JP4014882B2 - Method for producing silica sol - Google Patents

Method for producing silica sol Download PDF

Info

Publication number
JP4014882B2
JP4014882B2 JP2002021879A JP2002021879A JP4014882B2 JP 4014882 B2 JP4014882 B2 JP 4014882B2 JP 2002021879 A JP2002021879 A JP 2002021879A JP 2002021879 A JP2002021879 A JP 2002021879A JP 4014882 B2 JP4014882 B2 JP 4014882B2
Authority
JP
Japan
Prior art keywords
silica sol
sodium silicate
raw material
mineral acid
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002021879A
Other languages
Japanese (ja)
Other versions
JP2003221222A (en
Inventor
義明 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2002021879A priority Critical patent/JP4014882B2/en
Publication of JP2003221222A publication Critical patent/JP2003221222A/en
Application granted granted Critical
Publication of JP4014882B2 publication Critical patent/JP4014882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Y字型の反応装置を使用したシリカゾルの新規な製造方法に関する。詳しくは、Y字型の反応装置に鉱酸と珪酸ソーダ溶液とを供給し、接触させてシリカゾルを得る方法において、反応生成物時に微細なゲル化物の発生を防止し、均質なシリカゾルを効率よく製造することができるシリカゾルの製造方法を提供するものである。
【0002】
【従来の技術】
従来、工業的に製造されるシリカゾルは、攪拌中の鉱酸に珪酸ソーダ溶液を添加する方法、イオン交換樹脂を用いて珪酸ソーダ水溶液から製造する方法、アルキルシリケートを酸あるいはアルカリにより加水分解する方法等により製造されてきた。
【0003】
その中で、我々は、シリカゾルを簡易的に製造するため、2つの原料供給管が合流し、該合流部にて排出管と連結してなるY字型の反応装置を使用して、高濃度の鉱酸と珪酸ソーダ溶液とを10m/秒以上の流速で接触させることにより、高濃度のシリカゾルを効率よく製造する方法を見出し提案した(特開昭61−227915号)。上記方法の目的は、このようにして得られた高濃度のシリカゾルより均質なシリカゲルを得ることである。
【0004】
近年、シリカゾルの用途として、シリカゲルの原料に使用される濃度よりも希薄な溶液を原料とする、水処理剤、製紙用等がある。これらの用途においては、ゲル化物を実質的に含まない均質なシリカゾルであって、数分間でゲル化することも無く、そのゾルの粘度が6〜30mPa.s程度にコントロールされたシリカゾルが望まれる。そのため、これらの用途に適用したシリカゾルを得るためには、特開昭61−227915号の実施形態よりも、鉱酸の濃度が低く、珪酸ソーダ溶液のSiO含量を低い原料が使用される。
【0005】
そこで、我々は、上記用途に適用したシリカゾルを得る目的で、前記Y字型の反応装置を使用して、鉱酸の濃度、珪酸ソーダ溶液のSiO含量の低い原料を用いてシリカゾルの製造を試みた。しかしながら、得られたシリカゾルは一部微細なゲル化物を含むため、上記用途の原料としてはそのまま使用することが出来ず、ゲル化物を実質的に含まない均質なシリカゾルの製造方法の開発が望まれていた。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、Y字型の反応装置を使用して、微細なゲル化物を実質的に含まない均質なシリカゾルを、効率よく製造できる方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を続けてきた。その結果、Y字型の反応装置において、鉱酸と珪酸ソーダ溶液とが衝突混合後、反応液は排出管内を満たし液流として流出するが、その際の流速が遅い場合は、混合が十分に行われず、微細なゲル化物が生成し易い状態になるとの知見を得た。そして、かかる知見に基づき、更に研究を重ねた結果、鉱酸と珪酸ソーダ溶液を接触させて得られる反応生成物を特定の流速以上で流出させることにより、鉱酸と珪酸ソーダ溶液が十分に混合されゲル化物の発生もなく、均質なシリカゾルを製造できることを見出し、本発明を提案するに至った。即ち本発明は、2つの原料供給管が合流し、該合流部にて1つの排出管と連結してなり、それぞれの原料供給管には絞り部径が各々d1及びd1’の絞り部が設けられ、これら絞り部の流出口から合流部までの距離Rは等しく、かつ該距離Rは、絞り部径d1及びd1’の1〜9倍であるY字型の反応装置を使用し、該反応装置の原料供給管から鉱酸と珪酸ソーダ溶液を各々供給し、上記合流部にて両成分を接触させて得られた反応生成物を流速1.0m/秒以上で排出管から流出させることを特徴とするシリカゾルの製造方法である。
【0008】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0009】
本発明に用いるY字型の反応装置としては、基本的には2つの原料供給管が合流し、該合流部にて1つの排出管と連結した構造を有する。図1に本発明に使用するY字型の反応装置の例を示す。図1に示すように、このY字型の反応装置は、鉱酸または珪酸ソーダ溶液が供給される原料供給管1、1’が合流し、合流部3にて排出管2が連結してなる。また、このY字型の反応装置は、原料供給管1、1’において、原料の流速を調整するための絞り部4、4’を設けたものを使用することができる。
【0010】
本発明に用いる鉱酸としては、例えば硫酸、塩酸、硝酸等が挙げられ、特に硫酸が好適に用いられる。また、均質であって短時間でゲル化しないシリカゾルを得るためには、鉱酸の濃度は2〜7N、特に3〜6Nが好ましい。
【0011】
本発明に用いる珪酸ソーダ溶液は、一般式SiO/NaOで示される水溶性の珪酸ソーダで該溶液のSiOとNaOのモル比(SiO/NaO)が2.5〜4.0のものが使用される。また、均質であって短時間でゲル化しないシリカゾルを得るためには、SiO成分の含有量は100〜300g/L、特に200〜290g/Lが好ましい。
【0012】
上記濃度の鉱酸及び珪酸ソーダ溶液を原料として、特開昭61−227915号の実施例に記載されている条件でシリカゾルを製造したところ、得られたシリカゾル中に微細なゲル化物が生成し、水処理剤、製紙用等の原料として使用する場合、有効なシリカ量の減少を招くばかりでなく、該ゲル化物を除去するための工程を別途必要とした。そのため、Y字型の反応装置を用いて、ゲル化物の出来ない均質なシリカゾルを得るために様々な検討を行ったところ、本発明にあっては、鉱酸と珪酸ソーダ溶液を接触させて得られた反応生成物を流速1.0m/秒以上で排出管から流出させ、合流部にて十分混合させることにより、微細なゲル化物が生じる問題を解決した。
【0013】
即ち、本発明の最大の特徴は、図1に示すようなY字型の反応装置を使用して、鉱酸と珪酸ソーダ溶液を接触させて得られた反応生成物を流速1.0m/秒以上、好ましくは1.3m/秒以上で排出管から流出させることにある。該反応生成物の流速が1.0m/秒未満の場合は、供給する原料の流速を上げて衝突による混合を強く行っても微細なゲル化物の発生を抑えることができない。一方、該反応生成物を流出させる流速の上限については制限されないが、一般には20m/秒で、それ以上速くすることはポンプの多大エネルギーを必要とし、また効果も同様となり、それ以上の効果を得ることはできない。
【0014】
本発明において、均質なシリカゾルが得られる効果は、Y字型の反応装置を使用して、鉱酸と珪酸ソーダ溶液を衝突させることによる混合と、得られる反応生成物の流速を早くすることによる反応系の混合との相乗効果によって得られる。
【0015】
本発明において、該反応生成物を流速1.0m/秒以上で流出させる態様は特に制限されることはないが、具体的には、絞り部4,4'から供給される液量の合計より、排出管内の流速が1.0m/秒以上になるように、原料の供給量、排出口径等を決定してやればよい。
【0016】
本発明において、原料供給管に各々供給される鉱酸と珪酸ソーダ溶液の流速は特に制限されるものではないが、絞り部の流速が鉱酸、珪酸ソーダ溶液ともに5m/秒以上、好ましくは7m/秒以上、更に好ましくは10m/秒以上であることが、合流部3にて、均一な反応を行うことができるため好ましい。なお、この方法においては、鉱酸と珪酸ソーダ溶液の両成分が上記の流速であることが均質なシリカゾルを得るためには好ましい。
【0017】
本発明においては、均質なシリカゾルを得るために、Y字型の反応装置の絞り部4、4’の流出口から合流部3までの距離Rは、絞り部径d1、d1’の1〜9倍(R/d1またはd1’=1〜9)である(ただし、絞り部4の流出口から合流部3までの距離と、絞り部4’の流出口から合流部3までの距離は等しい)。
【0018】
本発明に用いるY字型の反応装置の材質は、鉱酸、珪酸ソーダ溶液等の耐薬品性に優れたものであれば例えばガラス、金属、プラスチック、ゴム等の公知のものが特に制限なく使用できる。
【0019】
本発明において、Y字型の反応装置を組み入れた工程を具体的に示せば、図2に示すように鉱酸と珪酸ソーダ溶液を原料供給管1、1’に供給するための原料貯槽5、5’及びポンプ6、6’等の原料移送手段が、一方シリカゾル排出管2の後には、得られたシリカゾルを貯蔵しておくためのシリカゾル貯槽7が接続したものが一般的である。
【0020】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
【0021】
実施例1
大きさ80×80mmのY字型の反応装置を使用し、4.16Nの硫酸を絞り部径4mmに9.2L/min.及びSiO成分の含有量が271.4g/Lの珪酸ソーダ水溶液を絞り部径(d1)4.2mmに11.34L/min.で各々供給し、絞り部の流出口から合流部までの距離(R)と絞り部径(d1)の比を2.5、排出口径15mm,排出時の流速1.9m/秒にして、10分反応させ、205Lのゲル化物のない均質なシリカゾルを得た。
【0022】
そのシリカゾル中のSiO2濃度は14.9g/100mlで、pHは1.39であった。その結果を表1に示す。
【0023】
実施例2
実施例1と同じ濃度の硫酸、珪酸ソーダ水溶液を使用して、硫酸を9.5L/min.、珪酸ソーダ溶液を10.8L/min.で各々供給し、排出口径14mm、排出時の流速2.2m/秒にした以外は実施例1と同様の操作を行った。その結果を表1に示す。
【0024】
実施例3
大きさ40×40mmのY字型の反応装置を使用して、4.07Nの硫酸を絞り部径2.4mmに3.09L/min.及びSiO成分の含有量が265.8g/Lの珪酸ソーダ水溶液を絞り部径(d1)2.6mmに3.73L/min.で各々供給し、絞り部の流出口から合流部までの距離(R)と絞り部径(d1)の比を3.8、排出口径9mm,排出時の流速1.8m/秒にして、25分反応させ、170Lのゲル化物の無いシリカゾルを得た。その結果を表1に示す。
【0025】
実施例4
4.24Nの硫酸を絞り部径1.4mmに1.05L/min.及びSiO成分の含有量が271.7g/Lの珪酸ソーダ水溶液を絞り部径(d1)1.2mmに1.2L/min.で各々供給し、絞り部の流出口から合流部までの距離(R)と絞り部径(d1)の比を8.3、排出口径6mm、排出時の流速1.3m/秒にした以外は実施例3と同様の操作を行った。その結果を表1に示す。
比較例1
実施例1と同じ大きさのY字管反応装置を用いて、4.12Nの硫酸を絞り部径4mmに10L/min.及びSiO成分の含有量が270g/Lの珪酸ソーダ水溶液を絞り部径(d1)4mmに11.5L/min.で各々供給し、絞り部の流出口から合流部までの距離(R)と絞り部径(d1)の比を6.3、排出口径30mm、排出時の流速0.51m/秒とした以外は実施例1と同様の操作を行った。得られた反応生成物は、反応開始時から白いゲル化物を含んでなり、そのゲル化物が反応液液面に浮かんだものであった。その結果を表1に示す。
【0026】
比較例2
実施例1の大きさのY字管反応装置を用いて、4.03Nの硫酸を絞り部径4mmに9.34L/min.及びSiO成分の含有量が275.7g/Lの珪酸ソーダ水溶液を絞り部径(d1)4.2mmに10.7L/min.で各々供給し、絞り部の流出口から合流部までの距離(R)と絞り部径(d1)の比を2.5、排出口径を30mm、排出時の流速0.47m/秒とした以外は、実施例1と同様の操作を行った。得られた反応生成物は、反応開始時よりゲル化物を含んでいた。その結果を表1に示す。
【0027】
比較例3
実施例3と同じ大きさのY字管反応装置を用いて、4.03Nの硫酸を絞り部径2.4mmに3.75L/min.及びSiO成分の含有量が275.7g/Lの珪酸ソーダ水溶液を絞り部径(d1)2.6mmに4.48L/min.で各々供給し、絞り部の流出口から合流部までの距離(R)と絞り部径(d1)の比を3.8、排出口径を14mm、排出時の流速を0.89m/秒とした以外は、実施例3と同様の操作を行った。得られた反応生成物は、反応開始時から白色のゲル化物を含んでいた。その結果を表1に示す。
【0028】
比較例4
実施例4において、硫酸を0.92L/min.珪酸ソーダ水溶液を1.02L/min.で各々供給し、排出口径9mmにして排出時の流速を0.51m/秒とした以外は、実施例3と同様の操作を行った。得られた反応生成物は、反応開始時から白色のゲル化物を含んでいた。その結果を表1に示す。
【0029】
【表1】

Figure 0004014882
【0030】
【発明の効果】
本発明の方法によれば、鉱酸と珪酸ソーダ溶液を接触させて得られたシリカゾルを特定の流速で取り出すことにより、高濃度であって均質なシリカゾルを簡便に生成することができる。また、本発明の方法により得られたシリカゾルは、土壌固化剤、水処理の凝集剤、紙のコーティング剤、鋳物の成形助剤、シリカゲル,合成石英等の原材料として使用することができる。
【0031】
【図面の簡単な説明】
【図1】本発明に用いる反応装置の代表的な1例を示す概要図である。
【図2】本発明の代表的なフロー図である。
【符号の説明】
1、1’:原料供給管
2:排出管
3:合流部
4、4’:絞り部
R:絞り部の流出口から合流部までの距離
d1、d1’:絞り部径
d2:排出口径
5、5’:原料貯槽
6、6’:ポンプ
7:シリカゾル貯槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for producing silica sol using a Y-shaped reactor. Specifically, in a method of obtaining a silica sol by supplying mineral acid and sodium silicate solution to a Y-shaped reactor and bringing them into contact with each other, the generation of a fine gelled product during the reaction product is prevented, and a homogeneous silica sol is efficiently produced. A method for producing a silica sol that can be produced is provided.
[0002]
[Prior art]
Conventionally, the silica sol produced industrially is a method of adding a sodium silicate solution to a stirring mineral acid, a method of producing from a sodium silicate aqueous solution using an ion exchange resin, a method of hydrolyzing an alkyl silicate with an acid or an alkali. Etc. have been manufactured.
[0003]
Among them, in order to easily produce silica sol, we used a Y-shaped reactor in which two raw material supply pipes joined together and connected to a discharge pipe at the joining part, and high concentration A method for efficiently producing a high-concentration silica sol by contacting a mineral acid and a sodium silicate solution at a flow rate of 10 m / sec or more has been proposed (Japanese Patent Laid-Open No. 61-227915). The purpose of the above method is to obtain a homogeneous silica gel from the high concentration silica sol thus obtained.
[0004]
In recent years, applications of silica sol include water treatment agents, paper making, and the like using a solution diluted to a concentration lower than the concentration used as a raw material for silica gel. In these applications, it is a homogeneous silica sol that is substantially free of gelled material and does not gel in a few minutes, and the sol has a viscosity of 6 to 30 mPa.s. A silica sol controlled to about s is desired. Therefore, in order to obtain a silica sol applied to these uses, a raw material having a lower mineral acid concentration and a lower SiO 2 content in the sodium silicate solution than that of the embodiment of JP-A No. 61-227915 is used.
[0005]
Therefore, for the purpose of obtaining a silica sol applied to the above-mentioned application, we use the Y-shaped reactor to produce a silica sol using a raw material having a low mineral acid concentration and a low SiO 2 content of sodium silicate solution. Tried. However, since the obtained silica sol partially contains a fine gelled product, it cannot be used as it is as a raw material for the above applications, and development of a method for producing a homogeneous silica sol substantially free of the gelated product is desired. It was.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method capable of efficiently producing a homogeneous silica sol substantially free from fine gelled products using a Y-shaped reactor.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have continually studied to solve the above problems. As a result, in the Y-shaped reactor, after the mineral acid and sodium silicate solution collide and mix, the reaction liquid fills the discharge pipe and flows out as a liquid flow, but if the flow rate at that time is slow, mixing is sufficient It was not carried out and the knowledge that it will be in the state which becomes easy to produce | generate a fine gelled material was acquired. As a result of further research based on this finding, the reaction product obtained by bringing the mineral acid and sodium silicate solution into contact with each other is allowed to flow out at a specific flow rate or higher so that the mineral acid and sodium silicate solution are sufficiently mixed. As a result, the inventors have found that a homogeneous silica sol can be produced without generation of a gelled product, and the present invention has been proposed. That is, the present invention comprises two joined material supply pipe, Ri in name in conjunction with one of the discharge pipe confluence portion, the diaphragm portion of the diaphragm portion diameter Each of the raw material supply pipe respectively d1 and d1 ' provided, equal distance R to the merging section from the outlet of the throttle portion, and the distance R can use the reactor 1-9 Baidea Ru Y-shaped aperture portion diameter d1 and d1 ', supplying each mineral acids and sodium silicate solution from the raw material supply pipe of the reactor, discharging the reaction product obtained by contacting the both components Te in the merging portion, a discharge pipe at a flow rate of 1.0 m / sec or more A method for producing a silica sol.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0009]
The Y-shaped reactor used in the present invention basically has a structure in which two raw material supply pipes are joined and connected to one discharge pipe at the joining part. FIG. 1 shows an example of a Y-shaped reactor used in the present invention. As shown in FIG. 1, this Y-shaped reactor is formed by joining raw material supply pipes 1, 1 ′ to which a mineral acid or sodium silicate solution is supplied, and connecting a discharge pipe 2 at a junction 3. . In addition, this Y-shaped reactor can use the raw material supply pipes 1 and 1 ′ provided with the throttle portions 4 and 4 ′ for adjusting the flow rate of the raw material.
[0010]
Examples of the mineral acid used in the present invention include sulfuric acid, hydrochloric acid, nitric acid and the like, and sulfuric acid is particularly preferably used. Further, in order to obtain a silica sol that is homogeneous and does not gel in a short time, the concentration of the mineral acid is preferably 2 to 7N, particularly 3 to 6N.
[0011]
The sodium silicate solution used in the present invention is a water-soluble sodium silicate represented by the general formula SiO 2 / Na 2 O, and the molar ratio of SiO 2 and Na 2 O (SiO 2 / Na 2 O) of the solution is 2.5. ~ 4.0 are used. In order to obtain a silica sol that is homogeneous and does not gel in a short time, the content of the SiO 2 component is preferably 100 to 300 g / L, particularly preferably 200 to 290 g / L.
[0012]
Using a mineral acid and sodium silicate solution having the above concentrations as raw materials, a silica sol was produced under the conditions described in Examples of JP-A No. 61-227915. As a result, a fine gelled product was produced in the obtained silica sol, When used as a raw material for water treatment agents, papermaking, etc., not only the amount of effective silica was reduced, but also a separate step for removing the gelled product was required. For this reason, various studies were carried out using a Y-shaped reactor to obtain a homogeneous silica sol with no gelled product. In the present invention, a mineral acid and a sodium silicate solution were brought into contact with each other. The reaction product obtained was discharged from the discharge pipe at a flow rate of 1.0 m / second or more and sufficiently mixed at the junction, thereby solving the problem of forming a fine gelled product.
[0013]
That is, the greatest feature of the present invention is that a reaction product obtained by bringing a mineral acid and a sodium silicate solution into contact with each other using a Y-shaped reactor as shown in FIG. As described above, preferably, the discharge pipe is allowed to flow out at a rate of 1.3 m / second or more. When the flow rate of the reaction product is less than 1.0 m / sec, generation of fine gelled product cannot be suppressed even if the flow rate of the raw material to be supplied is increased and mixing by collision is performed strongly. On the other hand, the upper limit of the flow rate at which the reaction product is allowed to flow out is not limited, but generally 20 m / second, and making it faster requires a lot of energy from the pump, and the effect is the same. I can't get it.
[0014]
In the present invention, the effect of obtaining a homogeneous silica sol is that, by using a Y-shaped reactor, mixing by colliding the mineral acid and sodium silicate solution and increasing the flow rate of the resulting reaction product. It is obtained by a synergistic effect with the mixing of the reaction system.
[0015]
In the present invention, the aspect in which the reaction product is allowed to flow out at a flow rate of 1.0 m / sec or more is not particularly limited, but specifically, from the total amount of liquid supplied from the throttle portions 4 and 4 ′. The raw material supply amount, the discharge port diameter, and the like may be determined so that the flow velocity in the discharge pipe is 1.0 m / second or more.
[0016]
In the present invention, the flow rates of the mineral acid and sodium silicate solution respectively supplied to the raw material supply pipe are not particularly limited, but the flow rates of the throttle portions are 5 m / second or more, preferably 7 m for both the mineral acid and sodium silicate solution. / Second or more, more preferably 10 m / second or more, since a uniform reaction can be performed at the junction 3. In this method, it is preferable that both components of the mineral acid and the sodium silicate solution have the above flow rates in order to obtain a homogeneous silica sol.
[0017]
In the present invention, in order to obtain a homogeneous silica sol, the distance R from the outlet of the throttle parts 4 and 4 ′ of the Y-shaped reactor to the junction part 3 is 1-9 of the throttle part diameters d1 and d1 ′. times (R / d1 or d1 '= 1 to 9) Ru der (provided that the distance from the outlet of the diaphragm unit 4 to the joining portion 3, the diaphragm portion 4' distance from the outlet leading to the merging portion 3 is equal to ).
[0018]
The material of the Y-shaped reactor used in the present invention may be any known material such as glass, metal, plastic, rubber, etc., as long as it has excellent chemical resistance such as mineral acid and sodium silicate solution. it can.
[0019]
In the present invention, if a process incorporating a Y-shaped reactor is specifically shown, a raw material storage tank 5 for supplying mineral acid and sodium silicate solution to the raw material supply pipes 1, 1 ′ as shown in FIG. The material transfer means such as 5 ′ and pumps 6 and 6 ′ are generally connected to the silica sol discharge pipe 2 and connected to a silica sol storage tank 7 for storing the obtained silica sol.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited to these Examples.
[0021]
Example 1
Using a Y-shaped reactor with a size of 80 × 80 mm, 4.16 N sulfuric acid was applied to a diameter of the throttle part of 4 mm and 9.2 L / min. And an aqueous solution of sodium silicate having a content of SiO 2 component of 271.4 g / L at a throttle part diameter (d1) of 4.2 mm of 11.34 L / min. The ratio of the distance (R) from the outlet of the throttle part to the converging part is 2.5, the ratio of the throttle part diameter (d1) is 2.5, the outlet diameter is 15 mm, and the flow rate during discharge is 1.9 m / sec. The reaction was allowed to proceed to obtain 205 L of a homogeneous silica sol without gelation.
[0022]
The SiO2 concentration in the silica sol was 14.9 g / 100 ml, and the pH was 1.39. The results are shown in Table 1.
[0023]
Example 2
Using sulfuric acid and sodium silicate aqueous solution having the same concentration as in Example 1, sulfuric acid was added at 9.5 L / min. The sodium silicate solution was 10.8 L / min. The same operation as in Example 1 was performed except that the discharge port diameter was 14 mm and the flow rate during discharge was 2.2 m / sec. The results are shown in Table 1.
[0024]
Example 3
Using a Y-shaped reactor having a size of 40 × 40 mm, 4.07 N sulfuric acid was added to the throttle part diameter of 2.4 mm and 3.09 L / min. And an aqueous solution of sodium silicate having a content of SiO 2 component of 265.8 g / L at a throttle part diameter (d1) of 2.6 mm, 3.73 L / min. The ratio of the distance (R) from the outlet of the throttle part to the converging part and the diameter of the throttle part (d1) is 3.8, the outlet diameter is 9 mm, and the discharge flow rate is 1.8 m / sec. The reaction was allowed to proceed to obtain 170 L of silica sol having no gelled product. The results are shown in Table 1.
[0025]
Example 4
4.24N sulfuric acid was added at a throttle diameter of 1.4 mm at 1.05 L / min. And an aqueous solution of sodium silicate having a content of SiO 2 component of 271.7 g / L, 1.2 L / min. Except that the ratio of the distance (R) from the outlet of the throttle part to the merging part and the diameter of the throttle part (d1) is 8.3, the outlet diameter is 6 mm, and the flow velocity during discharge is 1.3 m / sec. The same operation as in Example 3 was performed. The results are shown in Table 1.
Comparative Example 1
Using a Y-tube reactor of the same size as in Example 1, 4.12N sulfuric acid was applied at a throttle diameter of 4 mm at 10 L / min. And a SiO 2 component content of 270 g / L of sodium silicate aqueous solution at a squeeze part diameter (d1) of 4 mm at 11.5 L / min. Except that the ratio of the distance (R) from the outlet of the throttle part to the merging part and the diameter of the throttle part (d1) is 6.3, the outlet diameter is 30 mm, and the flow rate during discharge is 0.51 m / sec. The same operation as in Example 1 was performed. The obtained reaction product contained a white gelled product from the beginning of the reaction, and the gelled product floated on the reaction liquid surface. The results are shown in Table 1.
[0026]
Comparative Example 2
Using a Y-tube reactor having the same size as that of Example 1, 4.03N sulfuric acid was added to a throttle part diameter of 4 mm at 9.34 L / min. And a sodium silicate aqueous solution having a SiO 2 component content of 275.7 g / L at a throttle part diameter (d1) of 4.2 mm of 10.7 L / min. The ratio of the distance (R) from the outlet of the throttle part to the converging part is 2.5, the ratio of the throttle part diameter (d1) is 2.5, the discharge port diameter is 30 mm, and the discharge flow rate is 0.47 m / sec. The same operation as in Example 1 was performed. The obtained reaction product contained a gelled product from the start of the reaction. The results are shown in Table 1.
[0027]
Comparative Example 3
Using a Y-tube reactor of the same size as in Example 3, 4.03 N sulfuric acid was added to the throttle part diameter of 2.4 mm at 3.75 L / min. And a sodium silicate aqueous solution having a SiO 2 component content of 275.7 g / L and a squeezing part diameter (d1) of 2.6 mm of 4.48 L / min. The ratio of the distance (R) from the outlet of the throttle part to the converging part and the diameter of the throttle part (d1) was 3.8, the outlet diameter was 14 mm, and the flow rate during discharge was 0.89 m / sec. Except for the above, the same operation as in Example 3 was performed. The obtained reaction product contained a white gelled product from the start of the reaction. The results are shown in Table 1.
[0028]
Comparative Example 4
In Example 4, sulfuric acid was 0.92 L / min. Sodium silicate aqueous solution was added at 1.02 L / min. The same operation as in Example 3 was performed except that the discharge port diameter was 9 mm and the flow rate during discharge was 0.51 m / sec. The obtained reaction product contained a white gelled product from the start of the reaction. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0004014882
[0030]
【The invention's effect】
According to the method of the present invention, a silica sol obtained by bringing a mineral acid and a sodium silicate solution into contact with each other can be taken out at a specific flow rate, whereby a high-concentration and homogeneous silica sol can be easily produced. The silica sol obtained by the method of the present invention can be used as a raw material for soil solidifying agents, water treatment flocculants, paper coating agents, casting molding aids, silica gel, synthetic quartz and the like.
[0031]
[Brief description of the drawings]
FIG. 1 is a schematic view showing a typical example of a reaction apparatus used in the present invention.
FIG. 2 is a representative flow diagram of the present invention.
[Explanation of symbols]
1, 1 ': Raw material supply pipe 2: Discharge pipe 3: Junction part 4, 4': Restriction part R: Distance d1 from outlet of constriction part to confluence part, d1 ': Constriction part diameter d2: Discharge port diameter 5, 5 ': Raw material storage tank 6, 6': Pump 7: Silica sol storage tank

Claims (2)

2つの原料供給管が合流し、該合流部にて1つの排出管と連結してなり、それぞれの原料供給管には絞り部径が各々d1及びd1’の絞り部が設けられ、これら絞り部の流出口から合流部までの距離Rは等しく、かつ該距離Rは、絞り部径d1及びd1’の1〜9倍であるY字型の反応装置を使用し、該反応装置の原料供給管から鉱酸と珪酸ソーダ溶液を各々供給し、上記合流部にて両成分を接触させて得られた反応生成物を流速1.0m/秒以上で排出管から流出させることを特徴とするシリカゾルの製造方法。Two raw material supply pipe is joined, Ri in name in conjunction with one of the discharge pipe confluence unit, iris unit size in the respective material supply pipe is provided with aperture portions of respective d1 and d1 ', these stop equal distance R from the outlet parts to the joining portion, and the distance R can use the reactor 1-9 Baidea Ru Y-shaped aperture portion diameter d1 and d1 ', the raw material of the reaction apparatus mineral acid and sodium silicate solution from the feed pipe to supply respectively, and characterized in that the reaction product obtained by contacting the both components Te in the merging portion, to flow out from the discharge pipe at a flow rate of 1.0 m / sec or more A method for producing silica sol. 鉱酸が2〜7Nであって、珪酸ソーダ溶液中のSiO成分の含有量が100〜300g/Lであることを特徴とする請求項1記載のシリカゾルの製造方法。The method for producing a silica sol according to claim 1, wherein the mineral acid is 2 to 7 N and the content of SiO 2 component in the sodium silicate solution is 100 to 300 g / L.
JP2002021879A 2002-01-30 2002-01-30 Method for producing silica sol Expired - Fee Related JP4014882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002021879A JP4014882B2 (en) 2002-01-30 2002-01-30 Method for producing silica sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021879A JP4014882B2 (en) 2002-01-30 2002-01-30 Method for producing silica sol

Publications (2)

Publication Number Publication Date
JP2003221222A JP2003221222A (en) 2003-08-05
JP4014882B2 true JP4014882B2 (en) 2007-11-28

Family

ID=27745002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021879A Expired - Fee Related JP4014882B2 (en) 2002-01-30 2002-01-30 Method for producing silica sol

Country Status (1)

Country Link
JP (1) JP4014882B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194463A (en) * 2004-01-09 2005-07-21 Tokuyama Corp Method for preparing aqueous non-alkaline silicic acid solution for grouting chemical
JP5013683B2 (en) * 2004-06-24 2012-08-29 株式会社トクヤマ Method for producing surface-treated silica-based oxide, and method for producing surface-treated silica-based oxide slurry
CN101218179B (en) 2005-08-24 2010-12-08 株式会社德山 Method for treatment of wastewater containing fumed silica
CA2620058A1 (en) 2005-08-24 2007-03-01 Tokuyama Corporation Method of treating silicon powder-containing drainage water
JP5200238B2 (en) * 2006-07-20 2013-06-05 富士化学株式会社 Method for producing silica sol
FR2910459B1 (en) * 2006-12-22 2010-09-17 Rhodia Recherches & Tech NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES BY IMPLEMENTING A RAPID MIXER
JP4897527B2 (en) * 2007-03-23 2012-03-14 中国電力株式会社 Soil improvement method
KR20090024711A (en) * 2007-05-11 2009-03-09 가부시끼가이샤 도꾸야마 Processes for production of iron-silica coagulants for water treatment
JP6204695B2 (en) * 2013-05-15 2017-09-27 株式会社トクヤマ Method for producing metal oxide sol
JP6161966B2 (en) * 2013-06-11 2017-07-12 株式会社トクヤマ Mixer and method for producing metal oxide sol using the same
KR101927277B1 (en) 2014-01-14 2018-12-10 가부시끼가이샤 도꾸야마 Hydrophobized spherical poly (alkyl silsesquioxane) microparticles, external additive for toner, dry electrophotography toner, and method for manufacturing hydrophobized spherical poly (alkyl silsesquioxane) microparticles
JP2017071740A (en) * 2015-10-09 2017-04-13 信越化学工業株式会社 Manufacturing method of spherical polyorganosilsesquioxane particle
JP7284167B2 (en) 2018-07-03 2023-05-30 株式会社トクヤマ spherical polymethylsilsesquioxane particles
TW202408934A (en) * 2022-05-13 2024-03-01 日商多摩化學工業股份有限公司 Colloidal silica and production method therefor

Also Published As

Publication number Publication date
JP2003221222A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
JP4014882B2 (en) Method for producing silica sol
EP1260484B1 (en) A process for preparing a flocculant for water treatment
JP2738981B2 (en) Improved preparation method of low concentration polysilicate microgel
JP4808350B2 (en) Continuous production method of silica-based microgel
JP4593046B2 (en) Improved continuous process for preparing microgels
JP4535518B2 (en) An improved method for preparing low concentration polyaluminosilicate microgels
JP4493320B2 (en) Method for producing silica sol and silica sol
JP4410221B2 (en) Method and apparatus for producing water treatment flocculant
EP1833760B1 (en) High velocity, low pressure process for making silica gels and microgels
JP4537365B2 (en) Method and apparatus for producing water treatment flocculant
JPH08333112A (en) Production of silica sol or silica gel
JP4353983B2 (en) Water treatment flocculant manufacturing equipment
JP5200238B2 (en) Method for producing silica sol
JPH0575692B2 (en)
JP2005194463A (en) Method for preparing aqueous non-alkaline silicic acid solution for grouting chemical
CN214634223U (en) Device for eliminating bubbles generated in compounding process of polycarboxylate superplasticizer
CN1152822C (en) Improved method for preparing low-concentration polyaluminosilicate microgels
JP6161966B2 (en) Mixer and method for producing metal oxide sol using the same
JPH0139692Y2 (en)
JPH0345691A (en) Preparation of soil-stabilizing liquid
JPH0360729A (en) Production of fine particles
KR20020048303A (en) Improved Continuous Process for Preparing Microgels
JPH0241326A (en) Production of stable aqueous dispersion of fine polymer particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160921

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees