JP5214020B2 - 立体表示システム - Google Patents

立体表示システム Download PDF

Info

Publication number
JP5214020B2
JP5214020B2 JP2011503282A JP2011503282A JP5214020B2 JP 5214020 B2 JP5214020 B2 JP 5214020B2 JP 2011503282 A JP2011503282 A JP 2011503282A JP 2011503282 A JP2011503282 A JP 2011503282A JP 5214020 B2 JP5214020 B2 JP 5214020B2
Authority
JP
Japan
Prior art keywords
shutter
eye
light
video
eye video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011503282A
Other languages
English (en)
Other versions
JPWO2011070715A1 (ja
Inventor
隆宏 小林
宏 宮井
清司 濱田
善雄 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011503282A priority Critical patent/JP5214020B2/ja
Publication of JPWO2011070715A1 publication Critical patent/JPWO2011070715A1/ja
Application granted granted Critical
Publication of JP5214020B2 publication Critical patent/JP5214020B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/144Processing image signals for flicker reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof

Description

本発明は、立体映像観察用の眼鏡を使用して立体映像を観察する立体表示システムに関する。
従来、立体映像を得るための立体表示装置としては、視差を有する左目用映像及び右目用映像を所定周期(例えば、フィールド周期)で交互にディスプレイに供給し、この画像を前記所定周期に同期して駆動される液晶シャッターを備える立体映像観察用眼鏡で観察する方法がある(例えば、特許文献1参照)。
図1に従来の立体表示システムのブロック図を示し、60Hzの左右映像信号が入力される場合について説明する。
立体映像処理部101は、60Hzの左右映像信号を入力し、120Hz周期の信号に変換して表示駆動部102へ出力する。表示駆動部102では120Hzの左右映像信号を、表示ディスプレイ103で表示可能な形式に変換し、表示ディスプレイ103へ出力する。これにより、表示ディスプレイ103では、120Hz周期で左右交互に画像が表示される。
一方、立体映像処理部101における120Hzの同期を基準にして、左側のメガネ位置制御回路104L、右側のメガネ位置制御回路104Rはそれぞれ、立体映像観察用眼鏡105の左側メガネシャッター105L、右側メガネシャッター105Rを制御する。メガネ位置制御回路104L、104Rは、メガネシャッター105L、105Rを、表示ディスプレイ103の左右交互の出力画像と同期する形でシャッターの開期間がそれぞれの映像期間の半分になるように開閉制御する。メガネシャッター105L、105Rを通した左右の画像は人の左右の眼にそれぞれ入力され、結果として人の頭の中で視覚的な立体像を生成する。
ところで、上記従来例に示した立体映像観察用眼鏡では、表示ディスプレイからの映像と共に、室内であれば、蛍光灯の光も入射されることになる。この蛍光灯は電源周波数に同期して点滅しており、この点滅の周期と立体映像観察用眼鏡の駆動の周期が特定の関係にあるときフリッカを生じることがある。
図2を用いてこのフリッカを説明する。図2は、従来の立体表示装置における制御タイミングチャートである。今、表示ディスプレイ103としてCRTディスプレイを前提として説明する。図2において、図2Aは表示ディスプレイ103における左右映像信号の走査タイミングを、図2Bはメガネシャッター105L、105Rの開閉タイミングを、図2Cは装置周辺の蛍光灯の光強度の時間変化を、図2Dはメガネシャッター105L、105Rを通過する蛍光灯の光強度を、それぞれ示している。商用電源周波数が50Hzの地区における蛍光灯は、その光強度の波形が50Hzの全波整流波形になる。よって、100Hzの周期で波形が繰り返される。この100Hzの蛍光灯の光強度波形と60Hzのメガネのシャッター開閉タイミング(図2では開閉のデューティ比が1:3(25%))との成分で積分されたものが、図2Dのメガネシャッター105L、105Rそれぞれの通過光の波形である。図2Dの波形及び波形中に記載した数値で示されるように、例えば右シャッター通過光の積分値は56%、48%、21%、56%と変化し、20Hzの周期を持つ。(ここで、これらの数値は図9Dにおける蛍光灯の光強度変化の半周期分(50Hz周期の半分の期間)の積分値で正規化しパーセントで表したものである。)こ
の20Hz周期の波形の周波数成分がフリッカとして目に知覚されるため妨害となる。
これに対して、上記20Hzのフリッカを改善するため、メガネパルス幅制御回路を設け、メガネの開閉時間を変化させることで回避する方法が開示されている(例えば、特許文献2参照)。この方法は、図3に示すように、図1に示す従来例に対して、左側メガネパルス幅制御回路141L、右側メガネパルス幅制御回路141Rを追加したものである。左側メガネパルス幅制御回路141L、右側メガネパルス幅制御回路141Rによって、基本的にメガネが開いた状態(光透過)の開期間の幅を、100Hzの蛍光灯周期時間(10msec)に合わせる。一方、メガネが閉じた状態(光遮蔽)の閉期間の幅を60Hzのメガネの周期時間(16.7msec)の残時間(6.7msec)に合わせる。これによって、メガネの開期間が100Hzの蛍光灯の光強度波形の周期期間と一致するためフリッカは発生しない。
特開昭62−133891号公報 特開平9−138384号公報
しかし、特許文献2の方法においては、以下のような課題がある。上述したような開閉期間幅にメガネのシャッターを設定すると左右のシャッター開期間が重なる。このため、左目用映像が右側メガネシャッターに、右目用映像が左側メガネシャッターに漏れ込み、クロストークと言われる妨害画像が左右の眼へそれぞれ入力されてしまうという課題が発生する。特許文献2では、開期間が重なってしまう期間を他方の映像(右なら左のフィールド映像、左なら右のフィールド映像)の有効映像が存在しないブランキング期間に合わせることで、開期間を10msecに近づけてクロストークとフリッカの双方の妨害をバランス良く低減している。
しかしながら、上記フリッカの低減方法はブランキング期間の長さによってはフリッカの低減効果が十分に得られない場合がある。一方シャッターの開期間を長く設定するとクロストークの妨害が大きくなってしまうという課題があった。
本発明の目的は、クロストークの増加を防ぎつつ、蛍光灯の影響によるフリッカを低減できる立体表示システム、立体表示装置および立体映像観察用眼鏡を提供することである。
上記課題を解決するため、本発明に係る立体表示システムは、入力される左目用映像信号と右目用映像信号に基づく左目用映像と右目用映像とを時間的に切替えて表示する立体表示装置と、左目および右目へそれぞれ通過する光の量を調整する左目用および右目用のシャッターを有し、前記左目用映像と前記右目用映像とを観察する立体映像観察用眼鏡とを備えた立体表示システムであって、前記立体表示装置の周辺光を検出し、その周辺光から輝度変動を検出することにより、輝度変動の周期と前記シャッターの開閉周期との干渉によるフリッカの有無を検出するフリッカ検出部と、前記立体映像観察用眼鏡の左右のシャッターの開閉状態を左目用映像と右目用映像の表示周期に応じた開閉周期で制御するシャッター制御部と、前記左右のシャッター各々の光通過量に応じて前記立体表示装置が表示する前記左目用映像および右眼用映像の輝度を制御する映像輝度制御部を備え、前記立体表示装置は、前記左目用映像信号と前記右目用映像信号とに応じて背面から入射する光を変調して前記左目用映像と前記右目用映像とを表示する液晶パネル部と、前記液晶パネル部に背面から光を照射するバックライト部とを有し、かつ前記シャッター制御部は、前記フリッカ検出部でフリッカを検出した場合、前記左右のシャッターの各々において、時間的に連続する開期間に前記周辺光が通過する光量の変動が低減するように光通過量を制御するものであり、さらに前記映像輝度制御部は、前記液晶パネル部の通過率を制御することで前記左目用映像および右眼用映像の輝度を制御するか、または前記バックライト部の発光輝度を制御することで前記左目用映像および右眼用映像の輝度を制御するものであることを特徴とする
本発明によれば、立体表示システムにおいて、クロストークの増加を防ぎつつ、蛍光灯の影響によるフリッカを低減することができる。
従来の立体表示システムのブロック図 従来の立体表示装置における制御タイミングチャートであり、図2Aは左右映像信号の走査タイミングを示す図、図2Bはメガネシャッターの開閉タイミングを示す図、図2Cは装置周辺の蛍光灯の光強度を示す図、図2Dはシャッター通過光の光強度を示す図 従来のフリッカを改善する立体表示システムのブロック図 実施の形態1に係る立体表示システムの構成を示すブロック図 実施の形態1に係る立体表示システムの制御タイミングチャートであり、図5Aは左右映像信号の走査タイミングを示す図、図5Bはバックライトの発光オンオフ制御タイミングと発光期間を示す図、図5Cはシャッターの開閉タイミングと光透過率を示す図、図5Dは装置周辺の蛍光灯の光強度を示す図、図5Eはシャッター通過光の光強度を示す図、図5Fは駆動された画面輝度を示す図、図5Gはシャッター通過後の画面輝度を示す図 実施の形態1の変形例の構成を示すブロック図 実施の形態2に係る立体表示システムの制御タイミングチャートであり、図7Aは左右映像信号の走査タイミングを示す図、図7Bはバックライトの発光オンオフ制御タイミングと発光期間を示す図、図7Cはシャッターの開閉タイミングと光透過率を示す図、図7Dは装置周辺の蛍光灯の光強度を示す図、図7Eはシャッター通過光の光強度を示す図、図7Fは駆動された画面輝度を示す図、図7Gはシャッター通過後の画面輝度を示す図 実施の形態3に係る立体表示システムの構成を示すブロック図 実施の形態3に係る立体表示システムの制御タイミングチャートであり、図9Aは左右映像信号の走査タイミングを示す図、図9Bはバックライトの発光オンオフ制御タイミングと発光期間を示す図、図9Cはシャッターの開閉タイミングと光透過率を示す図、図9Dは装置周辺の蛍光灯の光強度を示す図、図9Eはシャッター通過光の光強度を示す図、図9Fは駆動された画面輝度を示す図、図9Gはシャッター通過後の画面輝度を示す図 実施の形態3の変形例の構成を示すブロック図
以下に本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施
の形態において、同様の構成要素については同一の符号を付し、再度の説明を省略する場合がある。
(実施の形態1)
図4は、実施の形態1に係る立体表示システムの構成を示すブロック図である。立体表示システム100は、立体表示装置10と、立体表示装置10によって左右のシャッター5L、5Rの開閉状態を左目用映像と右目用映像とに合わせて制御される立体映像観察用眼鏡5とからなる。
立体表示装置10は、立体映像処理部1、液晶駆動部2、液晶パネル31、バックライト32、シャッター制御部4、バックライト制御部6、フリッカ検出部7、を備えている。
立体映像処理部1は、基本となる垂直同期周波数を有する左右映像信号(左目用映像信号、右目用映像信号)を入力する。そして、立体映像処理部1は、入力した左右映像信号を、基本となる垂直同期周波数のN倍(Nは1以上の正の整数)の周波数で左目用映像信号、右目用映像信号に分割して出力する。本実施の形態では、入力された60Hzの左右映像信号を、120Hz周期の信号に変換して液晶駆動部2、シャッター制御部4、バックライト制御部6およびフリッカ検出部7に出力する。なお、立体映像処理部1は、必要に応じて左右用映像信号の全てを出力しなくてもよい。例えば、シャッター制御部4やフリッカ検出部7に、120Hzの同期信号のみが出力されてもよい。
液晶駆動部2は、120Hzの左右映像信号を、液晶パネル31で表示可能な形式に変換する。液晶駆動部2は、変換した左右映像信号を液晶パネル31へ出力する。
液晶パネル31は、入力した左目用映像信号と右目用映像信号とに応じて背面から入射する光を変調し、左目用映像と右目用映像とを順次表示する。液晶パネル31は、IPS(In Plane Switching)方式や、VA(Vertical Alignment)方式、TN(Twisted Nematic)方式など、様々な駆動方式のものを適用することが出来る。
バックライト32は、液晶パネル31に背面から光を照射する。バックライト32は、二次元配列された複数の発光ダイオードを用いて面発光するものを用いることが出来る。また、バックライト32は、複数の蛍光管を並べて配置することで面発光を得るものであってもよい。また、バックライト32は、端部に発光ダイオードや蛍光管を配置したエッジタイプのものであってもよい。バックライト32は、立体映像処理部1から出力された120Hzの同期信号を基準としてバックライト制御部6から出力される発光制御信号に基づき発光する。
シャッター制御部4は、立体映像観察用眼鏡5の左右のシャッターの開閉状態を左目用映像と右目用映像の表示周期に応じた開閉周期で制御する。本実施の形態においては、シャッター制御部4は、左目用映像と右目用映像の表示周期120Hzに応じて開閉状態を制御するため、左右のシャッターそれぞれの開閉周期を60Hzで制御する。シャッター制御部4は、左側メガネ位置制御回路40L、右側メガネ位置制御回路40R、左側メガネパルス幅制御回路41L、右側メガネパルス幅制御回路41R、左側メガネ光通過率制御回路42L、および右側メガネ光通過率制御回路42Rを有している。
フリッカ検出部7は、立体表示システム1の周辺光を検出する周辺光検出部である。本実施の形態においては、立体表示装置10の周辺光を検出する。そして、フリッカ検出部7は、検出した立体表示装置10の周辺光から、その輝度変動を検出し、輝度変動の周期
とシャッター開閉周期の干渉によるフリッカの有無を検出する。例えば、フリッカの振幅が所定の値以上の場合にフリッカ有りと判断し、所定の値以下の場合にフリッカ無しと判断してもよい。本実施の形態においては、フリッカ検出部7は、左右映像信号における周波数120Hzの同期信号と蛍光灯からの周辺光とを入力し、50Hz電源周波数地域での蛍光灯のフリッカを検出するものとする。
左右のメガネ光通過率制御回路42L、42Rは、フリッカ検出部7により検出された周辺光の輝度変動、および立体映像処理部1の120Hzの同期を基準にしてシャッターの光通過率を決定する。左右のメガネパルス幅制御回路41L、41Rは、左右のメガネ光通過率制御回路42L、42Rの出力信号を入力し、左右それぞれのシャッター5L、5Rの開期間のパルス幅を決定する。左右のメガネ位置制御回路40L、40Rは、メガネパルス幅制御回路41L、41Rの出力信号を入力し、シャッター開期間の位相を決定する。そして、このメガネ位置制御回路40L、40Rの出力信号により、左右のシャッター5L、5Rの開閉状態を制御する。
シャッター制御部4において、液晶パネル31の応答特性及び左目用映像と右目用映像の映像間のクロストークを考慮して、シャッター5L、5Rの開期間のパルス幅(開期間の幅)及びシャッター開閉位置(シャッター開期間の位相)を設定する。本実施の形態においては、シャッター5L、5Rのパルス幅は、左右映像信号60Hzの一周期期間(16.7msec)の25%(デューティ25%)、シャッター5L、5Rの開位置は、左右それぞれの映像信号走査期間の半分の位置としている。これらのパルス幅、シャッター開閉位置はそれぞれメガネパルス幅制御回路41L、41R、メガネ位置制御回路40L、40Rによって制御される。
フリッカ検出部7でフリッカを検出した場合、商用電源周波数が50Hzの地域の蛍光灯でもフリッカが発生しないよう、メガネ光通過率制御回路42L、42Rは検出した周辺光である蛍光灯の輝度変動に応じてシャッター5L、5Rの光通過率を変化させる。つまり、シャッター制御部4は、シャッター5L、5Rの各々において、時間的に連続する開期間にその周辺光が通過する光量の変動が低減するように、光通過量を制御する。具体的には、シャッター制御部4は、通過する周辺光の光量が多い開期間ほど、光の通過率が低くなるようにシャッター5L、5Rの光通過率を制御する。
また、液晶駆動部2は、メガネ光通過率制御回路42L、42Rによる光通過率の変化を相殺するように画面輝度を変化させる。具体的には、液晶駆動部2は、シャッター5L、5Rの光の通過率に応じて、液晶パネル31に出力する左右の映像信号にゲインを与え、液晶パネル31の通過率を制御することで画面の輝度を制御する。液晶駆動部2は、光の通過率が低いシャッター開期間ほど、画面の輝度が高くなるように液晶パネル31を制御する。
図5に、立体表示システム100の制御タイミングチャートを示す。図5において、図5Aは液晶パネル31における左右映像信号の走査タイミングを、図5Bはバックライト制御部6によるバックライト32の発光オンオフ制御のタイミングとバックライト32の発光期間を、図5Cはシャッター5L、5Rの開閉タイミング及び光通過率を、図5Dは装置周辺の蛍光灯の光強度の時間変化を、図5Eはシャッター5L、5Rを通過する蛍光灯の光強度を、図5Fは液晶駆動部2によって駆動された液晶パネル31の画面輝度を、図5Gはシャッター5L、5Rを通過した後の液晶パネル31の画面輝度を、それぞれ示している。ここでは、電源周波数が50Hzであるため、蛍光灯の光強度は、図5Dに示すように光強度の波形ピークの周期が100Hz(10msec)となる。ここでは、メガネ光通過率制御回路42L、42Rは、検出した蛍光灯の光強度波形と左右映像の120Hz同期信号の位相関係から、シャッター通過後の蛍光灯光強度が連続する開期間で等
しくなるようにシャッター5L、5Rの開期間の光通過率を決定し、制御している。図5Cに示す数値はこの光通過率を示している。これにより、左右それぞれのシャッターを通過した蛍光灯の光強度は、図5Eに示すように一定にすることができ、フリッカにはならない。
この点について、数値例を用いて説明する。左右のシャッターの光通過率を制御しない場合、周辺光である蛍光灯からシャッターの開期間に通過する光の量は、例えば図2Dに示すようになる。つまり、右シャッターでは、シャッターの開期間に通過する光の量は、56%、48%、21%、56%と変化し、20Hzの周期を持つ。また、左シャッターでは、シャッターの開期間に通過する光の量は、60%、27%、30%、60%と変化し、こちらも20Hzの周期を持つ。ここで、シャッター制御部4は、このフリッカの変動周期に応じて光の通過量の変動を低減するように左右のシャッター5L、5Rを制御する。つまり、シャッター制御部4は、光の通過量の最も低い値である右シャッターの21%に合わせて、他のシャッター開期間での光通過量が21%になるようにシャッターの光通過率を制御する。具体的には、図5Cに示すように、シャッター制御部4は、右シャッターの光通過率を、37.5%、43.8%、100%、37.5%となるように制御する。また、シャッター制御部4は、左シャッターの光通過率を、35%、77.8%、56.8%、35%となるように制御する。このように制御することで、図5Eに示すように、全てのシャッター開期間において、周辺光である蛍光灯のからの光の通過量を21%に揃えることができる。すなわち、フリッカを低減することができる。
また、この時同時に液晶駆動部2は、シャッター5L、5Rの開期間の光通過率の変化による左右映像の画面輝度がシャッター通過後に一定になるように液晶パネル31の画面輝度を図5Fのように制御する。これにより図5Gに示すようにシャッター通過後の画面輝度は一定になるため、立体映像の輝度変化が生じることはない。
この点について、数値例を用いて説明する。シャッターの光通過率を上述のように制御した状態で、液晶駆動部2が液晶パネル31の画面輝度を制御しない場合(図5Fの画面輝度が常に100%の場合)、左右のシャッター通過後の画面輝度は、シャッターの通過率に応じて変動することになる。ここで、液晶駆動部2は、シャッターの光通過率が最も低い値である左シャッターの35%に合わせて、他のシャッター開期間に対応する左右画像の画面輝度を制御する。具体的には、図5Fに示すように、液晶駆動部2は、右側映像の画面輝度を、93.3%、80%、35%、93.3%となるように制御する。また、液晶駆動部2は、左側映像の画面輝度を、100%、45%、61.6%、100%となるように制御する。上述したように左右シャッターの開期間のデューティは25%であるので、最終的に左右のシャッターを通過する左右画像の画面輝度は、1フィールドで平均すると、図5Gに示すように8.75%に揃えることができる。すなわち、シャッターの光通過率制御に伴う画面輝度の変動を低減することができる。なお、ここで、液晶駆動部2の画面輝度を表すパーセント表示は、シャッターの光通過率に合わせた制御を行わない場合を100%とした場合の相対的な数値であり、画面輝度の絶対値を示すものではない。
フリッカ検出部7でフリッカを検出しない場合(たとえば商用電源周波数が60Hzの地域の場合)は、前述したシャッター5L、5Rの光通過率は変化させず100%で一定とし、従って液晶駆動部2によってこれに応じた画面輝度を変化させる動作も行わない。これによりフリッカがない場合には、シャッター眼鏡越しの立体映像の輝度を高くすることができる。
また、本実施の形態の場合、右目用シャッター開期間と左目用シャッター開期間が重なっていないため、左右画像のクロストークの発生を抑えることができる。
なお、本実施の形態において、シャッター制御部4、フリッカ検出部7、液晶駆動部2が立体表示装置10に備えられる構成としたが、これに限られない。例えば、図6に示すように、一部の構成を立体映像観察用眼鏡5側に設けてもよい。当然、シャッター制御部4、フリッカ検出部7、液晶駆動部2の全てを立体映像観察用眼鏡5側に設けてもよい。
(実施の形態2)
次に、本発明の実施の形態2について説明する。本実施の形態に係る立体表示システムは、実施の形態1と同じ図4の構成を有するが、実施の形態1と比べてシャッター制御部4の動作が異なる。
図7に、本実施の形態における立体表示システムのタイミングチャートを示す。図7において図5と異なる箇所についてのみ説明する。図7Cはシャッター5L、5Rの開閉タイミング及び光通過率を示しているが、図5Cに示す場合とは異なりシャッターのパルス幅は左右映像信号60Hzの一周期期間(16.7msec)に対して可変となっており(デューティ可変)、左右それぞれのシャッターの閉位置は、左右それぞれの映像信号走査期間の最後の位置としている。これらのパルス幅、シャッター開閉位置はそれぞれメガネパルス幅制御回路41L、41R、メガネ位置制御回路40L、40Rによって制御される。またシャッターの光通過率は常に100%となるよう、メガネ光通過率制御回路42L、42Rによって制御されている。
ここで、シャッターが開く期間は、検出した周辺光である蛍光灯の光強度波形と左右映像の120Hz同期信号の位相関係から、シャッター通過後の蛍光灯光強度が連続する開期間で等しくなるようにシャッター5L、5Rのパルス幅を決定し、シャッターを開く位置を制御する。図7Cに示す数値はこのパルス幅をデューティ(左右映像信号の一周期期間である16.7msに対する割合)で示している。これにより、左右それぞれのシャッターを通過した蛍光灯の光強度は、図7Eに示すように一定にすることができ、フリッカにはならない。
この点について、数値例を用いて説明する。左右のシャッターの開期間幅を制御しない場合(開期間のデューティが25%で一定の場合)、周辺光である蛍光灯からシャッターの開期間に通過する光の量は、例えば図2Dに示すようになる。つまり、右シャッターでは、シャッターの開期間に通過する光の量は、56%、48%、21%、56%と変化し、20Hzの周期を持つ。また、左シャッターでは、シャッターの開期間に通過する光の量は、60%、27%、30%、60%と変化し、こちらも20Hzの周期を持つ。ここで、シャッター制御部4は、このフリッカの変動周期に応じて光の通過量の変動を低減するように左右のシャッター5L、5Rを制御する。つまり、シャッター制御部4は、左右のシャッター開期間のそれぞれを通過する光の通過量が一定となるようにそれぞれの開期間幅を制御する。具体的には、例えば図7Cに示すように、シャッター制御部4は、右シャッターの開期間の幅を、33%、50%、47%、33%となるように制御する。また、シャッター制御部4は、左シャッターの開期間の幅を、39%、50%、40%、39%となるように制御する。本実施の形態では、シャッター制御部4は、シャッター開期間のオフタイミングを固定して、オンタイミングを制御している。本実施形態においてはシャッター開期間の幅の最大値が50%で、かつ、通過する光の量が最大となるものように制御している。左右のシャッター開期間のそれぞれを通過する周辺光の通過量が一定となるシャッター開期間幅の組合せはその他のものでも構わない。このように制御することで、図7Eに示すように、全てのシャッター開期間において、周辺光である蛍光灯のからの光の通過量を75%に揃えることができる。すなわち、フリッカを低減することができる。
また、この時同時に液晶駆動部2は、シャッター5L、5Rの開期間(デューティ)の変化による左右映像の画面輝度がシャッター通過後に一定になるように液晶パネル31の画面輝度を図7Fのように制御する。これにより図7Gに示すようにシャッター通過後の画面輝度は一定になるため、立体映像の輝度変化が生じることはない。
この点について、数値例を用いて説明する。シャッターの開期間の幅を上述のように制御した状態で、液晶駆動部2が液晶パネル31の画面輝度を制御しない場合(図7Fの画面輝度が常に100%の場合)、左右のシャッター通過後の画面輝度は、シャッターの開期間の幅に応じて変動することになる。ここで、液晶駆動部2は、シャッターの開期間の幅が最も低い値である右シャッターの33%の開期間幅に合わせて、他のシャッター開期間に対応する左右画像の画面輝度を制御する。具体的には、図7Fに示すように、液晶駆動部2は、右側映像の画面輝度を、100%、66%、70%、100%となるように制御する。また、液晶駆動部2は、左側映像の画面輝度を、83.5%、66%、82.5%、83.5%となるように制御する。結果として、左右のシャッターを通過する左右画像の画面輝度は、図7Gに示すように33%に揃えることができる。すなわち、シャッターの光通過率制御に伴う画面輝度の変動を低減することができる。なお、ここで、液晶駆動部2の画面輝度を表すパーセント表示は、シャッターの開期間の幅に合わせた制御を行わない場合を100%とした場合の相対的な数値であり、画面輝度の絶対値を示すものではない。
また、本実施の形態の場合、右目用シャッター開期間と左目用シャッター開期間が重なっていないため、左右画像のクロストークの発生を抑えることができる。
さらに本実施の形態の場合、実施の形態1に比べてフリッカの検出をした場合のシャッター開期間を広く取れる(デューティを大きくできる)。そのため、シャッター眼鏡越しの立体映像の輝度を高くできるという効果がある。
なお、上述した実施の形態1、2において、バックライトは常に点灯としたが、左右のメガネシャッターの開期間のみ点灯させてもよい。このようにすれば、消費電力を抑えることができる。
また、本実施の形態において、実施の形態1と同様に、シャッター制御部4、フリッカ検出部7、液晶駆動部2が立体表示装置10に備えられる構成としたが、これに限られない。例えば、図6に示すように、一部の構成を立体映像観察用眼鏡5側に設けてもよい。当然、シャッター制御部4、フリッカ検出部7、液晶駆動部2の全てを立体映像観察用眼鏡5側に設けてもよい。
また、実施の形態1および2において、液晶駆動部2は、左右のシャッター各々の光通過量に応じて立体表示装置が表示する左目用映像および右眼用映像の輝度を制御する映像輝度制御部の一例である。
また、本実施の形態において、シャッター制御部4は、シャッターの開期間(デューティ)を制御することでシャッターの光通過量を制御する構成としたが、実施の形態1と組合せてシャッターの光通過率と開期間の幅とを両方制御することで光通過量を制御してもよい。
(実施の形態3)
次に本発明の実施の形態3について説明する。本実施の形態は、実施の形態1と比べて、バックライト制御部の動作が異なる。
本実施の形態に係る立体表示システムの構成を図8に示す。立体表示システム200は、実施の形態1におけるバックライト制御部6に代えて、バックライト制御部60を有している。また、立体表示システム200は、実施の形態1におけるフリッカ検出部7に代えて、フリッカ検出部70を有している。フリッカ検出部70の動作は基本的に実施の形態1におけるフリッカ検出部7と同様であるが、検出結果の出力先がバックライト制御部60である点で相違する。
図9に、本実施の形態における立体表示システム200のタイミングチャートを示す。図9において図5と異なる箇所についてのみ説明する。図5Dは左右映像信号に同期する120Hzの信号に同期して点灯するバックライトの輝度及び点灯タイミングを示している。バックライト32はバックライト制御部60によりシャッター5L、5Rの開閉タイミングに同期してそれぞれ左目用、右目用として点灯する。シャッター5L、5Rは実施の形態1で説明したのと同様に、蛍光灯のフリッカを検出した場合は図9Cに示すように光通過率を制御する。そのため、その結果左右それぞれのシャッターを通過した蛍光灯の光強度は、一定となり、図9Eに示すようにフリッカにはならない。
この時、バックライト制御部60は、シャッター5L、5Rの開期間の光通過率の変化による左右映像の画面輝度の変化がシャッター通過後に一定になるようにバックライト32の点灯輝度を図9Bのバックライト輝度(数値は標準輝度に対する割合)に示すように制御する。すなわち、バックライト制御部60は、光通過率が低いシャッター開期間ほど、点灯輝度が高くなるようにバックライト32を制御する。本実施の形態では、これにより図9Gに示すようにシャッター通過後の画面輝度は一定になるため、立体映像の輝度変化が生じることはない。
この点について、数値例を用いて説明する。シャッターの光通過率を上述のように制御した状態で、バックライト制御部60がバックライト32の点灯輝度を制御しない場合(図9Bのバックライト輝度が常に100%の場合)、左右のシャッター通過後の画面輝度は、シャッターの光通過率に応じて変動することになる。ここで、バックライト制御部60は、シャッターの光通過率が最も高い値である右シャッターの100%に合わせて、他のシャッター開期間に対応するバックライトの点灯輝度を制御する。具体的には、図9Bに示すように、バックライト制御部60は、右側映像に対応するバックライトの点灯輝度を、266%、228%、100%、266%となるように制御する。また、バックライト制御部60は、左側映像に対応するバックライトの点灯輝度を、286%、128%、176%、286%となるように制御する。上述したように左右シャッターの開期間のデューティは25%であるので、最終的に左右のシャッターを通過する左右画像の画面輝度は、1フィールドで平均すると、図9Gに示すように25%に揃えることができる。すなわち、シャッターの光通過率制御に伴う画面輝度の変動を低減することができる。なお、ここで、バックライト制御部60の点灯輝度を表すパーセント表示は、シャッターの光通過率に合わせた制御を行わない場合を100%とした場合の相対的な数値であり、バックライト点灯輝度の絶対値を示すものではない。
フリッカ検出部70でフリッカを検出しない場合(例えば商用電源周波数が60Hzの地域の場合)は、前述したシャッター5L、5Rの光通過率は変化させず100%で一定とし、バックライト制御部60によって常時バックライト32を点灯させてもよい。これによりフリッカがない場合には、バックライト32の点灯による熱により、液晶パネル31の温度低下を防ぐことができる。そのため液晶応答速度の低下を低減でき、左右画像のクロストークを低減することができる。
本実施の形態の場合、他の実施形態と同様に右目用シャッター開期間と左目用シャッター開期間が重なっていないため、左右画像のクロストークの発生を抑えることができる。
さらに本実施の形態の場合、フリッカを検出した場合において、実施の形態1と比べてバックライトの点灯輝度を高く設定できる。そのため、シャッター眼鏡越しの立体映像の輝度を高くできるという効果がある。
なお、本実施の形態において、シャッター制御部4、フリッカ検出部70、バックライト制御部60が立体表示装置10に備えられる構成としたが、これに限られない。例えば、図10に示すように、一部の構成を立体映像観察用眼鏡5側に設けてもよい。当然、シャッター制御部4、フリッカ検出部70、バックライト制御部60の全てを立体映像観察用眼鏡5側に設けてもよい。
また、本実施の形態において、バックライト制御部60は、左右のシャッター各々の光通過量に応じて立体表示装置が表示する左目用映像および右眼用映像の輝度を制御する映像輝度制御部の一例である。
また、本実施の形態において、シャッター制御部4は、実施の形態1と同様にシャッターの光通過率を制御する構成としたが、実施の形態2と同様にシャッターの開期間の幅を制御する構成であってもよい。
また、本実施の形態において、バックライト制御部60を制御することで立体表示装置が表示する左目用映像および右眼用映像の画面輝度を制御する構成としたが、実施の形態1と組合せてバックライト制御部と液晶駆動部とを両方制御することで画面輝度を制御してもよく、バックライト制御部または液晶駆動部の少なくとも一方を制御することで前記左目用映像および右眼用映像の輝度を制御すればよい
以上、本発明に係る立体表示システム、立体表示装置および立体映像観察用眼鏡について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を当該実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
つまり、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
2009年12月7日出願の特願2009−277276の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
本発明は、クロストークの低減、フリッカの低減が可能な立体表示システムとして好適である。
1、101 立体映像処理部
2 液晶駆動部
31 液晶パネル
32 バックライト
4 シャッター制御部
40L、104L 左側メガネ位置制御回路
40R、104R 右側メガネ位置制御回路
41L、141L 左側メガネパルス幅制御回路
41R、141R 右側メガネパルス幅制御回路
42L 左側メガネ光通過率制御回路
42R 右側メガネ光通過率制御回路
5、105 立体画像観察用眼鏡
5L、105L 左シャッター
5R、105R 右シャッター
6、60 バックライト制御部
7、70 フリッカ検出部
10 立体表示装置
100、200 立体表示システム

Claims (2)

  1. 入力される左目用映像信号と右目用映像信号に基づく左目用映像と右目用映像とを時間的に切替えて表示する立体表示装置と、左目および右目へそれぞれ通過する光の量を調整する左目用および右目用のシャッターを有し、前記左目用映像と前記右目用映像とを観察する立体映像観察用眼鏡とを備えた立体表示システムであって、
    前記立体表示装置の周辺光を検出し、その周辺光から輝度変動を検出することにより、輝度変動の周期と前記シャッターの開閉周期との干渉によるフリッカの有無を検出するフリッカ検出部と、
    前記立体映像観察用眼鏡の左右のシャッターの開閉状態を左目用映像と右目用映像の表示周期に応じた開閉周期で制御するシャッター制御部と、
    前記左右のシャッター各々の光通過量に応じて前記立体表示装置が表示する前記左目用映像および右眼用映像の輝度を制御する映像輝度制御部を備え、
    前記立体表示装置は、前記左目用映像信号と前記右目用映像信号とに応じて背面から入射する光を変調して前記左目用映像と前記右目用映像とを表示する液晶パネル部と、前記液晶パネル部に背面から光を照射するバックライト部とを有し、
    かつ前記シャッター制御部は、前記フリッカ検出部でフリッカを検出した場合、前記左右のシャッターの各々において、時間的に連続する開期間に前記周辺光が通過する光量の変動が低減するように光通過量を制御するものであり、
    さらに前記映像輝度制御部は、前記液晶パネル部の通過率または前記バックライト部の発光輝度の少なくとも一方を制御することで前記左目用映像および右眼用映像の輝度を制御するものである
    ことを特徴とする立体表示システム。
  2. 前記映像輝度制御部は、前記フリッカ検出部においてフリッカが検出されなかった場合、前記バックライト部の発光が常時オン状態となるように制御するものである
    ことを特徴とする請求項1記載の立体表示システム。
JP2011503282A 2009-12-07 2010-11-08 立体表示システム Expired - Fee Related JP5214020B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011503282A JP5214020B2 (ja) 2009-12-07 2010-11-08 立体表示システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009277276 2009-12-07
JP2009277276 2009-12-07
PCT/JP2010/006539 WO2011070715A1 (ja) 2009-12-07 2010-11-08 立体表示システム、立体表示装置および立体映像観察用眼鏡
JP2011503282A JP5214020B2 (ja) 2009-12-07 2010-11-08 立体表示システム

Publications (2)

Publication Number Publication Date
JPWO2011070715A1 JPWO2011070715A1 (ja) 2013-04-22
JP5214020B2 true JP5214020B2 (ja) 2013-06-19

Family

ID=44145282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011503282A Expired - Fee Related JP5214020B2 (ja) 2009-12-07 2010-11-08 立体表示システム

Country Status (3)

Country Link
US (1) US20110304712A1 (ja)
JP (1) JP5214020B2 (ja)
WO (1) WO2011070715A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234777A1 (en) * 2009-11-02 2011-09-29 Panasonic Corporation Three-demensional display apparatus and three-dimensional display system
TWI492610B (zh) * 2011-03-10 2015-07-11 Realtek Semiconductor Corp 影像控制裝置
EP2823268B1 (en) * 2012-05-08 2020-06-24 Nokia Technologies Oy Ambient light detection and data processing
JP5950692B2 (ja) * 2012-05-25 2016-07-13 三菱電機株式会社 立体画像表示装置
JP6359990B2 (ja) * 2015-02-24 2018-07-18 株式会社ジャパンディスプレイ 表示装置および表示方法
CN114675744B (zh) * 2022-05-27 2022-09-02 季华实验室 Ar眼镜视觉亮度补偿方法、电子设备及ar眼镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133891A (ja) * 1985-12-06 1987-06-17 Victor Co Of Japan Ltd 画像再生装置
JPH09138384A (ja) * 1995-11-15 1997-05-27 Sanyo Electric Co Ltd 立体画像観察用眼鏡の制御方法
JPH10221637A (ja) * 1997-02-10 1998-08-21 Olympus Optical Co Ltd 頭部装着型画像表示装置
JPH1185085A (ja) * 1997-09-02 1999-03-30 Fujitsu Ltd 画像表示装置
JP2010061105A (ja) * 2008-08-07 2010-03-18 Mitsubishi Electric Corp 画像表示装置および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060723A1 (en) * 2006-11-08 2010-03-11 Nec Corporation Display system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133891A (ja) * 1985-12-06 1987-06-17 Victor Co Of Japan Ltd 画像再生装置
JPH09138384A (ja) * 1995-11-15 1997-05-27 Sanyo Electric Co Ltd 立体画像観察用眼鏡の制御方法
JPH10221637A (ja) * 1997-02-10 1998-08-21 Olympus Optical Co Ltd 頭部装着型画像表示装置
JPH1185085A (ja) * 1997-09-02 1999-03-30 Fujitsu Ltd 画像表示装置
JP2010061105A (ja) * 2008-08-07 2010-03-18 Mitsubishi Electric Corp 画像表示装置および方法

Also Published As

Publication number Publication date
JPWO2011070715A1 (ja) 2013-04-22
US20110304712A1 (en) 2011-12-15
WO2011070715A1 (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5275461B2 (ja) 立体表示装置および立体表示システム
JP4818469B2 (ja) 映像視聴用眼鏡及び映像視聴用眼鏡の制御方法
JP5214020B2 (ja) 立体表示システム
WO2011142141A1 (ja) 表示装置及び映像視聴システム
JP5556386B2 (ja) 表示装置、表示方法およびコンピュータプログラム
JP2011069963A (ja) 画像表示装置、画像表示観察システム及び画像表示方法
JP5438206B2 (ja) 映像表示装置
JP2011252943A (ja) 立体表示システム
JP5400902B2 (ja) 制御装置、表示装置、眼鏡装置及び映像システム
WO2015027627A1 (zh) 用于驱动立体显示装置的方法及设备、立体显示装置、立体眼镜、立体显示系统、计算机程序及非瞬态存储介质
KR20110083510A (ko) 영상 표시 시스템
KR101063478B1 (ko) 안경을 이용한 입체영상 제공 장치 및 그 방법
JP2011237687A (ja) 表示装置及び映像視聴システム
JP2012147142A (ja) 立体映像表示システム及び立体映像表示方法並びに立体映像表示装置、照明装置
JP2014068256A (ja) 表示装置、及びテレビジョン受信機
WO2013019114A1 (en) TV with 2D dimming for 3D viewing mode
JP2018112717A (ja) 表示装置、テレビジョン受像機、表示方法、制御プログラム、及び記録媒体
JP2012173558A (ja) 表示装置及び表示制御方法
JP2012227851A (ja) 立体映像の表示装置及び立体映像の表示システム
JP2012150314A (ja) 表示装置、その制御方法及び電子機器

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees