JPH11216478A - Flocculation treatment of water and inorganic flocculant - Google Patents

Flocculation treatment of water and inorganic flocculant

Info

Publication number
JPH11216478A
JPH11216478A JP1719598A JP1719598A JPH11216478A JP H11216478 A JPH11216478 A JP H11216478A JP 1719598 A JP1719598 A JP 1719598A JP 1719598 A JP1719598 A JP 1719598A JP H11216478 A JPH11216478 A JP H11216478A
Authority
JP
Japan
Prior art keywords
silica
water
iron
flocculant
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1719598A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Takeshi Otsu
健史 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP1719598A priority Critical patent/JPH11216478A/en
Publication of JPH11216478A publication Critical patent/JPH11216478A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flocculating method using silica and iron suitable for the flocculation treatment of city water in combination, which is attained in excellent flocculation, small in the injecting quantity of silica, small in the generation of sludge and short in the preparation time of a flocculant, and a silica-containing iron based flocculant. SOLUTION: The flocculation is performed by adding a polymerized silica with a ferric inorganic flocculant in an original water so as to be in a condition of the molar ratio of silica to iron of 0.5-2. And the silica-containing ferric based inorganic flocculant aq. solution containing the polymerized silica and the ferric inorganic fluocculant and having <5% silica acid concentration in the aq. solution and the molar ratio of silica to iron of 0.5-2 is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種用排水の凝集
処理方法および各種用排水の凝集処理に使用する凝集剤
に関し、特に上水処理に好適な新規な水の凝集処理方法
および無機凝集剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coagulating various kinds of wastewater and a coagulant used for coagulating various kinds of wastewater, and more particularly to a novel method of coagulating water suitable for water treatment and an inorganic coagulant. It is about.

【0002】[0002]

【従来の技術】従来、各種用排水の懸濁質、溶存有機
物、リン酸イオンを除去するために広く水の凝集処理が
行われている。これらの水の凝集処理に於いては、凝集
剤として、硫酸アルミニウム、ポリ塩化アルミニウム、
硫酸第二鉄、ポリ硫酸第二鉄、塩化第二鉄などのアルミ
ニウム系もしくは鉄系の無機金属塩凝集剤が利用され
る。上水処理では従来鉄系凝集剤の使用は行われておら
ず、アルミニウム系凝集剤だけが使用されている。これ
らの無機凝集剤は、単独使用では十分大きなブロックが
形成されないため、凝集沈殿工程、砂ろ過工程の固液分
離速度が小さいという欠点がある。また凝集分離工程か
ら排出される汚泥の沈降濃縮脱水性が悪いという欠点も
あった。このため従来より、排水処理分野では各種高分
子凝集剤がフロック形成を促進するために多用されてい
るが、上水処理には有機高分子凝集剤の安全性に心配が
あるため我が国では使用が認可されていない。
2. Description of the Related Art Conventionally, agglomeration of water has been widely performed to remove suspended solids, dissolved organic substances, and phosphate ions from various kinds of wastewater. In these water coagulation treatments, aluminum sulfate, polyaluminum chloride,
Aluminum-based or iron-based inorganic metal salt coagulants such as ferric sulfate, ferric sulfate and ferric chloride are used. Conventionally, iron-based coagulants have not been used in water treatment, and only aluminum-based coagulants have been used. Since these inorganic flocculants do not form a sufficiently large block when used alone, they have the disadvantage that the solid-liquid separation speed in the flocculation-sedimentation step and the sand filtration step is low. There is also a disadvantage that the sludge discharged from the coagulation separation step has poor sedimentation, concentration, and dewatering properties. Therefore, in the field of wastewater treatment, various polymer flocculants have been widely used to promote floc formation.However, in water treatment, there are concerns about the safety of organic polymer flocculants, so they are not used in Japan. Not authorized.

【0003】また、上水処理の原水の富栄養化が進みミ
クロキスチスなどの藻類が多量に含まれる原水の場合、
PAC又は硫酸バンドでは極めて沈降性の悪いフロック
しか形成されず、フロックが浮上してしまうこともあ
り、藻類の効果的除去ができなくなるという問題点もあ
った。さらに、上水処理分野では上水処理水すなわち飲
料水中に残留するアルミニウムがアルツハイマ症の原因
になる疑いが出てきており、アルミニウム残留量が少な
い非アルミニウム系上水用凝集剤および凝集処理方法が
望まれている。上水処理分野では安全性の高い凝集助剤
として、昭和30年代に米国のBaylis氏が見出し
た活性シリカの使用が検討されたが、活性シリカ製造時
のゲル化トラブルが頻発し、安定して活性シリカを製造
することが非常に難しいため我が国では実用化されなか
った。
[0003] In addition, in the case of raw water containing a large amount of algae such as microcystis due to the progress of eutrophication of the raw water in water treatment,
In the PAC or sulfate band, only flocks having extremely poor sedimentation are formed, and the flocs may float, and there is a problem that the algae cannot be effectively removed. Furthermore, in the field of water treatment, it has been suspected that aluminum remaining in the treated water, that is, drinking water, causes Alzheimer's disease. Is desired. In the water treatment field, the use of activated silica discovered by Baylis of the United States in the 1950s as a highly safe coagulant was considered, but gelation troubles during the production of activated silica frequently occurred, and Since it is very difficult to produce activated silica, it has not been put to practical use in Japan.

【0004】また、Baylis法によって製造される
活性シリカは、さほど凝集フロック形成効果が高くない
というマイナス面もあった。尚、Baylis法は「水
ガラスを水で希釈して珪酸濃度1.5%の水溶液とし、
これに硫酸を加えてpH8.5に調整し、室温において
2時間撹拌し珪酸モノマーを重合させ重合珪酸すなわち
活性シリカを得る」という方法である。しかし最近、活
性シリカを再評価しようとする動きが出ており、例えば
特公平4−75796号「水処理方法および水処理用凝
集剤」には、「珪酸モノマーの極限粘度の約2倍以上の
極限粘度を有する重合珪酸と、水中で水酸化物を形成し
うる金属の可溶性塩を、該金属に対する珪素のモル比が
2以上となる比率で処理対象水中に注入攪拌する」とい
う重合珪酸を利用する凝集処理方法が開示されている。
この発明の骨子の一つは、珪素/金属元素のモル比が2
以上になるように注入することにある。
[0004] In addition, the active silica produced by the Baylis method has a disadvantage that the effect of forming flocculated flocs is not so high. In addition, the Baylis method is that "water glass is diluted with water to form an aqueous solution having a silicic acid concentration of 1.5%,
Sulfuric acid is added thereto to adjust the pH to 8.5, and the mixture is stirred at room temperature for 2 hours to polymerize the silicic acid monomer to obtain polymerized silicic acid, that is, activated silica. " However, recently, there has been a movement to re-evaluate activated silica. For example, Japanese Patent Publication No. 4-75796, "Water Treatment Method and Flocculant for Water Treatment" includes "water treatment method and coagulant for water treatment," Polymeric silicic acid having an intrinsic viscosity and a soluble salt of a metal capable of forming a hydroxide in water are injected into the water to be treated at a ratio such that the molar ratio of silicon to the metal is 2 or more. A coagulation treatment method is disclosed.
One of the features of the present invention is that the silicon / metal element molar ratio is 2
It is to inject so that it becomes above.

【0005】しかし、本発明者がこの技術を詳細に検討
したところ、以下に示す各種の問題点が認められた。 珪素/金属元素のモル比が2以上に設定しても良好な
凝集が起きず、むしろ凝集が悪化することがある。 珪素/金属イオンのモル比が2以上と大きいため、必
然的にシリカの注入率がかなり多量になり薬注コストが
高くなる。 シリカ注入率が多いので、析出したシリカに起因した
汚泥生成量が増加する。 重合シリカ凝集剤の製造に2時間以上と長時間が必要
である。 極限粘度の測定には熟練者でも1時間以上かかるの
で、極限粘度を測定しながら重合時間を制御するという
方法は、工業規模の製造には実際上適用できない。 Si/Feモル比が2以上なので凝集剤水溶液保存中
にシリカのゲル化が起き易く凝集剤の保存性が悪い(シ
リカのゲル化はシリカ濃度が高いほど起きやすい)。
However, when the present inventor studied this technique in detail, the following various problems were found. Even when the molar ratio of silicon / metal element is set to 2 or more, good aggregation does not occur, but rather aggregation may be deteriorated. Since the molar ratio of silicon / metal ions is as large as 2 or more, the injection rate of silica is inevitably considerably increased, and the cost of chemical injection is increased. Since the silica injection rate is high, the amount of sludge generated due to precipitated silica increases. Production of the polymerized silica flocculant requires a long time of 2 hours or more. Since the measurement of the intrinsic viscosity takes one hour or more even for an expert, the method of controlling the polymerization time while measuring the intrinsic viscosity is not practically applicable to industrial-scale production. Since the Si / Fe molar ratio is 2 or more, gelation of silica is likely to occur during storage of the aqueous flocculant solution, and the preservability of the flocculant is poor (gelation of silica is more likely to occur as the silica concentration is higher).

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術の
欠点を解決したシリカと鉄を併用する凝集処理方法およ
びシリカ含有鉄系凝集剤を提供しようとするものであ
り、特に上水の凝集処理に適した凝集剤と凝集処理方法
を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a coagulation treatment method using silica and iron in combination, which solves the disadvantages of the prior art, and a silica-containing iron-based coagulant. An object of the present invention is to provide a flocculant and a flocculation treatment method suitable for the treatment.

【0007】[0007]

【課題を解決するための手段】本発明者は、処理対象原
水を凝集処理する場合、従来知られていなかったSi/
Feモル比の条件で重合シリカと第2鉄イオンを原水に
添加すると極めて効果的な凝集処理が行えることを見出
し、それに基づいて本発明を完成させた。すなわち、本
発明は、下記の手段により前記の課題を解決した。 (1)重合シリカを第2鉄無機凝集剤とともに、珪素/
鉄のモル比が0.5〜2の条件になるように原水に添加
して凝集処理することを特徴とする水の凝集処理方法。 (2)重合シリカと第2鉄無機凝集剤とを含有し、水溶
液中の珪酸濃度が5%未満であり、珪素/鉄のモル比が
0.5〜2であるシリカ含有第2鉄系無機凝集剤水溶
液。
SUMMARY OF THE INVENTION The present inventor has proposed a method of coagulating raw water to be treated, which has not been known before.
It has been found that when polymerized silica and ferric ion are added to raw water under the condition of the Fe molar ratio, extremely effective coagulation treatment can be performed, and the present invention has been completed based on this. That is, the present invention has solved the above-mentioned problems by the following means. (1) Polymerized silica is mixed with ferric inorganic coagulant together with silicon /
A method of coagulating water, wherein iron is added to raw water and coagulated so that the molar ratio of iron is 0.5 to 2. (2) A silica-containing ferric inorganic material containing polymerized silica and a ferric inorganic coagulant, wherein the concentration of silicic acid in the aqueous solution is less than 5% and the molar ratio of silicon / iron is 0.5 to 2. Flocculant aqueous solution.

【0008】[0008]

【発明の実施の形態】本発明の無機凝集剤水溶液の製造
を図面を用いて具体的に説明する。その製造工程例を図
1にまとめて示した。図1において、シリカ濃度約30
%の水ガラス原液に水を添加し、珪酸濃度5〜11%に
希釈した珪酸ソーダ水溶液1に硫酸又は塩酸のような酸
2を添加して撹拌槽3で撹拌し、所定のpH範囲(3〜
4.5)の酸性珪酸水溶液4を作る。この後、酸性珪酸
水溶液4の粘度を連続的又は経時的に測定し、回転粘度
が10mPa・s以上に上昇した時点で、所定量の塩化
第2鉄、硫酸第2鉄、ポリ硫酸第2鉄のいずれかの鉄系
凝集剤を固体又は水溶液の状態で添加し、その添加にお
いて珪素/鉄のモル比が0.5〜2になるようにする
と、本発明の凝集剤が製造できる。なお、前記の回転粘
度の上昇は、撹拌槽3内の珪酸濃度およびpHが高いほ
ど短時間で重合が進み粘度が上昇する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production of an aqueous solution of an inorganic flocculant of the present invention will be specifically described with reference to the drawings. An example of the manufacturing process is shown in FIG. In FIG. 1, the silica concentration is about 30.
% Water glass stock solution, water 2 is added to a sodium silicate aqueous solution 1 diluted to a silicic acid concentration of 5 to 11%, and an acid 2 such as sulfuric acid or hydrochloric acid is added. ~
The acidic silicic acid aqueous solution 4 of 4.5) is prepared. Thereafter, the viscosity of the acidic silicic acid aqueous solution 4 is measured continuously or over time, and when the rotational viscosity increases to 10 mPa · s or more, a predetermined amount of ferric chloride, ferric sulfate, and ferric polysulfate are added. Is added in the form of a solid or aqueous solution, and the molar ratio of silicon / iron is adjusted to 0.5 to 2 in the addition, whereby the coagulant of the present invention can be produced. The increase in the rotational viscosity is such that the higher the concentration of silicic acid and the higher the pH in the stirring tank 3, the shorter the polymerization proceeds and the higher the viscosity.

【0009】以下、上記でいう「回転粘度」は、リオン
株式会社製品:ビスコテスタVT−03型回転粘度計で
測定した水温20〜25℃における粘度と定義する。本
回転粘度計は、筒型ローターを試料液に入れて一定速度
で回転させ、ローターに生じた粘性抵抗を測定するもの
である。測定時間は3分程度と極めて短時間に行える簡
便な粘度測定法である。
Hereinafter, the "rotational viscosity" as defined above is defined as a viscosity at a water temperature of 20 to 25 ° C. measured by a Viscometer VT-03 type viscometer manufactured by Rion Corporation. This rotational viscometer measures the viscous resistance generated in a rotor by rotating a cylindrical rotor at a constant speed in a sample liquid. This is a simple viscosity measurement method that can be performed in a very short time of about 3 minutes.

【0010】重合シリカの原料としては水ガラス溶液が
好ましい。珪酸ソーダと混合する酸は、硫酸、塩酸が好
ましい。硝酸は添加する原水に富栄養化原因物質である
硝酸性窒素を原水に添加してしまうため、あまり好まし
くない。本発明において攪拌槽3の珪酸濃度が6%未満
の場合は、水ガラス水溶液に酸を添加しても問題無い
が、珪酸濃度が6%以上の場合は、pH1以下の強酸性
水に対し珪酸ソーダを添加することが重要である。珪酸
濃度6%以上の珪酸ソーダ水溶液に酸を添加すると珪酸
がアルカリ性領域を通過するので珪酸のゲル化トラブル
を引き起こしやすい。またpHが1以上の酸性水に珪酸
ソーダを添加すると、添加後のpHが高くなりゲル化ト
ラブルを引き起こす危険が大きい。
As a raw material of the polymerized silica, a water glass solution is preferable. The acid mixed with sodium silicate is preferably sulfuric acid or hydrochloric acid. Nitric acid is not preferred because it adds nitric nitrogen, which is a substance causing eutrophication, to the raw water to be added. In the present invention, when the silicic acid concentration of the stirring tank 3 is less than 6%, there is no problem even if an acid is added to the aqueous solution of water glass. It is important to add soda. When an acid is added to an aqueous solution of sodium silicate having a silicic acid concentration of 6% or more, the silicic acid passes through the alkaline region, and thus a gelation trouble of the silicic acid is easily caused. Further, when sodium silicate is added to acidic water having a pH of 1 or more, the pH after the addition increases, and there is a great risk of causing gelling trouble.

【0011】また、塩化第2鉄などの第2鉄塩と重合シ
リカを混合した時点でのシリカ濃度の設定は極めて重要
であり、珪酸濃度を2〜5%に設定すること、および珪
素/鉄のモル比が0.5〜2を満足するようにすること
が重要である。前記の場合にシリカ濃度が2%未満では
重合シリカの製造に長時間が必要てあり、またシリカ濃
度が5%以上ではゲル化しやすく保存性が悪い。また第
2鉄塩添加後の液のpHを1〜1.5、最も好ましくは
pH1〜1.2に設定することが、凝集剤のゲル化時間
を長くし、保存性を高めるためで重要である。
It is very important to set the silica concentration at the time of mixing the ferric salt such as ferric chloride and the polymerized silica, and it is important to set the silicic acid concentration to 2 to 5%, It is important that the molar ratio of satisfies 0.5 to 2. In the above case, if the silica concentration is less than 2%, it takes a long time to produce the polymerized silica, and if the silica concentration is 5% or more, gelation tends to occur and the storage stability is poor. Further, it is important to set the pH of the solution after the addition of the ferric salt to 1 to 1.5, most preferably to pH 1 to 1.2, in order to increase the gelling time of the flocculant and to improve the storage stability. is there.

【0012】このように条件設定することによって凝集
能力が高く、長期保存性に優れたシリカ・鉄複合凝集剤
が製造され、凝集処理を行う対象の原水に本凝集剤を注
入すると、凝集撹拌槽で速やかに非常に大きなフロック
が形成され、沈殿槽などで高速度で固液分離することが
できる。本発明の水の凝集処理方法では、重合シリカと
鉄系凝集剤を混合したシリカ鉄複合凝集剤を原水に添加
する代わりに、重合シリカと鉄系凝集剤を別々に、Si
/Feモル比が0.5〜2になる条件で原水に注入する
ことによっても行うことができる。
By setting the conditions as described above, a silica-iron composite flocculant having high flocculation ability and excellent long-term storage properties is produced, and when the flocculant is injected into raw water to be subjected to flocculation treatment, a flocculation stirring tank is formed. , A very large floc is quickly formed, and solid-liquid separation can be performed at a high speed in a sedimentation tank or the like. In the water coagulation treatment method of the present invention, instead of adding silica-iron composite coagulant obtained by mixing polymerized silica and iron-based coagulant to raw water, polymerized silica and iron-based coagulant are separately
It can also be performed by injecting into raw water under the condition that the / Fe molar ratio becomes 0.5 to 2.

【0013】以上の方法によって次の重要効果が得られ
る。 活性シリカ製造中に珪酸のゲル化トラブルが発生しな
い。 珪酸の重合時間がゼロ〜1時間で良く、短時間で重合
シリカ・鉄複合凝集剤を製造できる。 製造した凝集剤の凝集効果が大きく、かつゲル化する
ことなく長期保存ができる。 シリカの注入率が従来よりも少なくできるので、汚泥
発生量が少ない。薬注コストも安価である。
The following important effects can be obtained by the above method. No gelation trouble of silicic acid occurs during production of activated silica. The polymerization time of the silicic acid may be zero to one hour, and the polymerized silica / iron composite flocculant can be produced in a short time. The produced flocculant has a large flocculating effect and can be stored for a long time without gelation. Since the injection rate of silica can be made smaller than before, the amount of generated sludge is small. The chemical injection cost is also low.

【0014】[0014]

【実施例】以下実施例により本発明を具体的に説明す
る。ただし、本発明はこれらの実施例のみに限定される
ものではない。
The present invention will be described in detail with reference to the following examples. However, the present invention is not limited to only these examples.

【0015】実施例1 塩化第2鉄と重合シリカを併用する場合のシリカの所要
重合度を調べた。すなわち珪酸水溶液の重合時間を変化
させ、回転粘度と凝集効果の関係を調べたところ、回転
粘度が数mPa・sではほとんど凝集フロック形成促進
効果がなく、10mPa・s以上になると非常に優れた
凝集フロック形成効果を示すことを見出した。また回転
粘度が300mPa・sを超えるとゲル化直前状態にな
るゲル化危険領域であることが見出された。図2に各種
珪酸濃度におけるpH4一定条件での重合時間と珪酸水
溶液の粘度の関係を測定した結果を示す。グラフの縦軸
の粘度はリオン社のビスコテスター回転粘度計による回
転粘度を示す。
Example 1 The required degree of polymerization of silica when ferric chloride and polymerized silica were used in combination was examined. That is, the relationship between the rotational viscosity and the aggregation effect was examined by changing the polymerization time of the aqueous solution of silicic acid. It has been found that a floc-forming effect is exhibited. In addition, it was found that when the rotational viscosity exceeded 300 mPa · s, the gelation was in a gelation-prone region immediately before gelation. FIG. 2 shows the results of measuring the relationship between the polymerization time and the viscosity of the aqueous solution of silicic acid at a constant pH of 4 at various silicic acid concentrations. The viscosities on the vertical axis of the graph indicate rotational viscosities measured by a viscometer rotational viscometer manufactured by Rion.

【0016】図2から珪酸水溶液の珪酸濃度が5%未満
では回転粘度が10mPa・s以上に達する時間が2時
間以上と長く、珪酸を重合させる重合槽が不可欠である
のに対し、珪酸濃度が6%以上では数分間〜1時間で回
転粘度が10mPa・sに達するので、強酸性水に水ガ
ラスを混合し0〜1時間撹拌するだけで効果的な凝集フ
ロック形成効果を発揮する重合シリカが製造されること
が判明した。また珪酸濃度が11%を超えると強酸性水
と水ガラスを混合した時点でほぼ瞬間的にゲル化が起き
るため、この条件は採用できないことが判った。
FIG. 2 shows that when the silicic acid concentration of the aqueous solution of silicic acid is less than 5%, the time required for the rotational viscosity to reach 10 mPa · s or more is as long as 2 hours or more, and a polymerization tank for polymerizing silicic acid is indispensable. At 6% or more, the rotational viscosity reaches 10 mPa · s in a few minutes to 1 hour. Therefore, a polymerized silica exhibiting an effective aggregation floc forming effect only by mixing water glass with strongly acidic water and stirring for 0 to 1 hour is used. It was found to be manufactured. If the concentration of silicic acid exceeds 11%, gelling occurs almost instantaneously when strongly acidic water and water glass are mixed, so that this condition cannot be adopted.

【0017】実施例2 珪酸水溶液の珪酸濃度が10%一定で、pHを2〜5に
変えたときの重合時間と回転粘度が10mPa・sに達
する時間の関係を第1表に示す。pH4〜4.5の条件
では2分以下で十分であり、強酸性水と水ガラスを本発
明条件で1〜2分間混合するだけで凝集効果の高い活性
シリカが製造できる。pH2では228分と長時間であ
り、大容量の重合槽が必要になるので合理的でなく、p
Hが5では鉱酸と水ガラスを混合直後にゲル化が起きる
ので適用できない。従って好適pHは3〜4.5である
ことが認められた。
Example 2 Table 1 shows the relationship between the polymerization time and the time required for the rotational viscosity to reach 10 mPa · s when the pH of the aqueous solution of silicic acid was kept constant at 10% and the pH was changed from 2 to 5. In the condition of pH 4 to 4.5, 2 minutes or less is sufficient, and active silica having a high aggregation effect can be produced only by mixing the strongly acidic water and water glass for 1 to 2 minutes under the conditions of the present invention. At pH 2, it is a long time of 228 minutes, which is not reasonable because a large-capacity polymerization tank is required.
If H is 5, gelling occurs immediately after mixing the mineral acid and water glass, so this is not applicable. Therefore, the preferred pH was found to be between 3 and 4.5.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例3 水道水985ccに濃硫酸を15cc添加しpH0.3
の強酸性水を作った。次にこれに3号水ガラスを水で約
3倍に希釈し、珪酸濃度10%に調整した液を1kg加
え混合した。この液のpHは1.6であった。次に40
%苛性ソーダ水溶液を加え、珪酸濃度5%、pH3.8
に調整し撹拌した。この液の回転粘度が温度25℃にお
いて12mPa・sになった時点でpHを1に下げ重合
を停止させ凝集効果のの高い重合シリカ液を得た。
Example 3 15 cc of concentrated sulfuric acid was added to 985 cc of tap water, and pH 0.3 was added.
Made strong acid water. Then, No. 3 water glass was diluted about 3 times with water, and 1 kg of a solution adjusted to a silicic acid concentration of 10% was added thereto and mixed. The pH of this solution was 1.6. Then 40
% Caustic soda aqueous solution, silicic acid concentration 5%, pH 3.8
And stirred. When the rotational viscosity of the liquid reached 12 mPa · s at a temperature of 25 ° C., the pH was lowered to 1 to stop the polymerization, and a polymerized silica liquid having a high aggregation effect was obtained.

【0020】実施例4 シリカ・鉄複合凝集剤の製造例 水道水985ccに濃硫酸を15cc添加しpH0.3
の強酸性水を作った。次に3号水ガラスを水で約3倍に
希釈し、珪酸濃度10%に調整した液を1kg加え混合
した。この液のpHは1.6であった。次に40%苛性
ソーダ水溶液を加え、珪酸濃度5%、pH3.8に調整
し撹拌した。この液の回転粘度が温度25℃において1
2mPa・sになった時点で20%塩化第2鉄水溶液を
添加して混合しSi/Feモル比0.5〜2のシリカ鉄
複合凝集剤の製造した。
Example 4 Production Example of Silica / Iron Composite Coagulant 15 cc of concentrated sulfuric acid was added to 985 cc of tap water to obtain a pH of 0.3.
Made strong acid water. Next, No. 3 water glass was diluted about 3 times with water, and 1 kg of a solution adjusted to a silicic acid concentration of 10% was added and mixed. The pH of this solution was 1.6. Next, a 40% aqueous solution of caustic soda was added, the concentration of silicic acid was adjusted to 5%, and the pH was adjusted to 3.8, followed by stirring. The rotational viscosity of this liquid is 1 at a temperature of 25 ° C.
When the pressure reached 2 mPa · s, a 20% aqueous ferric chloride solution was added and mixed to produce a silica-iron composite flocculant having a Si / Fe molar ratio of 0.5 to 2.

【0021】実施例5 凝集処理試験 実施例3において製造した重合シリカ(SiO2 濃度5
%、pH1、回転粘度12mPa・s)の凝集効果を調
べるため凝集試験をジャーテストによって行った。ジャ
ーテストは150rpm2分、30rpm5分で行い撹
拌停止後5分後の上澄水濁度を測定した。処理対象原水
は水道水にカオリン粘土を添加し濁度100度、Mアル
カリ度55mg/リットル、pH7.3に調整したもの
を用いた。無機凝集剤には塩化第2鉄を用い、塩化第2
鉄として30mg/リットル注入した。この結果を第2
表に示した。
Example 5 Coagulation treatment test Polymerized silica produced in Example 3 (SiO 2 concentration 5
%, PH 1, and rotational viscosity of 12 mPa · s), a coagulation test was performed by a jar test. The jar test was conducted at 150 rpm for 2 minutes and 30 rpm for 5 minutes, and the supernatant water turbidity was measured 5 minutes after the stirring was stopped. The raw water to be treated was prepared by adding kaolin clay to tap water and adjusting the turbidity to 100 degrees, the M alkalinity to 55 mg / liter, and the pH to 7.3. Ferric chloride is used as the inorganic flocculant.
30 mg / liter was injected as iron. This result is
It is shown in the table.

【0022】[0022]

【表2】 [Table 2]

【0023】活性シリカ注入率は珪酸としての注入率で
ある。またフロック大きさ等級は次の基準で表したもの
である。特A:ペレット形成、A:5mm以上、B:2
〜3mm、C:1〜2mm、D:1mm未満。第2表か
ら明らかなように、Si/Feモル比が0.5〜2.7
の条件で極めて沈降性の大きいペレット状フロックが形
成され、これ以上のモル比では逆にフロック形成効果が
悪化することが認められる。従来は重合シリカ注入率は
多くなるほど良好なフロックが形成されると考えられて
おり、適正範囲が存在することは知られていなかった。
Si/Feのモル比が大きくなるほど析出シリカに起因
して汚泥生成量が増加すること、凝集剤水溶液の保存性
が悪化するので、汚泥生成量を少なくし、ペレットが形
成され、かつ保存性が良好な3条件を考慮すると適正S
i/Feモル比は0.5〜2であるといえる。
The active silica injection rate is an injection rate as silicic acid. The floc size class is represented by the following criteria. Special A: Pellet formation, A: 5 mm or more, B: 2
33 mm, C: 1-2 mm, D: less than 1 mm. As is apparent from Table 2, the molar ratio of Si / Fe is 0.5 to 2.7.
Under the conditions (1) and (2), a pellet-like floc having extremely large sedimentation is formed, and at a molar ratio higher than this, the floc-forming effect deteriorates. Hitherto, it has been considered that a higher flocculation rate of polymerized silica forms a better floc, and it has not been known that an appropriate range exists.
As the molar ratio of Si / Fe increases, the amount of sludge generated due to precipitated silica increases, and the preservability of the flocculant aqueous solution deteriorates. Therefore, the amount of sludge generated is reduced, pellets are formed, and the preservability is reduced. Considering three good conditions, appropriate S
It can be said that the i / Fe molar ratio is 0.5 to 2.

【0024】[0024]

【発明の効果】本発明によれば、次のような顕著な効果
が得られる。 凝集効果が大きい重合シリカを数分程度という極めて
短時間で連続的に製造でき、重合シリカ製造中の珪酸の
ゲル化トラブルを確実に防げる。 確実に沈降性が極めて良好なフロックが形成されるS
i/Feモル比を見出したので、凝集分離工程を大幅に
合理化できる。 Si/Feモル比が従来よりも小さいので、シリカに
起因する薬注コスト、汚泥発生量を低減でき、凝集剤の
保存性が良い。 上水処理においてアルミニウム系凝集剤を使用する必
要がなくなり、飲料水中の残留アルミニウム量を低減で
きる。
According to the present invention, the following remarkable effects can be obtained. Polymerized silica having a large agglomeration effect can be continuously produced in a very short time of about several minutes, and the gelation trouble of silicic acid during the production of the polymerized silica can be surely prevented. S which ensures formation of flocks with extremely good sedimentation
Since the i / Fe molar ratio has been found, the aggregation / separation step can be greatly rationalized. Since the Si / Fe molar ratio is smaller than before, the chemical injection cost and the amount of sludge generated due to silica can be reduced, and the preservability of the flocculant is good. It is not necessary to use an aluminum-based coagulant in the water treatment, and the amount of residual aluminum in drinking water can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の無機凝集剤の製造工程の1例の概要図
を示す。
FIG. 1 shows a schematic view of an example of a production process of an inorganic flocculant of the present invention.

【図2】各種珪酸濃度におけるpH4一定の条件での珪
酸の重合時間と珪酸水溶液の粘度との関係を測定したグ
ラフを示す。
FIG. 2 is a graph showing the relationship between the polymerization time of silicic acid and the viscosity of an aqueous solution of silicic acid at a constant pH of 4 at various silicic acid concentrations.

【符号の説明】[Explanation of symbols]

1 珪酸ソーダ水溶液 2 酸 3 攪拌槽 4 酸性珪酸水溶液 5 pH計 6 回転粘度測定計器 7 第二鉄塩 8 シリカ鉄複合凝集剤 DESCRIPTION OF SYMBOLS 1 Sodium silicate aqueous solution 2 Acid 3 Stirring tank 4 Acidic silicic acid aqueous solution 5 pH meter 6 Rotational viscosity measuring instrument 7 Ferric salt 8 Silica iron composite flocculant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重合シリカを第2鉄無機凝集剤ととも
に、珪素/鉄のモル比が0.5〜2の条件になるように
原水に添加して凝集処理することを特徴とする水の凝集
処理方法。
1. Coagulation of water by adding a polymerized silica together with a ferric inorganic coagulant to raw water so that the molar ratio of silicon / iron becomes 0.5 to 2 to perform coagulation treatment. Processing method.
【請求項2】 重合シリカと第2鉄無機凝集剤とを含有
し、水溶液中の珪酸濃度が5%未満であり、珪素/鉄の
モル比が0.5〜2であるシリカ含有第2鉄系無機凝集
剤水溶液。
2. Silica-containing ferric iron containing polymerized silica and a ferric inorganic coagulant, wherein the concentration of silicic acid in the aqueous solution is less than 5% and the molar ratio of silicon / iron is 0.5 to 2. Aqueous inorganic flocculant aqueous solution.
JP1719598A 1998-01-29 1998-01-29 Flocculation treatment of water and inorganic flocculant Pending JPH11216478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1719598A JPH11216478A (en) 1998-01-29 1998-01-29 Flocculation treatment of water and inorganic flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1719598A JPH11216478A (en) 1998-01-29 1998-01-29 Flocculation treatment of water and inorganic flocculant

Publications (1)

Publication Number Publication Date
JPH11216478A true JPH11216478A (en) 1999-08-10

Family

ID=11937163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1719598A Pending JPH11216478A (en) 1998-01-29 1998-01-29 Flocculation treatment of water and inorganic flocculant

Country Status (1)

Country Link
JP (1) JPH11216478A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013799A (en) * 2003-06-24 2005-01-20 Ishigaki Co Ltd Method for flocculating suspended matter
KR100612815B1 (en) 2003-11-06 2006-08-21 산요덴키가부시키가이샤 Coagulant and preparation apparatus and preparation method thereof, and coagulation process apparatus and method for fluid
JP2008012417A (en) * 2006-07-05 2008-01-24 Suido Kiko Kaisha Ltd Flocculating agent for water treatment
US7468137B2 (en) 2005-06-17 2008-12-23 Fuji Xerox Co., Ltd. Wastewater treatment process
JP2011121788A (en) * 2009-12-08 2011-06-23 Sanko Kk Iron fulvate-containing composition, method for producing it, fertilizer and seawater damage inhibitor
CN104445554A (en) * 2014-11-28 2015-03-25 江西省水利科学研究院 Modified red soil for removing cyanobacteria and preparation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013799A (en) * 2003-06-24 2005-01-20 Ishigaki Co Ltd Method for flocculating suspended matter
KR100612815B1 (en) 2003-11-06 2006-08-21 산요덴키가부시키가이샤 Coagulant and preparation apparatus and preparation method thereof, and coagulation process apparatus and method for fluid
US7468137B2 (en) 2005-06-17 2008-12-23 Fuji Xerox Co., Ltd. Wastewater treatment process
JP2008012417A (en) * 2006-07-05 2008-01-24 Suido Kiko Kaisha Ltd Flocculating agent for water treatment
JP2011121788A (en) * 2009-12-08 2011-06-23 Sanko Kk Iron fulvate-containing composition, method for producing it, fertilizer and seawater damage inhibitor
CN104445554A (en) * 2014-11-28 2015-03-25 江西省水利科学研究院 Modified red soil for removing cyanobacteria and preparation method

Similar Documents

Publication Publication Date Title
JPH0475796B2 (en)
JP4301582B2 (en) Wastewater treatment by the coagulation sedimentation method
KR100497992B1 (en) Manufacturing method of waste water cohesive agents and manufactured goods thereof
CA2564853C (en) Method for preparing acidic solutions of activated silica and polyvalent metal salt for water treatment
JPH11216478A (en) Flocculation treatment of water and inorganic flocculant
JP4111880B2 (en) Aggregation precipitation apparatus and control method thereof
JP3700892B2 (en) Method for producing flocculant
JPH1157740A (en) Flocculating treatment of water
Arnold-Smith et al. Polyaluminium silicate sulphate—a new coagulant for potable and wastewater treatment
AU2005202813A1 (en) Method for Preparing Activated Silica for Water Treatment
JP2000202207A (en) Coagulant for water treatment and production thereof
JP2732067B2 (en) Coagulant for water treatment
JP2000154013A (en) Production of activated silica
JPH11310412A (en) Iron-active silica composite liquid, its production and apparatus therefor
JP2000308803A (en) Flocculant for water treatment and its production and flocculating method for water
JP2000279708A (en) Inorganic flocculating agent for water treatment and its production
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JPH11349322A (en) Production of activated silica
JP2000015008A (en) Water treating coagulant aid and coagulation treatment method
JPH11114315A (en) Flocculant
JP2000093705A (en) Activated silica, its preparation and preservation
KR920005951B1 (en) Water treatment method and flocculating agent used therefor
JP2000202206A (en) Coagulant for water treatment and production thereof and coagulation treatment of water
KR100310785B1 (en) Water treatment method using polyamine polymer flocculant:
JP2000093704A (en) Preparation of iron and activated silica composite flocculant

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051101

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A02 Decision of refusal

Effective date: 20070110

Free format text: JAPANESE INTERMEDIATE CODE: A02