JP5216246B2 - Continuous firing furnace - Google Patents

Continuous firing furnace Download PDF

Info

Publication number
JP5216246B2
JP5216246B2 JP2007147734A JP2007147734A JP5216246B2 JP 5216246 B2 JP5216246 B2 JP 5216246B2 JP 2007147734 A JP2007147734 A JP 2007147734A JP 2007147734 A JP2007147734 A JP 2007147734A JP 5216246 B2 JP5216246 B2 JP 5216246B2
Authority
JP
Japan
Prior art keywords
furnace
temperature
continuous firing
heat
firing furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007147734A
Other languages
Japanese (ja)
Other versions
JP2008298404A (en
Inventor
芳和 浦西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2007147734A priority Critical patent/JP5216246B2/en
Priority to KR1020070077918A priority patent/KR101537273B1/en
Priority to CN200710148740XA priority patent/CN101319849B/en
Publication of JP2008298404A publication Critical patent/JP2008298404A/en
Application granted granted Critical
Publication of JP5216246B2 publication Critical patent/JP5216246B2/en
Priority to KR1020140014368A priority patent/KR20140022451A/en
Priority to KR20150049873A priority patent/KR20150043281A/en
Priority to KR1020160022432A priority patent/KR20160033085A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases

Description

この発明は、プラズマディスプレイパネル(PDP)などの製造工程に用いられる、ガラス基板の焼成工程や、ガラス基板のアニール処理工程などで使用される連続焼成炉に関する。   The present invention relates to a continuous firing furnace used in a manufacturing process of a plasma display panel (PDP) or the like and used in a glass substrate firing process, a glass substrate annealing process, or the like.

連続焼成炉は、炉内に設定温度が異なる複数の熱処理ゾーンを備える。各熱処理ゾーンは、ガラス基板等の処理対象物が搬送される搬送路に沿って連続して形成される。搬送路はローラハース等により構成される。各処理対象物は、所定の間隔で搬送路上を連続搬送またはタクト搬送される。各処理対象物は各熱処理ゾーンで所定の熱処理を受ける。   The continuous firing furnace includes a plurality of heat treatment zones having different set temperatures in the furnace. Each heat treatment zone is continuously formed along a conveyance path along which a processing object such as a glass substrate is conveyed. The conveyance path is configured by roller hearth or the like. Each processing object is continuously or tact-transferred on the transfer path at a predetermined interval. Each processing object is subjected to a predetermined heat treatment in each heat treatment zone.

連続焼成炉では、処理対象物の搬送により連続焼成炉から一定の熱量が持ち出されて炉内の雰囲気温度が変動する。また、処理対象物の搬送に伴い熱処理ゾーン間で加熱気体が流動し、各ゾーンでの雰囲気温度が変動する。この雰囲気温度の変動は、処理対象物の搬送開始後の一定期間に顕著であり、従来は処理対象物を搬送する前に、ダミーと呼ばれる仮の処理対象物を搬送し、雰囲気温度を安定化してから、実際の処理対象物であるガラス基板などを搬送していた。   In the continuous firing furnace, a certain amount of heat is taken out of the continuous firing furnace by conveying the object to be processed, and the atmospheric temperature in the furnace changes. Further, the heated gas flows between the heat treatment zones as the processing object is conveyed, and the ambient temperature in each zone varies. This variation in the atmospheric temperature is noticeable for a certain period after the start of conveyance of the processing object. Conventionally, before the processing object is conveyed, a temporary processing object called a dummy is conveyed to stabilize the atmospheric temperature. After that, the glass substrate etc. which are the actual processing objects were conveyed.

各熱処理ゾーンは、ゾーン内の各位置の雰囲気温度が設定温度付近で安定するように温度制御される。各熱処理ゾーンにはヒータなどの発熱部と、炉内を防塵化したり炉内への熱放射を均一化したりするためのマッフル板と、各ゾーンの温度を検出する熱電対などの温度検出部とが設けられ、温度検出部の検出温度に基づいて雰囲気温度の変動を補償するように発熱部の発熱量が制御される(例えば、特許文献1参照。)。
特開2004−218956号公報
Each heat treatment zone is temperature-controlled so that the ambient temperature at each position in the zone is stabilized near the set temperature. Each heat treatment zone has a heat generating part such as a heater, a muffle plate for dust-proofing the inside of the furnace and making the heat radiation into the furnace uniform, and a temperature detecting part such as a thermocouple for detecting the temperature of each zone Is provided, and the amount of heat generated by the heat generating unit is controlled so as to compensate for the variation in the ambient temperature based on the temperature detected by the temperature detecting unit (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2004-218156

炉内におけるマッフル板よりも搬送路側では、加熱気体の流動が激しく過度の温度変動が生じる。したがって、マッフル板より搬送路側の温度変化を検出してヒータを制御しても、雰囲気温度を安定化することが困難であった。   On the transport path side of the muffle plate in the furnace, the flow of the heated gas is intense and excessive temperature fluctuations occur. Therefore, it is difficult to stabilize the ambient temperature even if a temperature change on the conveyance path side from the muffle plate is detected and the heater is controlled.

炉内におけるマッフル板よりもヒータ側では、加熱気体が殆ど流動せず温度変動が緩やかである。したがって、マッフル板表面またはマッフル板よりヒータ側の温度変化を検出してヒータを制御すると、雰囲気温度は安定化するが、突発的な温度変化に対する制御応答性が望ましくなかった。   On the heater side of the muffle plate in the furnace, the heated gas hardly flows and the temperature fluctuation is gentle. Therefore, when the heater is controlled by detecting the temperature change on the heater surface from the surface of the muffle plate or the muffle plate, the ambient temperature is stabilized, but the control responsiveness to the sudden temperature change is not desirable.

例えば、連続焼成炉の幅方向に複数の処理対象物を並べて搬送する場合、ある処理対象物の配置抜けが突発的に生じた際に、炉内の雰囲気が部分的に過熱状態になる。このため、この部分ではヒータの発熱量を抑制する必要が生じるが、マッフル板表面またはマッフル板よりヒータ側に設けた熱電対での検出温度に基づいてヒータを制御すると、ヒータの制御が遅れて処理対象物が過剰に焼けてしまうことがあった。   For example, when a plurality of processing objects are transported side by side in the width direction of the continuous firing furnace, the atmosphere in the furnace is partially overheated when an arrangement failure of a certain processing object occurs suddenly. For this reason, it is necessary to suppress the amount of heat generated by the heater in this part. The processing object may be burned excessively.

この発明の目的は、雰囲気温度を安定化しながら、制御応答性を高めた連続焼成炉を提供することにある。   An object of the present invention is to provide a continuous firing furnace having improved control responsiveness while stabilizing the ambient temperature.

この発明の連続焼成炉は、発熱手段とマッフル板と制限手段と温度検出手段と温度制御手段とを備える。発熱手段は、搬送路を内設した炉内に設けられている。マッフル板は、炉内の搬送路と発熱手段との間に設けられている。制限手段は炉内に外気を通気して搬送路の搬送方向に沿った加熱気体の流動を制限するものである。温度検出手段は、炉内のマッフル板よりも搬送路側に配置されている。温度制御手段は温度検出手段の検出温度に基づいて発熱手段を制御する。複数の温度検出手段と複数の発熱手段とを、搬送路の搬送方向に直交する方向に沿って配列し、温度制御手段により、特定の温度検出手段の検出温度に基づいて発熱手段を制御する。 The continuous firing furnace of the present invention includes a heat generating means, a muffle plate, a limiting means, a temperature detecting means, and a temperature control means. The heat generating means is provided in a furnace provided with a conveyance path. The muffle plate is provided between the conveyance path in the furnace and the heat generating means. The restricting means vents outside air into the furnace to restrict the flow of the heated gas along the transport direction of the transport path. The temperature detection means is disposed on the transport path side of the muffle plate in the furnace. The temperature control means controls the heat generation means based on the temperature detected by the temperature detection means. A plurality of temperature detection means and a plurality of heat generation means are arranged along a direction orthogonal to the conveyance direction of the conveyance path, and the temperature control means controls the heat generation means based on the detected temperature of the specific temperature detection means.

この構成では、制限手段により炉内に外気が通気されるので、搬送方向の加熱気体の流動が抑制されて炉内の雰囲気温度の変動が低減する。したがって、制御応答性を高めるために、温度検出手段によりマッフル板よりも搬送路側の雰囲気温度を直接検出して発熱手段の制御を行っても、雰囲気温度が安定化する。また、複数の温度検出手段と複数の発熱手段とを、搬送路の搬送方向に直交する方向に沿って配列し、温度制御手段により、特定の温度検出手段の検出温度に基づいて発熱手段を制御することにより、炉内における搬送路に直交する方向の各位置の雰囲気温度を均一化できる。 In this configuration, since the outside air is vented into the furnace by the restricting means, the flow of the heated gas in the transport direction is suppressed, and the fluctuation of the atmospheric temperature in the furnace is reduced. Therefore, in order to improve control responsiveness, the ambient temperature is stabilized even if the temperature detection means directly detects the ambient temperature on the transport path side of the muffle plate and controls the heating means. Also, a plurality of temperature detecting means and a plurality of heat generating means are arranged along a direction orthogonal to the transport direction of the transport path, and the heat control is controlled by the temperature control means based on the temperature detected by the specific temperature detecting means. By doing so, the atmospheric temperature of each position of the direction orthogonal to the conveyance path in a furnace can be equalize | homogenized.

制限手段は、炉壁に設けた貫通孔により炉内に外気を通気する手段であると好適である。炉壁に設けた貫通孔により、炉内に外気を通気して炉内の搬送方向の加熱気体の流動を制限することができる。   The limiting means is preferably a means for venting outside air into the furnace through a through hole provided in the furnace wall. Through the through hole provided in the furnace wall, the outside air can be vented into the furnace to restrict the flow of the heated gas in the conveying direction in the furnace.

搬送路を搬送方向に配列されたローラハースを含んで構成してもよく、その場合には、貫通孔は、炉外に設けられた駆動機構に接続されるローラハースの回転軸の挿通孔であると好適である。   The conveyance path may include roller hearths arranged in the conveyance direction, and in this case, the through hole is an insertion hole of a rotation shaft of the roller hearth connected to a drive mechanism provided outside the furnace. Is preferred.

この発明によれば、炉内での搬送方向の加熱気体の流動が低減されるので、炉内の搬送路側の雰囲気温度が安定化し、この雰囲気温度を直接検出することで制御応答性を高めることができる。従って、必ずしも処理対象物の搬送開始前に多数のダミー基板を搬送することなく、処理対象物の熱処理を効率よく行える。   According to this invention, since the flow of the heated gas in the conveying direction in the furnace is reduced, the atmosphere temperature on the conveying path side in the furnace is stabilized, and the control responsiveness is improved by directly detecting the atmosphere temperature. Can do. Therefore, the heat treatment of the processing object can be efficiently performed without necessarily transporting a large number of dummy substrates before the start of the transport of the processing object.

以下に、図面を参照して連続焼成炉の構成例を説明する。図1は、ローラハース式の連続焼成炉の側面断面図であり、図2は、連続焼成炉の正面断面図である。   Hereinafter, a configuration example of a continuous firing furnace will be described with reference to the drawings. 1 is a side sectional view of a roller hearth type continuous firing furnace, and FIG. 2 is a front sectional view of the continuous firing furnace.

連続焼成炉10は、処理対象物である基板100の搬送路を内設している。搬送路の搬送方向(図1中、矢印Xで示す方向。)に沿って、複数の熱処理ゾーン12を連続して配置している。搬送路として、回転自在な複数のローラ15を搬送方向Xに沿って等間隔で配置している。基板100は、複数のローラ15の回転により、複数の熱処理ゾーン12を順に通過して搬送される。基板100は、各熱処理ゾーン12で連続搬送またはタクト搬送される。   The continuous firing furnace 10 has a conveyance path for the substrate 100 that is a processing target. A plurality of heat treatment zones 12 are continuously arranged along the conveyance direction of the conveyance path (the direction indicated by the arrow X in FIG. 1). As the conveyance path, a plurality of rotatable rollers 15 are arranged along the conveyance direction X at equal intervals. The substrate 100 is transported through the plurality of heat treatment zones 12 in order by the rotation of the plurality of rollers 15. The substrate 100 is continuously transferred or tact transferred in each heat treatment zone 12.

連続焼成炉10の炉壁11は、上壁面11A、底壁面11B、側壁面11C,11Dで構成されている。炉壁11の上壁面11Aと下壁面11Bとには、複数のヒータ13を搬送方向Xに沿って配列している。ヒータ13は本発明の発熱手段である。ヒータ13により、各熱処理ゾーン12は予め設定された所定の熱処理温度に加熱される。   The furnace wall 11 of the continuous firing furnace 10 includes an upper wall surface 11A, a bottom wall surface 11B, and side wall surfaces 11C and 11D. A plurality of heaters 13 are arranged along the transport direction X on the upper wall surface 11 </ b> A and the lower wall surface 11 </ b> B of the furnace wall 11. The heater 13 is a heat generating means of the present invention. Each heat treatment zone 12 is heated to a predetermined heat treatment temperature set in advance by the heater 13.

上壁面11Aおよび下壁面11Bそれぞれにおける、熱処理ゾーン12の境界には、断熱材17を設置している。断熱材17は、熱処理ゾーン12の境界での熱伝導を抑制する。   A heat insulating material 17 is installed at the boundary of the heat treatment zone 12 in each of the upper wall surface 11A and the lower wall surface 11B. The heat insulating material 17 suppresses heat conduction at the boundary of the heat treatment zone 12.

図2に示すように、各炉壁11A〜11Dによって囲まれる空間内に、さらにマッフル板16A〜16を設けている。マッフル板16A〜16によって囲まれる空間内を基板100が搬送される。マッフル板16A〜16は、ここでは耐熱ガラス板で構成している。なお、耐熱ガラス板ではなく金属板で構成しても良い。マッフル板16A〜16は、炉壁11の壁面から生じた塵埃が基板100に付着することを防止するとともに、ヒータ13からの放射熱を通し、基板100の雰囲気を効率的に熱する。 As shown in FIG. 2, muffle plates 16 </ b> A to 16 </ b> C are further provided in spaces surrounded by the furnace walls 11 </ b> A to 11 </ b> D. Substrate 100 in the space surrounded by the muffle plate 16A~16 C is conveyed. Muffle plate 16A~16 C is here constituted by heat resistant glass plate. In addition, you may comprise with a metal plate instead of a heat-resistant glass plate. The muffle plates 16 </ b> A to 16 </ b> C prevent dust generated from the wall surface of the furnace wall 11 from adhering to the substrate 100, and pass the radiant heat from the heater 13 to efficiently heat the atmosphere of the substrate 100.

図1に示すようにヒータ13は搬送方向Xに沿って複数配列されている。さらに図2に示すようにヒータ13は搬送方向Xに直交する直交方向Yにも沿って複数配列されている。また、熱電対19も搬送方向Xおよび直交方向Yに沿って複数配列されている。この例では、直交方向Yに沿って、4つのヒータ13と、3つの熱電対19とを配置している。   As shown in FIG. 1, a plurality of heaters 13 are arranged along the transport direction X. Further, as shown in FIG. 2, a plurality of heaters 13 are arranged along an orthogonal direction Y orthogonal to the transport direction X. A plurality of thermocouples 19 are also arranged along the transport direction X and the orthogonal direction Y. In this example, four heaters 13 and three thermocouples 19 are arranged along the orthogonal direction Y.

熱電対19は配管22を介してコントローラ21に配線接続されている。コントローラ21は、各ヒータ13の発熱量をそれぞれに対応する特定の熱電対19により検出したマッフル内温度に基づいて、制御する。   The thermocouple 19 is connected to the controller 21 via a pipe 22. The controller 21 controls the amount of heat generated by each heater 13 based on the temperature in the muffle detected by a specific thermocouple 19 corresponding to the heater 13.

また、ローラ15は、直交方向Yに沿って延び、側壁面11C,11Dおよびマッフル板16Cに設けられた貫通孔20を介して両端部が炉外に退出している。 Further, the roller 15 extends along the orthogonal direction Y, and both end portions thereof are retracted out of the furnace through the through holes 20 provided in the side wall surfaces 11C and 11D and the muffle plate 16C .

ここでは貫通孔20を、側壁面11C,11Dおよびマッフル板16Cとローラ15とが交差する部分に設けている。 Here, the through-hole 20 is provided in the part where the side walls 11C and 11D and the muffle plate 16C and the roller 15 intersect.

このように貫通孔20を設けているので、複数の熱処理ゾーン12のそれぞれの間で、即ち搬送方向Xに沿って加熱気体の流動があると、その分、炉外と炉内との間で、貫通孔20を通じて加熱気体が排出され、外気が吸気される。   Since the through hole 20 is provided in this way, if there is a flow of heated gas between each of the plurality of heat treatment zones 12, that is, along the transport direction X, between that and the inside of the furnace. The heated gas is discharged through the through hole 20 and the outside air is sucked.

したがって、搬送方向Xに沿った加熱気体の流動が各熱処理ゾーンを伝搬することが抑制され、各熱処理ゾーンの雰囲気温度の変動が抑制される。これにより、マッフル板16A〜16Cに囲まれた空間内に熱電対19を配していても、コントローラ21によるヒータ13の制御により、マッフル内温度を安定化させることができる。


Accordingly, the flow of the heated gas along the transport direction X is suppressed from propagating through each heat treatment zone, and the variation in the ambient temperature of each heat treatment zone is suppressed. Thereby, even if the thermocouple 19 is arranged in the space surrounded by the muffle plates 16A to 16C , the temperature in the muffle can be stabilized by the control of the heater 13 by the controller 21.


ここで、本構成でガラス基板の焼成を行った実験結果を示す。図3は雰囲気温度の時間変化を示すグラフである。同図では縦軸に処理対象物の雰囲気温度を示し、横軸に経過時間を示している。同図(A)に本構成例を示す。同図(B)に熱電対をマッフルよりもヒータ側に設けた比較例を示す。   Here, an experimental result in which a glass substrate is baked in this configuration is shown. FIG. 3 is a graph showing the time change of the ambient temperature. In the figure, the vertical axis indicates the ambient temperature of the object to be processed, and the horizontal axis indicates the elapsed time. This configuration example is shown in FIG. The comparative example which provided the thermocouple in the heater side rather than the muffle in the same figure (B) is shown.

いずれの例においても最初は一定期間だけ処理対象物を搬送せずに、その後、連続して複数の処理対象物を搬送している。また、連続する3つの熱処理ゾーン(ZONE11〜13)それぞれでの直交方向の3箇所の温度をそれぞれ示している。   In any of the examples, the processing object is not first transported for a certain period, and thereafter, a plurality of processing objects are transported continuously. In addition, three temperatures in the orthogonal direction in each of the three consecutive heat treatment zones (ZONEs 11 to 13) are shown.

同図(A)に示す本構成例では、当初の処理対象物が搬送されてこない期間では、熱処理ゾーン(ZONE11〜13)それぞれでの雰囲気温度は設定温度で安定している。その後、各ゾーンに順に基板が搬入され、それぞれの雰囲気温度が低下するがすぐに設定温度まで回復する。次の基板が搬入されるまでに雰囲気温度は設定温度にまで回復するので、1枚目の基板から設定温度の雰囲気で焼成を行える。   In this configuration example shown in FIG. 5A, the atmospheric temperature in each of the heat treatment zones (ZONEs 11 to 13) is stable at the set temperature during the period in which the initial processing object is not conveyed. Thereafter, the substrates are sequentially loaded into the respective zones, and the respective ambient temperatures decrease, but immediately recover to the set temperatures. Since the ambient temperature recovers to the preset temperature before the next substrate is carried in, baking can be performed from the first substrate in the ambient at the preset temperature.

一方、同図(B)に示す比較例では、当初の処理対象物が搬送されてこない期間では、熱処理ゾーン(ZONE11〜13)それぞれでの雰囲気温度は設定温度よりも高温の初期温度で安定している。しかし、各ゾーンに1枚目の基板が搬入されると雰囲気温度が低下し、初期温度にまで回復する前に、次の基板が搬入され雰囲気温度が次第に低下する。そして、一定枚数の基板(この例では11枚の基板)の通過後になってやっと、設定温度付近で雰囲気温度が安定し、その後の基板から設定温度の雰囲気で焼成を行える。   On the other hand, in the comparative example shown in FIG. 5B, the atmospheric temperature in each of the heat treatment zones (ZONEs 11 to 13) is stable at an initial temperature higher than the set temperature during a period in which the original processing object is not conveyed. ing. However, when the first substrate is loaded into each zone, the ambient temperature decreases, and before the next substrate is recovered to the initial temperature, the next substrate is loaded and the ambient temperature gradually decreases. Then, only after a certain number of substrates (11 substrates in this example) have passed, the ambient temperature stabilizes near the set temperature, and firing can be performed from the subsequent substrate in the set temperature atmosphere.

以上のように、本構成例では搬入される1枚目の基板から設定温度での焼成を行うことができ、比較例のように一定枚数のダミー基板を必要としない。したがって、高効率に焼成を行える。   As described above, in this configuration example, baking can be performed at a set temperature from the first substrate that is carried in, and a fixed number of dummy substrates is not required as in the comparative example. Therefore, firing can be performed with high efficiency.

上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The above description of the embodiment is to be considered in all respects as illustrative and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

この発明の実施形態に係る連続焼成炉の一例を示す側面断面図である。It is side surface sectional drawing which shows an example of the continuous baking furnace which concerns on embodiment of this invention. 同炉の正面断面図である。It is front sectional drawing of the same furnace. 基板焼成の実験例での炉内の温度変化を説明する断面図である。It is sectional drawing explaining the temperature change in the furnace in the experiment example of board | substrate baking.

符号の説明Explanation of symbols

11…炉壁
12…熱処理ゾーン
13…ヒータ
15…ローラ
16…マッフル板
17…断熱材
19…熱電対
20…貫通孔
21…コントローラ
22…配管
100…基板
DESCRIPTION OF SYMBOLS 11 ... Furnace wall 12 ... Heat processing zone 13 ... Heater 15 ... Roller 16 ... Muffle plate 17 ... Heat insulation material 19 ... Thermocouple 20 ... Through-hole 21 ... Controller 22 ... Piping 100 ... Substrate

Claims (3)

搬送路を内設した炉内に設けられた発熱手段と、
前記炉内の前記搬送路と前記発熱手段との間に設けられたマッフル板と、
前記炉内に外気を通気して前記搬送路の搬送方向に沿った加熱気体の流動を制限する制限手段と、
前記炉内の前記マッフル板よりも搬送路側に配置された温度検出手段と、
前記温度検出手段の検出温度に基づいて前記発熱手段を制御する温度制御手段と、
を備え
複数の前記温度検出手段と複数の前記発熱手段とを、前記搬送路の搬送方向に直交する方向に沿って配列し、
前記温度制御手段により、特定の前記温度検出手段の検出温度に基づいて前記発熱手段を制御する、
連続焼成炉。
Heating means provided in a furnace having a conveying path;
A muffle plate provided between the conveying path in the furnace and the heating means;
Limiting means for venting outside air into the furnace and restricting the flow of the heated gas along the transport direction of the transport path;
A temperature detecting means disposed on the side of the conveying path from the muffle plate in the furnace;
Temperature control means for controlling the heating means based on the temperature detected by the temperature detection means;
Equipped with a,
A plurality of the temperature detection means and a plurality of the heat generation means are arranged along a direction orthogonal to the transport direction of the transport path,
The temperature control means controls the heat generating means based on the temperature detected by the specific temperature detecting means.
Continuous firing furnace.
前記制限手段は、炉壁に設けた貫通孔により前記炉内に外気を通気する手段である請求項1に記載の連続焼成炉。 The continuous firing furnace according to claim 1 , wherein the limiting means is means for ventilating outside air into the furnace through a through hole provided in the furnace wall. 前記搬送路は搬送方向に配列されたローラハースを含んで構成されるものであり、
前記貫通孔は、炉外に設けられた駆動機構に接続される、前記ローラハースの回転軸の挿通孔である請求項2に記載の連続焼成炉。
The transport path is configured to include roller hearts arranged in the transport direction,
The continuous firing furnace according to claim 2 , wherein the through hole is an insertion hole of a rotating shaft of the roller hearth connected to a driving mechanism provided outside the furnace.
JP2007147734A 2007-06-04 2007-06-04 Continuous firing furnace Expired - Fee Related JP5216246B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007147734A JP5216246B2 (en) 2007-06-04 2007-06-04 Continuous firing furnace
KR1020070077918A KR101537273B1 (en) 2007-06-04 2007-08-02 Continuous firing furnace
CN200710148740XA CN101319849B (en) 2007-06-04 2007-09-11 Continuous firing furnace
KR1020140014368A KR20140022451A (en) 2007-06-04 2014-02-07 Continuous firing furnace
KR20150049873A KR20150043281A (en) 2007-06-04 2015-04-08 Continuous firing furnace
KR1020160022432A KR20160033085A (en) 2007-06-04 2016-02-25 Continuous firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147734A JP5216246B2 (en) 2007-06-04 2007-06-04 Continuous firing furnace

Publications (2)

Publication Number Publication Date
JP2008298404A JP2008298404A (en) 2008-12-11
JP5216246B2 true JP5216246B2 (en) 2013-06-19

Family

ID=40172077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147734A Expired - Fee Related JP5216246B2 (en) 2007-06-04 2007-06-04 Continuous firing furnace

Country Status (3)

Country Link
JP (1) JP5216246B2 (en)
KR (4) KR101537273B1 (en)
CN (1) CN101319849B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526402B (en) * 2009-04-16 2011-02-02 南京华显高科有限公司 Method for judging accuracy and uniformity of furnace temperature of firing furnace
WO2010137286A1 (en) * 2009-05-28 2010-12-02 パナソニック株式会社 Calcination device
JP4911203B2 (en) * 2009-07-23 2012-04-04 株式会社村田製作所 In-furnace temperature measurement method, in-furnace temperature measurement device, heat treatment device, and calcining synthesis method of ceramic raw material powder
CN101629782B (en) * 2009-08-04 2011-02-16 长沙力元新材料有限责任公司 Porous metal heat treatment equipment
CN101839639A (en) * 2010-05-18 2010-09-22 中国电子科技集团公司第四十研究所 Method for monitoring temperature curve of tunnel furnace
KR101193351B1 (en) 2011-07-11 2012-10-19 삼성전기주식회사 Furnace
JP6240371B2 (en) * 2011-09-05 2017-11-29 株式会社Ihi Heating furnace and continuous heating furnace
EP3155868B1 (en) 2014-06-16 2022-08-24 Telefonaktiebolaget LM Ericsson (publ) Method and entity in tdd radio communications
JP6653282B2 (en) * 2017-03-08 2020-02-26 日本碍子株式会社 Method for measuring temperature of honeycomb formed body

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210090A (en) * 1988-06-29 1990-01-12 Matsushita Electric Ind Co Ltd Sintering furnace with ambient air
JPH10206020A (en) * 1997-01-23 1998-08-07 Murata Mfg Co Ltd Device and method of controlling temperature of heat treatment equipment
JP2001012860A (en) * 1999-06-28 2001-01-19 Ngk Insulators Ltd Continuous heating furnace for large size glass substrate
JP2001147083A (en) * 1999-09-09 2001-05-29 Ngk Insulators Ltd Method of introducing clean air into kiln
JP2001241855A (en) * 1999-12-20 2001-09-07 Ngk Insulators Ltd Continuous heating oven
JP3683166B2 (en) * 2000-08-07 2005-08-17 日本碍子株式会社 Substrate heat treatment method and continuous heat treatment furnace used therefor
TW500910B (en) * 2000-10-10 2002-09-01 Ishikawajima Harima Heavy Ind Continuous sintering furnace and its using method
US6435866B1 (en) * 2001-02-16 2002-08-20 Delphi Technologies, Inc. Radiation furnace with independently controlled heating elements
JP3667270B2 (en) * 2001-10-12 2005-07-06 松下電器産業株式会社 Substrate heat treatment method and furnace equipment therefor
JP2004218956A (en) * 2003-01-16 2004-08-05 Ngk Insulators Ltd Method of heat-treating substrate and heat treatment furnace
JP2007003089A (en) * 2005-06-23 2007-01-11 Nidec-Shimpo Corp Mounting structure of temperature control device in ceramic art kiln

Also Published As

Publication number Publication date
KR20160033085A (en) 2016-03-25
KR101537273B1 (en) 2015-07-16
KR20080106826A (en) 2008-12-09
JP2008298404A (en) 2008-12-11
KR20140022451A (en) 2014-02-24
KR20150043281A (en) 2015-04-22
CN101319849A (en) 2008-12-10
CN101319849B (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5216246B2 (en) Continuous firing furnace
JP6049763B2 (en) Baking device and oven
JP5401015B2 (en) Continuous firing furnace
JP6548895B2 (en) Heater unit and carburizing furnace
JP3683166B2 (en) Substrate heat treatment method and continuous heat treatment furnace used therefor
JP2011066318A (en) Heat processing apparatus
JP2010223563A (en) Roller hearth kiln for atmospheric baking
JP2007051038A (en) Continuous firing apparatus for flat glass plate
JP5446653B2 (en) Heat treatment equipment
JP4245177B2 (en) Heat treatment equipment
JP4661766B2 (en) Method and apparatus for firing honeycomb structure
JP2006288295A (en) Tunnel oven
JP5125059B2 (en) Glass substrate transfer method
JP5767354B2 (en) Heat treatment equipment
JP2005114284A (en) Kiln
JP5566197B2 (en) Tunnel oven
JP7065240B1 (en) A continuous heating furnace and a method for heat-treating the object to be treated using it.
WO2020241489A1 (en) Heating device and heating method
JP5062803B2 (en) Method for firing products that generate corrosive gas
JP2008256229A (en) Firing furnace and firing method
JP2008292117A (en) Continuous burning apparatus
WO2020241488A1 (en) Heating device and heating method
JP2002206863A (en) Continuously heat treating furnace
JP2014020762A (en) Heat treatment apparatus
JP2020116539A (en) Substrate treatment device and substrate treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees