JP5213515B2 - Method for producing iron-silica water treatment flocculant - Google Patents

Method for producing iron-silica water treatment flocculant Download PDF

Info

Publication number
JP5213515B2
JP5213515B2 JP2008122888A JP2008122888A JP5213515B2 JP 5213515 B2 JP5213515 B2 JP 5213515B2 JP 2008122888 A JP2008122888 A JP 2008122888A JP 2008122888 A JP2008122888 A JP 2008122888A JP 5213515 B2 JP5213515 B2 JP 5213515B2
Authority
JP
Japan
Prior art keywords
iron
water treatment
aqueous solution
treatment flocculant
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008122888A
Other languages
Japanese (ja)
Other versions
JP2008307529A (en
Inventor
正広 武末
義明 古賀
孝雄 長谷川
靖 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Suido Kiko Kaisha Ltd
Original Assignee
Tokuyama Corp
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Suido Kiko Kaisha Ltd filed Critical Tokuyama Corp
Priority to JP2008122888A priority Critical patent/JP5213515B2/en
Publication of JP2008307529A publication Critical patent/JP2008307529A/en
Application granted granted Critical
Publication of JP5213515B2 publication Critical patent/JP5213515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • C01B33/128Preparation of silica of undetermined type by acidic treatment of aqueous silicate solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、鉄−シリカ水処理凝集剤の新規な製造方法に関する。より詳しくは、高い鉄濃度においても、保存安定性に優れる鉄−シリカ水処理凝集剤を簡便に製造できる方法に関する。   The present invention relates to a novel method for producing an iron-silica water treatment flocculant. More specifically, the present invention relates to a method capable of easily producing an iron-silica water treatment flocculant having excellent storage stability even at a high iron concentration.

各種の用水や排水等から懸濁物質やその他の不純物を除いて浄化処理を行う為に、凝集剤を該用水や排水中に注入してこれらの不純物を凝集・沈殿させて処理する水処理方法が行われており、この目的の凝集剤としては、硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄などが用いられている。   A water treatment method in which a flocculant is injected into the water or wastewater to agglomerate and precipitate to remove the suspended solids and other impurities from various water and wastewater. As the flocculant for this purpose, aluminum sulfate, polyaluminum chloride, ferric chloride and the like are used.

上記凝集剤の中でも硫酸アルミニウムまたはポリ塩化アルミニウムが汎用されている。これら凝集剤を使用した場合、水温が低下したり、水中の有機物、たとえば藻類が増加したりすると凝集剤の添加量を増加させなければならないが、アルミニウムは両性金属であるため、可溶性アルミニウムとなり、処理水中に残留するという問題点がある。また、アルミニウム系凝集剤は低水温では凝集性が低下するため、その使用量が増大するという欠点もある。   Among the above flocculants, aluminum sulfate or polyaluminum chloride is widely used. When these flocculants are used, the amount of flocculant added must be increased when the water temperature decreases or the amount of organic matter in the water, such as algae, increases. However, since aluminum is an amphoteric metal, it becomes soluble aluminum, There is a problem that it remains in the treated water. In addition, the aluminum-based flocculant has a drawback in that the amount of the aluminum-based flocculant increases because the aggregating property decreases at a low water temperature.

上記のような問題の解決のため、近年重合ケイ酸(シリカゾル)に鉄塩を添加した鉄−シリカ水処理凝集剤が、その高い凝集性能と、発生する凝集物を土壌へ還元できることより注目されている。   In order to solve the above problems, an iron-silica water treatment flocculant in which an iron salt is added to polymerized silicic acid (silica sol) has recently attracted attention because of its high flocculation performance and the ability to reduce the generated agglomerates to the soil. ing.

かかる鉄−シリカ水処理凝集剤は、容器中でケイ酸塩水溶液を塩酸、硫酸等の無機酸水溶液へ添加してSiO濃度が1〜6質量%程度のシリカゾルを得、次いで該ケイ酸溶液を数時間攪拌しつつ重合を進行させた後、そこへ鉄塩を添加することにより得ることができる(特許文献1、2参照)。 Such an iron-silica water treatment flocculant is obtained by adding an aqueous silicate solution to an inorganic acid aqueous solution such as hydrochloric acid or sulfuric acid in a container to obtain a silica sol having a SiO 2 concentration of about 1 to 6% by mass, and then the silicic acid solution. Can be obtained by advancing polymerization while stirring for several hours, and then adding an iron salt thereto (see Patent Documents 1 and 2).

しかしながら、特許文献1、2に記載された方法で良好な性能を有する凝集剤を得るためには重合ケイ酸(シリカゾル)を60℃程度に加熱し、数時間攪拌しつつ重合させなければならない。そのため、加熱の為の装置が必要となり、また、製造に長時間を要するため、工業的な実施において問題があった。   However, in order to obtain a flocculant having good performance by the methods described in Patent Documents 1 and 2, the polymerized silicic acid (silica sol) must be heated to about 60 ° C. and polymerized while stirring for several hours. For this reason, an apparatus for heating is required, and a long time is required for production, which causes a problem in industrial implementation.

一方、工業的に簡便な方法で鉄−シリカ水処理凝集剤を製造する方法も提案されている。例えば、塩化鉄水溶液に直接ケイ酸塩水溶液を加えることにより、鉄とシリカの反応を起すと同時にシリカゾルの重合も行う、重合槽が不要な鉄−シリカ水処理凝集剤の製造方法が提案されている(特許文献3参照)。   On the other hand, a method for producing an iron-silica water treatment flocculant by an industrially simple method has also been proposed. For example, a method for producing an iron-silica water treatment flocculant that does not require a polymerization tank is proposed in which a silica sol is polymerized simultaneously with the reaction between iron and silica by adding an aqueous silicate solution directly to an aqueous iron chloride solution. (See Patent Document 3).

しかしながら、この方法によれば、塩化鉄水溶液中にケイ酸塩水溶液を加えていくため、塩化鉄、シリカ等の濃度が絶えず変化する状態にあり、均一な凝集剤を大量に作るには、強力な撹拌や、長時間の反応が必要となる場合があった。本発明者等が追試したところ、添加するケイ酸塩水溶液のSiO濃度が76g/L以上のものを使用すると、反応中のシリカゾルをゲル化させないためには、1Lのケイ酸ソーダを添加するのに1時間以上を要した。また、ケイ酸塩水溶液を徐々に添加しても攪拌の状態により、シリカのゲル化トラブルを引き起こし、安定した製造ができない場合などがあり、改善の余地があった。 However, according to this method, since the aqueous silicate solution is added to the aqueous iron chloride solution, the concentration of iron chloride, silica, etc. is constantly changing. Stirring or a long reaction time may be required. As a result of a further trial by the present inventors, when an SiO 2 concentration of the silicate aqueous solution to be added is 76 g / L or more, 1 L of sodium silicate is added in order not to gel the silica sol during the reaction. It took more than an hour. Moreover, even if the aqueous silicate solution is gradually added, there is a case in which the gelation trouble of silica is caused by the state of stirring, and stable production cannot be performed, and there is room for improvement.

特公平4−75796号公報Japanese Examined Patent Publication No. 4-75796 特許第2732067号公報Japanese Patent No. 2732067 特許第3700892号公報Japanese Patent No. 3700892 特開2003−38908号公報JP 2003-38908 A

したがって、本発明の目的は、簡易的に短時間で高い凝集性能を示す鉄−シリカ水処理凝集剤の製造方法を提供することにある。また、本発明の他の目的は、上記製造方法において、高い鉄濃度で、保存安定性に優れる鉄−シリカ水処理凝集剤の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing an iron-silica water treatment flocculant which simply shows high agglomeration performance in a short time. Another object of the present invention is to provide a method for producing an iron-silica water treatment flocculant having a high iron concentration and excellent storage stability in the above production method.

本発明者らは上記課題を解決すべく鋭意検討した。その結果、ケイ酸塩水溶液と第二鉄塩水溶液とを原料とする前記の鉄−シリカ水処理凝集剤の製造方法において、該水処理凝集剤の製造に使用するケイ酸塩水溶液の全量に対して、少なくとも一部の第二鉄塩水溶液を予め衝突混合することにより、得られる反応液、或いは、該反応液に更に第二鉄塩水溶液を、通常の混合方法、例えば、従来の容器において行う攪拌混合などにより混合する操作を行う場合であっても、前記シリカのゲル化トラブルもなく、短時間で、高い凝集性能を維持した鉄−シリカ水処理凝集剤を安定して得ることができることを見出し、本発明を完成するに至った。   The present inventors diligently studied to solve the above problems. As a result, in the method for producing an iron-silica water treatment flocculant using a silicate aqueous solution and a ferric salt aqueous solution as raw materials, the total amount of the silicate aqueous solution used for the production of the water treatment flocculant Then, at least a part of the ferric salt aqueous solution is collided and mixed in advance, and the resultant reaction liquid, or the ferric salt aqueous solution is further added to the reaction liquid in a conventional mixing method, for example, in a conventional container. It is possible to stably obtain an iron-silica water treatment flocculant that maintains high agglomeration performance in a short time without gelation trouble of the silica even when performing an operation of mixing by stirring and mixing. The headline and the present invention were completed.

即ち、本発明は、ケイ酸塩水溶液と第二鉄塩水溶液との反応により鉄−シリカ水処理凝集剤を製造するに際し、上記鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量と第二鉄塩水溶液の少なくとも一部とを管型反応器で衝突混合させる衝突混合工程を含み、かつ前記両水溶液がいずれも5m/秒以上の速度で衝突するように前記反応器の原料供給管に供給することを特徴とする鉄−シリカ水処理凝集剤の製造方法である。
That is, the present invention provides an aqueous solution of silicate used for the production of the iron-silica water treatment flocculant when the iron-silica water treatment flocculant is produced by the reaction of the silicate aqueous solution and the ferric salt aqueous solution. look including the total amount and impingement mixing step of impingement mixing in a tubular reactor and at least a portion of the ferric salt solution, and the reactor of the so two solutions collide with either 5 m / sec or faster It is a manufacturing method of the iron-silica water treatment flocculant characterized by supplying to a raw material supply pipe .

また、本発明は、上記衝突混合工程において、ケイ酸塩水溶液に対して、衝突混合させる第二鉄塩水溶液の好ましい下限量を確認した。   Moreover, this invention confirmed the preferable minimum amount of the ferric-salt aqueous solution made to collision-mix with respect to silicate aqueous solution in the said collision mixing process.

即ち、本発明によれば、上記衝突混合工程において、衝突混合させる第二鉄塩水溶液の混合量が、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量中の珪素元素(Si)に対して鉄元素(Fe)で0.5倍モル以上となる量である、請求項1記載の鉄−シリカ水処理凝集剤の製造方法が提供される。   That is, according to the present invention, in the collision mixing step, the mixing amount of the ferric salt aqueous solution to be collision mixed is the elemental silicon in the total amount of the silicate aqueous solution used for the production of the iron-silica water treatment flocculant ( The method for producing an iron-silica water treatment flocculant according to claim 1, wherein the amount of iron element (Fe) is 0.5 times mol or more with respect to (Si).

更に、上記方法を使用して、得られる鉄−シリカ水処理凝集剤について、より保存安定性の高い条件を検討した結果、SiO濃度、鉄濃度およびpHについて、下記の範囲が効果的であることを見出した。 Furthermore, as a result of examining conditions with higher storage stability for the obtained iron-silica water treatment flocculant using the above method, the following ranges are effective for SiO 2 concentration, iron concentration and pH. I found out.

即ち、本発明によれば、鉄−シリカ水処理凝集剤が、pH0.3〜1.5であり、鉄元素濃度(Fe)が20g/L〜120g/L、SiO濃度が10g/L〜50g/Lであり、且つ、Si/Feモル比が1以下である、前記の鉄−シリカ水処理凝集剤の製造方法をも提供される。 That is, according to the present invention, the iron-silica water treatment flocculant has a pH of 0.3 to 1.5, an iron element concentration (Fe) of 20 g / L to 120 g / L, and a SiO 2 concentration of 10 g / L to A method for producing the iron-silica water treatment flocculant, which is 50 g / L and has a Si / Fe molar ratio of 1 or less, is also provided.

更にまた、本発明の前記鉄−シリカ水処理凝集剤の製造方法において、得られる鉄−シリカ水処理凝集剤を上記条件に調整する態様として、以下の態様を含む。   Furthermore, in the method for producing the iron-silica water treatment flocculant of the present invention, the following aspect is included as an aspect of adjusting the obtained iron-silica water treatment flocculant to the above conditions.

(1)衝突混合工程において、使用するケイ酸塩水溶液の全量と第二鉄塩水溶液の一部とを衝突混合させて部分混合液を得、該部分混合液に残部の第二鉄塩水溶液を任意の方法により混合して目的とする鉄−シリカ水処理凝集剤を得る態様。   (1) In the collision mixing step, the total amount of the silicate aqueous solution to be used and a part of the ferric salt aqueous solution are collided and mixed to obtain a partial mixed solution, and the remaining ferric salt aqueous solution is added to the partial mixed solution. The aspect which obtains the target iron-silica water treatment flocculent by mixing by arbitrary methods.

(2)衝突混合工程において、使用するケイ酸塩水溶液の全量と第二鉄塩水溶液の全量とを衝突混合させて目的とする鉄−シリカ水処理凝集剤を得る態様。   (2) The aspect which obtains the target iron-silica water treatment flocculant by carrying out collision mixing of the whole quantity of the silicate aqueous solution to be used, and the whole quantity of ferric salt aqueous solution in a collision mixing process.

(3)上記(1)、(2)の態様において、衝突混合工程において鉱酸を添加することによりpH調整して目的とする鉄−シリカ水処理凝集剤を得る態様。   (3) In the above-described aspects (1) and (2), the target iron-silica water treatment flocculant is obtained by adjusting the pH by adding a mineral acid in the collision mixing step.

(4)上記(1)、(2)において、衝突混合後に鉱酸を添加することによりpH調整して目的とする鉄−シリカ水処理凝集剤を得る態様。   (4) A mode in which, in (1) and (2) above, the target iron-silica water treatment flocculant is obtained by adjusting the pH by adding a mineral acid after collision mixing.

本発明によれば、前記衝突工程により、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量と第二鉄塩水溶液の少なくとも一部とを衝突混合させることによって、凝集性能が高い鉄−シリカ水処理凝集剤を、短時間で安定して製造することができる。   According to the present invention, by the collision step, the total amount of the silicate aqueous solution used for the production of the iron-silica water treatment flocculant and at least a part of the ferric salt aqueous solution are collided and mixed, so that the aggregation performance is improved. A high iron-silica water treatment flocculant can be produced stably in a short time.

特に、上記方法において、得られる鉄−シリカ水処理凝集剤のpH、鉄およびケイ素濃度、更に、該鉄と珪素とのモル比を特定の範囲となるように製造することにより、長期保存安定性に優れる鉄−シリカ水処理凝集剤を得ることができる。   In particular, in the above method, the pH of the obtained iron-silica water treatment flocculant, the iron and silicon concentrations, and the molar ratio between the iron and silicon are produced in a specific range, thereby ensuring long-term storage stability. Can be obtained.

本発明において、原料となるケイ酸塩は、通常のシリカゾル、鉄−シリカ水処理凝集剤に使用できるものであれば、特に制限されるものではなく、ケイ酸アルカリ塩、具体的には、ケイ酸ソーダ、ケイ酸カリウム等を使用することができる。中でも、原料のコスト等を考慮すると、ケイ酸ソーダを使用することが好ましい。ケイ酸ソーダを使用する場合、SiOとNaOのモル比は特に制限されるものではないが、モル比2.5〜4.0が好適である。 In the present invention, the silicate used as a raw material is not particularly limited as long as it can be used for an ordinary silica sol and iron-silica water treatment flocculant. Acid soda, potassium silicate and the like can be used. Among these, it is preferable to use sodium silicate in consideration of the cost of the raw materials. When using sodium silicate, the molar ratio of SiO 2 and Na 2 O is not particularly limited, but a molar ratio of 2.5 to 4.0 is preferable.

本発明において、上記ケイ酸塩を含む水溶液の濃度は、他方の原料である第二鉄塩水溶液(またはおよび鉱酸を含む水溶液)のpH、鉄等の濃度、および所望とする鉄−シリカ水処理凝集剤のpH、鉄、シリカ濃度に応じて適宜決定してやればよいが、下記に詳述する衝突混合により鉄−シリカ水処理凝集剤を製造するためには、SiO濃度が20g/L〜130g/Lのものを使用することが好ましい。即ち、この範囲を満足することにより、短時間で高濃度であって、瞬時にゲル化物を生じることがなく、しかも、凝集性に優れる鉄−シリカ水処理凝集剤、また、保存安定性に優れる鉄−シリカ水処理凝集剤を容易に製造することもできる。 In the present invention, the concentration of the aqueous solution containing the silicate is the pH of the aqueous ferric salt solution (or the aqueous solution containing mineral acid), the concentration of iron or the like, and the desired iron-silica water. the pH of the treatment coagulant, iron, but do it appropriately determined depending on the silica concentration, the iron by impingement mixing detailed below - to produce the silica water treatment coagulant, SiO 2 concentration of 20 g / • L ^ It is preferable to use the one of 130 g / L. That is, by satisfying this range, an iron-silica water treatment flocculant having a high concentration in a short period of time, without generating a gelled product instantly and having excellent cohesiveness, and excellent storage stability. An iron-silica water treatment flocculant can also be easily produced.

特に、本発明によれば、後述のように、第二鉄塩溶液を撹拌しながらケイ酸塩水溶液を添加する従来の製造方法では困難であった、例えば、SiO濃度が76g/L以上のケイ酸塩水溶液を原料として使用することもできる。そのため、本発明は、高濃度の鉄−シリカ水処理凝集剤を短時間で製造することができる。従って、高濃度の鉄−シリカ水処理凝集剤は、製造の効率化が図られると共に、貯蔵、輸送面においても有利である。また、使用時には、これを必要とする濃度に希釈して使用することが可能になり、濃度による凝集能の調製も可能となり、その工業的な利用価値は極めて高くなる。 In particular, according to the present invention, as described later, it was difficult to use a conventional manufacturing method in which an aqueous silicate solution was added while stirring a ferric salt solution. For example, the SiO 2 concentration was 76 g / L or more. A silicate aqueous solution can also be used as a raw material. Therefore, this invention can manufacture a high concentration iron-silica water treatment flocculant in a short time. Therefore, a high concentration iron-silica water treatment flocculant can improve production efficiency and is advantageous in terms of storage and transportation. In use, it can be diluted to a required concentration, and the aggregation ability can be adjusted depending on the concentration, and its industrial utility value is extremely high.

本発明において、他方の原料となる第二鉄塩は、通常の鉄−シリカ水処理凝集剤に使用できるものであれば、特に制限されるものではなく、塩化第二鉄、硫酸第二鉄、硝酸第二鉄等を使用することができる。   In the present invention, the ferric salt as the other raw material is not particularly limited as long as it can be used for a normal iron-silica water treatment flocculant, and ferric chloride, ferric sulfate, Ferric nitrate or the like can be used.

本発明において、第二鉄塩水溶液における鉄の濃度は、特に制限されるものではなく、所望とする鉄−シリカ水処理凝集剤の鉄濃度に応じて、適宜決定すればよい。本発明において好適に採用される上記第二鉄塩水溶液における塩化第二鉄の濃度は、180g/L〜600g/Lが好ましい。   In the present invention, the iron concentration in the aqueous ferric salt solution is not particularly limited, and may be determined as appropriate according to the iron concentration of the desired iron-silica water treatment flocculant. The concentration of ferric chloride in the aqueous ferric salt solution suitably employed in the present invention is preferably 180 g / L to 600 g / L.

本発明の特徴は、ケイ酸塩水溶液と第二鉄塩水溶液とを原料とする前記の鉄−シリカ水処理凝集剤の製造方法において、該水処理凝集剤の製造に使用するケイ酸塩水溶液の全量に対して、少なくとも一部の第二鉄塩水溶液を衝突混合にて行う衝突混合工程を含むことにある。   A feature of the present invention is that in the method for producing an iron-silica water treatment flocculant using a silicate aqueous solution and a ferric salt aqueous solution as raw materials, the silicate aqueous solution used for producing the water treatment flocculant There is a collision mixing step in which at least a part of the ferric salt aqueous solution is subjected to collision mixing with respect to the total amount.

ケイ酸塩水溶液と第二鉄塩水溶液との反応において、衝突混合の工程は、本発明において初めて採用されたものである。これにより、反応容器内でこれらの水溶液を攪拌混合する従来の製造方法で発生していたシリカのゲル化トラブルもなく、短時間で、高い凝集性能を維持した鉄−シリカ水処理凝集剤を安定して得ることができる。   In the reaction between the silicate aqueous solution and the ferric salt aqueous solution, the step of collision mixing is employed for the first time in the present invention. This makes it possible to stabilize the iron-silica water treatment flocculant that maintains high agglomeration performance in a short time without the gelation trouble of silica that occurs in the conventional production method of stirring and mixing these aqueous solutions in the reaction vessel. Can be obtained.

ここで、上記ケイ酸塩水溶液は、その全量を第二鉄塩水溶液と衝突混合によって反応させることが重要である。即ち、ケイ酸塩水溶液が第二鉄塩水溶液と衝突混合することにより、第二鉄塩水溶液との反応により、ケイ酸塩水溶液中のシリカ成分がゲル化し難い形態に変化し、衝突混合時或いはその後の第二鉄塩水溶液との反応によるゲルの発生を防止しているものと推定される。   Here, it is important that the total amount of the silicate aqueous solution is reacted with the ferric salt aqueous solution by collision mixing. That is, when the silicate aqueous solution collides with the ferric salt aqueous solution, the reaction with the ferric salt aqueous solution changes the silica component in the silicate aqueous solution into a form in which gelation is difficult to occur. It is presumed that the subsequent generation of gel due to the reaction with the ferric salt aqueous solution is prevented.

従って、本発明において、衝突混合によってケイ酸塩水溶液の全量と反応させる第二鉄塩水溶液の量は、その一部でもよいし、全量でもよい。   Accordingly, in the present invention, the amount of the ferric salt aqueous solution to be reacted with the total amount of the silicate aqueous solution by collision mixing may be a part or the total amount.

衝突混合工程において、第二鉄塩水溶液の一部をケイ酸塩水溶液と衝突混合させる場合、衝突混合させる第二鉄塩水溶液の混合量が、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量中の珪素元素(Si)に対して鉄元素(Fe)で0.5倍モル以上、特に、0.8〜5.0倍モルとなる量であることが好ましい。   In the collision mixing step, when a part of the ferric salt aqueous solution is collided with the silicate aqueous solution, the amount of the ferric salt aqueous solution to be collided is determined by the amount of silica used in the production of the iron-silica water treatment flocculant. It is preferable that the amount of iron element (Fe) is 0.5 times mol or more, particularly 0.8 to 5.0 times mol with respect to silicon element (Si) in the total amount of the acid salt aqueous solution.

本発明において、衝突混合とは、上記原料を含む第二鉄塩水溶液とケイ酸塩水溶液とを衝突させることにより、両水溶液を混合させるのと同時に反応させるものである。具体的には、2つの原料供給管が合流し、該原料供給管の合流部にて1つの排出管と連結してなる管型反応器(Y字管型、T字管型反応器等)を使用することにより、両原料水溶液を上記合流部にて衝突混合させることができる。これら管型反応器の中でも、排出等の安定性を考慮すると、Y字管型反応器、例えば、特開2003−221222号に記載されている反応器を使用することが好ましい。図1に本発明に使用可能なY字管型反応器の例を示す。   In the present invention, the collision mixing is a reaction in which the aqueous solution of ferric salt containing the above raw material and the aqueous solution of silicate collide with each other and are mixed at the same time. Specifically, a tubular reactor (Y-tube type, T-tube type reactor, etc.) in which two raw material supply pipes merge and are connected to one discharge pipe at the confluence of the raw material supply pipes By using this, both raw material aqueous solutions can be collision-mixed at the above-mentioned junction. Among these tubular reactors, in consideration of stability such as discharge, it is preferable to use a Y-shaped reactor, for example, a reactor described in JP-A No. 2003-221222. FIG. 1 shows an example of a Y-tube reactor that can be used in the present invention.

図1に示すY字管型反応器では、各々の原料供給管の中間に絞り部が設けられている。この絞り部の径と、ポンプから供給される原料水溶液の量を適宜調節することにより、衝突混合の際の衝突速度を設定することが可能である。   In the Y-tube reactor shown in FIG. 1, a throttle is provided in the middle of each raw material supply pipe. By appropriately adjusting the diameter of the throttle portion and the amount of the raw material aqueous solution supplied from the pump, it is possible to set the collision speed during the collision mixing.

Y字管型反応器において、2つの原料供給管のなす角度は、30〜180度、好ましくは45〜150度、さらに好ましくは60〜120度である。   In the Y-tube reactor, the angle formed by the two raw material supply pipes is 30 to 180 degrees, preferably 45 to 150 degrees, and more preferably 60 to 120 degrees.

このような装置を使用する場合、前記合流部となる反応部において、両水溶液がいずれも5m/秒以上、好ましくは7m/秒以上、更に好ましくは10m/秒以上の速度で衝突するように原料供給管4に両水溶液を供給することが好ましい。上記供給速度の上限は特に制限されないが、20m/秒程度以上に供給速度を上げても効果は頭打ちとなる傾向がある。   When such an apparatus is used, the raw materials are so arranged that both aqueous solutions collide at a speed of 5 m / sec or more, preferably 7 m / sec or more, more preferably 10 m / sec or more in the reaction section serving as the merging section. It is preferable to supply both aqueous solutions to the supply pipe 4. The upper limit of the supply speed is not particularly limited, but the effect tends to reach its peak even if the supply speed is increased to about 20 m / second or more.

また、反応物が1m/秒以上、好ましくは1.3m/秒以上、更に好ましくは1.5m/秒以上の速度で排出管6から排出することが好ましい。排出管を細くすれば排出速度を速くすることができ、一方、太くすると排出速度は遅くなる。   The reactant is preferably discharged from the discharge pipe 6 at a speed of 1 m / second or more, preferably 1.3 m / second or more, more preferably 1.5 m / second or more. If the discharge pipe is made thinner, the discharge speed can be increased. On the other hand, if the discharge pipe is made thicker, the discharge speed becomes slower.

前記Y字管型反応器を使用する好適な態様について、図1を基づいて説明する。   A preferred embodiment using the Y-tube reactor will be described with reference to FIG.

先ず、第二鉄塩水溶液の貯蔵槽1と、ケイ酸塩水溶液の貯蔵槽2と、貯蔵槽1および貯蔵槽2に各々貯蔵されている第二鉄塩水溶液(または第二鉄塩および鉱酸を含む水溶液)とケイ酸塩水溶液とをY字管型反応器3の原料供給管4(または原料供給管4’)に供給し、反応部5において両水溶液を衝突混合させて、反応させる。そして、反応部5から排出管6を通して反応物を取り出すことにより、鉄−シリカ水処理凝集剤を製造することができる。   First, a ferrous salt aqueous solution storage tank 1, a silicate aqueous solution storage tank 2, and a ferric salt aqueous solution (or ferric salt and mineral acid) respectively stored in the storage tank 1 and the storage tank 2 And an aqueous silicate solution are supplied to the raw material supply pipe 4 (or raw material supply pipe 4 ′) of the Y-tube reactor 3, and both aqueous solutions are collided and reacted in the reaction section 5. And an iron-silica water treatment flocculant can be manufactured by taking out a reaction material from the reaction part 5 through the discharge pipe 6. FIG.

本発明において、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液と第二鉄塩水溶液との割合は、特に限定されず、公知の割合を制限なく採用することができるが、本発明の方法は、ケイ素に対して鉄の割合が多い組成においても、問題なく製造可能である。   In the present invention, the ratio of the silicate aqueous solution and the ferric salt aqueous solution used for the production of the iron-silica water treatment flocculant is not particularly limited, and a known ratio can be adopted without limitation. The method of the invention can be produced without problems even in a composition having a high ratio of iron to silicon.

尚、前記したように、上記の割合で使用するケイ酸塩水溶液と第二鉄塩水溶液のうち、第二鉄塩水溶液は、その少なくとも一部を衝突混合によって混合すればよく、残部は、通常の混合、例えば、攪拌機付きの反応槽、邪魔板付きの管型混合装置等の混合装置を使用した混合方法によって混合することもできる。   As described above, among the silicate aqueous solution and the ferric salt aqueous solution used in the above ratio, the ferric salt aqueous solution may be at least partly mixed by collision mixing, and the remainder is usually For example, mixing can be performed by a mixing method using a mixing apparatus such as a reaction tank with a stirrer or a tube-type mixing apparatus with a baffle plate.

なお前述の通り、第二鉄塩水溶液の一部のみをケイ酸塩水溶液と衝突させる際にも、Fe/Siがモル比で0.5以上となる量以上の第二鉄塩水溶液を使用することが好ましい。   As described above, when only a part of the ferric salt aqueous solution is collided with the silicate aqueous solution, the ferric salt aqueous solution having an Fe / Si molar ratio of 0.5 or more is used. It is preferable.

従って、本発明は、前記したように、以下の態様を含むものである。   Accordingly, the present invention includes the following aspects as described above.

(1)衝突混合工程において、使用するケイ酸塩水溶液の全量と第二鉄塩水溶液の一部とを衝突混合させて部分混合液を得、該部分混合液に残部の第二鉄塩水溶液を任意の方法により混合して目的とする鉄−シリカ水処理凝集剤を得る態様。   (1) In the collision mixing step, the total amount of the silicate aqueous solution to be used and a part of the ferric salt aqueous solution are collided and mixed to obtain a partial mixed solution, and the remaining ferric salt aqueous solution is added to the partial mixed solution. The aspect which obtains the target iron-silica water treatment flocculent by mixing by arbitrary methods.

(2)衝突混合工程において、使用するケイ酸塩水溶液の全量と第二鉄塩水溶液の全量とを衝突混合させて目的とする鉄−シリカ水処理凝集剤を得る態様。   (2) The aspect which obtains the target iron-silica water treatment flocculant by carrying out collision mixing of the whole quantity of the silicate aqueous solution to be used, and the whole quantity of ferric salt aqueous solution in a collision mixing process.

本発明の方法によれば、上記第二塩化鉄水溶液とケイ酸塩水溶液の少なくとも一部とを上記衝突混合により反応させる衝突混合工程を設けることにより、短時間で、且つ、凝集性能の優れた鉄−シリカ水処理凝集剤を製造することができる。   According to the method of the present invention, by providing a collision mixing step in which the ferric chloride aqueous solution and at least a part of the silicate aqueous solution are reacted by the collision mixing, the coagulation performance is excellent in a short time. An iron-silica water treatment flocculant can be produced.

また、10g/L〜60g/LとSiO濃度の高い、凝集性能の優れた鉄−シリカ水処理凝集剤を、1分間で2L以上も製造することができる。従って、前記した従来技術である、重合ケイ酸(シリカゾル)の重合を進行させた後、第二鉄塩水溶液を添加する方法、或いは、反応容器内で、塩化鉄水溶液中にケイ酸塩水溶液を加える方法と比較して、シリカのゲル化を抑えながら、極めて短時間で製造することができ、かつ、これら従来技術と同等或いはそれ以上の凝集性能を発揮できる。 Further, an iron-silica water treatment flocculant having a high SiO 2 concentration of 10 g / L to 60 g / L and excellent aggregation performance can be produced in an amount of 2 L or more in one minute. Therefore, after the polymerization of polymerized silicic acid (silica sol), which is the conventional technique described above, is proceeded, a ferric salt aqueous solution is added, or in a reaction vessel, a silicate aqueous solution is added to an iron chloride aqueous solution. Compared with the method of adding, it can manufacture in a very short time, suppressing the gelatinization of a silica, and can exhibit the aggregation performance equivalent to or more than these prior art.

さらに驚くべきことに、本発明の衝突混合により製造した鉄−シリカ水処理凝集剤は、従来技術により製造した鉄−シリカ水処理凝集剤に比較して、より長期の保存安定性を有している。   Further surprisingly, the iron-silica water treatment flocculant produced by the impingement mixing of the present invention has a longer storage stability than the iron-silica water treatment flocculant produced by the prior art. Yes.

本発明の方法により得られる鉄−シリカ水処理凝集剤の優れた凝集性能を維持したまま、より長期の安定性を保持するために、得られる鉄−シリカ水処理凝集剤は、pHが0.3〜1.5、好ましくは、1.3未満0.4以上、であって、鉄濃度が20g/L〜120g/L、好ましくは、20g/L〜100g/L、SiO濃度が10〜50g/L、好ましくは、10g/L〜50g/Lとなるように製造することが好ましい。 In order to maintain the long-term stability while maintaining the excellent aggregation performance of the iron-silica water treatment flocculant obtained by the method of the present invention, the obtained iron-silica water treatment flocculant has a pH of 0.00. 3 to 1.5, preferably less than 1.3 and 0.4 or more, and the iron concentration is 20 g / L to 120 g / L, preferably 20 g / L to 100 g / L, and the SiO 2 concentration is 10 to 10. 50 g / L, preferably 10 g / L to 50 g / L.

因みに、上記条件に調整することにより得られた鉄−シリカ水処理凝集剤は、後記の実施例に示すように、30℃で、30日以上、最長で80日もの長期間にわたって、ゲル化物が生じること無く保存することも可能となる。しかも、高濃度の鉄−シリカ水処理凝集剤であるため、輸送費が低減でき経済的にも有利となり、実際の使用に際しては、現場で任意の濃度に薄めて使用することもできる。   Incidentally, the iron-silica water treatment flocculant obtained by adjusting to the above conditions has a gelled product at 30 ° C. for 30 days or more and a maximum of 80 days as shown in the examples below. It is also possible to save without occurring. In addition, since it is a high concentration iron-silica water treatment flocculant, transportation costs can be reduced and it is economically advantageous. In actual use, it can be diluted to an arbitrary concentration on site.

本発明において、第二鉄塩水溶液は酸性を呈するため、得られる鉄−シリカ水処理凝集剤のpHを下げるためのpH調整剤として使用することも可能であるが、該凝集剤のpHを、鉄濃度を変えることなく下げたい場合は、鉱酸を併用しても良い。かかる鉱酸は、特に制限されないが、硫酸や塩酸が好適に用いられる。   In the present invention, since the ferric salt aqueous solution exhibits acidity, it can be used as a pH adjuster for lowering the pH of the obtained iron-silica water treatment flocculant. When it is desired to lower the iron concentration without changing it, a mineral acid may be used in combination. Such mineral acid is not particularly limited, but sulfuric acid and hydrochloric acid are preferably used.

すなわち、本発明においては、前記のように以下の態様を含むものである。   That is, the present invention includes the following aspects as described above.

(3)前記(1)、(2)の態様において、衝突混合工程において鉱酸を添加することによりpH調整して目的とする鉄−シリカ水処理凝集剤を得る態様。   (3) In the above-described aspects (1) and (2), the target iron-silica water treatment flocculant is obtained by adjusting the pH by adding a mineral acid in the collision mixing step.

(4)前記(1)、(2)において、衝突混合後に鉱酸を添加することによりpH調整して目的とする鉄−シリカ水処理凝集剤を得る態様。   (4) In the above (1) and (2), an aspect of obtaining a target iron-silica water treatment flocculant by adjusting pH by adding a mineral acid after collision mixing.

上記(3)の態様において、鉱酸は、衝突混合工程においてどのように添加してもよいが、最も推奨されるのは、第二鉄塩水溶液中に予め混合し、これとケイ酸塩水溶液と衝突混合する方法である。上記態様において、鉱酸の添加は、衝突混合工程および衝突混合後の両時点で行うことも勿論可能である。   In the above aspect (3), the mineral acid may be added in any way in the collision mixing step, but the most recommended one is premixed in the aqueous ferric salt solution and this and the aqueous silicate solution. And collision mixing. In the above embodiment, it is of course possible to add the mineral acid at both the impact mixing step and after the impact mixing.

本発明の方法によって得られた鉄−シリカ水処理凝集剤は、そのまま、或いは適当な濃度に希釈して、各種排水の水処理剤として、有効に使用することができる。   The iron-silica water treatment flocculant obtained by the method of the present invention can be effectively used as it is or as a water treatment agent for various wastewaters after being diluted to an appropriate concentration.

以下実施例により本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(1)衝突混合装置(鉄−シリカ水処理凝集剤の製造装置)
図1に示すY字管型反応器で、絞り部の管径(内径)1.4mm×長さ10mmのケイ酸ソーダ水溶液を原料供給管4、同じく絞り部の管径(内径)1.2mm×長さ10mmの塩化第二鉄水溶液を原料供給管4’から供給し、反応部5にて衝突混合させ、排出管6(管径(内径)6mm×長さ30mm)から混合液を取り出すようにしたものを使用した。Y字管型反応器の二つの原料供給管4および4’がなす角度は90度であった。
(1) Collision mixing device (iron-silica water treatment flocculant manufacturing device)
In the Y-tube reactor shown in FIG. 1, a sodium silicate aqueous solution having a diameter (inner diameter) of 1.4 mm × length of 10 mm is used as a raw material supply pipe 4, and the diameter (inner diameter) of the throttle part is 1.2 mm. X A ferric chloride aqueous solution having a length of 10 mm is supplied from the raw material supply pipe 4 ′, collided and mixed in the reaction section 5, and the mixed liquid is taken out from the discharge pipe 6 (tube diameter (inner diameter) 6 mm × length 30 mm). We used what was made. The angle formed by the two raw material supply pipes 4 and 4 ′ of the Y-tube reactor was 90 degrees.

(2)粘度測定
(株)エーアンドディの音叉型振動式粘度計を用い30℃で測定した。
(2) Viscosity Measurement The viscosity was measured at 30 ° C. using an A & D tuning fork type vibration viscometer.

(3)凝集性能の評価
水道水にカオリン(和光純薬製水質試験用濁度標準液1000度)を添加し、濁度20に調整したものを試験水としてジャーテストを行った。1000mlの試験水に、水1Lに対しFeが5mg相当になるように凝集剤を添加し、攪拌速度150rpmで5分間攪拌し、続けて攪拌速度50rpmで10分間攪拌し、さらに、10分間静置した後、上澄み液50mlを採取した。濁度を測定する方法により、本願発明により得られた鉄−シリカ水処理凝集剤の水処理に対する性能を調べた。
(3) Evaluation of flocculation performance Kaolin (1000 degrees of turbidity standard solution for water quality test manufactured by Wako Pure Chemical Industries, Ltd.) was added to tap water, and jar test was performed using the turbidity adjusted to 20 as test water. To 1000 ml of test water, a flocculant is added so that Fe is equivalent to 5 mg with respect to 1 L of water, stirred for 5 minutes at a stirring speed of 150 rpm, then stirred for 10 minutes at a stirring speed of 50 rpm, and further allowed to stand for 10 minutes. After that, 50 ml of the supernatant was collected. By the method of measuring turbidity, the performance of the iron-silica water treatment flocculant obtained by the present invention for water treatment was examined.

(4)保存安定性の評価
安定性は、鉄−シリカ水処理凝集剤を、30℃で放置し、目視で沈殿やゲル化の度合いを判定し、沈殿或いはゲル化が起こるまでの日数で評価した。
(4) Evaluation of storage stability Stability is evaluated by the number of days until precipitation or gelation occurs by leaving the iron-silica water treatment flocculant to stand at 30 ° C., visually determining the degree of precipitation or gelation. did.

実施例1
市販のケイ酸ソーダ(ケイ酸塩水溶液:SiO濃度28質量%、SiO/NaOモル比3.15)を水で希釈し、SiO濃度70g/Lの水溶液とした。一方、市販の39質量%塩化第二鉄溶液(第二鉄塩水溶液)を水で希釈し塩化第二鉄濃度190g/Lの水溶液とした。これらの水溶液のそれぞれの全量を用い、原料供給管4からのケイ酸ソーダ水溶液の流量を1.0L/min、原料供給管4’からの塩化第二鉄水溶液の流量を0.9L/minとなるように供給し、反応部5で衝突混合させ、排出管6から取り出した。鉄−シリカ水処理凝集剤5Lを約2分40秒で得た。
Example 1
Commercially available sodium silicate (silicate aqueous solution: SiO 2 concentration 28 mass%, SiO 2 / Na 2 O molar ratio 3.15) was diluted with water to obtain an aqueous solution having a SiO 2 concentration of 70 g / L. On the other hand, a commercially available 39 mass% ferric chloride solution (ferric salt aqueous solution) was diluted with water to obtain an aqueous solution having a ferric chloride concentration of 190 g / L. Using the total amount of each of these aqueous solutions, the flow rate of the sodium silicate aqueous solution from the raw material supply pipe 4 was 1.0 L / min, and the flow rate of the ferric chloride aqueous solution from the raw material supply pipe 4 ′ was 0.9 L / min. Then, the reaction part 5 was collided and mixed and taken out from the discharge pipe 6. 5 L of an iron-silica water treatment flocculant was obtained in about 2 minutes and 40 seconds.

このときに反応部5へ供給されるケイ酸ソーダ水溶液及び塩化第二鉄水溶液の流速は、原料供給管の長手方向にそれぞれ10.8m/s、13.3m/sであった。また該水処理凝集剤が排出管6から排出される流速は、1.1m/sであった。   At this time, the flow rates of the aqueous sodium silicate solution and the aqueous ferric chloride solution supplied to the reaction unit 5 were 10.8 m / s and 13.3 m / s, respectively, in the longitudinal direction of the raw material supply pipe. The flow rate at which the water treatment flocculant was discharged from the discharge pipe 6 was 1.1 m / s.

得られた鉄−シリカ水処理凝集剤は、シリカのゲル化物などはなく、黄褐色の透明な液体であった。この水処理凝集剤は、SiO濃度37g/L、鉄濃度31g/L、Si/Feモル比1.11であり、pHは1.54であった。 The obtained iron-silica water treatment flocculent was a yellowish-brown transparent liquid without silica gelation. This water treatment flocculant had a SiO 2 concentration of 37 g / L, an iron concentration of 31 g / L, a Si / Fe molar ratio of 1.11, and a pH of 1.54.

このようにして得られた水処理凝集剤について、前記方法に従って凝集性能を確認し、30℃での保存安定性を観察した。これらの結果を表1に示す。   With respect to the water treatment flocculant thus obtained, the flocculation performance was confirmed according to the above method, and the storage stability at 30 ° C. was observed. These results are shown in Table 1.

実施例2
実施例1で得られた鉄−シリカ水処理凝集剤に硫酸を加え、凝集剤のpHを1.05とした。硫酸を加え、最終的な鉄−シリカ水処理凝集剤とするまでの時間は、衝突混合開始から約4分であった。この水処理凝集剤の凝集性能および保存安定性を表1に示す。
Example 2
Sulfuric acid was added to the iron-silica water treatment flocculant obtained in Example 1 to adjust the pH of the flocculant to 1.05. The time from the addition of sulfuric acid to the final iron-silica water treatment flocculant was about 4 minutes from the start of impingement mixing. Table 1 shows the aggregation performance and storage stability of this water treatment flocculant.

実施例3
実施例1で得られた鉄−シリカ水処理凝集剤を水で希釈し、塩化第二鉄水溶液および硫酸を加え、水処理凝集剤のSiO濃度を16g/L、鉄濃度を60g/L、Si/Feモル比0.25、pHを0.85とした。水で希釈し、塩化鉄水溶液および硫酸を加え、最終的な鉄−シリカ水処理凝集剤とするまでの時間は、衝突混合開始から約5分であった。この凝集剤の凝集性能および保存安定性を表1に示す。
Example 3
The iron-silica water treatment flocculant obtained in Example 1 was diluted with water, a ferric chloride aqueous solution and sulfuric acid were added, and the SiO 2 concentration of the water treatment flocculant was 16 g / L, the iron concentration was 60 g / L, The Si / Fe molar ratio was 0.25, and the pH was 0.85. The time from dilution with water, addition of an aqueous iron chloride solution and sulfuric acid to a final iron-silica water treatment flocculant was about 5 minutes from the start of impingement mixing. Table 1 shows the aggregation performance and storage stability of the flocculant.

実施例4
ケイ酸ソーダ水溶液は、市販のケイ酸ソーダ(SiO濃度28質量%、SiO/NaOモル比3.2)を水で希釈し、SiO濃度110g/Lの水溶液とした。塩化第二鉄および鉱酸を含む水溶液は、市販の38質量%塩化第二鉄水溶液を水で希釈し、更に48質量%硫酸を加え、硫酸を濃度44g/Lで含む塩化第二鉄濃度258g/Lの塩化第二鉄水溶液とした。これらの水溶液を用い、原料供給管4’からのケイ酸ソーダ水溶液の流量を1.0L/min、原料供給管4からの硫酸含有塩化第二鉄混合水溶液の流量を0.9L/minとなるように供給し、反応部5で衝突混合させ、排出管6から取り出した。
Example 4
As the sodium silicate aqueous solution, a commercially available sodium silicate (SiO 2 concentration 28 mass%, SiO 2 / Na 2 O molar ratio 3.2) was diluted with water to obtain an aqueous solution having a SiO 2 concentration of 110 g / L. The aqueous solution containing ferric chloride and mineral acid was prepared by diluting a commercially available 38% by mass ferric chloride aqueous solution with water, adding 48% by mass sulfuric acid, and containing sulfuric acid at a concentration of 44 g / L. / L ferric chloride aqueous solution. Using these aqueous solutions, the flow rate of the sodium silicate aqueous solution from the raw material supply pipe 4 ′ is 1.0 L / min, and the flow rate of the sulfuric acid-containing ferric chloride mixed aqueous solution from the raw material supply pipe 4 is 0.9 L / min. Then, the reaction part 5 was collided and mixed and taken out from the discharge pipe 6.

鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量と第二鉄塩水溶液の一部との反応液(これを、「部分混合液」ともいう。)5Lを約2分40秒で得た。このときに反応部5へ供給されるケイ酸ソーダ水溶液及び硫酸含有塩化第二鉄混合水溶液の流速はそれぞれ10.8m/s、13.3m/sであった。   5 L of a reaction solution (this is also referred to as “partial mixed solution”) of about 2 minutes and 40 minutes of the total amount of the aqueous silicate solution used for the production of the iron-silica water treatment flocculant and a part of the aqueous ferric salt solution. Got in seconds. At this time, the flow rates of the sodium silicate aqueous solution and the sulfuric acid-containing ferric chloride mixed aqueous solution supplied to the reaction section 5 were 10.8 m / s and 13.3 m / s, respectively.

尚、上記衝突混合工程において、衝突混合させる第二鉄塩水溶液の混合量は、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量中の珪素元素(Si)に対して鉄元素(Fe)で0.78倍モルとなる量であった。   In the collision mixing step, the mixing amount of the ferric salt aqueous solution to be collision-mixed is iron with respect to silicon element (Si) in the total amount of the silicate aqueous solution used for producing the iron-silica water treatment flocculant. The amount of the element (Fe) was 0.78 times mol.

得られた部分混合液は、シリカのゲル化物などはなく、黄褐色の透明な液体であった。この部分混合液はSiO濃度58g/L、鉄濃度42g/L、Si/Feモル比1.28、pH1.08であった。 The obtained partial mixed solution was a yellowish-brown transparent liquid without any gelled silica. This partial mixture had a SiO 2 concentration of 58 g / L, an iron concentration of 42 g / L, a Si / Fe molar ratio of 1.28, and a pH of 1.08.

この部分混合液500mlを容器に取り、これに水875ml、38質量%塩化第二鉄水溶液460mlを攪拌下に加え、SiO濃度16g/L、鉄濃度60g/L 、Si/Feモル比0.25、pH0.82の鉄−シリカ水処理凝集剤1835mlを得た。この鉄−シリカ水処理凝集剤を製造は、衝突混合開始から約5分で行うことができた。また、この水処理凝集剤の凝集性能および保存安定性を表1に示す。 500 ml of this partial mixed solution is put into a container, and 875 ml of water and 460 ml of 38 mass% ferric chloride aqueous solution are added to this with stirring, and the SiO 2 concentration is 16 g / L, the iron concentration is 60 g / L, and the Si / Fe molar ratio is 0.00. 25, 1835 ml of an iron-silica water treatment flocculant having a pH of 0.82. The iron-silica water treatment flocculant could be produced in about 5 minutes from the start of collision mixing. Table 1 shows the aggregation performance and storage stability of this water treatment flocculant.

実施例5
ケイ酸ソーダ水溶液のSiO濃度を90g/L、硫酸含有の塩化第二鉄水溶液の塩化第二鉄濃度を264g/L及び硫酸濃度20g/Lとした以外は、実施例4と同様な反応を行い、シリカのゲルなどがない黄褐色の透明な部分混合液5Lを約2分40秒で得た。
この部分混合液は、SiO濃度47g/L、鉄濃度43g/L、Si/Feモル比1.02、pH1.58であった。
Example 5
The same reaction as in Example 4 was conducted except that the SiO 2 concentration of the sodium silicate aqueous solution was 90 g / L, the ferric chloride concentration of the sulfuric acid-containing ferric chloride aqueous solution was 264 g / L and the sulfuric acid concentration 20 g / L. Then, 5 L of a yellowish-brown transparent partial mixture without silica gel was obtained in about 2 minutes and 40 seconds.
This partial mixed solution had a SiO 2 concentration of 47 g / L, an iron concentration of 43 g / L, a Si / Fe molar ratio of 1.02, and a pH of 1.58.

尚、上記衝突混合工程において、衝突混合させる塩化第二鉄水溶液の混合量は、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量中のケイ素元素(Si)に対して鉄元素(Fe)で0.98倍モルとなる量であった。   In the collision mixing step, the mixing amount of the ferric chloride aqueous solution to be collision-mixed is iron relative to silicon element (Si) in the total amount of the silicate aqueous solution used for the production of the iron-silica water treatment flocculant. The amount of the element (Fe) was 0.98 times mol.

この部分混合液500mlを容器に取り、これに水330ml、38質量%塩化第二鉄水溶液350ml、50質量%硫酸4.0mlを攪拌下に加え、SiO濃度20g/L、鉄濃度75g/L、Si/Feモル比0.25、pH0.73の鉄−シリカ水処理凝集剤1184mlを得た。この鉄−シリカ水処理凝集剤の製造は、衝突混合開始から約5分で行うことができた。また、この鉄−シリカ水処理凝集剤の凝集性能、保存安定性を表1に示す。 500 ml of this partial mixed solution is taken in a container, and 330 ml of water, 350 ml of 38 mass% ferric chloride aqueous solution, and 4.0 ml of 50 mass% sulfuric acid are added with stirring to a SiO 2 concentration of 20 g / L and an iron concentration of 75 g / L. 1184 ml of an iron-silica water treatment flocculant having a Si / Fe molar ratio of 0.25 and a pH of 0.73 was obtained. The iron-silica water treatment flocculant could be produced in about 5 minutes from the start of collision mixing. In addition, Table 1 shows the aggregation performance and storage stability of this iron-silica water treatment flocculant.

実施例6
実施例5で、衝突混合により製造したSiO濃度47g/L、鉄濃度43g/L、Si/Feモル比1.02、pH1.58の部分混合液500mlに水310ml、40質量%塩化第二鉄水溶液350ml、50質量%硫酸20mlを加え、SiO濃度20g/L、鉄濃度75g/L、Si/Feモル比0.25、pH0.18の鉄−シリカ水処理凝集剤1180mlを得た。この鉄−シリカ水処理凝集剤を製造は、衝突混合開始から約5分で行うことができた。また、この水処理凝集剤の凝集性能および保存安定性を表1に示す。
Example 6
In Example 5, 500 ml of a partial mixture of SiO 2 concentration 47 g / L, iron concentration 43 g / L, Si / Fe molar ratio 1.02, pH 1.58 produced by impact mixing was added to 310 ml of water and 40% by mass of second chloride chloride. 350 ml of an aqueous iron solution and 20 ml of 50% by mass sulfuric acid were added to obtain 1180 ml of an iron-silica water treatment flocculant having a SiO 2 concentration of 20 g / L, an iron concentration of 75 g / L, a Si / Fe molar ratio of 0.25, and a pH of 0.18. The iron-silica water treatment flocculant could be produced in about 5 minutes from the start of collision mixing. Table 1 shows the aggregation performance and storage stability of this water treatment flocculant.

実施例7
実施例5で、衝突混合により製造した、SiO濃度47g/L、鉄濃度43g/L、Si/Feモル比1.02、pH1.58の部分混合液500mlを容器に取り、これに水330ml、42質量%塩化第二鉄水溶液110ml、50質量%硫酸6.5mlを加え、SiO濃度25g/L、鉄濃度47g/L、Si/Feモル比0.5、pH0.98の鉄−シリカ水処理凝集剤946mlを得た。この鉄−シリカ水処理凝集剤を製造は、衝突混合開始から約5分で行うことができた。また、この水処理凝集剤の凝集性能および保存安定性を表1に示す。
Example 7
In Example 5, 500 ml of a partial mixture prepared by impact mixing and having a SiO 2 concentration of 47 g / L, an iron concentration of 43 g / L, an Si / Fe molar ratio of 1.02, and a pH of 1.58 was placed in a container, and 330 ml of water was added thereto. , 42 mass% ferric chloride aqueous solution 110 ml, 50 mass% sulfuric acid 6.5 ml, SiO 2 concentration 25 g / L, iron concentration 47 g / L, Si / Fe molar ratio 0.5, pH 0.98 iron-silica 946 ml of water treatment flocculant was obtained. The iron-silica water treatment flocculant could be produced in about 5 minutes from the start of collision mixing. Table 1 shows the aggregation performance and storage stability of this water treatment flocculant.

参考例1
市販のケイ酸ソーダ(SiO濃度28重量%、SiO/NaOモル比3.15)を水で希釈し、SiO濃度80g/Lの希釈ケイ酸ソーダ溶液1Lを硫酸濃度50g/Lの希釈硫酸1Lの中に攪拌しながら1時間で導入し、SiO濃度40g/L、pH2.0のシリカゾル溶液2Lを得た。このシリカゾル溶液にアルカリを添加し、pH4に調整したのち、室温で3時間熟成させた。
Reference example 1
Commercially available sodium silicate (SiO 2 concentration 28 wt%, SiO 2 / Na 2 O molar ratio 3.15) is diluted with water, and 1 L of diluted sodium silicate solution with SiO 2 concentration of 80 g / L is sulfuric acid concentration 50 g / L. Was introduced into 1 L of diluted sulfuric acid with stirring for 1 hour to obtain 2 L of a silica sol solution having a SiO 2 concentration of 40 g / L and a pH of 2.0. An alkali was added to the silica sol solution to adjust to pH 4, and then aged at room temperature for 3 hours.

このシリカゾル液を200ml取り、水50ml及び39.5質量%塩化第二鉄溶液150mlを加え、SiO濃度20g/L、鉄濃度75g/L、Si/Feモル比0.25、pH0.42の鉄−シリカ水処理凝集剤400mlを得た。この鉄−シリカ水処理凝集剤は、ケイ酸ソーダの滴下開始から製造までに4時間20分を要した。この水処理凝集剤の凝集性能および保存安定性を表1に示す。 Take 200 ml of this silica sol solution, add 50 ml of water and 150 ml of 39.5 mass% ferric chloride solution, and have an SiO 2 concentration of 20 g / L, an iron concentration of 75 g / L, an Si / Fe molar ratio of 0.25, and a pH of 0.42. 400 ml of an iron-silica water treatment flocculant was obtained. This iron-silica water treatment flocculant required 4 hours and 20 minutes from the start of dripping of sodium silicate to the production. Table 1 shows the aggregation performance and storage stability of this water treatment flocculant.

Figure 0005213515
Figure 0005213515

実施例8、9
実施例5において、衝突混合における塩化第二鉄水溶液の混合量を、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量中のケイ素元素(Si)に対して鉄元素(Fe)で表2に示す倍モルとなる量に変化させ、残部の塩化第二鉄水溶液の添加量が、実施例5と同様になるように調整して、鉄−シリカ水処理凝集剤を得た。得られた水処理凝集剤の凝集性能および保存安定性を表2に示す。
Examples 8 and 9
In Example 5, the mixing amount of the ferric chloride aqueous solution in the impingement mixing was changed from the amount of iron element (Fe) to the amount of silicon element (Si) in the total amount of the silicate aqueous solution used for the production of the iron-silica water treatment flocculant. ) And the amount of addition of the remaining ferric chloride aqueous solution was adjusted to be the same as in Example 5 to obtain an iron-silica water treatment flocculant. . Table 2 shows the aggregation performance and storage stability of the obtained water treatment flocculant.

Figure 0005213515
Figure 0005213515

実施例10
ケイ酸ソーダ水溶液のSiO濃度を90g/L、硫酸含有の塩化第二鉄水溶液の塩化第二鉄濃度を270g/L及び硫酸濃度31g/Lとした以外は、実施例4と同様な反応を行い、シリカのゲルなどがない黄褐色の透明な中間混合液5Lを約2分40秒で得た。この部分混合液のSiO濃度は47g/L、鉄濃度44g/L、Si/Feモル比1.00、pH1.17であった。
Example 10
The same reaction as in Example 4 was conducted except that the SiO 2 concentration of the sodium silicate aqueous solution was 90 g / L, the ferric chloride concentration of the sulfuric acid-containing ferric chloride aqueous solution was 270 g / L, and the sulfuric acid concentration was 31 g / L. And 5 L of a yellowish brown transparent intermediate mixture without silica gel was obtained in about 2 minutes and 40 seconds. This partially mixed solution had a SiO 2 concentration of 47 g / L, an iron concentration of 44 g / L, a Si / Fe molar ratio of 1.00, and a pH of 1.17.

尚、上記衝突混合工程において、衝突混合させる塩化第二鉄水溶液の混合量は、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量中のケイ素元素(Si)に対して鉄元素(Fe)で1.00倍モルとなる量であった。   In the collision mixing step, the mixing amount of the ferric chloride aqueous solution to be collision-mixed is iron relative to silicon element (Si) in the total amount of the silicate aqueous solution used for the production of the iron-silica water treatment flocculant. The amount of the element (Fe) was 1.00 times mol.

この部分混合液を500ml取り、これに水563ml、39質量%塩化第二鉄水溶液118ml、50質量%硫酸4.4mlを加え、SiO濃度20g/L、鉄濃度37g/L、Si/Feモル比0.5、pH1.01の鉄−シリカ水処理凝集剤1184mlを得た。この鉄−シリカ水処理凝集剤の製造は、衝突混合開始から約5分で行うことができた。また、この鉄−シリカ水処理凝集剤の凝集性能、保存安定性を表2に示す。 500 ml of this partial mixed solution is taken, and 563 ml of water, 118 ml of 39 mass% ferric chloride aqueous solution and 4.4 ml of 50 mass% sulfuric acid are added thereto, SiO 2 concentration 20 g / L, iron concentration 37 g / L, Si / Fe mole 1184 ml of an iron-silica water treatment flocculant having a ratio of 0.5 and a pH of 1.01 was obtained. The iron-silica water treatment flocculant could be produced in about 5 minutes from the start of collision mixing. Table 2 shows the aggregation performance and storage stability of this iron-silica water treatment flocculant.

[比較参考例1,2]
表2に示した比較参考例1,2は、特許文献3(特許第3700892号)に開示されているデータであり、塩化鉄と硫酸の混合水溶液を攪拌しつつ、そこへケイ酸ソーダを添加する方法によって製造された鉄−シリカ水処理凝集剤の凝集剤性状及び性能である。上記実施例10で得られた水処理凝集剤のシリカ濃度より、やや低濃度のものとやや高濃度のものとを挙げている。鉄濃度及びpHは実施例10で得られた水処理凝集剤と同等である。
[Comparative Reference Examples 1 and 2]
Comparative Reference Examples 1 and 2 shown in Table 2 are data disclosed in Patent Document 3 (Patent No. 3700892), and sodium silicate is added thereto while stirring a mixed aqueous solution of iron chloride and sulfuric acid. Is a flocculant property and performance of an iron-silica water treatment flocculant produced by the method described above. The water treatment flocculant obtained in Example 10 mentioned above has a slightly lower concentration and a slightly higher concentration than the silica concentration. The iron concentration and pH are equivalent to the water treatment flocculant obtained in Example 10.

これらのデータと実施例10で得られた水処理凝集剤の性能を比較すると、実施例10で得られた水処理凝集剤は、シリカ濃度がやや低濃度のもの、高濃度のもののどちらに比べても、より良好な(長期の)保存安定性が得られている。   Comparing these data with the performance of the water treatment flocculant obtained in Example 10, the water treatment flocculant obtained in Example 10 was compared with either the silica concentration slightly lower or the higher concentration. However, better (long-term) storage stability is obtained.

さらに、実施例10の保存安定性評価の温度条件である30℃は、比較参考例における保存安定性評価の温度条件である室温よりも厳しい条件である。従って、同一の温度条件で保存安定性を対比すると、本発明の製造方法で得られる鉄−シリカ水処理凝集剤と比較参考例における水処理凝集剤とでは、より明確に保存可能日数に差が生じるものと予測される。   Furthermore, the temperature condition of 30 ° C. for storage stability evaluation in Example 10 is a stricter condition than room temperature, which is the temperature condition for storage stability evaluation in Comparative Reference Example. Therefore, when comparing the storage stability under the same temperature condition, the difference in the storable days is more clearly observed between the iron-silica water treatment flocculant obtained by the production method of the present invention and the water treatment flocculant in the comparative reference example. Expected to occur.

本発明の製造方法に好適に使用可能な反応器の概略図(Y字管型反応器部分は、断面図である。)Schematic of a reactor that can be suitably used in the production method of the present invention (the Y-tube reactor portion is a cross-sectional view).

符号の説明Explanation of symbols

1 第二鉄塩水溶液(または第二鉄塩および鉱酸を含む水溶液)の貯留槽
2 ケイ酸塩水溶液の貯留槽
3 Y字型反応器
4 原料供給管
4’ 原料供給管
5 反応部
6 排出管
DESCRIPTION OF SYMBOLS 1 Storage tank of ferric salt aqueous solution (or aqueous solution containing ferric salt and mineral acid) 2 Storage tank of silicate aqueous solution 3 Y-shaped reactor 4 Raw material supply pipe 4 ′ Raw material supply pipe 5 Reaction section 6 Discharge tube

Claims (5)

ケイ酸塩水溶液と第二鉄塩水溶液との反応により鉄−シリカ水処理凝集剤を製造するに際し、上記鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量と第二鉄塩水溶液の少なくとも一部とを管型反応器で衝突混合させる衝突混合工程を含み、かつ前記両水溶液がいずれも5m/秒以上の速度で衝突するように前記反応器の原料供給管に供給することを特徴とする鉄−シリカ水処理凝集剤の製造方法。 When the iron-silica water treatment flocculant is produced by the reaction of the silicate aqueous solution and the ferric salt aqueous solution, the total amount of the silicate aqueous solution used for the production of the iron-silica water treatment flocculant and the ferric salt look including the impingement mixing step of impinging mixing at least a portion of the aqueous solution in a tubular reactor, and supplying the raw material supply pipe of the reactor as two solutions collide with either 5 m / sec or faster A method for producing an iron-silica water treatment flocculant characterized by the above. 上記衝突混合工程において、衝突混合させる第二鉄塩水溶液の混合量が、鉄−シリカ水処理凝集剤の製造に使用するケイ酸塩水溶液の全量中の珪素元素(Si)に対して鉄元素(Fe)で0.5倍モル以上となる量である、請求項1記載の鉄−シリカ水処理凝集剤の製造方法。   In the collision mixing step, the mixing amount of the ferric salt aqueous solution to be subjected to the collision mixing is such that the iron element (Si) with respect to the silicon element (Si) in the total amount of the silicate aqueous solution used for the production of the iron-silica water treatment flocculant. The method for producing an iron-silica water treatment flocculant according to claim 1, wherein the amount is 0.5 mol or more by Fe). 得られる鉄−シリカ水処理凝集剤が、pH0.3〜1.5であり、鉄元素濃度(Fe)が20g/L〜120g/L、SiO濃度が10g/L〜50g/Lであり、且つ、Si/Feモル比が1以下である、請求項1又は2に記載の鉄−シリカ水処理凝集剤の製造方法。 The obtained iron-silica water treatment flocculant has a pH of 0.3 to 1.5, an iron element concentration (Fe) of 20 g / L to 120 g / L, and a SiO 2 concentration of 10 g / L to 50 g / L. And the manufacturing method of the iron-silica water treatment flocculent of Claim 1 or 2 whose Si / Fe molar ratio is 1 or less. 衝突混合工程で得られた混合物に、第二鉄塩水溶液の残部を添加する工程を含むことを特徴とする請求項1〜3のいずれかに記載の鉄−シリカ水処理凝集剤の製造方法。   The method for producing an iron-silica water treatment flocculant according to any one of claims 1 to 3, further comprising a step of adding the remainder of the aqueous ferric salt solution to the mixture obtained in the collision mixing step. 衝突混合工程で得られた混合物に、第二鉄塩水溶液の残部および鉱酸を添加する工程を含むことを特徴とする請求項1〜3のいずれかに記載の鉄−シリカ水処理凝集剤の製造方法。   The iron-silica water treatment flocculant according to any one of claims 1 to 3, comprising a step of adding the remainder of the ferric salt aqueous solution and a mineral acid to the mixture obtained in the collision mixing step. Production method.
JP2008122888A 2007-05-11 2008-05-09 Method for producing iron-silica water treatment flocculant Active JP5213515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122888A JP5213515B2 (en) 2007-05-11 2008-05-09 Method for producing iron-silica water treatment flocculant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007127196 2007-05-11
JP2007127196 2007-05-11
JP2008122888A JP5213515B2 (en) 2007-05-11 2008-05-09 Method for producing iron-silica water treatment flocculant

Publications (2)

Publication Number Publication Date
JP2008307529A JP2008307529A (en) 2008-12-25
JP5213515B2 true JP5213515B2 (en) 2013-06-19

Family

ID=40002199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122888A Active JP5213515B2 (en) 2007-05-11 2008-05-09 Method for producing iron-silica water treatment flocculant

Country Status (4)

Country Link
JP (1) JP5213515B2 (en)
KR (1) KR20090024711A (en)
TW (1) TW200848374A (en)
WO (1) WO2008139999A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121788A (en) * 2009-12-08 2011-06-23 Sanko Kk Iron fulvate-containing composition, method for producing it, fertilizer and seawater damage inhibitor
ITRM20110602A1 (en) * 2011-11-14 2013-05-15 Chimica Dr Fr D Agostino S P A CLARIFLOCCULATION METHOD FOR WATER TREATMENT.
KR20170014308A (en) 2015-07-29 2017-02-08 에스프린팅솔루션 주식회사 A method of preparing a PSFC(Poly-Silicic-Ferric Coagulant) for electrostatic charge image developing toner
CN106378012A (en) * 2016-08-31 2017-02-08 四川科龙达能源科技有限公司 Polyaluminum ferric silicate, and method for preparing polyaluminum ferric silicate from aluminum ash
CN110980861B (en) * 2019-12-19 2021-12-07 哈尔滨工业大学 Preparation method and application of magnetic reduction microorganism flocculating agent

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700892B2 (en) * 1997-09-17 2005-09-28 株式会社荏原製作所 Method for producing flocculant
JPH11349322A (en) * 1998-06-08 1999-12-21 Ebara Corp Production of activated silica
JP2000093704A (en) * 1998-09-18 2000-04-04 Ebara Corp Preparation of iron and activated silica composite flocculant
JP2000154013A (en) * 1998-11-17 2000-06-06 Ebara Corp Production of activated silica
JP3751779B2 (en) * 1999-08-31 2006-03-01 水道機工株式会社 Production method of flocculant for water treatment
JP4353983B2 (en) * 2001-05-25 2009-10-28 株式会社トクヤマ Water treatment flocculant manufacturing equipment
JP4014896B2 (en) * 2001-05-25 2007-11-28 株式会社トクヤマ Method for producing flocculant for water treatment
JP4014882B2 (en) * 2002-01-30 2007-11-28 株式会社トクヤマ Method for producing silica sol
JP4410221B2 (en) * 2005-08-04 2010-02-03 水道機工株式会社 Method and apparatus for producing water treatment flocculant

Also Published As

Publication number Publication date
JP2008307529A (en) 2008-12-25
TW200848374A (en) 2008-12-16
WO2008139999A1 (en) 2008-11-20
KR20090024711A (en) 2009-03-09

Similar Documents

Publication Publication Date Title
JP5213515B2 (en) Method for producing iron-silica water treatment flocculant
AU780244B2 (en) Continuous production of silica-based microgels
KR20020090157A (en) A process for preparing a flocculant for water treatment
JPS58500859A (en) Self-reversible water-in-oil emulsion of water-soluble polymer and method for producing the same
AU2014290034B2 (en) Stable salt-free polyaluminum chlorosulfates
KR101725429B1 (en) Manufacturing Method of Inorganic Polymer Coagulant and Inorganic Polymer Coagulant thereby
CA2564853C (en) Method for preparing acidic solutions of activated silica and polyvalent metal salt for water treatment
KR101612513B1 (en) Method for preparing polyaliminium chloride-based inorganic coagulants having high basicity
KR20130055321A (en) Process for preparing a high alkalinity flocculant for watertreatment mixed active silicate
JP2006225175A (en) Method of manufacturing transparent liquid fertilizer
JP2019031431A (en) Basic aluminum chloride solution and production method thereof
KR101032478B1 (en) Water-treatment cohesive agents and Preparing method thereof
KR20110006945A (en) Inorganic cohesive agents for water-treatment and preparing method thereof
JP4810512B2 (en) Method for producing a coagulant for iron-silica water treatment
CN109734113B (en) Production method of polyaluminium chloride with high flocculation effect
KR101119623B1 (en) Inorganic cohesive agents for water-treatment and Preparing method thereof
JP3700892B2 (en) Method for producing flocculant
JP4030729B2 (en) Method for producing flocculant
JP4353983B2 (en) Water treatment flocculant manufacturing equipment
JP2000154013A (en) Production of activated silica
JP4751779B2 (en) Flocculant for water treatment
JPH11216478A (en) Flocculation treatment of water and inorganic flocculant
JP2000308803A (en) Flocculant for water treatment and its production and flocculating method for water
JP2021050131A (en) Basic aqueous aluminum silicate solution
JP5733677B2 (en) Wastewater treatment agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250