JP4810512B2 - Method for producing a coagulant for iron-silica water treatment - Google Patents

Method for producing a coagulant for iron-silica water treatment Download PDF

Info

Publication number
JP4810512B2
JP4810512B2 JP2007191045A JP2007191045A JP4810512B2 JP 4810512 B2 JP4810512 B2 JP 4810512B2 JP 2007191045 A JP2007191045 A JP 2007191045A JP 2007191045 A JP2007191045 A JP 2007191045A JP 4810512 B2 JP4810512 B2 JP 4810512B2
Authority
JP
Japan
Prior art keywords
iron
concentration
silica
mass
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007191045A
Other languages
Japanese (ja)
Other versions
JP2009022925A (en
Inventor
正広 武末
義明 古賀
靖 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Suido Kiko Kaisha Ltd
Original Assignee
Tokuyama Corp
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Suido Kiko Kaisha Ltd filed Critical Tokuyama Corp
Priority to JP2007191045A priority Critical patent/JP4810512B2/en
Publication of JP2009022925A publication Critical patent/JP2009022925A/en
Application granted granted Critical
Publication of JP4810512B2 publication Critical patent/JP4810512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、鉄−シリカ複合液からなる水処理用凝集剤の新規な製造方法にかかわる。より詳しくは、製造時にゲル化を生じ難く、かつ保存安定性も改善された鉄−シリカ複合液からなる水処理用凝集剤の製造方法に関する。   The present invention relates to a novel method for producing a flocculant for water treatment comprising an iron-silica composite liquid. More specifically, the present invention relates to a method for producing a water treatment flocculant composed of an iron-silica composite liquid which hardly causes gelation during production and has improved storage stability.

各種の用水や排水等から懸濁物質やその他の不純物を除いて浄化処理を行う為に、凝集剤を該用水や排水中に注入してこれらの不純物を凝集・沈殿させて処理する水処理方法が行われており、この目的の凝集剤としては、硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄などが用いられている。   A water treatment method in which a flocculant is injected into the water or wastewater to agglomerate and precipitate to remove the suspended solids and other impurities from various water and wastewater. As the flocculant for this purpose, aluminum sulfate, polyaluminum chloride, ferric chloride and the like are used.

上記凝集剤の中でも硫酸アルミニウムまたはポリ塩化アルミニウムが汎用されている。これら凝集剤を使用した場合、水温が低下したり、水中の有機物、たとえば藻類が増加したりすると凝集剤の添加量を増加させなければならないが、アルミニウムは両性金属であるため、可溶性アルミニウムとなり、処理水中に残留するという問題点がある。また、アルミニウム系凝集剤は低水温では凝集性が低下するため、その使用量が増大するという欠点もある。   Among the above flocculants, aluminum sulfate or polyaluminum chloride is widely used. When these flocculants are used, the amount of flocculant added must be increased when the water temperature decreases or the amount of organic matter in the water, such as algae, increases. However, since aluminum is an amphoteric metal, it becomes soluble aluminum, There is a problem that it remains in the treated water. In addition, the aluminum-based flocculant has a drawback in that the amount of the aluminum-based flocculant increases because the aggregating property decreases at a low water temperature.

上記のような問題を解決すべく、近年重合ケイ酸(シリカゾル)に鉄塩を添加した鉄−シリカ水処理凝集剤が提案され、一部では実用化されている。鉄−シリカ水処理凝集剤は、その高い凝集性能と、発生する凝集物を土壌へ還元することも可能なため注目されている。   In order to solve the above problems, an iron-silica water treatment flocculant in which an iron salt is added to polymerized silicic acid (silica sol) has recently been proposed and partially put into practical use. Iron-silica water treatment flocculants are attracting attention because of their high agglomeration performance and the ability to reduce the agglomerates generated to the soil.

鉄−シリカ水処理凝集剤を効率的に生産する製造方法はいくつか提案されている。例えば、珪酸塩水溶液と硫酸等の鉱酸とを互いに5m/s以上の速度で衝突させてシリカゾルを得、該シリカゾルを熟成させた後に鉄塩の水溶液を添加する方法(例えば、特許文献1参照)。また、塩化第二鉄と鉱酸の混合水溶液に珪酸塩水溶液を加える方法(例えば、特許文献2参照)等が提案されている。   Several production methods for efficiently producing an iron-silica water treatment flocculant have been proposed. For example, a silica sol is obtained by colliding a silicate aqueous solution with a mineral acid such as sulfuric acid at a speed of 5 m / s or more, and after aging the silica sol, an aqueous iron salt solution is added (see, for example, Patent Document 1) ). In addition, a method of adding a silicate aqueous solution to a mixed aqueous solution of ferric chloride and mineral acid (for example, see Patent Document 2) has been proposed.

珪酸塩水溶液と鉱酸とを反応させてシリカゾルとする場合、その反応時にゲル化を起こさず、均一なゾルとするためには、鉱酸の量を過剰にし、得られるシリカゾルのpHを低くする必要がある。通常、水溶性の鉄塩は酸性である(なお、例えば第二鉄塩の水溶液にアルカリを加えると沈殿が生じてしまう)。従って、上記シリカゾルに対して塩化第二鉄等の鉄塩の水溶液を加えるとさらにpHが低下する。このため、珪酸塩水溶液、鉱酸及び鉄塩を原料にし、ゲル化を起こさないように条件を調整して製造した鉄−シリカ水処理凝集剤では、鉄塩の量が多くなるほど、そのpHが低くならざるを得ない。   When a silica sol is produced by reacting a silicate aqueous solution with a mineral acid, gelation does not occur during the reaction, and in order to obtain a uniform sol, the amount of mineral acid is excessive and the pH of the resulting silica sol is lowered. There is a need. Usually, a water-soluble iron salt is acidic (for example, when alkali is added to an aqueous solution of a ferric salt, precipitation occurs). Accordingly, when an aqueous solution of an iron salt such as ferric chloride is added to the silica sol, the pH is further lowered. For this reason, in an iron-silica water treatment flocculant produced using a silicate aqueous solution, a mineral acid, and an iron salt as raw materials and adjusting the conditions so as not to cause gelation, the pH of the iron salt increases as the amount of iron salt increases. It must be lowered.

鉄−シリカ水処理凝集剤においては、pHが安定性等に重要な影響を与えることが知られており、このため第二鉄塩水溶液と珪酸塩水溶液とを、鉄濃度が1〜8%、シリカ濃度が2〜6%、pHが0.5〜1.5以上の範囲となるように直接反応させて凝集剤を製造する技術が提案されている(例えば、特許文献2参照)。なおこの技術においては、最終のpHを上記範囲とするために、予め第二塩化鉄水溶液に対して鉱酸を添加して酸性度を調整する。しかしながら本発明者らが追試したところ、鉄濃度が高く、かつシリカに対する鉄の濃度が高い場合には、必ずしも高い安定性を得られないことがわかった。さらに、上記pHとなるように第二鉄塩水溶液と珪酸塩水溶液とを混合しようとした場合、珪酸塩水溶液の割合が多い領域では特に部分的なゲル化によるシリカの沈殿物が生じやすいという問題もある。   In the iron-silica water treatment flocculant, it is known that pH has an important influence on stability and the like. For this reason, the ferric salt aqueous solution and the silicate aqueous solution have an iron concentration of 1 to 8%, A technique for producing a flocculant by direct reaction so that the silica concentration is in the range of 2 to 6% and the pH is in the range of 0.5 to 1.5 or more has been proposed (for example, see Patent Document 2). In this technique, in order to make the final pH within the above range, the acidity is adjusted in advance by adding a mineral acid to the aqueous ferric chloride solution. However, as a result of further trials by the present inventors, it was found that high stability cannot always be obtained when the iron concentration is high and the iron concentration relative to silica is high. Furthermore, when mixing the ferric salt aqueous solution and the silicate aqueous solution so as to achieve the above pH, there is a problem that silica precipitates easily occur due to partial gelation particularly in a region where the ratio of the silicate aqueous solution is large. There is also.

一方、鉄−シリカ水処理凝集剤によって水処理を行う場合、被処理水に対する鉄の注入率がその処理能力に対して重要である。即ち、凝集剤が処理できる水中の汚濁物質の量は、注入された鉄の量に大きく依存する。   On the other hand, when water treatment is performed with an iron-silica water treatment flocculant, the rate of iron injection into the water to be treated is important for its treatment capacity. That is, the amount of pollutant in water that can be treated by the flocculant is highly dependent on the amount of iron injected.

鉄−シリカ水処理凝集剤は、鉄とシリカの割合を自由に変化させて製造できるが、鉄に対するシリカの割合が多い凝集剤を用いると、同じ鉄注入率とした場合には必然的に処理に用いられるシリカの量が多くなり、結果として処理後に生じる汚泥量が増加する。現在、水処理により生じた汚泥は産業廃棄物として破棄しなければならないことが多いため、その量を減らす目的でシリカの割合が少ない(鉄の割合が多い)鉄−シリカ水処理用凝集剤が好まれる。   The iron-silica water treatment flocculant can be produced by freely changing the ratio of iron and silica, but if a flocculant with a large ratio of silica to iron is used, it is inevitably treated when the same iron injection rate is used. The amount of silica used in the process increases, resulting in an increase in the amount of sludge generated after treatment. At present, sludge produced by water treatment often has to be discarded as industrial waste, so there is a small amount of silica (high percentage of iron) in order to reduce the amount of flocculant for iron-silica water treatment. Liked.

しかし、鉄−シリカ水処理用凝集剤のシリカの割合が小さくなる(鉄の割合が大きくなる)と安定性が悪くなるという課題が存在する。実際にシリカ濃度2質量%の鉄−シリカ水処理用凝集剤を30℃で比較したところ、鉄−シリカ水処理凝集剤の珪素/鉄(モル比)が3の場合は2〜3カ月間安定であるが、珪素/鉄モル比が0.25のものは1週間程度でゲル化を起こしてしまう。   However, there is a problem that the stability is deteriorated when the silica ratio of the iron-silica water treatment flocculant decreases (the ratio of iron increases). When the iron-silica water treatment flocculant with a silica concentration of 2% by mass was actually compared at 30 ° C., the iron-silica water treatment flocculant was stable for 2-3 months when the silicon / iron (molar ratio) was 3. However, when the silicon / iron molar ratio is 0.25, gelation occurs in about one week.

特開2003−38908号公報JP 2003-38908 A 特開平11−90111号公報JP-A-11-90111 特開2005−34746号公報JP 2005-34746 A 特開2001−70708号公報JP 2001-70708 A

従って本発明は、汚泥発生量を少なくするために珪素/鉄のモル比を小さくし、かつ鉄濃度を高くした鉄−シリカ水処理用凝集剤を、シリカの沈殿物を生じることなく安定的に製造し、かつその保存時の安定性も向上させる方法を提供することを目的とする。   Accordingly, the present invention provides an iron-silica water treatment flocculant having a small silicon / iron molar ratio and a high iron concentration in order to reduce the amount of sludge generated, without causing silica precipitation. It is an object of the present invention to provide a method for producing and improving stability during storage.

本発明者らは上記課題に鑑み、鋭意研究を続けてきた。その結果、第一に、鉄濃度が高くなればなるほど、鉄−シリカ複合液からシリカの沈殿物を生じることなく安定的に製造するためにはpHを低くする必要があること、また鉄−シリカ複合液の保存性を良好なものとできるpH域もまた鉄濃度が高くなるにつれて低くなること、さらに珪素/鉄のモル比が小さい領域では上記両pH域が異なることも見出した。そして、これら知見に基いてさらに検討を進めた結果、本発明を完成するに至った。   In light of the above problems, the present inventors have continued intensive studies. As a result, firstly, the higher the iron concentration, the lower the pH needs to be stably produced without producing silica precipitates from the iron-silica composite liquid, and the iron-silica. It has also been found that the pH range in which the storage stability of the composite liquid can be improved also decreases as the iron concentration increases, and that both pH ranges are different in a region where the molar ratio of silicon / iron is small. As a result of further investigation based on these findings, the present invention has been completed.

即ち本発明は、鉄塩を含む水溶液、珪酸塩水溶液及び無機酸を、珪素と鉄との割合がモル比で0.1≦(珪素/鉄)<1、pHが1未満、鉄濃度とpHが下記式(1)、
−0.14×鉄濃度(質量%)+1.4>pH (1)
の関係を満たように混合して鉄−シリカ複合液を調製し、次いで該複合液に対してアルカリを添加して、鉄濃度とpHとの関係が下記式(2)
−0.14×鉄濃度(質量%)+1.4<pH<−0.06×鉄濃度(質量%)+1.2 (2)
を満たすようにpHを調整することを特徴とする、珪素と鉄との割合がモル比で0.1≦(珪素/鉄)<1の範囲にある鉄−シリカ複合液からなる水処理用凝集剤の製造方法である。
That is, the present invention relates to an aqueous solution containing an iron salt, an aqueous silicate solution, and an inorganic acid, wherein the ratio of silicon to iron is 0.1 ≦ (silicon / iron) <1, the pH is less than 1, the iron concentration and the pH. Is the following formula (1),
−0.14 × iron concentration (mass%) + 1.4> pH (1)
Then, an iron-silica composite solution is prepared by mixing so as to satisfy the above relationship, and then an alkali is added to the composite solution, and the relationship between iron concentration and pH is expressed by the following formula (2).
−0.14 × iron concentration (mass%) + 1.4 <pH <−0.06 × iron concentration (mass%) + 1.2 (2)
PH is adjusted so as to satisfy the following conditions: water treatment aggregation comprising an iron-silica composite liquid in which the ratio of silicon and iron is in the range of 0.1 ≦ (silicon / iron) <1 in molar ratio It is a manufacturing method of an agent.

本発明によれば、部分ゲル化によるシリカの沈殿物を生じ難い低いpHとなるように鉄−シリカ複合液を製造するため、生産性が向上する。また、このpHは一定値以下であればよいため、原料比率等の厳密な管理も不要となる。そしてこのようにして得た鉄−シリカ複合液に対してアルカリを添加するという極めて簡便な方法で、保存時の安定性を飛躍的に向上できる。これにより、水処理容量の大きい(鉄濃度の高い)鉄−シリカ水処理凝集剤を輸送等する際にもゲル化を生じ難くなるため、該輸送コスト等を低減することができ、工業的な利用価値は極めて高い。   According to the present invention, since the iron-silica composite liquid is produced so as to have a low pH at which silica precipitates are not easily generated by partial gelation, productivity is improved. Moreover, since this pH should just be below a fixed value, exact management, such as a raw material ratio, becomes unnecessary. And the stability at the time of a preservation | save can be improved greatly by the very simple method of adding an alkali with respect to the iron-silica composite liquid obtained in this way. This makes it difficult for gelation to occur when transporting an iron-silica water treatment flocculant having a large water treatment capacity (high iron concentration), so that the transportation cost and the like can be reduced. The utility value is extremely high.

本発明の製造方法では、まず鉄塩を含む水溶液、珪酸塩水溶液及び無機酸を、珪素と鉄との割合がモル比で0.1≦(珪素/鉄)<1、pHが1未満、鉄濃度とpHが下記式(1)、
−0.14×鉄濃度(質量%)+1.4>pH (1)
の関係を満たように混合して鉄−シリカ複合液を調製する。
In the production method of the present invention, first, an aqueous solution containing an iron salt, an aqueous silicate solution, and an inorganic acid, the molar ratio of silicon and iron is 0.1 ≦ (silicon / iron) <1, pH is less than 1, iron The concentration and pH are the following formula (1),
−0.14 × iron concentration (mass%) + 1.4> pH (1)
The iron-silica composite liquid is prepared by mixing so as to satisfy the above relationship.

珪素と鉄の比率は、凝集剤を用いた後に生じる汚泥の量を減らすために珪素の割合が低いほうが好ましいが、0.1を下回るとシリカの効果が小さくなり、最終的に得られる鉄−シリカ水処理凝集剤(以下、単に凝集剤ともいう)の凝集性能が悪くなる。一方、1以上の場合には、本発明の製造方法を適用せず、即ち後述するアルカリの添加を行わなくとも、製造時に部分ゲル化を起こさず、かつ保存安定性に優れた鉄−シリカ水処理用凝集材を得ることが容易である。   The ratio of silicon to iron is preferably lower in order to reduce the amount of sludge generated after using the flocculant. However, if the ratio is lower than 0.1, the effect of silica is reduced, and the finally obtained iron- The aggregation performance of the silica water treatment flocculant (hereinafter also simply referred to as flocculant) is deteriorated. On the other hand, in the case of 1 or more, the production method of the present invention is not applied, that is, iron-silica water that does not cause partial gelation during production and has excellent storage stability without adding an alkali described later. It is easy to obtain a processing aggregate.

珪素と鉄の比率は、原料として用いる鉄塩を含む水溶液と珪酸塩水溶液の各々の濃度、及び混合比率を調整すれば容易に調整できる。   The ratio of silicon and iron can be easily adjusted by adjusting the concentration and mixing ratio of an aqueous solution containing an iron salt used as a raw material and an aqueous silicate solution.

上記鉄−シリカ複合液の調製において、鉄濃度とpHが式(1)の関係を満たすようにすることは極めて重要である。式(1)から理解できるように、鉄濃度が高くなるほど、複合液のpHは小さくなくてはならない。式(1)の範囲を外れるほどpHが高く(あるいは鉄濃度が高く)なると、鉄−シリカ複合液の製造に際してゲル化が生じやすくなり、安定的に製造することが困難となる。またこの時点でのpHを1以上とすると、本発明の製造方法を採用しても、本発明が目的とするような鉄濃度の高い凝集剤を、ゲル化を生ぜずに製造することが困難である(逆に、鉄濃度が低い場合には、本発明を適用する利点は少ない)。   In the preparation of the iron-silica composite solution, it is extremely important that the iron concentration and pH satisfy the relationship of formula (1). As can be understood from the equation (1), the higher the iron concentration, the lower the pH of the composite solution. If the pH is higher (or the iron concentration is higher) than the range of the formula (1), gelation is likely to occur during the production of the iron-silica composite liquid, and it is difficult to produce it stably. If the pH at this point is 1 or more, it is difficult to produce an aggregating agent having a high iron concentration as intended by the present invention without causing gelation even if the production method of the present invention is adopted. (Conversely, when the iron concentration is low, the advantage of applying the present invention is small).

本発明の製造方法において、上記鉄−シリカ複合液の鉄濃度は、3〜9質量%の範囲とすることが好ましい(なお、上記式(1)を満たす鉄濃度の下限は2.9質量%である)。鉄濃度が3質量%を下回る場合には、本発明の製造方法によらずとも、珪素/鉄のモル比が小さい凝集剤を製造することが比較的容易であり、本発明の製造方法を適用する意味は実質的に少ない。一方、鉄濃度が極めて高い場合には、後述するアルカリ添加を行って保存安定性を向上させても、工業的に十分なほどの期間の保存安定性を得ることは困難である。   In the production method of the present invention, the iron concentration of the iron-silica composite liquid is preferably in the range of 3 to 9% by mass (the lower limit of the iron concentration satisfying the above formula (1) is 2.9% by mass). Is). When the iron concentration is less than 3% by mass, it is relatively easy to produce an aggregating agent having a small silicon / iron molar ratio regardless of the production method of the present invention, and the production method of the present invention is applied. There is little meaning to do. On the other hand, when the iron concentration is extremely high, it is difficult to obtain storage stability for an industrially sufficient period even if alkali addition described later is performed to improve storage stability.

鉄濃度は、鉄塩を含む水溶液の濃度と、及び他の原料との使用割合により調整できる。また、pHは使用する各原料の種類と量により制御できる。即ち、無機酸及び鉄塩を含む水溶液の量(使用量及び濃度)が多いほど、得られる鉄−シリカ複合液のpHは低下する。上記式(1)を満たすように鉄−シリカ複合液を安定に製造するためには、概ね、珪酸塩水溶液におけるアルカリ成分に対して、無機酸を1.1当量以上使用すればよい。好ましくは1.1〜1.2当量である。なお本発明においてpHは、ガラス電極と比較電極からなるpH計により測定される値である。   The iron concentration can be adjusted by the concentration of the aqueous solution containing the iron salt and the ratio of use with other raw materials. The pH can be controlled by the type and amount of each raw material used. That is, as the amount of aqueous solution containing inorganic acid and iron salt (amount used and concentration) increases, the pH of the obtained iron-silica composite solution decreases. In order to stably produce the iron-silica composite liquid so as to satisfy the above formula (1), it is generally sufficient to use 1.1 equivalents or more of an inorganic acid with respect to the alkali component in the silicate aqueous solution. Preferably it is 1.1-1.2 equivalent. In the present invention, the pH is a value measured by a pH meter comprising a glass electrode and a reference electrode.

鉄塩を含む水溶液、珪酸塩水溶液及び無機酸を混合して上記鉄−シリカ混合液を調製する方法は特に限定されず、公知の方法を適用すればよい。具体的には、珪酸塩水溶液と無機酸とを混合してシリカゾルを調製し、これへ鉄塩を含む水溶液を混合する方法、鉄塩を含む水溶液と無機酸とを予め混合しておき、これと珪酸塩水溶液を混合する方法などが挙げられる。上記混合方法としては、例えば、無機酸又は無機酸と鉄塩を含む水溶液との混合液に、珪酸水溶液を添加する方法や、特許文献1に記載のように互いに5m/秒以上の速度で衝突させる方法などが挙げられる。より部分ゲル化を生じにくく、また多量の鉄−シリカ混合液を迅速に製造できるなどの利点があることから、衝突により混合する方法が好適である。   The method for preparing the iron-silica mixed solution by mixing an aqueous solution containing an iron salt, an aqueous silicate solution, and an inorganic acid is not particularly limited, and a known method may be applied. Specifically, a silica sol is prepared by mixing an aqueous silicate solution and an inorganic acid, and an aqueous solution containing an iron salt is mixed therein, and an aqueous solution containing an iron salt and an inorganic acid are mixed in advance. And a method of mixing a silicate aqueous solution and the like. Examples of the mixing method include a method of adding a silicic acid aqueous solution to a mixed solution of an inorganic acid or an inorganic acid and an iron salt-containing solution, and collision at a speed of 5 m / second or more as described in Patent Document 1. The method of making it, etc. are mentioned. A method of mixing by collision is preferred because it has the advantage that partial gelation is less likely to occur and a large amount of iron-silica mixed solution can be rapidly produced.

本発明において、上記鉄−シリカ複合液を調製する際のシリカ(SiO)濃度は、前記式(1)等を満たしうる範囲(0.3質量%以上)であれば特に限定されないが、あまりに高濃度では前記3成分からシリカゾルを調製する際にゲル化等の問題を生じやすくなる傾向があるため、16質量%以下とすることが好ましい。上記衝突による混合を採用することにより、10質量%以上の高濃度のシリカ濃度の複合液でも容易に調製することができる。 In the present invention, the silica (SiO 2 ) concentration at the time of preparing the iron-silica composite liquid is not particularly limited as long as it is in a range (0.3% by mass or more) that can satisfy the formula (1) and the like. At high concentrations, problems such as gelation tend to occur when preparing a silica sol from the above three components, so it is preferably 16% by mass or less. By adopting the above-described mixing by collision, a composite liquid having a high silica concentration of 10% by mass or more can be easily prepared.

また珪酸塩水溶液と無機酸とを混合してシリカゾルを調製し、これへ鉄塩を含む水溶液を混合する方法を採用する場合、鉄塩を含む水溶液を混合する前にシリカゾルを熟成することが好ましい。当該熟成方法としては、静置によってもよいし、穏やかに攪拌してもよく、公知の方法を適宜採用すればよい。熟成により到達させる粘度はシリカ濃度により異なるが、最適なシリカ濃度と粘度の関係は公知である。例えば、特許文献1に記載されているような、珪酸塩水溶液と無機酸との衝突混合によりシリカ濃度が10〜16質量%程度のシリカゾルを調製する方法を採用する場合には、熟成により粘度を6〜30mP・s程度にすればよい。   In addition, when a silica sol is prepared by mixing an aqueous solution of silicate and an inorganic acid and an aqueous solution containing an iron salt is used, it is preferable to age the silica sol before mixing the aqueous solution containing an iron salt. . As the aging method, it may be left still or may be gently stirred, and a known method may be appropriately employed. The viscosity reached by aging varies depending on the silica concentration, but the optimum relationship between silica concentration and viscosity is known. For example, when adopting a method of preparing a silica sol having a silica concentration of about 10 to 16% by collision mixing between an aqueous silicate solution and an inorganic acid as described in Patent Document 1, the viscosity is increased by aging. What is necessary is just to set it as about 6-30 mP * s.

上記のようにして珪酸塩水溶液及び無機酸を混合して高濃度のシリカゾルを調製した場合、後述するアルカリ添加の前に希釈することが好ましい。これは最終的な水処理用凝集剤としては、シリカ濃度が4質量%以下のものであることが望ましいためである。そしてアルカリ添加後に希釈する場合、濃度変化に伴うpHがあるため、後述する式(2)の範囲にpH及び鉄濃度を調整することが比較的難しくなるためである。当該希釈は鉄塩を含む水溶液の混合前でも、混合後でもよいが、より凝集性能に優れる凝集剤を得られる点で、鉄塩を含む水溶液の混合前であることが好ましい。   When a high-concentration silica sol is prepared by mixing an aqueous silicate solution and an inorganic acid as described above, it is preferably diluted before adding an alkali to be described later. This is because the final water treatment flocculant preferably has a silica concentration of 4% by mass or less. And when diluting after alkali addition, since there exists pH accompanying a density | concentration change, it is because it becomes comparatively difficult to adjust pH and an iron density | concentration in the range of Formula (2) mentioned later. The dilution may be before or after mixing the aqueous solution containing the iron salt, but is preferably before mixing the aqueous solution containing the iron salt in that a flocculant with better coagulation performance can be obtained.

本発明の製造方法において、珪酸塩水溶液、無機酸及び鉄塩の水溶液をすべて混合した後に希釈を行う場合には、鉄−シリカ複合液が満たすべきpHや鉄濃度は、希釈を行った後、アルカリ添加前の状態でのpHである。なお希釈を行うと鉄濃度及びpHが変化するが、本発明者等の検討によれば、このような鉄成分及びシリカゾルを濃厚に含む液のpHは、単純な酸希薄溶液のpH変化挙動とは異なり、図1に示すように、通常は希釈前に前記式(1)を満たす場合には、希釈によっても式(1)を満たすように変化する。換言すれば、鉄塩の水溶液の添加後の希釈の有無が式(1)を満たすか否かに影響を与えることは通常ない。   In the production method of the present invention, when dilution is performed after mixing all of the aqueous solution of silicate solution, inorganic acid and iron salt, the pH and iron concentration to be satisfied by the iron-silica composite solution are determined after dilution. It is the pH in the state before the alkali addition. Although the iron concentration and pH change when diluted, according to the study by the present inventors, the pH of a liquid containing such an iron component and silica sol in a concentrated manner is the pH change behavior of a simple acid dilute solution. In contrast, as shown in FIG. 1, when the equation (1) is normally satisfied before dilution, the equation (1) is also changed by dilution. In other words, the presence or absence of dilution after the addition of the iron salt aqueous solution usually does not affect whether the expression (1) is satisfied.

鉄塩、珪酸水溶液及び無機酸としては、いずれも公知のものが特に制限されず使用できる。具体的には、鉄塩としては塩化第二鉄、硫酸第二鉄、硝酸第二鉄等を挙げることができる。また珪酸水溶液としては、珪酸ソーダ、珪酸カリウム等を使用することができる。無機酸としては硫酸、硝酸、塩酸等を使用することができる。鉄塩としては、塩化第二鉄又は硫酸第二鉄が好ましく、塩化第二鉄が特に好ましい。珪酸塩水溶液としては、珪酸ソーダが好ましく、珪酸ソーダを原料とする場合、SiOとNaOのモル比が2.5〜4.0のものを好適に使用することができる。無機酸としては硫酸がもっとも好ましい。無機酸は適宜水で希釈して用いることが好ましい。 As the iron salt, the aqueous silicic acid solution and the inorganic acid, any known one can be used without any particular limitation. Specific examples of the iron salt include ferric chloride, ferric sulfate, and ferric nitrate. Moreover, as a silicic acid aqueous solution, a sodium silicate, potassium silicate, etc. can be used. As the inorganic acid, sulfuric acid, nitric acid, hydrochloric acid and the like can be used. As the iron salt, ferric chloride or ferric sulfate is preferable, and ferric chloride is particularly preferable. As the silicate aqueous solution, sodium silicate is preferable. When sodium silicate is used as a raw material, one having a molar ratio of SiO 2 to Na 2 O of 2.5 to 4.0 can be suitably used. As the inorganic acid, sulfuric acid is most preferable. The inorganic acid is preferably diluted with water as appropriate.

これらの濃度及び使用量は、上記式(1)等を満たすように適宜調整すればよいが、例えば、珪酸塩水溶液と無機酸とを衝突混合させてシリカゾルを調製し、これへ鉄塩を含む水溶液を混合する方法を採用する場合、シリカ濃度が7〜25質量%の珪酸水溶液と、2〜7Nに調整した無機酸水溶液とを衝突させ、これに5〜50質量%の鉄塩水溶液を添加する方法が挙げられる。   These concentrations and amounts used may be appropriately adjusted so as to satisfy the above formula (1) and the like. For example, a silica sol is prepared by collision-mixing an aqueous silicate solution and an inorganic acid, and this contains an iron salt. When the method of mixing the aqueous solution is adopted, the silica aqueous solution having a silica concentration of 7 to 25% by mass is collided with the inorganic acid aqueous solution adjusted to 2 to 7N, and the 5 to 50% by mass iron salt aqueous solution is added thereto. The method of doing is mentioned.

本発明においては、上記のような鉄−シリカ混合液を調製し、これにアルカリを添加して、鉄濃度とpHとの関係が下記式(2)
−0.14×鉄濃度(質量%)+1.4<pH<−0.06×鉄濃度(質量%)+1.2 (2)
を満たすようにpHを調整することを最大の特徴とする。
In the present invention, an iron-silica mixed solution as described above is prepared, an alkali is added thereto, and the relationship between iron concentration and pH is expressed by the following formula (2).
−0.14 × iron concentration (mass%) + 1.4 <pH <−0.06 × iron concentration (mass%) + 1.2 (2)
The greatest feature is that the pH is adjusted to satisfy the above condition.

アルカリ添加量が少なく、上記範囲よりもpHが低い場合でも、逆にアルカリ添加量が多すぎてpHが高くなりすぎた場合でも、良好な保存安定性を得ることができない。   Even when the amount of alkali added is small and the pH is lower than the above range, conversely, even when the amount of alkali added is too high and the pH becomes too high, good storage stability cannot be obtained.

従来公知の鉄−シリカ水処理凝集剤の製造方法においても、前記式(1)等を満たす鉄−シリカ混合液が製造される場合はあったが、本発明の如く、それに対してアルカリを添加する方法は全く行われてこなかった。これは前述したように、第二鉄塩等の鉄塩水溶液においては、アルカリの添加により沈殿を生じる現象が知られているためであると推測される。   Even in a conventionally known method for producing an iron-silica water treatment flocculant, an iron-silica mixed solution satisfying the above formula (1) and the like was sometimes produced, but as in the present invention, an alkali was added thereto. No way has been done. As described above, this is presumed to be due to a known phenomenon in which an aqueous solution of iron salt such as ferric salt causes precipitation due to the addition of alkali.

鉄濃度及びpHの関係を上記範囲とするためのアルカリ添加量は、実験的に確認すればよいが、概ね、(鉄塩の添加量にも若干影響されるが)用いた無機酸のうち、珪酸塩水溶液におけるアルカリ成分に対する酸量が、計算値で0.6〜0.9当量まで中和できる量のアルカリを添加すればよい。具体的には、例えば無機酸を1.1当量使用した場合には、0.2〜0.5当量分のアルカリを添加すればよい。   The amount of alkali added to make the relationship between the iron concentration and the pH within the above range may be confirmed experimentally. In general, among the inorganic acids used (although slightly affected by the amount of iron salt added), What is necessary is just to add the alkali of the quantity which can neutralize the acid amount with respect to the alkali component in silicate aqueous solution to 0.6-0.9 equivalent by a calculated value. Specifically, for example, when 1.1 equivalent of inorganic acid is used, 0.2 to 0.5 equivalent of alkali may be added.

添加するアルカリの種類は特に限定されないが、処理対象の水の汚染を引き起こし難いという点でアルカリ金属化合物であることが好ましく、例えば、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ金属の炭酸水素塩、アルカリ金属酸化物を使用することができる。中でも、取扱や入手のしやすさ等を考慮すると、水酸化ナトリウムや炭酸ナトリウム水溶液を使用することが好ましい。また使用するアルカリは、アルカリ金属化合物の濃度が2重量%から10重量%である水溶液として、前記鉄−シリカ複合液に添加することが好ましい。   The type of alkali to be added is not particularly limited, but is preferably an alkali metal compound in that it hardly causes contamination of water to be treated. For example, alkali metal hydroxide, alkali metal carbonate, alkali metal Hydrogen carbonate and alkali metal oxides can be used. Among these, it is preferable to use sodium hydroxide or an aqueous sodium carbonate solution in view of handling and availability. The alkali to be used is preferably added to the iron-silica composite solution as an aqueous solution having an alkali metal compound concentration of 2 to 10% by weight.

本発明の製造方法では、上記アルカリの添加によりpHが0.05以上上昇して式(2)を満たすようになるように、前記鉄−シリカ複合液のpH及び鉄濃度を調製することが好ましい。換言すれば、鉄−シリカ複合液を調製する場合、より低いpHとなるように各成分の配合量を調整することが好ましい。これはこのような低いpHとなるように鉄−シリカ複合液を調製すれば、よりこの調製時の部分ゲル化によるシリカの沈殿が生じにくいためである。他方、アルカリの添加により鉄等の濃度が低下するため、添加アルカリ量が多くなりすぎないようにすることが好ましく、アルカリ添加によるpHの上昇幅が0.15以下で式(2)を満たすように鉄−シリカ複合液を調製することが好ましい。   In the production method of the present invention, it is preferable to adjust the pH and the iron concentration of the iron-silica composite solution so that the pH is increased by 0.05 or more and the formula (2) is satisfied by the addition of the alkali. . In other words, when preparing an iron-silica composite liquid, it is preferable to adjust the compounding quantity of each component so that it may become pH lower. This is because if the iron-silica composite solution is prepared so as to have such a low pH, silica precipitation due to partial gelation at the time of this preparation is less likely to occur. On the other hand, since the concentration of iron or the like decreases due to the addition of alkali, it is preferable not to increase the amount of added alkali too much, so that the increase in pH due to the addition of alkali satisfies the formula (2) at 0.15 or less. It is preferable to prepare an iron-silica composite solution.

本発明において、上記鉄−シリカ複合液からなる水処理用凝集剤におけるシリカ濃度は特に限定されないが、0.3質量%以上、4質量%以下であることが好適であり、0.5質量%以上であることがより好適である。シリカ濃度が高いほど鉄濃度も高くすることが容易となり、貯蔵、運搬に有利となるが、一方で、相対的に保存安定性が低下する傾向がある。シリカ濃度を上記範囲にすることにより、高い鉄濃度と、より良好な保存安定性をバランスよく得ることが容易となる。またシリカ濃度が低すぎると、既定の鉄濃度の注入量を確保するため多量の凝集剤が必要となり、貯蔵や運搬コストが高価なものとなる。   In the present invention, the silica concentration in the water treatment flocculant composed of the iron-silica composite liquid is not particularly limited, but is preferably 0.3% by mass or more and 4% by mass or less, and 0.5% by mass. The above is more preferable. The higher the silica concentration is, the easier it is to increase the iron concentration, which is advantageous for storage and transportation. On the other hand, the storage stability tends to be relatively lowered. By making the silica concentration in the above range, it becomes easy to obtain a high iron concentration and better storage stability in a balanced manner. On the other hand, if the silica concentration is too low, a large amount of flocculant is required to secure a predetermined injection amount of iron concentration, and the storage and transportation costs become expensive.

以下、本発明を更に具体的に説明するため実施例を示すが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.

(1)衝突混合(鉄−シリカ塩複合液の製造方法)の説明
以下に示す実施例、比較例において、鉄−シリカ塩複合液は、以下の装置を利用して製造した。先ず、図2に示すようなY字管型反応器で鉄−シリカ水処理凝集剤を製造した。絞り部の管径(内径)1.4mm×長さ10mmのケイ酸ソーダ水溶液を原料供給管4、同じく絞り部の管径(内径)1.2mm×長さ10mmの塩化第二鉄水溶液を原料供給管4’から供給し、反応部5にて衝突混合させ、排出管6(管径(内径)5mm×長さ30mm)から鉄−シリカ複合液を取り出した。それぞれの条件は各実施例、比較例に示す。
(1) Description of Collision Mixing (Manufacturing Method of Iron-Silica Salt Composite Solution) In the examples and comparative examples shown below, the iron-silica salt composite solution was manufactured using the following apparatus. First, an iron-silica water treatment flocculant was produced in a Y-tube reactor as shown in FIG. The raw material supply pipe 4 is a sodium silicate aqueous solution having a diameter (inner diameter) of 1.4 mm × 10 mm in length of the throttle part, and the ferric chloride aqueous solution in the same way is 1.2 mm in diameter of the throttle part (inner diameter) × 10 mm in length. The iron-silica composite liquid was taken out from the discharge pipe 6 (tube diameter (inner diameter) 5 mm × length 30 mm). Each condition is shown in each example and comparative example.

(2)粘度測定:(株)エーアンドディの音叉型振動式粘度計を用い30℃で測定した。   (2) Viscosity measurement: Measured at 30 ° C. using a tuning fork type vibration viscometer manufactured by A & D.

(3)pH測定:東亜ディーケーケー(株)社製のpHメーターを用い室温で測定した。   (3) pH measurement: Measured at room temperature using a pH meter manufactured by Toa DKK Corporation.

(4)凝集性能の評価:水道水にカオリン(和光純薬製水質試験用濁度標準液1000度)を添加し、濁度20に調整した物を試験水としてジャーテストを行った。試験水1000mlに凝集剤を水1000mLに対し、Feが5mg相当を添加、攪拌速度150rpmで5分間攪拌し、続けて攪拌速度50rpmで10分間攪拌し、さらに、10分間静置した後、上澄み液50mlを採取し濁度を測定する方法により、得られた鉄−シリカ水処理凝集剤の水処理に対する性能を調べた。   (4) Evaluation of flocculation performance: Kaolin (1000 degrees of turbidity standard solution for water quality test manufactured by Wako Pure Chemical Industries, Ltd.) was added to tap water, and a jar test was conducted using the turbidity adjusted to 20 as test water. Add 1000 mg of flocculant to 1000 mL of test water, add 5 mg of Fe, stir at a stirring speed of 150 rpm for 5 minutes, then stir at a stirring speed of 50 rpm for 10 minutes, and then stand still for 10 minutes. The performance of the obtained iron-silica water treatment flocculant for water treatment was examined by a method of collecting 50 ml and measuring turbidity.

実施例1
珪酸ソーダ水溶液は、市販の珪酸ソーダ(SiO濃度28質量%、SiO/NaOモル比3.15)を水で希釈し、SiO濃度21.7質量%の水溶液としたものを用いた。硫酸水溶液は、48質量%を水で希釈し、硫酸濃度18質量%の水溶液としたものを用いた。珪酸ソーダ水溶液の流量を1.0L/min、硫酸水溶液の流量を0.81L/minでY字管反応装置に供給し、シリカゾル液5Lを約2分46秒で得た。このときに反応部へ供給される珪酸ソーダ水溶液及び硫酸水溶液の流速は、それぞれ10.8m/s、11.9m/sであった。
Example 1
The sodium silicate aqueous solution used was a commercially available sodium silicate (SiO 2 concentration 28 mass%, SiO 2 / Na 2 O molar ratio 3.15) diluted with water to obtain an SiO 2 concentration 21.7 mass% aqueous solution. It was. The aqueous sulfuric acid solution used was an aqueous solution having a sulfuric acid concentration of 18% by mass diluted with 48% by mass with water. The flow rate of the sodium silicate aqueous solution was 1.0 L / min and the flow rate of the sulfuric acid aqueous solution was supplied to the Y-tube reactor at a flow rate of 0.81 L / min to obtain 5 L of silica sol solution in about 2 minutes 46 seconds. At this time, the flow rates of the sodium silicate aqueous solution and the sulfuric acid aqueous solution supplied to the reaction section were 10.8 m / s and 11.9 m / s, respectively.

得られたシリカゾルのSiO濃度は13.0質量%であり、該シリカゾルのpHは1.48であった。このシリカゾル1Lをとり、30℃で穏やかに攪拌しつつ、120分間熟成させ、粘度10mP・sの熟成シリカゾルを得た。 The obtained silica sol had a SiO 2 concentration of 13.0% by mass, and the silica sol had a pH of 1.48. 1 L of this silica sol was taken and aged for 120 minutes while gently stirring at 30 ° C. to obtain an aged silica sol having a viscosity of 10 mP · s.

このシリカゾルを200ml(240g)取り、水1050g及び39.5質量%の塩化第二鉄水溶液854gを加えた。このようにして得られた鉄−シリカ複合液のpHは0.58であった。この液をよく攪拌しながら1.1N(44g/L)の水酸化ナトリウム水溶液100mlを10分間で添加し、SiO濃度1.4質量%、鉄濃度5.2質量%、Si/Feのモル比0.25、pH0.77の鉄−シリカ複合液2246gを得た。 200 ml (240 g) of this silica sol was taken, and 1050 g of water and 854 g of a 39.5% by mass ferric chloride aqueous solution were added. The pH of the iron-silica composite solution thus obtained was 0.58. While thoroughly stirring this solution, 100 ml of a 1.1N (44 g / L) aqueous sodium hydroxide solution was added over 10 minutes, and the SiO 2 concentration was 1.4% by mass, the iron concentration was 5.2% by mass, and the moles of Si / Fe. 2246 g of an iron-silica composite solution having a ratio of 0.25 and a pH of 0.77 was obtained.

この鉄−シリカ複合液を水処理凝集剤として、その凝集性能を評価したところ、上澄み水濁度は0.4であり、良好な凝集性能を示した。またこの水処理凝集剤を室温にて保存し、その保存安定性を評価したところ、この凝集剤は60日間沈殿やゲル化などの変質を生じなかった。   When this agglomeration performance was evaluated using this iron-silica composite liquid as a water treatment flocculant, the supernatant water turbidity was 0.4, indicating good agglomeration performance. Moreover, when this water treatment flocculant was preserve | saved at room temperature and the storage stability was evaluated, this flocculant did not produce alterations, such as precipitation and gelation, for 60 days.

実施例2、3及び比較例1
実施例1で得られた鉄−シリカ複合液に添加するアルカリの量を変化させpH0.71、pH0.86又はpH0.93で、SiO濃度1.4質量%、鉄濃度5.2質量%、Si/Feのモル比0.25の鉄−シリカ複合液からなる凝集剤を得た。これらの凝集剤の保存安定性を表1に示す。
Examples 2 and 3 and Comparative Example 1
The amount of alkali added to the iron-silica composite solution obtained in Example 1 was changed to pH 0.71, pH 0.86, or pH 0.93, the SiO 2 concentration was 1.4% by mass, and the iron concentration was 5.2% by mass. A flocculant composed of an iron-silica composite liquid having a Si / Fe molar ratio of 0.25 was obtained. Table 1 shows the storage stability of these flocculants.

比較例2
実施例1における水酸化ナトリウム水溶液を添加する前のpH0.58の鉄−シリカ複合液を、そのまま凝集剤として凝集性能を評価したところ、上澄み水濁度は0.4であった。またこのものの保存安定性を評価した結果、25日でゲル化を生じた。
Comparative Example 2
When the aggregation performance of the iron-silica composite solution having a pH of 0.58 before adding the aqueous sodium hydroxide solution in Example 1 was evaluated as it was, the supernatant water turbidity was 0.4. Moreover, as a result of evaluating the storage stability of this product, gelation occurred in 25 days.

上記実施例1〜3及び比較例1、2における保存安定性の評価結果を凝集性能等と併せて表1に示す。   The storage stability evaluation results in Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1 together with the aggregation performance.

Figure 0004810512
Figure 0004810512

実施例4
実施例1で得られた熟成させたシリカゾル200ml(240g)に水620g及び39.5質量%塩化第二鉄水溶液854gを加えた。この鉄−シリカ複合液のpHは0.42であった。この複合液をよく攪拌しながら1.1N(44g/L)の水酸化ナトリウム水溶液146mlを15分間で添加し、SiO濃度1.7質量%、鉄濃度6.2質量%、Si/Feのモル比0.25、pH0.65の鉄−シリカ複合液1863gを得た。
Example 4
To 200 ml (240 g) of the aged silica sol obtained in Example 1, 620 g of water and 854 g of 39.5% by mass ferric chloride aqueous solution were added. The pH of this iron-silica composite solution was 0.42. While thoroughly stirring this composite solution, 146 ml of 1.1N (44 g / L) aqueous sodium hydroxide solution was added over 15 minutes, and the SiO 2 concentration was 1.7% by mass, the iron concentration was 6.2% by mass, 1863 g of an iron-silica composite solution having a molar ratio of 0.25 and a pH of 0.65 was obtained.

この鉄−シリカ複合液を水処理凝集剤として、その凝集性能を評価したところ、上澄み水濁度は0.4であり、良好な凝集性能を示した。またこの水処理凝集剤を室温にて保存し、その保存安定性を評価したところ、この凝集剤は25日間沈殿やゲル化などの変質を生じなかった。   When this agglomeration performance was evaluated using this iron-silica composite liquid as a water treatment flocculant, the supernatant water turbidity was 0.4, indicating good agglomeration performance. Moreover, when this water treatment flocculant was preserve | saved at room temperature and the storage stability was evaluated, this flocculant did not produce alterations, such as precipitation and gelation, for 25 days.

実施例5、6及び比較例3
実施例4で得られた鉄−シリカ複合液に添加するアルカリの量を変化させpH0.56、pH0.78又はpH0.85で、SiO濃度1.7質量%、鉄濃度6.3質量%、Si/Feのモル比0.25の鉄−シリカ複合液からなる凝集剤を得た。これらの凝集剤の安定性を表2に示す。
Examples 5 and 6 and Comparative Example 3
The amount of alkali added to the iron-silica composite solution obtained in Example 4 was changed to pH 0.56, pH 0.78 or pH 0.85, and the SiO 2 concentration was 1.7% by mass and the iron concentration was 6.3% by mass. A flocculant composed of an iron-silica composite liquid having a Si / Fe molar ratio of 0.25 was obtained. The stability of these flocculants is shown in Table 2.

比較例4
実施例4における水酸化ナトリウム水溶液を添加する前のpH0.42の鉄−シリカ複合液の保存安定性を評価したところ、9日でゲル化を生じた。
Comparative Example 4
When the storage stability of the iron-silica composite solution having a pH of 0.42 before adding the sodium hydroxide aqueous solution in Example 4 was evaluated, gelation occurred in 9 days.

上記実施例4〜6及び比較例3、4における保存安定性の評価結果を凝集性能等と併せて表2に示す。   The storage stability evaluation results in Examples 4 to 6 and Comparative Examples 3 and 4 are shown in Table 2 together with the aggregation performance and the like.

Figure 0004810512
Figure 0004810512

実施例7
実施例1で得られた熟成させたシリカゾル200ml(240g)に水1680g及び39.5質量%塩化第二鉄水溶液854gを加えた。この鉄−シリカ複合液のpHは0.79であった。この複合液をよく攪拌しながら1.1N(44g/L)の水酸化ナトリウム水溶液73mlを7分間で添加し、SiO2濃度1.1質量%、鉄濃度4.1質量%、Si/Feのモル比0.25、pH0.90の鉄−シリカ複合液2848gを得た。
Example 7
To 200 ml (240 g) of the aged silica sol obtained in Example 1, 1680 g of water and 854 g of 39.5% by mass ferric chloride aqueous solution were added. The pH of this iron-silica composite solution was 0.79. While thoroughly stirring this composite solution, 73 ml of 1.1N (44 g / L) aqueous sodium hydroxide solution was added over 7 minutes, and the SiO2 concentration was 1.1% by mass, the iron concentration was 4.1% by mass, and the moles of Si / Fe. 2848 g of an iron-silica composite solution having a ratio of 0.25 and a pH of 0.90 was obtained.

この鉄−シリカ複合液を水処理凝集剤として、その凝集性能を評価したところ、上澄み水濁度は0.5であり、良好な凝集性能を示した。またこの水処理凝集剤を室温にて保存し、その保存安定性を評価したところ、この凝集剤は110日間沈殿やゲル化などの変質を生じなかった。   When this agglomeration performance was evaluated using this iron-silica composite liquid as a water treatment flocculant, the supernatant water turbidity was 0.5, indicating good agglomeration performance. Moreover, when this water treatment flocculant was preserve | saved at room temperature and the storage stability was evaluated, this flocculant did not produce alterations, such as precipitation and gelation, for 110 days.

実施例8、9及び比較例5
実施例7で得られた鉄−シリカ複合液に添加するアルカリの量を変化させpH0.86、pH0.94又はpH1.00で、SiO濃度1.1質量%、鉄濃度3.9質量%、Si/Feのモル比0.25の鉄−シリカ複合液からなる凝集剤を得た。これらの凝集剤の保存安定性を表3に示す。
Examples 8 and 9 and Comparative Example 5
The amount of alkali added to the iron-silica composite solution obtained in Example 7 was changed to pH 0.86, pH 0.94 or pH 1.00, SiO 2 concentration 1.1 mass%, iron concentration 3.9 mass%. A flocculant composed of an iron-silica composite liquid having a Si / Fe molar ratio of 0.25 was obtained. Table 3 shows the storage stability of these flocculants.

比較例5
実施例7における水酸化ナトリウム水溶液を添加する前のpH0.79の鉄−シリカ複合液の保存安定性を評価したところ、60日でゲル化を生じた。
Comparative Example 5
When the storage stability of the iron-silica composite solution having a pH of 0.79 before addition of the aqueous sodium hydroxide solution in Example 7 was evaluated, gelation occurred in 60 days.

上記実施例7〜9及び比較例5、6における保存安定性の評価結果を凝集性能等と併せて表3に示す。   The storage stability evaluation results in Examples 7 to 9 and Comparative Examples 5 and 6 are shown in Table 3 together with the aggregation performance and the like.

Figure 0004810512
Figure 0004810512

実施例10
実施例1で得られた熟成させたシリカゾル200ml(240g)に水250g及び39.5質量%塩化第二鉄水溶液810gを加えた。この鉄−シリカ複合液のpHは0.25であった。この複合液をよく攪拌しながら1.1N(44g/L)の水酸化ナトリウム水溶液205mlを20分間で添加し、SiO2濃度2.0質量%、鉄濃度7.5質量%、Si/Feのモル比0.25、pH0.45の鉄−シリカ複合液1553gを得た。
Example 10
To 200 ml (240 g) of the aged silica sol obtained in Example 1, 250 g of water and 810 g of a 39.5 mass% ferric chloride aqueous solution were added. The pH of this iron-silica composite solution was 0.25. While thoroughly stirring this composite liquid, 205 ml of 1.1N (44 g / L) aqueous sodium hydroxide solution was added over 20 minutes, and the SiO2 concentration was 2.0% by mass, the iron concentration was 7.5% by mass, and the Si / Fe mol. 1553 g of an iron-silica composite solution having a ratio of 0.25 and pH of 0.45 was obtained.

この鉄−シリカ複合液を水処理凝集剤として、その凝集性能を評価したところ、上澄み水濁度は0.5であり、良好な凝集性能を示した。またこの水処理凝集剤を室温にて保存し、その保存安定性を評価したところ、この凝集剤は11日間沈殿やゲル化などの変質を生じなかった。   When this agglomeration performance was evaluated using this iron-silica composite liquid as a water treatment flocculant, the supernatant water turbidity was 0.5, indicating good agglomeration performance. Moreover, when this water treatment flocculant was preserve | saved at room temperature and the storage stability was evaluated, this flocculant did not produce alterations, such as precipitation and gelation, for 11 days.

実施例11、12
実施例10で得られた鉄−シリカ複合液に添加するアルカリの量を変化させpH0.40又はpH0.66で、SiO濃度2.1質量%、鉄濃度7.6質量%、Si/Feのモル比0.25の鉄−シリカ複合液からなる凝集剤を得た。これらの凝集剤の保存安定性を表4に示す。
Examples 11 and 12
The amount of alkali added to the iron-silica composite solution obtained in Example 10 was changed to pH 0.40 or pH 0.66, SiO 2 concentration 2.1 mass%, iron concentration 7.6 mass%, Si / Fe A flocculant composed of an iron-silica composite liquid having a molar ratio of 0.25 was obtained. Table 4 shows the storage stability of these flocculants.

比較例7
実施例10における水酸化ナトリウム水溶液を添加する前のpH0.25の鉄−シリカ複合液の保存安定性を評価したところ、2日でゲル化を生じた。
Comparative Example 7
When the storage stability of the iron-silica composite solution having a pH of 0.25 before the addition of the aqueous sodium hydroxide solution in Example 10 was evaluated, gelation occurred in 2 days.

上記実施例10〜12及び比較例7における保存安定性の評価結果を凝集性能等と併せて表4に示す。   The storage stability evaluation results in Examples 10 to 12 and Comparative Example 7 are shown in Table 4 together with the aggregation performance and the like.

Figure 0004810512
Figure 0004810512

実施例13
実施例1で得られた熟成させたシリカゾル200ml(240g)に水440g及び39.5質量%塩化第二鉄水溶液427gを加えた。この鉄−シリカ塩複合液のpH0.56であった。この液をよく攪拌しながら1.1N(44g/L)の炭酸ナトリウム水溶液105mlを10分間で添加し、SiO濃度2.6質量%、鉄濃度4.8質量%、Si/Feのモル比0.5、pH0.85の鉄−シリカ塩複合液の1214gを得た。
Example 13
To 200 ml (240 g) of the aged silica sol obtained in Example 1, 440 g of water and 427 g of a 39.5 mass% ferric chloride aqueous solution were added. The pH of this iron-silica salt composite solution was 0.56. While thoroughly stirring this solution, 105 ml of an aqueous 1.1N (44 g / L) sodium carbonate solution was added over 10 minutes. The SiO 2 concentration was 2.6% by mass, the iron concentration was 4.8% by mass, and the Si / Fe molar ratio. 1214 g of 0.5-pH 0.85 iron-silica salt composite solution was obtained.

この鉄−シリカ複合液を水処理凝集剤として、その凝集性能を評価したところ、上澄み水濁度は0.3であり、良好な凝集性能を示した。またこの水処理凝集剤を室温にて保存し、その保存安定性を評価したところ、この凝集剤は12日間沈殿やゲル化などの変質を生じなかった。   When this agglomeration performance was evaluated using this iron-silica composite liquid as a water treatment flocculant, the supernatant water turbidity was 0.3, indicating good agglomeration performance. Moreover, when this water treatment flocculant was preserve | saved at room temperature and the storage stability was evaluated, this flocculant did not produce alterations, such as precipitation and gelation, for 12 days.

比較例8
実施例13で得られた鉄−シリカ複合液に添加するアルカリの量を変化させpH1.00で、SiO濃度2.6質量%、鉄濃度4.8質量%、Si/Feのモル比0.25の鉄−シリカ複合液からなる凝集剤を得た。この凝集剤の保存安定性を表5に示す。
Comparative Example 8
The amount of alkali added to the iron-silica composite solution obtained in Example 13 was changed to pH 1.00, the SiO 2 concentration was 2.6% by mass, the iron concentration was 4.8% by mass, and the Si / Fe molar ratio was 0. A flocculant composed of .25 iron-silica composite liquid was obtained. Table 5 shows the storage stability of this flocculant.

比較例9
実施例13における炭酸ナトリウムを添加する前のpH0.56の鉄−シリカ複合液の保存安定性を評価したところ、4日でゲル化を生じた。
Comparative Example 9
When the storage stability of the iron-silica composite solution having a pH of 0.56 before addition of sodium carbonate in Example 13 was evaluated, gelation occurred in 4 days.

上記実施例13及び比較例8、9における保存安定性の評価結果を凝集性能等と併せて表5に示す。   The storage stability evaluation results in Example 13 and Comparative Examples 8 and 9 are shown in Table 5 together with the aggregation performance and the like.

Figure 0004810512
Figure 0004810512

以上の実験結果においては、アルカリを添加することにより、まったくアルカリを加えなかった場合に比してゲル化等を起こすまでの時間が1.5倍以上長くなっているものを実施例、そのような効果が得られていないものを比較例とした。これらの結果をプロットしたのが図3である。この図からアルカリの添加により式(2)を満たすようにしたものにおいて、その効果が得られていることがわかる。   In the above experimental results, the example in which the time until gelation or the like is caused by addition of alkali is 1.5 times longer than that in the case where no alkali is added, is A comparative example was not obtained. These results are plotted in FIG. From this figure, it can be seen that the effect is obtained in the case where the formula (2) is satisfied by the addition of alkali.

なお実施例1、4、7及び10、あるいは比較例2、4、6及び7の対比から理解されるように、濃度が薄くなるにつれ保存安定性は向上する傾向にある。しかし例えば、より濃度が高い実施例10の方が、比較例4よりもゲル化までの時間が長いように、式(2)を満たすことによって濃度の効果を超えて高い保存安定性を得ることができる。そして、より高濃度の凝集剤の方が、保管や輸送の点で有利なことは明らかであり、本発明はこのような利点を有する優れた技術である。   As can be understood from the comparison of Examples 1, 4, 7, and 10 or Comparative Examples 2, 4, 6, and 7, the storage stability tends to improve as the concentration decreases. However, for example, in Example 10, where the concentration is higher, the time until gelation is longer than in Comparative Example 4, so that high storage stability exceeding the effect of concentration is obtained by satisfying Equation (2). Can do. It is clear that a higher concentration of the flocculant is advantageous in terms of storage and transportation, and the present invention is an excellent technique having such advantages.

また図1は、比較例2、4、6及び7における鉄濃度とpHの関係をプロットしたものである。これら比較例はすべて、実施例1において製造されたSiO濃度が13.0質量%の鉄−シリカ複合液240gに対して、同一量の39.5質量%塩化第二鉄水溶液を加えたものであり、異なるのは塩化第二鉄水溶液と共に加えた水の量のみである。即ち、これら比較例は、水による希釈度合いが異なる実験結果である。 FIG. 1 is a plot of the relationship between iron concentration and pH in Comparative Examples 2, 4, 6, and 7. In all these comparative examples, the same amount of 39.5% by mass ferric chloride aqueous solution was added to 240 g of the iron-silica composite solution having a SiO 2 concentration of 13.0% by mass produced in Example 1. The only difference is the amount of water added with the aqueous ferric chloride solution. That is, these comparative examples are experimental results with different degrees of dilution with water.

この図から理解されるように、珪酸塩水溶液、無機酸及び鉄塩水溶液を所定量配合し、式(1)を満足する(よって式(2)は満足しない)ように調製した鉄−シリカ複合液は、単純に水で薄めて濃度を変化させるだけでは式(2)を満足するような鉄濃度とpHの関係にはならない。   As can be understood from this figure, an iron-silica composite prepared by blending predetermined amounts of an aqueous silicate solution, an inorganic acid and an aqueous iron salt solution to satisfy Formula (1) (and not satisfy Formula (2)). If the solution is simply diluted with water and the concentration is changed, the relationship between the iron concentration and the pH satisfying the formula (2) is not obtained.

比較例10
アルカリを添加せずに直接式(2)を満たす凝集剤を製造するため、アルカリ添加量に相当する分だけ硫酸の使用量を減らして実験を行った。即ち、実施例1において、硫酸の流速を0.63L/minにして珪酸ソーダと衝突させてシリカゾルを製造した。その結果、得られたシリカゾル液にはシリカのゲル状物が多数存在し、良好なシリカゾル液を得る事ができなかった。
Comparative Example 10
In order to produce an aggregating agent that directly satisfies the formula (2) without adding an alkali, an experiment was conducted by reducing the amount of sulfuric acid used by an amount corresponding to the amount of alkali added. That is, in Example 1, the silica sol was manufactured by colliding with sodium silicate at a flow rate of sulfuric acid of 0.63 L / min. As a result, many silica gels were present in the obtained silica sol solution, and a good silica sol solution could not be obtained.

鉄−シリカ複合液を中性の水で希釈した場合のpH変化を示す図。The figure which shows pH change at the time of diluting an iron-silica composite liquid with neutral water. 鉄−シリカ複合液を製造するためのY字管反応装置の模式図。The schematic diagram of the Y-tube reaction apparatus for manufacturing an iron-silica composite liquid. 鉄−シリカ複合液中の鉄濃度とpH、及び保存安定性の関係を示す図。The figure which shows the relationship between the iron concentration in an iron-silica composite liquid, pH, and storage stability.

符号の説明Explanation of symbols

1 無機酸の貯留槽
2 ケイ酸塩水溶液の貯留槽
3 Y字型反応器
4 原料供給管
4’ 原料供給管
5 反応部
6 排出管
DESCRIPTION OF SYMBOLS 1 Storage tank of inorganic acid 2 Storage tank of silicate aqueous solution 3 Y-shaped reactor 4 Raw material supply pipe 4 'Raw material supply pipe 5 Reactor 6 Discharge pipe

Claims (5)

鉄塩を含む水溶液、珪酸塩水溶液及び無機酸を混合して、珪素と鉄との割合がモル比で0.1≦(珪素/鉄)<1、pHが1未満、鉄濃度とpHが下記式(1)、
−0.14×鉄濃度(質量%)+1.4>pH (1)
の関係を満たす鉄−シリカ複合液を調製し、次いで該複合液に対してアルカリを添加して、鉄濃度とpHとの関係が下記式(2)
−0.14×鉄濃度(質量%)+1.4<pH<−0.06×鉄濃度(質量%)+1.2 (2)
を満たすようにpHを調整することを特徴とする、珪素と鉄との割合がモル比で0.1≦(珪素/鉄)<1の範囲にある鉄−シリカ複合液からなる水処理用凝集剤の製造方法。
An aqueous solution containing an iron salt, an aqueous silicate solution, and an inorganic acid are mixed, and the ratio of silicon and iron is 0.1 ≦ (silicon / iron) <1, the pH is less than 1, the iron concentration and pH are as follows. Formula (1),
−0.14 × iron concentration (mass%) + 1.4> pH (1)
An iron-silica composite solution satisfying the above relationship is prepared, then an alkali is added to the composite solution, and the relationship between iron concentration and pH is expressed by the following formula (2).
−0.14 × iron concentration (mass%) + 1.4 <pH <−0.06 × iron concentration (mass%) + 1.2 (2)
PH is adjusted so as to satisfy the following conditions: water treatment aggregation comprising an iron-silica composite liquid in which the ratio of silicon and iron is in the range of 0.1 ≦ (silicon / iron) <1 in molar ratio Manufacturing method.
アルカリを添加してpHを調整した後の鉄濃度を3〜9質量%の範囲とする請求項1記載の水処理用凝集剤の製造方法。   The method for producing an aggregating agent for water treatment according to claim 1, wherein the iron concentration after adjusting the pH by adding an alkali is in the range of 3 to 9% by mass. アルカリを添加する前の鉄−シリカ複合液の鉄濃度が3質量%を超え10質量%以下の範囲となるように、鉄塩を含む水溶液、珪酸塩水溶液及び無機酸を混合する請求項1又は2記載の水処理用凝集剤の製造方法。   The aqueous solution containing an iron salt, an aqueous silicate solution, and an inorganic acid are mixed so that the iron concentration of the iron-silica composite solution before adding the alkali is in the range of more than 3% by mass and 10% by mass or less. 2. A method for producing a flocculant for water treatment according to 2. アルカリを添加することによるpHの上昇幅を、少なくとも0.05以上とする請求項1乃至3のいずれか1項に記載の水処理用凝集剤の製造方法。
The method for producing a flocculant for water treatment according to any one of claims 1 to 3 , wherein an increase in pH by adding an alkali is at least 0.05 or more.
鉄塩を含む水溶液、珪酸塩水溶液及び無機酸を混合して得られた、珪素と鉄との割合がモル比で0.1≦(珪素/鉄)<1、pHが1未満、鉄濃度が3質量%以上、鉄濃度とpHが下記式(1)、
−0.14×鉄濃度(質量%)+1.4>pH
の範囲にある鉄−シリカ複合液からなる水処理用凝集剤に対して、アルカリを添加することにより、その鉄濃度とpHとの関係が下記式(2)
−0.14×鉄濃度(質量%)+1.4<pH<−0.06×鉄濃度(質量%)+1.2
を満たすようにpHを調整することを特徴とする、珪素と鉄との割合がモル比で0.1≦(珪素/鉄)<1の範囲にある鉄−シリカ複合液からなる水処理用凝集剤の安定化方法。
The ratio of silicon and iron obtained by mixing an aqueous solution containing an iron salt, an aqueous silicate solution, and an inorganic acid is 0.1 ≦ (silicon / iron) <1, in molar ratio, pH is less than 1, and the iron concentration is 3 mass% or more, iron concentration and pH are the following formula (1),
−0.14 × iron concentration (mass%) + 1.4> pH
The relationship between the iron concentration and pH is represented by the following formula (2) by adding an alkali to the water treatment flocculant composed of an iron-silica composite liquid in the range of
−0.14 × iron concentration (mass%) + 1.4 <pH <−0.06 × iron concentration (mass%) + 1.2
PH is adjusted so as to satisfy the following conditions: water treatment aggregation comprising an iron-silica composite liquid in which the ratio of silicon and iron is in the range of 0.1 ≦ (silicon / iron) <1 in molar ratio Agent stabilization method.
JP2007191045A 2007-07-23 2007-07-23 Method for producing a coagulant for iron-silica water treatment Active JP4810512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191045A JP4810512B2 (en) 2007-07-23 2007-07-23 Method for producing a coagulant for iron-silica water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191045A JP4810512B2 (en) 2007-07-23 2007-07-23 Method for producing a coagulant for iron-silica water treatment

Publications (2)

Publication Number Publication Date
JP2009022925A JP2009022925A (en) 2009-02-05
JP4810512B2 true JP4810512B2 (en) 2011-11-09

Family

ID=40395258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191045A Active JP4810512B2 (en) 2007-07-23 2007-07-23 Method for producing a coagulant for iron-silica water treatment

Country Status (1)

Country Link
JP (1) JP4810512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157412B2 (en) 2010-05-28 2015-10-13 Seabased Ab Stator frame for a submerged linear generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170014308A (en) 2015-07-29 2017-02-08 에스프린팅솔루션 주식회사 A method of preparing a PSFC(Poly-Silicic-Ferric Coagulant) for electrostatic charge image developing toner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700892B2 (en) * 1997-09-17 2005-09-28 株式会社荏原製作所 Method for producing flocculant
JPH11349322A (en) * 1998-06-08 1999-12-21 Ebara Corp Production of activated silica
JP2000051608A (en) * 1998-08-10 2000-02-22 Ebara Corp Production, transportation and storage method for flocculant for water treatment
JP2004033897A (en) * 2002-07-02 2004-02-05 Mitsubishi Heavy Ind Ltd Flocculation method of excretion-containing wastewater, flocculation equipment therefor, composting system equipped therewith
JP4114869B2 (en) * 2003-07-15 2008-07-09 オルガノ株式会社 Flocculant preparation method and water treatment method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157412B2 (en) 2010-05-28 2015-10-13 Seabased Ab Stator frame for a submerged linear generator

Also Published As

Publication number Publication date
JP2009022925A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4014896B2 (en) Method for producing flocculant for water treatment
AU2014290034B2 (en) Stable salt-free polyaluminum chlorosulfates
JP5221517B2 (en) Aluminum modified colloidal silica and method for producing the same
JP5213515B2 (en) Method for producing iron-silica water treatment flocculant
JP4810512B2 (en) Method for producing a coagulant for iron-silica water treatment
JP2007185647A (en) Method of treating silicon powder-containing drainage
CN105236536A (en) Preparation method of steel industry sewage flocculants
JP4751779B2 (en) Flocculant for water treatment
JP4030729B2 (en) Method for producing flocculant
JP3700892B2 (en) Method for producing flocculant
JP6655862B1 (en) Basic aluminum chloride silicate aqueous solution
JP4353983B2 (en) Water treatment flocculant manufacturing equipment
US10450209B2 (en) Stable salt-free polyaluminum chlorosulfates
WO2017168729A1 (en) Highly basic aluminum chloride and method for producing same
JP5441055B2 (en) Method for producing high molar ratio sodium silicate
JP5731794B2 (en) Coagulation treatment method for high-concentration silica-containing water
JP2019206469A (en) Silicon-containing basic aluminum chloride aqueous solution
KR950004768B1 (en) Poly aluminum chloride, process for its manufacturing and its use
JP3741269B2 (en) Waste water treatment agent, waste water treatment method and apparatus
JPH11310412A (en) Iron-active silica composite liquid, its production and apparatus therefor
JP2000051608A (en) Production, transportation and storage method for flocculant for water treatment
JP2010126369A (en) Producing method of acidic aluminum salt aqueous solution
KR920005951B1 (en) Water treatment method and flocculating agent used therefor
JP4010976B2 (en) Iron-based flocculant
JP2023121401A (en) Lithium-inorganic acid stable niobic acid sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4810512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250