拡散層153と反応触媒層154とを有する。
なお、図6から諒解されるように、アノード側電極136及びカソード側電極138は、ガスケット155、156に形成された各開口158、160にそれぞれ収容される。また、電解質140は、図5に示すように、第1セパレータ144と第2セパレータ146に挟持される。
図5に示すように、第1集電板148には、絶縁シート124の第1供給貫通孔128、第1排出貫通孔130にそれぞれ連通する第1供給連通孔162及び第1排出連通孔164が形成され、第1セパレータ144には、第1供給連通孔162、第1排出連通孔164にそれぞれ連通する第1主供給孔166、第1主排出孔168が形成される。さらに、第1主供給孔166と第1主排出孔168は、図6及び図7に示す燃料ガス供給排出溝170を介して連通している。ここで、燃料ガス供給排出溝170は、複数個のリブ172によって区画されることで複数本に形成されている(図6参照)。
同様に、第2集電板150には、図5に示すように、絶縁シート126の第2供給貫通孔132、第2排出貫通孔134にそれぞれ連通する第2供給連通孔174及び第2排出連通孔176が形成され、第2セパレータ146には、第2供給連通孔174、第2排出連通孔176にそれぞれ連通する第2主供給孔178、第2主排出孔180が形成される。勿論、第2主供給孔178と第2主排出孔180は、図6及び図7に示す酸化剤ガス供給排出溝182を介して連通する。この酸化剤ガス供給排出溝182も、複数個のリブ184によって区画されることで複数本に形成されている(図6参照)。
上記したように、第2支持部材82の上端面に形成された嵌合用凹部102には、支持軸100(図3参照)の先端が嵌合される。なお、支持軸100の先端は、断面矩形状に加工されており、従って、矩形状に陥没された嵌合用凹部102に対して嵌合可能である。
支持軸100は、図示しないベアリングを収容した軸受186(受部材)に回転自在に軸支されている。すなわち、回転ステージ68の回転台座74とともに回転動作するのは支持軸100までであり、軸受186を含め、支持軸100よりも上方に位置する部材が回転動作することはない。
軸受186の上方には、押圧力測定手段としてのロードセル188が配置される。このロードセル188により、エアシリンダ190が付与する圧縮荷重が数値として判別される。
エアシリンダ190は、鉛直方向に沿って進退動作する図示しないロッドを有し、このロッドの先端が、ロードセル188及び軸受186に通された長尺なソケットカップリング192を介して支持軸100を押圧する。
エアシリンダ190の上方には、遮蔽板194(迂回部材)が配置されており、ヒータ90に通電するための通電リード線、管継手97、97、108、108に接続される前記燃料ガス供給管、前記燃料ガス排出管、前記酸化剤ガス供給管、前記酸化剤ガス排出管、制御用リード線等は全て、この遮蔽板194の上端面に載置される。従って、上記した通電リード線、反応ガス供給管、反応ガス排出管及び制御用リード線等が単位セル18を覆うことはない。すなわち、遮蔽板194は、通電リード線、反応ガス供給管、反応ガス排出管及び制御用リード線等をX線照射位置以外に迂回させる機能を営む。
本実施の形態に係るX線解析装置10は、基本的には以上のように構成されるものであり、次にその作用効果について説明する。
先ず、単位セル18が組み立てられる。この際には、図示しない架台が用いられる。すなわち、前記架台上に第1支持部材80が載置され、図8及び図9に示すように、第1支持部材80のピン用挿通孔114に8本の位置決めピン112を通す。なお、前記架台は中空であるので、ピン用挿通孔114から第1支持部材80の下端面側に突出した位置決めピン112が架台に干渉することはない。
この場合、単位セル18は、略楕円形を描くようにして配置された8本の位置決めピン112に囲繞されることによって形成されるキャビティ196で組み立てられる。すなわち、キャビティ196にスペーサ120が挿入され、続いて絶縁シート124がスペーサ120上に載置される。
さらに、絶縁シート124上に第1集電板148が積層される。この際、第1集電板148は、該第1集電板148に形成された2個の貫通孔198、198に、互いに隣接する位置決めピン112が通されながら下方に移動され、最終的に、絶縁シート124の上端面に着座する。
次に、第1集電板148上に第1セパレータ144が積層され、さらに、第1セパレータ144上にガスケット155が積層される。勿論、絶縁シート124、第1集電板148、第1セパレータ144、ガスケット155は、位置決めピン112に摺接しながらキャビティ196に挿入される。
そして、電解質・電極接合体142を構成するアノード側電極136がガスケット155の開口158内に収容される。このとき、図8及び図9に示すように、電解質140の両端部に突出形成されたタブ部152、152が隣接する2本の位置決めピン112、112間に挟持され、これにより電解質・電極接合体142が位置決めされる。
このように、隣接する位置決めピン112、112の間にタブ部152、152を挿入することにより、電解質・電極接合体142を位置ズレさせることなくガスケット155に容易に収容することができるようになる。すなわち、タブ部152、152を設けることによって単位セル18の組み立てが容易となる。
次に、ガスケット156及び第2セパレータ146をこの順序で位置決めピン112に摺接させながらキャビティ196(8本の位置決めピン112の間)に挿入し、電解質・電極接合体142のカソード側電極138をガスケット156の開口160内に収容するとともに、電解質・電極接合体142を第1セパレータ144及び第2セパレータ146で挟持する。さらに、貫通孔200、200(図4参照)の各々に位置決めピン112、112が通された第2集電板150を下方に移動させて第2セパレータ146上に載置した後、この第2集電板150上に絶縁シート126及びスペーサ122を載置する。
次に、第2支持部材82のピン用挿通孔116に位置決めピン112を通し、この状態で、該第2支持部材82をスペーサ122の上端面に着座させる。その後、図4に示すように、第1支持部材80及び第2支持部材82の側方から挿入孔88、98の各々に金属ボルト84が挿入され、該金属ボルト84にナット86が螺合される。この螺合に伴って緊締がなされ、単位セル18が第1支持部材80及び第2支持部材82から押圧される。
この場合、金属ボルト84及びナット86を介して緊締がなされる。金属ボルト84の強度は樹脂ボルトに比して大きく、従って、緊締力を大きくすることが可能である。
このようにして単位セル18が組み立てられた後、第1支持部材80及び第2支持部材82が架台から離間する方向、すなわち、上方に変位され、これにより位置決めピン112がピン用挿通孔114、116から離脱する。
その後、回転ステージ68を構成する回転台座74に設けられた断面矩形状の回転用支持部材78が、第1支持部材80の嵌合用凹部92に嵌合される。一方、第2支持部材82の嵌合用凹部102に、支持軸100を構成して断面矩形状に形成された先端部が嵌合され、これにより単位セル18が測定物保持機構20に保持される。
次に、エアシリンダ190を介して単位セル18に圧縮荷重を付加する。この付加は、ロードセル188からの出力をモニタしながら行われ、エアシリンダ190に供給する圧縮エアを制御することで圧縮荷重の大きさが調整される。最終的に、予め設定された所定の圧縮荷重が付与されたことを確認した後、ナット86を緩めて全ての金属ボルト84を第1支持部材80及び第2支持部材82の挿入孔88、98から離脱させる。
すなわち、本実施の形態においては、エアシリンダ190によって所定の圧縮荷重が単位セル18に付加された後は、金属ボルト84が取り外される(図1参照)。このため、金属ボルト84によってX線L1が吸収散乱することを回避することができる。
さらに、測定物保持機構20に保持された単位セル18に対して加熱や温度測定を行うべく、第1支持部材80及び第2支持部材82にヒータ90や熱電対等がリード線を介して取り付けられる。勿論、管継手97、97、108、108に対しては反応ガス供給管及び反応ガス排出管が接続される。以上のリード線や反応ガス供給管、反応ガス排出管としては可撓性を示すものが採用され、これらは全て、単位セル18を迂回するようにして前記遮蔽板194に載置される。
なお、燃料ガス及び酸化剤ガスとしては、例えば、水素ガス及び圧縮エアを用いればよい。この場合、第1ガス供給管に燃料ガス供給源としての水素ガスボンベを接続するとともに、第2ガス供給管に酸化剤ガス供給源としてのエアコンプレッサを接続すればよい。なお、電解質140が乾燥した場合、電解質140の伝導度が低下する傾向がある。これを回避するべく、これらの反応ガスには所定量の水分が付与される。換言すれば、反応ガスは湿潤ガスである。
その後、ヒータ90に通電がなされ、熱電対によって測定される単位セル18の温度を予め設定された所定の温度に到達させ、水素ガスボンベから水素を供給するとともに、エアコンプレッサから圧縮エアを供給する。水素は、第1ガス供給管、管継手97、第1ガス供給通路94、第1供給貫通孔128、第1供給連通孔162及び第1主供給孔166を通過して燃料ガス供給排出溝170に導入され、該燃料ガス供給排出溝170を流通することでアノード側電極136に供給される。一方、圧縮エアは、第2ガス供給管、管継手108、第2ガス供給通路104、第2供給貫通孔132、第2供給連通孔174及び第2主供給孔178を通過して酸化剤ガス供給排出溝182に導入され、該酸化剤ガス供給排出溝182を流通することでカソード側電極138に供給される。
上記した反応ガス供給の結果、圧縮エア中の酸素と、水素とが反応を起こすことによって水分が生成する。この状態で反応条件を制御し、電流密度や電圧を調整する。なお、単位セル18に対してはエアシリンダ190から圧縮荷重が付与されているので、該単位セル18から反応ガスが漏洩することが回避される。また、単位セル18の電気的接触抵抗が大きくなることも回避し得る。
以上のようにして測定準備がなされた後、位置決めステージ30を構成するY軸ステージ34(図2参照)、Y軸ステージ34の台座38、Z軸ステージ36の台座40を、ステージコントローラ26の作用下にX軸、Y軸及びZ軸に沿って各々変位させ、これにより単位セル18を所定の位置に変位させる。この際には、モータ48、54、62が付勢され、Y軸ステージ34がガイドレール42、42に沿って、Y軸ステージ34の台座がガイドレール50、50に沿って、Z軸ステージ36の台座が図示しないガイドレールに沿って変位する。
次に、X線コントローラ12及び電源14の作用下に、図1に示すように、単位セル18に向けてX線照射源16からX線L1を照射する。この際、単位セル18からは金属ボルト84が既に取り外されており、しかも、単位セル18に対して反応ガスを供給・排出するための反応ガス供給管・反応ガス排出管やリード線等が遮蔽板194側に迂回されている。従って、測定物である単位セル18以外にX線L1が入射されることが回避される。なお、X線L1の照射方式としては、例えば、いわゆるコーンビーム式を採用すればよい。
X線L1の一部は、単位セル18を透過し、透過X線L2として透過X線検出部22に入射する。換言すれば、透過X線検出部22は、透過X線L2を検出し、その結果を画像処理演算部24に送る。上記したように、本実施の形態によれば、単位セル18以外にX線L1が入射されることが回避されるので、単位セル18以外でX線L1が吸収散乱されてノイズが発生することを回避することができる。
なお、画像処理演算部24は、送られた検出結果を画像データとして演算し、その演算結果(画像データ)を蓄積する。
この測定が終了した後、モータ76を付勢し、回転ステージ68を構成する回転台座74を360°以内の所定角度、例えば、約0.5°だけ回転させる。その後、上記と同様に単位セル18に対してX線L1を照射し、透過X線L2を検出して画像処理演算部24に画像データを蓄積させる。この操作を、回転台座74、ひいては単位セル18が360°回転するまで繰り返す。これにより単位セル18の画像データが1回転分蓄積され、画像処理演算部24は、この蓄積された画像データに基づいてCT像を構築し、ディスプレイ28に映像として表示する。
ここで、上記したように、回転用支持部材78が断面矩形状に構成されるとともに、回転用支持部材78と第1支持部材80の連結部位も断面矩形状に構成されている。このため、矩形状凸部となった回転用支持部材78の先端側壁が、第1支持部材80の嵌合用凹部92の内壁を押圧する。すなわち、回転用支持部材78の先端側壁が押圧面として機能する一方、嵌合用凹部92の内壁が受圧面としての役割を営む。従って、回転に際し、回転台座74によるトルクが第1支持部材80に十分に伝達される。
また、支持軸100が軸受186に収容された前記ベアリングに支持されているため、軸受186を含め、その上方に位置する部材が回転することがない。従って、大きなトルクを負荷する必要もない。すなわち、本実施の形態によれば、第1支持部材80と第2支持部材82を同期回転させることが容易である。
得られたCT像は、ノイズが少なく空間分解能が高い。上記したように、単位セル18以外でX線L1が吸収散乱されることが回避されているからである。従って、本実施の形態によれば、発電中の単位セル18の内部について、特許文献1や非特許文献1に記載されているような従来技術に比して一層精確な知見を得ることが可能となる。
なお、上記した実施の形態においては、燃料電池を構成する単位セル18を測定物とする場合を例示して説明したが、測定物がこれに限定されるものではないことはいうまでもない。
また、回転用支持部材78と第1支持部材80等の連結部位をはじめとする各連結部位は、矩形状の凸部及び凹部に特に限定されるものではない。例えば、一方に三角形状、六角形状又は十字形状の凸部を設けるとともに、残余の他方に、前記凸部の形状に対応する形状の凹部を設け、これら凸部及び凹部を互いに嵌合することによっても、回転時のトルクを容易に伝達することが可能となる。勿論、スプライン結合を採用するようにしてもよい。
第1セパレータ144及び第2セパレータ146として、縦15mm×横15mm×厚み4mmのものを選定するとともに、ガスケット155、156として縦15mm×横15mm×厚み0.2mmで幅が2mmのものを選定した。また、縦15mm×横15mm×厚み50μmで両端部にタブ部152、152が形成されたデュポン社製のナフィオン112からなる電解質140の各端面に、縦11mm×横11mmのアノード側電極136、カソード側電極138をそれぞれ形成した。なお、アノード側電極136及びカソード側電極138の各々は、厚みが0.22mmであるTGP−H−060(東レ社製のカーボンペーパーの商品名)からなるガス拡散層153に、Ptが0.5mg/cm2の割合で分散された反応触媒層154が形成されることで構成されたものである。
単位セル18をこのように小型化したことにより、X線照射源16を単位セル18に近接させて配置することが可能となった。このため、空間分解能が一層向上した。また、ガスケット155、156の幅が比較的小さいので、ガスケット155、156によるX線吸収が低減され、これにより吸収散乱を一層抑制することができた。
以上の単位セル18の構成部材を用い、上記したようにして単位セル18を組み立てた。この際、第1支持部材80から第2支持部材82にわたって橋架された金属ボルト84と、該金属ボルト84に螺合されるナット86とによって32kg/cm2の圧縮荷重が作用するように締め付けた。
さらに、第1支持部材80の嵌合用凹部92に回転用支持部材78の先端部を嵌合し、第2支持部材82の嵌合用凹部102に支持軸100を嵌合することで単位セル18を測定物保持機構20に保持した。
次に、エアシリンダ190を付勢し、32kg/cm2の圧縮荷重が作用するように供給エア量を調整した。この際、ロードセル188は70kgを表示した。その後、ナット86を緩め、金属ボルト84を第1支持部材80及び第2支持部材82から取り外した。
次に、第1支持部材80及び第2支持部材82に反応ガス供給管・反応ガス排出管やヒータ90、熱電対等を取り付けた。これらの管及び必要配線は、遮蔽板194に載置して単位セル18を迂回させた。
そして、ヒータ90に通電し、熱電対によって示される温度が75℃となるまで単位セル18を昇温した。その後、60℃に保持された温水が収容された加湿器を通過した水素ガスを50cc/分で第1セパレータ144に供給する一方、75℃に保持された温水が収容された加湿器を通過した圧縮エアを150cc/分で第2セパレータ146に供給した。なお、水素及び圧縮エアは、前記温水に浸漬した管から導出してバブリングさせた。
以上により、アノード側電極136及びカソード側電極138の各々に燃料ガス(水素)、酸化剤ガス(圧縮エア中の酸素)を供給した。その結果、酸素と水素の結合を伴う発電反応が生じ、単位セル18に起電力が生じた。この際、単位セル18から反応ガスが漏洩することはなかった。
次に、一定の電流密度で発電中の単位セル18の位置を位置決めステージ30によって調整し、発電を行いながら単位セル18にX線L1を照射し、4インチイメージインテンシファイア、100万画素CCDカメラで透過X線L2を検出した。このX線照射及び透過X線L2検出を、回転台座74(単位セル18)を0.6°ずつ回転させながら600回行い、単位セル18を360°、すなわち、1回転させて全画像データを蓄積した結果、空間分解能が0.8μmであるCT像が得られた。
図10A〜図14Aは、電流密度が1.0A/cm2、セル電圧が約0.5Vで発電中の単位セル18におけるカソード側電極138の拡散層のCT像であり、図10B〜図14Bは、放電後に窒素ガスでパージされた対応箇所のCT像である。なお、図10A、図10Bが最も第2セパレータ146側に近接し、図11A及び図11B〜図14A及び図14Bの順序で電解質140側に近接する。いずれにおいても、X線L1は、管電圧90kV、管電流0.019mAの条件下、100kV密封管を照射源としてコーンビーム方式で発生させている。このとき、検出器分解能は7〜10lp/mm、空間分解能は4.9μm×4.9μm×4.9μmであった。また、再構成視野である円の直径は5mm、ピクセル数は1024であり、拡散層を構成する炭素繊維が明瞭に確認し得る。
図10A〜図14Aにおいては、枠で囲繞して示す部分が濃くなっていることが認められる。この囲繞された部分は、第2セパレータ146のリブ184と拡散層とが当接した箇所に対応する。
一方、図10B〜図14Bを参照し、発電状態にないときには全体にわたってコントラストが略均一であることが諒解される。燃料電池の発電反応によって生成した水は、リブ184以外の箇所では第2ガス供給排出溝を介して拡散層から排出されることから、図10A〜図14Aにおいて、第2セパレータ146のリブ184と拡散層とが当接した箇所に生成水が滞留していると判断される。
本実施の形態に係るX線解析装置の全体概略システム構成図である。 前記X線解析装置を構成する位置決めステージの要部概略構成図である。 前記X線解析装置を構成する測定物保持機構の要部概略構成図である。 前記測定物保持機構を構成する第1支持部材と第2支持部材とで単位セルが挟持された状態を示す全体概略斜視図である。 図4のV−V線矢視断面図である。 単位セルの全体概略斜視分解図である。 単位セルの要部縦断面図である。 単位セルを組み立てている状態を示す概略斜視図である。 単位セルを組み立てている状態を示す概略平面図である。 図10Aは、発電途中のカソード側電極側の拡散層であり、図10Bは発電停止後のカソード側電極側の拡散層であって、図10〜図14で示される部位中、最もセパレータ側に近接する部位のCT像である。 図11Aは、発電途中のカソード側電極側の拡散層であり、図11Bは発電停止後のカソード側電極側の拡散層であって、図10A、図10Bに示される部位よりも電解質側に近接する部位のCT像である。 図12Aは、発電途中のカソード側電極側の拡散層であり、図12Bは発電停止後のカソード側電極側の拡散層であって、図11A、図11Bに示される部位よりも電解質側に近接する部位のCT像である。 図13Aは、発電途中のカソード側電極側の拡散層であり、図13Bは発電停止後のカソード側電極側の拡散層であって、図12A、図12Bに示される部位よりも電解質側に近接する部位のCT像である。 図14Aは、発電途中のカソード側電極側の拡散層であり、図14Bは発電停止後のカソード側電極側の拡散層であって、図10〜図14で示される部位中、最も電解質側に近接する部位のCT像である。
符号の説明
10…X線解析装置 16…X線照射源
18…単位セル 20…測定物保持機構
22…透過X線検出部 24…画像処理演算部
30…位置決めステージ 32…X軸ステージ
34…Y軸ステージ 36…Z軸ステージ
68…回転ステージ 74…回転台座
78…回転用支持部材 80…第1支持部材
82…第2支持部材 84…金属ボルト
86…ナット 88、98…挿入孔
90…ヒータ 92、102…嵌合用凹部
94…第1ガス供給通路 96…第1ガス排出通路
100…支持軸 104…第2ガス供給通路
106…第2ガス排出通路 112…位置決めピン
114、116…ピン用挿通孔 124、126…絶縁シート
128…第1供給貫通孔 130…第1排出貫通孔
132…第2供給貫通孔 134…第2排出貫通孔
136…アノード側電極 138…カソード側電極
140…電解質 142…電解質・電極接合体
144…第1セパレータ 146…第2セパレータ
148…第1集電板 150…第2集電板
152…タブ部 155、156…ガスケット
162…第1供給連通孔 164…第1排出連通孔
166…第1主供給孔 168…第1主排出孔
170…燃料ガス供給排出溝 172、184…リブ
174…第2供給連通孔 176…第2排出連通孔
178…第2主供給孔 180…第2主排出孔
182…酸化剤ガス供給排出溝 186…軸受
188…ロードセル 190…エアシリンダ
192…ソケットカップリング 194…遮蔽板
L1…X線 L2…透過X線

Claims (8)

  1. 測定物にX線を照射する一方、前記測定物を透過した透過X線を検出して前記測定物の内部の断層撮影像を得るX線解析装置であって、
    前記測定物の位置を調整可能な位置決めステージと、
    前記位置決めステージによって位置決めされ、且つ180°以上回転可能な回転台座を有する回転ステージと、
    前記測定物を一端部から支持する第1支持部材と、
    前記測定物を前記一端部とは別の端部から支持する第2支持部材と、
    前記回転ステージと前記第1支持部材の間に介在され、前記回転台座の回転に追従して従動転することで前記測定物を前記第1支持部材ごと回転動作させる回転用支持部材と、
    前記第2支持部材に対し、前記回転台座の回転に追従して従動回転する押圧力伝達部材を介して押圧力を付与する押圧力付与手段と、
    前記押圧力伝達部材を回転自在に支持する受部材と、
    前記押圧力付与手段が付与する押圧力を測定する押圧力測定手段と、
    前記測定物に対してX線を照射するX線照射手段と、
    前記測定物を透過したX線を検出するX線検出手段と、
    前記X線検出手段からのデータに基づいて前記測定物の断層撮影像を作成するデータ処理部と、
    を備えることを特徴とするX線解析装置。
  2. 請求項1記載の装置において、前記回転用支持部材に、該回転用支持部材の回転方向と交差する方向に押圧力を伝達する押圧面が形成されるとともに、前記第1支持部材に、前記押圧面に当接して該押圧面から伝達された押圧力を受ける受圧面が形成されることを特徴とするX線解析装置。
  3. 請求項1又は2記載の装置において、当該X線解析装置は、燃料電池を構成する単位セルを前記測定物として断層撮影像を作成するものであり、
    前記第1支持部材に、前記単位セルに酸化剤ガス又は燃料ガスのいずれか一方を供給及び排出するための第1ガス供給管及び第1ガス排出管が設けられ、
    且つ前記第2支持部材に、前記単位セルに燃料ガス又は酸化剤ガスの残余の一方を供給及び排出するための第2ガス供給管及び第2ガス排出管が設けられたことを特徴とするX線解析装置。
  4. 請求項3記載の装置において、前記単位セルが、一部が露呈した2個の集電板を含み、前記単位セルが発電することで得られる電流を前記露呈した部位から得ることを特徴とするX線解析装置。
  5. 請求項3又は4記載の装置において、前記第1支持部材及び前記第2支持部材の各々に加熱手段が設けられていることを特徴とするX線解析装置。
  6. 請求項3〜5のいずれか1項に記載の装置において、前記第1支持部材から前記第2支持部材にわたって橋架される緊締部材を有し、前記緊締部材は、前記第1支持部材及び前記第2支持部材に貫通形成されて側部が開口した挿入孔に着脱自在に挿入されることを特徴とするX線解析装置。
  7. 請求項3〜6のいずれか1項に記載の装置において、前記第1支持部材及び前記第2支持部材に挿通孔が貫通形成され、前記挿入孔には、前記単位セルを位置決めするための位置決め部材が着脱自在に挿入されることを特徴とするX線解析装置。
  8. 請求項3〜7のいずれか1項に記載の装置において、さらに、少なくとも、前記第1ガス供給管、前記第1ガス排出管、前記第2ガス供給管及び前記第2ガス排出管を前記測定物から離間させてX線照射位置以外に迂回させるための迂回部材を有することを特徴とするX線解析装置。
JP2008328238A 2008-12-24 2008-12-24 X線解析装置 Expired - Fee Related JP5220581B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328238A JP5220581B2 (ja) 2008-12-24 2008-12-24 X線解析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328238A JP5220581B2 (ja) 2008-12-24 2008-12-24 X線解析装置

Publications (2)

Publication Number Publication Date
JP2010151532A JP2010151532A (ja) 2010-07-08
JP5220581B2 true JP5220581B2 (ja) 2013-06-26

Family

ID=42570811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328238A Expired - Fee Related JP5220581B2 (ja) 2008-12-24 2008-12-24 X線解析装置

Country Status (1)

Country Link
JP (1) JP5220581B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956665A (zh) * 2018-04-28 2018-12-07 中国工程物理研究院核物理与化学研究所 一种用于脆性材料微观结构研究的中子测量方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226235B1 (ko) 2010-12-31 2013-01-30 주식회사 신코 시료 거치 장치 및 이를 구비한 휴대용 엑스레이 형광 분석기용 챔버
JP6222517B2 (ja) * 2013-09-09 2017-11-01 住友電気工業株式会社 解析用セル、解析装置、および解析方法
CN107703165B (zh) * 2017-10-23 2023-08-08 中国科学院苏州生物医学工程技术研究所 具有精密样品检测转台的ct成像设备
JPWO2021014696A1 (ja) * 2019-07-25 2021-01-28
JP7412770B2 (ja) 2020-09-28 2024-01-15 株式会社リガク 加圧分析用構造体、x線回折装置及び加圧分析システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104294B2 (ja) * 1990-04-20 1995-11-13 新日本製鐵株式会社 材料評価装置
JPH05223756A (ja) * 1992-02-18 1993-08-31 Nippon Steel Corp 材料評価装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956665A (zh) * 2018-04-28 2018-12-07 中国工程物理研究院核物理与化学研究所 一种用于脆性材料微观结构研究的中子测量方法
CN108956665B (zh) * 2018-04-28 2020-10-23 中国工程物理研究院核物理与化学研究所 一种用于脆性材料微观结构研究的中子测量方法

Also Published As

Publication number Publication date
JP2010151532A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5220581B2 (ja) X線解析装置
Antonacci et al. Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance
Chevalier et al. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part II. In operando synchrotron imaging for microscale liquid water transport characterization
Shrestha et al. Hydrophilic microporous layer coatings for polymer electrolyte membrane fuel cells operating without anode humidification
Ge et al. Membrane dehydration with increasing current density at high inlet gas relative humidity in polymer electrolyte membrane fuel cells
Lai et al. In-situ diagnostics and degradation mapping of a mixed-mode accelerated stress test for proton exchange membranes
Phillips et al. Impacts of electrode coating irregularities on polymer electrolyte membrane fuel cell lifetime using quasi in-situ infrared thermography and accelerated stress testing
Deevanhxay et al. In situ diagnostic of liquid water distribution in cathode catalyst layer in an operating PEMFC by high-resolution soft X-ray radiography
Banerjee et al. Identifying in operando changes in membrane hydration in polymer electrolyte membrane fuel cells using synchrotron X-ray radiography
KR101145628B1 (ko) 연료전지의 핀홀 감지 시스템
JP2004199918A (ja) 燃料電池の診断方法
CN110611114A (zh) 燃料电池膜电极快速测试设备
Peng et al. Operando μ-Raman study of the actual water content of perfluorosulfonic acid membranes in the fuel cell
CN210489745U (zh) 燃料电池膜电极快速测试设备
Bharti et al. Proton exchange membrane testing and diagnostics
Rasha et al. Water distribution mapping in polymer electrolyte fuel cells using lock-in thermography
KR101448766B1 (ko) 연료전지 스택의 진단 시스템
Maier et al. Investigation of HT-PEFCs by means of synchrotron X-ray radiography and electrochemical impedance spectroscopy
Kamat et al. Experimental investigations into phosphoric acid adsorption on platinum catalysts in a high temperature PEM Fuel cell
Fairweather et al. Interaction of heat generation, MPL, and water retention in corroded PEMFCs
JP2005038694A (ja) 高分子電解質型燃料電池用meaの検査方法
Taylor et al. Mitigation and diagnosis of pin-hole formation in polymer electrolyte membrane fuel cells
Watanabe et al. Simultaneous measurements of liquid water distributions and catalyst layer surface temperature inside operating PEMFC
KR101294182B1 (ko) 연료전지용 전해질막 검사장치 및 방법
JP5326309B2 (ja) 固体高分子形燃料電池用評価セル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees