JP2001012860A - Continuous heating furnace for large size glass substrate - Google Patents

Continuous heating furnace for large size glass substrate

Info

Publication number
JP2001012860A
JP2001012860A JP11182319A JP18231999A JP2001012860A JP 2001012860 A JP2001012860 A JP 2001012860A JP 11182319 A JP11182319 A JP 11182319A JP 18231999 A JP18231999 A JP 18231999A JP 2001012860 A JP2001012860 A JP 2001012860A
Authority
JP
Japan
Prior art keywords
heating
heated
temperature
glass substrate
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11182319A
Other languages
Japanese (ja)
Inventor
Satoshi Taniguchi
聡 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP11182319A priority Critical patent/JP2001012860A/en
Publication of JP2001012860A publication Critical patent/JP2001012860A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products
    • C03B29/08Glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct temperature rising, insulation and the like and prevent defects in a substrate, such as strain, cracking, chipping and the like in the state where the surface temperature is controlled with precision. SOLUTION: A continuous heating furnace for a large size glass substrate comprises a plurality of heating chambers 1 each having a heating means which is capable of conducting temperature control, and a conveying means 6 for intermittently conveying an object 3 to be heated to the adjacent heating chamber. In each of the heating chambers 1, the heating means 2 and its control system are divided into some portions at least in respect of the moving direction of the object 3. Further, there are provided partition walls 4 for sectioning the inside of the heating chamber 1 so that the individual definitions correspond to the divided portions of the heating means 2, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、例えばプラズマ
ディスプレイパネル等に使用される大型ガラス基板を加
熱するための連続加熱炉に関し、詳しくは大型ガラス基
板の表面温度を精密に制御した状態で昇温,保温等する
ことができ、基板の歪み,割れ,欠け等の欠陥を防止す
ることが可能な連続加熱炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous heating furnace for heating a large glass substrate used for, for example, a plasma display panel and the like, and more particularly, to a heating method in which the surface temperature of a large glass substrate is precisely controlled. The present invention relates to a continuous heating furnace capable of keeping heat, etc., and preventing defects such as distortion, cracking, and chipping of a substrate.

【0002】[0002]

【従来の技術】 近年、壁掛けテレビやマルチメディア
用ディスプレイとして利用できる、大画面フラットパネ
ルディスプレイ(以下、「FPD」という。)の実用化
が着々と進行しつつある。このような大画面FPDとし
ては、自発光型で広い視野角を持ち、表示品質が良いと
いう品質面のメリットと、製作プロセスが簡単で大型化
が容易という製造面でのメリットを兼ね備えた、プラズ
マディスプレイパネル(以下、「PDP」という。)が
最有力候補として挙げられている。
2. Description of the Related Art In recent years, large-screen flat panel displays (hereinafter, referred to as “FPDs”), which can be used as wall-mounted televisions and multimedia displays, have been steadily put into practical use. As such a large-screen FPD, a plasma light emitting device that combines the advantages of quality, that is, a self-luminous type, a wide viewing angle, and good display quality, and the advantages of manufacturing, that is, the manufacturing process is simple and the size can be easily increased. A display panel (hereinafter, referred to as “PDP”) is listed as a leading candidate.

【0003】 PDPの製造は、例えば図4に示すよう
に、前面ガラス、背面ガラスと称する大型ガラス基板の
表面に、印刷,乾燥,焼成の工程を複数回繰り返す厚膜
法により、電極,誘電体,蛍光体等の種々の部材を逐次
形成していき、最終的に前面ガラスと背面ガラスとを封
着することにより行われる。この場合において、ガラス
基板の乾燥,焼成は、例えばローラハースキルンのよう
な、温度制御可能な電気ヒータ等の加熱手段を有する複
数の加熱室と、隣接する加熱室へ被加熱体であるガラス
基板を搬送するためのローラ等の搬送手段とを備えた連
続加熱炉を使用し、各加熱室を個別に温度制御すること
により、所望の温度曲線に従って、昇温、保温、及び降
温する方法で行うのが一般的である。
As shown in FIG. 4, for example, a PDP is manufactured by using a thick film method in which printing, drying, and firing steps are repeated a plurality of times on the surface of a large glass substrate called a front glass or a rear glass, by using a thick film method. , Phosphors and the like are sequentially formed, and finally the front glass and the back glass are sealed. In this case, the glass substrate is dried and fired by, for example, a plurality of heating chambers having a heating means such as a roller hearth kiln having a temperature-controllable electric heater, and a glass substrate as an object to be heated being heated to an adjacent heating chamber. Using a continuous heating furnace equipped with a conveying means such as a roller for conveying the ink, and by individually controlling the temperature of each heating chamber, in accordance with a desired temperature curve, performing a method of raising, lowering, and lowering the temperature. It is common.

【0004】 ところで、PDPのような大型のガラス
基板を乾燥,焼成する場合には、基板表面の温度をでき
る限り均一な状態とすることが要求される。基板表面の
温度分布が大きい状態で乾燥,焼成等を行うと、基板
や基板上に形成した部材が歪むことに起因して、割れ,
欠け等の欠陥を生ずる、乾燥,焼成の工程で生じた歪
みが残留することによって、その後の工程(例えば研削
工程等)において同様の欠陥を生ずる、欠陥が生ずる
ことによって製品の歩留まりが低下する、等の不具合を
生ずるからである。
When a large glass substrate such as a PDP is dried and fired, it is required that the temperature of the substrate surface be as uniform as possible. If drying and firing are performed in a state where the temperature distribution on the substrate surface is large, the substrate and the members formed on the substrate may be cracked or broken due to distortion.
Defects, such as chipping, remain in the drying and firing steps, resulting in similar defects in subsequent steps (eg, a grinding step). Defects reduce the product yield. This is because such a problem as described above occurs.

【0005】 乾燥・焼成時における基板表面の温度分
布については、ディスプレイが50〜60インチに大型
化しつつある昨今では、特に厳格な条件が要求されるよ
うになっており、具体的には、基板表面の各部分におけ
る最高温度と最低温度との温度差Δtが、常温〜400
℃の昇温域では20℃以内、400〜600℃の昇温域
では10℃以内、焼成温度である600℃に到達した後
は6℃以内という極めて厳格な温度条件が必要とされて
いる。
[0005] With regard to the temperature distribution on the substrate surface during drying and baking, particularly strict conditions have been required in recent years, as displays have been increasing in size to 50 to 60 inches. The temperature difference Δt between the highest temperature and the lowest temperature in each part of the surface is from room temperature to 400
Extremely strict temperature conditions are required: within 20 ° C. in the temperature rising range of 10 ° C., within 10 ° C. in the temperature rising range of 400 to 600 ° C., and within 6 ° C. after reaching the firing temperature of 600 ° C.

【0006】 従って、ガラス基板の材質を高歪点ガラ
スとする等の材質上の改良の他、各加熱室の温度を個別
に制御するのみならず、1の加熱室内においても加熱手
段及びその制御系を分割することにより、更に精密な温
度制御を行うという設備上の改良も試みられている(特
開平10-82583号公報)。当該設備によれば、基板表面の
うちの温度上昇し難い部分(例えば、基板中央部等)の
み加熱の程度を高めるような温度制御も可能となり、基
板表面の各部分における最高温度と最低温度との温度差
Δtを狭めることができるとされている。
Therefore, in addition to the improvement of the material such as the glass substrate being made of a high strain point glass, not only the temperature of each heating chamber is individually controlled, but also the heating means and its control in one heating chamber. Attempts have been made to improve the equipment by performing more precise temperature control by dividing the system (Japanese Patent Laid-Open No. 10-82583). According to the facility, it is also possible to perform temperature control such that the degree of heating is increased only in a portion of the substrate surface where the temperature is difficult to increase (for example, the central portion of the substrate), and the maximum temperature and the minimum temperature in each portion of the substrate surface are reduced. It is said that the temperature difference Δt can be reduced.

【0007】[0007]

【発明が解決しようとする課題】 しかしながら、上述
の設備を使用した場合にあっても、分割した各加熱手段
が隣接する他の加熱手段、或いは隣接する他の加熱室の
温度の影響を受けるため、必要とされる精密な温度制御
ができていないのが現状である。即ち、分割した加熱手
段毎の温度制御が厳密に行われても、図5(b)に示す
ようにその熱が被加熱体である大型ガラス基板43表面
に到達するまでに拡散して均一化されてしまうため、図
5(c)に示すような大型ガラス基板43表面の部分毎
に加熱の程度を調整する制御は行うことができないので
ある。
However, even when the above-mentioned equipment is used, each divided heating means is affected by the temperature of another adjacent heating means or another adjacent heating chamber. At present, the required precise temperature control has not been achieved. That is, even if the temperature control for each of the divided heating means is strictly performed, as shown in FIG. 5B, the heat diffuses until reaching the surface of the large glass substrate 43, which is the object to be heated, and becomes uniform. Therefore, control for adjusting the degree of heating for each portion of the surface of the large glass substrate 43 as shown in FIG. 5C cannot be performed.

【0008】 本発明はこのような従来技術の問題点に
鑑みてなされたものであって、大型ガラス基板の表面温
度を精密に制御した状態で昇温,保温等することがで
き、基板の歪み,割れ,欠け等の欠陥を防止することが
可能な連続加熱炉を提供することにある。
The present invention has been made in view of the above-mentioned problems of the related art, and it is possible to raise and keep the temperature of a large-sized glass substrate while controlling the surface temperature of the substrate precisely. An object of the present invention is to provide a continuous heating furnace capable of preventing defects such as cracks, chips and the like.

【0009】[0009]

【課題を解決するための手段】 本発明者らが前記問題
点について鋭意検討した結果、各加熱室において加熱手
段及びその制御系を分割することに加え、当該分割され
た加熱手段に対応するように、加熱室内の空間を構造的
に或いは実質的に区分することにより、上述の課題を解
決できることに想到して本発明を完成した。
Means for Solving the Problems As a result of the present inventors' earnest studies on the above-mentioned problems, in addition to dividing the heating means and its control system in each heating chamber, it is necessary to cope with the divided heating means. Further, the present invention has been completed in view of solving the above-mentioned problem by structurally or substantially dividing the space in the heating chamber.

【0010】 即ち、本発明によれば、温度制御可能な
加熱手段を有する複数の加熱室と、隣接する加熱室へ被
加熱体を間欠的に搬送するための搬送手段と、を備え、
各加熱室を個別に温度制御することにより、所望の温度
曲線に従って、昇温、保温、及び降温が行えるように構
成された、大型ガラス基板用の連続加熱炉であって、前
記各加熱室において、加熱手段及びその制御系を、少な
くとも被加熱体の進行方向に対して、いくつかに分割
し、かつ、当該分割された加熱手段に対応するように、
加熱室内を区分する隔壁を配設したことを特徴とする大
型ガラス基板用連続加熱炉が提供される。
That is, according to the present invention, there are provided a plurality of heating chambers having heating means capable of controlling the temperature, and a transport means for intermittently transporting the object to be heated to an adjacent heating chamber,
By controlling the temperature of each heating chamber individually, according to a desired temperature curve, the temperature is raised, kept warm, and configured to be able to lower the temperature, a continuous heating furnace for a large glass substrate, in each of the heating chamber , Heating means and its control system, at least with respect to the traveling direction of the object to be heated, divided into several, and, corresponding to the divided heating means,
A continuous heating furnace for a large glass substrate, wherein a partition for partitioning a heating chamber is provided.

【0011】 また、本発明によれば、温度制御可能な
加熱手段を有する複数の加熱室と、隣接する加熱室へ被
加熱体を間欠的に搬送するための搬送手段と、を備え、
各加熱室を個別に温度制御することにより、所望の温度
曲線に従って、昇温、保温、及び降温が行えるように構
成された、大型ガラス基板用の連続加熱炉であって、前
記各加熱室において、加熱手段及びその制御系を、少な
くとも被加熱体の進行方向に対して、いくつかに分割
し、かつ、当該分割された加熱手段を、被加熱体の静止
位置に近接するように配設したことを特徴とする大型ガ
ラス基板用連続加熱炉が提供される。
Further, according to the present invention, there are provided a plurality of heating chambers having heating means capable of controlling the temperature, and a transport means for intermittently transporting the object to be heated to an adjacent heating chamber,
By controlling the temperature of each heating chamber individually, according to a desired temperature curve, the temperature is raised, kept warm, and configured to be able to lower the temperature, a continuous heating furnace for a large glass substrate, in each of the heating chamber , The heating means and its control system are divided at least with respect to the direction of movement of the object to be heated, and the divided heating means are arranged so as to be close to the stationary position of the object to be heated. A continuous heating furnace for a large glass substrate is provided.

【0012】 本発明の連続加熱炉においては、加熱手
段と被加熱体の移動領域との間に、赤外線照射率の高い
材質からなるマッフルを配置することがことが好まし
く、加熱手段と被加熱体の移動領域との間に、Si含浸
SiC質からなるマッフルを配置することが更に好まし
く、Si含浸SiC質からなるマッフルを被加熱体の進
行方向に対して分割された加熱手段に対応するように分
割することが特に好ましい。
In the continuous heating furnace of the present invention, it is preferable that a muffle made of a material having a high infrared irradiation rate is disposed between the heating means and the moving area of the object to be heated. It is further preferable to arrange a muffle made of Si-impregnated SiC material between the moving region and the muffle region made of Si-impregnated SiC material so that the muffle made of Si-impregnated SiC material corresponds to heating means divided in the traveling direction of the object to be heated. Splitting is particularly preferred.

【0013】[0013]

【発明の実施の形態】 本発明の大型ガラス基板用連続
加熱炉は、各加熱室において加熱手段及びその制御系を
分割することに加え、当該分割された加熱手段に対応す
るように、加熱室内の空間を構造的に或いは実質的に複
数の領域に区分したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The continuous heating furnace for large glass substrates according to the present invention has a heating chamber and a control system thereof divided in each heating chamber, and the heating chamber is adapted to correspond to the divided heating means. Is structurally or substantially divided into a plurality of regions.

【0014】 このような構成によれば、大型のガラス
基板を焼成する場合にあっても、基板の表面温度を精密
に制御した状態で昇温,保温等することができ、基板の
歪み,割れ,欠け等の欠陥を防止することが可能とな
る。以下、本発明の連続加熱炉について詳細に説明す
る。
According to such a configuration, even when a large-sized glass substrate is fired, the temperature can be raised and kept in a state in which the surface temperature of the substrate is precisely controlled, and the substrate can be distorted or cracked. , Chipping and other defects can be prevented. Hereinafter, the continuous heating furnace of the present invention will be described in detail.

【0015】 本発明の連続加熱炉は、温度制御可能な
加熱手段を有する複数の加熱室を、被加熱体が通過し得
る入口側,出口側の2つの開口部によって連通せしめた
トンネル状の加熱炉である。このような連続加熱炉にお
いては、セッタ等に載置した被加熱体を、入口側から炉
内に送り込み、独立した制御系によって個別に温度制御
された各加熱室を順番に通過させることにより、所望の
温度曲線に従って、被加熱体の昇温、保温、及び降温が
連続的に行うことが可能である。
[0015] The continuous heating furnace according to the present invention is a tunnel-shaped heating device in which a plurality of heating chambers having heating means capable of controlling the temperature are communicated by two opening portions on an inlet side and an outlet side through which a body to be heated can pass. Furnace. In such a continuous heating furnace, an object to be heated placed on a setter or the like is sent into the furnace from the inlet side, and sequentially passed through each heating chamber whose temperature is individually controlled by an independent control system. According to a desired temperature curve, the temperature of the object to be heated can be continuously raised, kept, and lowered.

【0016】 本発明のように被加熱体が大型ガラス基
板である場合には、被加熱体を搬送する搬送手段が、隣
接する加熱室へ被加熱体を間欠的に搬送する搬送手段で
あることが必要である。被加熱体が設定温度の異なる加
熱室間を連続的に移動するような搬送手段では、被加熱
体の表面における温度分布が大きくなるおそれがあるた
めである。
When the object to be heated is a large glass substrate as in the present invention, the transport means for transporting the object to be heated is a transport means for intermittently transporting the object to be heated to an adjacent heating chamber. is necessary. This is because the temperature distribution on the surface of the object to be heated may be increased in a transfer unit in which the object to be heated continuously moves between heating chambers having different set temperatures.

【0017】 「間欠的に搬送する」とは、n番目の加
熱室において被加熱体を静止させて所定時間加熱を行っ
た後、当該被加熱体を可及的速やかに隣接するn+1番
目の加熱室に移動し、再び被加熱体を静止させて所定時
間加熱を行うという操作を繰り返す搬送方法をいう。こ
のような搬送方法が可能である限りにおいて、搬送手段
の種類は特に限定されず、例えばウォーキングビームを
用いることができるが、ローラやコンベアを間欠的に駆
動させてもよい。
“Transmitting intermittently” means that the object to be heated is kept stationary in the n-th heating chamber for a predetermined time, and then the object to be heated is heated as soon as possible to the (n + 1) -th adjacent heating object. This is a transport method in which the operation of moving to a chamber, stopping the object to be heated again, and heating for a predetermined time is repeated. The type of the transporting means is not particularly limited as long as such a transporting method is possible. For example, a walking beam can be used, but the rollers and the conveyor may be driven intermittently.

【0018】 加熱手段としては、温度制御が容易な電
気ヒータを用いることが好ましいが、運転コストの面で
有利なガスラジアントチューブを単独で、或いは電気ヒ
ータと共に用いてもよい。
As the heating means, it is preferable to use an electric heater whose temperature can be easily controlled, but a gas radiant tube which is advantageous in terms of operating cost may be used alone or together with the electric heater.

【0019】 本発明においても従前と同様に、各加熱
室において、加熱手段及びその制御系をいくつかに分割
するが、既述の通り加熱手段を分割するのみでは被加熱
体であるガラス基板表面の温度を精密に制御することは
できない。従って、本発明においては以下のような方法
を採用している。
In the present invention, as in the past, the heating means and its control system are divided into several parts in each heating chamber, as described above. Temperature cannot be precisely controlled. Therefore, the present invention employs the following method.

【0020】(1)第1の実施態様 本発明の連続加熱炉の第1の実施態様は、各加熱室にお
いて、加熱手段及びその制御系を、少なくとも被加熱体
の進行方向に対していくつかに分割し、かつ、当該分割
された加熱手段に対応するように、加熱室内を区分する
隔壁を配設したものである。
(1) First Embodiment In a first embodiment of the continuous heating furnace of the present invention, in each heating chamber, a heating means and a control system for the heating means are provided at least with respect to at least the moving direction of the object to be heated. And a partition for dividing the heating chamber is provided so as to correspond to the divided heating means.

【0021】 このような連続加熱炉では加熱室内が隔
壁によって構造的に複数の領域に区分されるので、図5
(b)のように隣接する他の加熱手段、或いは隣接する
他の加熱室の影響を受けることなく、基板表面の領域毎
に加熱の程度を調整して精密な温度制御を行うことが可
能となる。隔壁の材質は特に限定されないが、断熱性の
高いセラミックボード等を用いることが好ましい。
In such a continuous heating furnace, the heating chamber is structurally divided into a plurality of regions by partition walls.
It is possible to perform precise temperature control by adjusting the degree of heating for each region of the substrate surface without being affected by another adjacent heating means or another adjacent heating chamber as in (b). Become. The material of the partition is not particularly limited, but it is preferable to use a ceramic board or the like having high heat insulating properties.

【0022】 なお、加熱手段及びその制御系(ひいて
は隔壁)を、被加熱体の進行方向に対して分割したの
は、隣接する他の加熱室からの温度の影響を排除するた
めである。例えば被加熱体を昇温する過程であれば、1
の加熱室の入口側に隣接する加熱室の温度は低く、出口
側に隣接する加熱室の温度が高いため、また、より低温
の加熱室から被加熱体が搬送されてくるため、当該加熱
室内は入口側の温度が低く出口側の温度が高くなる傾向
がある。従って、これを是正するためには加熱室内にお
いて入口側の温度を高く、出口側の温度を低くするよう
な温度制御を行う必要があるからである。この点につい
ては後述する第2の実施態様も同様である。
The reason why the heating means and its control system (and thus the partition) are divided in the traveling direction of the object to be heated is to eliminate the influence of temperature from another adjacent heating chamber. For example, in the process of raising the temperature of the object to be heated, 1
The temperature of the heating chamber adjacent to the inlet side of the heating chamber is low, the temperature of the heating chamber adjacent to the outlet side is high, and the object to be heated is transported from the lower temperature heating chamber. Tends to have a low inlet temperature and a high outlet temperature. Therefore, in order to correct this, it is necessary to perform temperature control such that the temperature on the inlet side is high and the temperature on the outlet side is low in the heating chamber. This is the same in a second embodiment described later.

【0023】(2)第2の実施態様 本発明の連続加熱炉の第2の実施態様は、各加熱室にお
いて、加熱手段及びその制御系を、少なくとも被加熱体
の進行方向に対して、いくつかに分割し、かつ、当該分
割された加熱手段を、被加熱体の静止位置に近接するよ
うに配設したものである。
(2) Second Embodiment In a second embodiment of the continuous heating furnace according to the present invention, in each heating chamber, a heating means and a control system for the heating means are arranged at least in the moving direction of the object to be heated. The heating means is divided so as to be close to the stationary position of the object to be heated.

【0024】 第2の実施態様は、加熱手段を被加熱体
の静止位置に近接させることにより、加熱手段の熱が基
板表面に到達するまでにおける拡散・均一化を防止した
ものである。即ち、第2の実施態様によれば、図5
(a)に示す如く加熱室41内が実質的に複数の領域に
区分されるため、隣接する他の加熱手段、或いは隣接す
る他の加熱室の影響を受けることなく、基板43表面の
領域毎に加熱の程度を調整して精密な温度制御を行うこ
とが可能となる。
In the second embodiment, the diffusion of the heat of the heating means until the heat reaches the substrate surface is prevented by bringing the heating means close to the stationary position of the object to be heated. That is, according to the second embodiment, FIG.
As shown in (a), the inside of the heating chamber 41 is substantially divided into a plurality of areas, so that each area on the surface of the substrate 43 is not affected by another adjacent heating means or another adjacent heating chamber. Thus, precise temperature control can be performed by adjusting the degree of heating.

【0025】 加熱手段を被加熱体の静止位置に近接さ
せる場合の両者の距離は被加熱体の積み姿、制御系の大
きさ等の条件により異なるが、分割された各加熱手段の
被加熱体進行方向長さの1/5以下、好ましくは1/1
0以下とすることにより、本発明の効果を得ることがで
きる。なお、第2の実施態様においては第1の実施態様
のような隔壁を必ずしも設ける必要はないが、隔壁を設
ければより精密な温度制御を行うことが可能となる。
When the heating means is brought close to the stationary position of the object to be heated, the distance between the two differs depending on conditions such as the appearance of the object to be heated and the size of the control system. 1/5 or less of the length in the traveling direction, preferably 1/1
By setting it to 0 or less, the effects of the present invention can be obtained. In the second embodiment, it is not always necessary to provide a partition as in the first embodiment, but if a partition is provided, more precise temperature control can be performed.

【0026】 上述した第1,第2のいずれの実施態様
においても、加熱手段と被加熱体の移動領域との間に
は、赤外線照射率の高い材質からなるマッフルを配置す
ることが好ましい。加熱手段から発せられる熱を、一
旦、マッフルで受けることにより、マッフルから遠赤外
線若しくは近赤外線が照射されるため、被加熱体をより
迅速に加熱することが可能となるからである。また、当
該マッフルで加熱手段と被加熱体の移動領域とを気密的
に隔離することにより、被加熱体の移動領域におけるク
リーン度が確保されるという効果もある。
In any of the first and second embodiments described above, it is preferable that a muffle made of a material having a high infrared irradiation rate is disposed between the heating means and the moving area of the object to be heated. This is because once the heat generated from the heating means is received by the muffle, far-infrared rays or near-infrared rays are emitted from the muffle, so that the object to be heated can be heated more quickly. In addition, the airtight separation between the heating means and the moving area of the object to be heated by the muffle has an effect of ensuring a clean degree in the moving area of the object to be heated.

【0027】 赤外線照射率の高い材質といっても種々
存在するが、本発明においてはSi含浸SiC質からな
るマッフルを配置することが好ましい。図6に示すよう
にSi含浸SiCは赤外線照射率が顕著に高いためであ
る。
Although there are various materials having a high infrared irradiation rate, in the present invention, it is preferable to arrange a muffle made of Si-impregnated SiC. This is because Si-impregnated SiC has a remarkably high infrared irradiation rate as shown in FIG.

【0028】 なお、Si含浸SiCとは、金属Siと
SiCを構成成分として含む焼結体を総称するが、本発
明においては本出願人が既に開示した、SiC粉体、黒
煙粉、有機質バインダー及び、水分又は有機溶剤を含有
してなる成形用原料を成形し、当該成形体を金属Si雰
囲気で、かつ減圧の不活性ガス雰囲気又は真空中におい
て、1350〜2500℃で焼成する方法により製造し
てなるSi−SiC焼結体(特開平5-270917号公報)を
用いることが好ましい。
The Si-impregnated SiC is a general term for a sintered body containing metallic Si and SiC as constituents. In the present invention, SiC powder, black smoke powder, organic binder, and the like have been disclosed by the present applicant. And, a molding raw material containing water or an organic solvent is molded, and the molded body is manufactured by a method of firing at 1350 to 2500 ° C. in a metal Si atmosphere and a reduced pressure inert gas atmosphere or vacuum. It is preferable to use a Si-SiC sintered body (Japanese Unexamined Patent Publication No. 5-270917).

【0029】 更に、本発明の連続加熱炉においては、
被加熱体の進行方向に対して分割された加熱手段に対応
するように、Si含浸SiC質からなるマッフルを分割
することが好ましい。Si含浸SiCは熱伝導率が15
0W/m・K程度と極めて高いため、本発明のように加
熱室内の空間を構造的に或いは実質的に複数の領域に区
分しても、Si含浸SiC質からなるマッフルを介して
熱が伝達されてしまうからである。
Further, in the continuous heating furnace of the present invention,
It is preferable to divide the muffle made of Si-impregnated SiC so as to correspond to the heating means divided in the traveling direction of the object to be heated. Si-impregnated SiC has a thermal conductivity of 15
Since it is extremely high at about 0 W / m · K, even if the space inside the heating chamber is structurally or substantially divided into a plurality of regions as in the present invention, heat is transmitted through the muffle made of Si-impregnated SiC. It is because it is done.

【0030】 なお、「分割された加熱手段に対応する
ように」とは、加熱手段と同様に被加熱体の進行方向に
対して分割する、という意味である。このような構成は
被加熱体の進行方向に対しては熱が伝達されない一方、
進行方向と直交する方向に対しては効率よく熱が伝達さ
れる。従って、ガスラジアントチューブのように加熱室
の中央部に熱源を設けられない加熱手段を使用する場合
に特に好適に用いることができる。
Note that “corresponding to the divided heating means” means that the object to be heated is divided in the traveling direction, similarly to the heating means. In such a configuration, heat is not transmitted in the traveling direction of the object to be heated,
Heat is efficiently transmitted in a direction perpendicular to the traveling direction. Therefore, it can be particularly suitably used when using a heating means such as a gas radiant tube in which a heat source is not provided at the center of the heating chamber.

【0031】[0031]

【実施例】 以下、本発明の連続加熱炉の実施例につい
て図面を参照しながら説明する。但し、本発明はこれら
の実施例に限定されるものではない。
Hereinafter, embodiments of the continuous heating furnace of the present invention will be described with reference to the drawings. However, the present invention is not limited to these examples.

【0032】(実施例1)実施例1は図1に示すように
加熱室1内において、加熱手段である電気ヒータ2を被
加熱体である大型ガラス基板3の進行方向に対して4分
割し、これに対応するように隔壁4を設けた例である。
実施例1では隔壁4の上端側は分割された電気ヒータ2
を区分するように、下端側はSi含浸SiC質からなる
マッフル5と当接するように配置した。電気ヒータ2と
マッフル5との距離は100mm、マッフル5と大型ガ
ラス基板3との距離は200mm程度となる。搬送手段
としてはモータと連動して回転するローラ6を等間隔で
配置した。
(Embodiment 1) In Embodiment 1, as shown in FIG. 1, an electric heater 2 serving as a heating means is divided into four parts in a heating chamber 1 with respect to a traveling direction of a large glass substrate 3 serving as an object to be heated. This is an example in which a partition wall 4 is provided so as to correspond to this.
In the first embodiment, the upper end side of the partition 4 is a divided electric heater 2.
So that the lower end side is in contact with the muffle 5 made of Si-impregnated SiC. The distance between the electric heater 2 and the muffle 5 is 100 mm, and the distance between the muffle 5 and the large glass substrate 3 is about 200 mm. Rollers 6 that rotate in conjunction with a motor are arranged at equal intervals as the transporting means.

【0033】(実施例2)実施例2は、図2に示すよう
に実施例1と同様の構成においてSi含浸SiC質から
なるマッフル25を分割された電気ヒータ22と対応す
るように分割したものである。実施例2では隔壁24の
下端側がSi含浸SiC質からなるマッフル25に当接
するのではなく、マッフル25を突き抜けるような形に
構成した。
(Embodiment 2) In Embodiment 2, as shown in FIG. 2, a muffle 25 made of Si-impregnated SiC is divided so as to correspond to the divided electric heater 22 in the same configuration as Embodiment 1. It is. In the second embodiment, the lower end of the partition wall 24 does not abut against the muffle 25 made of Si-impregnated SiC, but is configured to penetrate the muffle 25.

【0034】(実施例3)実施例3は図3に示すように
加熱手段である電気ヒータ32を被加熱体である大型ガ
ラス基板33の進行方向に対して4分割し、大型ガラス
基板33の静止位置に近接させた例である。実施例3で
は隔壁34の上端側は分割された電気ヒータ32を区分
するように、下端側はSi含浸SiC質からなるマッフ
ル35を突き抜けるような形に構成した。電気ヒータ3
2とマッフル35との距離は30mm、マッフル35と
大型ガラス基板33との距離は50mm程度となる。搬
送手段としてはモータと連動して回転するローラ36を
等間隔で配置した。
(Embodiment 3) In Embodiment 3, as shown in FIG. 3, an electric heater 32 as a heating means is divided into four parts in a traveling direction of a large glass substrate 33 as an object to be heated. This is an example of approaching a stationary position. In the third embodiment, the upper end of the partition wall 34 is formed so as to divide the divided electric heater 32, and the lower end is formed so as to penetrate a muffle 35 made of Si-impregnated SiC. Electric heater 3
The distance between 2 and muffle 35 is 30 mm, and the distance between muffle 35 and large glass substrate 33 is about 50 mm. Rollers 36 that rotate in conjunction with a motor are arranged at equal intervals as the conveying means.

【0035】[0035]

【発明の効果】 以上説明したように、本発明の連続加
熱炉によれば、大型のガラス基板を焼成する場合にあっ
ても、基板の表面温度を精密に制御した状態で昇温,保
温等することができ、基板の歪み,割れ,欠け等の欠陥
を防止することが可能となる。
As described above, according to the continuous heating furnace of the present invention, even when a large glass substrate is baked, it is possible to raise or lower the temperature while precisely controlling the surface temperature of the substrate. It is possible to prevent defects such as distortion, cracking, and chipping of the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の連続加熱炉の一の実施例を示す概略
断面図である。
FIG. 1 is a schematic sectional view showing one embodiment of a continuous heating furnace of the present invention.

【図2】 本発明の連続加熱炉の他の実施例を示す概略
断面図である。
FIG. 2 is a schematic sectional view showing another embodiment of the continuous heating furnace of the present invention.

【図3】 本発明の連続加熱炉の更に他の実施例を示す
概略断面図である。
FIG. 3 is a schematic sectional view showing still another embodiment of the continuous heating furnace of the present invention.

【図4】 PDPの製造工程を示す工程図である。FIG. 4 is a process chart showing a PDP manufacturing process.

【図5】 本発明の連続加熱炉の効果を示す概略説明図
(a),(b),(c)である。
FIGS. 5A, 5B, and 5C are schematic explanatory views showing the effect of the continuous heating furnace of the present invention.

【図6】 Si含浸SiCの赤外線照射率を示すグラフ
である。
FIG. 6 is a graph showing the infrared irradiation rate of Si-impregnated SiC.

【符号の説明】[Explanation of symbols]

1…加熱室、2…加熱手段(電気ヒータ)、3…被加熱
体(大型ガラス基板)、4…隔壁、5…マッフル、6…
搬送手段(ローラ)、21…加熱室、22…加熱手段
(電気ヒータ)、23…被加熱体(大型ガラス基板)、
24…隔壁、25…マッフル、26…搬送手段(ロー
ラ)、31…加熱室、32…加熱手段(電気ヒータ)、
33…被加熱体(大型ガラス基板)、34…隔壁、35
…マッフル、36…搬送手段(ローラ)、41…加熱
室、42…加熱手段(電気ヒータ)、43…被加熱体
(大型ガラス基板)、46…搬送手段(ローラ)。
DESCRIPTION OF SYMBOLS 1 ... Heating chamber, 2 ... Heating means (electric heater), 3 ... Heated body (large glass substrate), 4 ... Partition wall, 5 ... Muffle, 6 ...
Conveying means (roller), 21: heating chamber, 22: heating means (electric heater), 23: heated object (large glass substrate),
24 ... partition wall, 25 ... muffle, 26 ... transport means (roller), 31 ... heating chamber, 32 ... heating means (electric heater),
33: Heated object (large glass substrate), 34: Partition wall, 35
... Muffle, 36 ... Conveying means (roller), 41 ... Heating chamber, 42 ... Heating means (electric heater), 43 ... Heated object (large glass substrate), 46 ... Conveying means (roller).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27D 19/00 F27D 19/00 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F27D 19/00 F27D 19/00 A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 温度制御可能な加熱手段を有する複数の
加熱室と、隣接する加熱室へ被加熱体を間欠的に搬送す
るための搬送手段と、を備え、各加熱室を個別に温度制
御することにより、所望の温度曲線に従って、昇温、保
温、及び降温が行えるように構成された、大型ガラス基
板用の連続加熱炉であって、 前記各加熱室において、加熱手段及びその制御系を、少
なくとも被加熱体の進行方向に対して、いくつかに分割
し、かつ、当該分割された加熱手段に対応するように、
加熱室内を区分する隔壁を配設したことを特徴とする大
型ガラス基板用連続加熱炉。
1. A heating apparatus comprising: a plurality of heating chambers having heating means capable of controlling temperature; and transport means for intermittently transporting an object to be heated to an adjacent heating chamber, wherein the temperature of each heating chamber is individually controlled. In accordance with a desired temperature curve, according to a desired temperature curve, a continuous heating furnace for a large glass substrate configured to be able to perform temperature rise, heat retention, and temperature decrease, in each of the heating chambers, a heating means and a control system thereof. , At least with respect to the traveling direction of the object to be heated, divided into several parts, and corresponding to the divided heating means,
A continuous heating furnace for large glass substrates, wherein a partition for partitioning the heating chamber is provided.
【請求項2】 温度制御可能な加熱手段を有する複数の
加熱室と、隣接する加熱室へ被加熱体を間欠的に搬送す
るための搬送手段と、を備え、各加熱室を個別に温度制
御することにより、所望の温度曲線に従って、昇温、保
温、及び降温が行えるように構成された、大型ガラス基
板用の連続加熱炉であって、 前記各加熱室において、加熱手段及びその制御系を、少
なくとも被加熱体の進行方向に対して、いくつかに分割
し、かつ、当該分割された加熱手段を、被加熱体の静止
位置に近接するように配設したことを特徴とする大型ガ
ラス基板用連続加熱炉。
2. A heating apparatus comprising: a plurality of heating chambers having heating means capable of controlling temperature; and a transport means for intermittently transporting an object to be heated to an adjacent heating chamber, wherein the temperature of each heating chamber is individually controlled. In accordance with a desired temperature curve, according to a desired temperature curve, a continuous heating furnace for a large glass substrate configured to be able to perform temperature rise, heat retention, and temperature decrease, in each of the heating chambers, a heating means and a control system thereof. A large-sized glass substrate, wherein the large-sized glass substrate is divided into several parts at least with respect to the traveling direction of the object to be heated, and the divided heating means is arranged so as to be close to a stationary position of the object to be heated. For continuous heating furnace.
【請求項3】 加熱手段と被加熱体の移動領域との間
に、赤外線照射率の高い材質からなるマッフルを配置し
た請求項1又は2に記載の大型ガラス基板用連続加熱
炉。
3. The continuous heating furnace for a large glass substrate according to claim 1, wherein a muffle made of a material having a high infrared irradiation rate is arranged between the heating means and the moving area of the object to be heated.
【請求項4】 加熱手段と被加熱体の移動領域との間
に、Si含浸SiC質からなるマッフルを配置した請求
項1又は2に記載の大型ガラス基板用連続加熱炉。
4. The continuous heating furnace for a large glass substrate according to claim 1, wherein a muffle made of Si-impregnated SiC is disposed between the heating means and the moving region of the object to be heated.
【請求項5】 被加熱体の進行方向に対して分割された
加熱手段に対応するように、Si含浸SiC質からなる
マッフルを分割した請求項4に記載の大型ガラス基板用
連続加熱炉。
5. The continuous heating furnace for a large glass substrate according to claim 4, wherein the muffle made of Si-impregnated SiC is divided so as to correspond to the heating means divided in the traveling direction of the object to be heated.
JP11182319A 1999-06-28 1999-06-28 Continuous heating furnace for large size glass substrate Withdrawn JP2001012860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11182319A JP2001012860A (en) 1999-06-28 1999-06-28 Continuous heating furnace for large size glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11182319A JP2001012860A (en) 1999-06-28 1999-06-28 Continuous heating furnace for large size glass substrate

Publications (1)

Publication Number Publication Date
JP2001012860A true JP2001012860A (en) 2001-01-19

Family

ID=16116238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11182319A Withdrawn JP2001012860A (en) 1999-06-28 1999-06-28 Continuous heating furnace for large size glass substrate

Country Status (1)

Country Link
JP (1) JP2001012860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1623961A1 (en) * 2003-05-09 2006-02-08 Asahi Glass Company Ltd. Glass plate heating method, and heating furnace
JP2008251361A (en) * 2007-03-30 2008-10-16 Ngk Insulators Ltd Planar heater
JP2008298404A (en) * 2007-06-04 2008-12-11 Koyo Thermo System Kk Continuous calcination furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1623961A1 (en) * 2003-05-09 2006-02-08 Asahi Glass Company Ltd. Glass plate heating method, and heating furnace
EP1623961A4 (en) * 2003-05-09 2006-09-06 Asahi Glass Co Ltd Glass plate heating method, and heating furnace
JP2008251361A (en) * 2007-03-30 2008-10-16 Ngk Insulators Ltd Planar heater
JP2008298404A (en) * 2007-06-04 2008-12-11 Koyo Thermo System Kk Continuous calcination furnace

Similar Documents

Publication Publication Date Title
US10221613B2 (en) Evacuation and port sealing techniques for vacuum insulating glass units
KR100280970B1 (en) Method and apparatus for heat treatment of a substrate having a film forming composition
US7196297B2 (en) Process and system for thermally uniform materials processing
JP2004218956A (en) Method of heat-treating substrate and heat treatment furnace
JP3683166B2 (en) Substrate heat treatment method and continuous heat treatment furnace used therefor
KR101169106B1 (en) Multi-stage baking apparatus for plasma display panel
JP2001241855A (en) Continuous heating oven
JP2010159463A (en) In-line type plasma cvd method, and apparatus thereof
JP2001012860A (en) Continuous heating furnace for large size glass substrate
JP2007051038A (en) Continuous firing apparatus for flat glass plate
JPH08254392A (en) Method and apparatus for heat treatment of substrate
JP2007205592A (en) Baking device for substrate
KR100831906B1 (en) Temperature control room and vacuum processing apparatus using the same
JP2001153564A (en) Continuous heating furnace for substrate, utilizing radiant tube burner
JP4120522B2 (en) Paste material drying equipment
JP2002206863A (en) Continuously heat treating furnace
JP2005114284A (en) Kiln
JPH09113144A (en) Heating furnace
JP4266073B2 (en) Shelf assembly method
JP2003077398A (en) Manufacturing method of plasma display panel and furnace equipment for same
JP3662893B2 (en) Heat treatment equipment
JP2004037044A (en) Vacuum heating furnace for flat panel display
JP4338936B2 (en) Sealing and heating device for FPD
KR101358358B1 (en) Degreasing sintering furnace
JP2018080891A (en) Wall surface material and heat treat furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905