JP5209201B2 - Method for producing high-purity organic acid chloride having an unsaturated group in the molecule - Google Patents

Method for producing high-purity organic acid chloride having an unsaturated group in the molecule Download PDF

Info

Publication number
JP5209201B2
JP5209201B2 JP2006324015A JP2006324015A JP5209201B2 JP 5209201 B2 JP5209201 B2 JP 5209201B2 JP 2006324015 A JP2006324015 A JP 2006324015A JP 2006324015 A JP2006324015 A JP 2006324015A JP 5209201 B2 JP5209201 B2 JP 5209201B2
Authority
JP
Japan
Prior art keywords
acid chloride
organic acid
purity
molecule
unsaturated group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006324015A
Other languages
Japanese (ja)
Other versions
JP2008137920A (en
Inventor
正 菊川
Original Assignee
菊川 佐妃子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 菊川 佐妃子 filed Critical 菊川 佐妃子
Priority to JP2006324015A priority Critical patent/JP5209201B2/en
Publication of JP2008137920A publication Critical patent/JP2008137920A/en
Application granted granted Critical
Publication of JP5209201B2 publication Critical patent/JP5209201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多くの化成品、医薬品、農薬、電子材料の製造原料として重要な、分子内に不飽和基を有する高純度有機酸クロライドの製造方法に関するものである。   The present invention relates to a method for producing a high-purity organic acid chloride having an unsaturated group in the molecule, which is important as a raw material for producing many chemical products, pharmaceuticals, agricultural chemicals and electronic materials.

アルキル、アリル、アラリキル、アルケノイル、アルキニル-クロライドに代表される、有機酸クロライドは、化成品材料、医薬品、農薬、電子材料の製造に欠かせない重要な原料の1つである。中でも分子内に不飽和基を有する有機酸クロライドは、特に需要が多い。   Organic acid chlorides, represented by alkyl, allyl, aralkyl, alkenoyl, and alkynyl-chloride, are one of the important raw materials essential for the production of chemical materials, pharmaceuticals, agricultural chemicals, and electronic materials. Among them, organic acid chloride having an unsaturated group in the molecule is particularly in demand.

分子内に不飽和基を有する有機酸クロライドとして代表的なメタクリル酸クロライドは、メタクリル酸と三塩化リンとの反応により製造できる(特許文献1)。また、アクリル酸又はメタクリル酸を重合禁止剤の存在下、ジメチルフォルムアミドを触媒としホスゲンと反応させて、アクリル酸クロライドまたはメタクリル酸クロライドを製造できる(特許文献2)。さらに、不飽和カルボン酸塩とハロゲン化剤とを反応させて不飽和カルボン酸ハライドを製造できる(特許文献3)。   A typical methacrylic acid chloride as an organic acid chloride having an unsaturated group in the molecule can be produced by a reaction between methacrylic acid and phosphorus trichloride (Patent Document 1). Acrylic acid chloride or methacrylic acid chloride can be produced by reacting acrylic acid or methacrylic acid with phosgene using dimethylformamide as a catalyst in the presence of a polymerization inhibitor (Patent Document 2). Furthermore, an unsaturated carboxylic acid halide can be produced by reacting an unsaturated carboxylate with a halogenating agent (Patent Document 3).

特開昭60−243041号公報JP 60-243041 A 特開2003−277319号公報JP 2003-277319 A 特開2005−343793号公報JP 2005-343793 A

分子内に不飽和結合を有する有機酸クロライドの需要は近年高まっているが、従来工業的に製造されているものは品質が安定せず、純度が低い。市販品に含まれる代表的な不純物は、有機ハロゲン化物、重合物、あるいは遊離HClであるが、製造方法によってはS及びP化合物も含まれる。   In recent years, the demand for organic acid chlorides having an unsaturated bond in the molecule has increased, but those that have been produced industrially are not stable in quality and have low purity. Typical impurities contained in commercially available products are organic halides, polymers, or free HCl, but S and P compounds are also included depending on the production method.

分子内に不飽和結合を有する有機酸クロライドの従来の市販品を、そのまま、あるいは単蒸留したものを出発物質として次の反応を行なわせると、しばしば脱離などの副反応を起こして副生成物を伴う。副生成物は反応率を低下させるばかりでなく、得られた製品の純度を損ない、その精製に多大な時間と経費を要することが問題である。特に高い精度を要する電子材料においては、純度は製品の性能に関係し、SやPの不純物は腐食を誘発して問題を生じている。
かかる背景から、我々は有機酸クロライドの純度を上げるべく鋭意検討し、新しい精製方法を確立した。
When a conventional commercial product of an organic acid chloride having an unsaturated bond in the molecule is used as it is or after simple distillation, the following reaction is carried out, often causing a side reaction such as elimination to produce a by-product. Accompanied by. By-products not only reduce the reaction rate, but also impair the purity of the resulting product, and the purification requires a lot of time and money. Especially in electronic materials that require high accuracy, purity is related to product performance, and impurities such as S and P cause problems by inducing corrosion.
Against this background, we intensively studied to increase the purity of organic acid chloride and established a new purification method.

式1で示される分子内に不飽和基を有する有機酸クロライドは、第3級アミンを加えて蒸留することにより高純度なものとすることができる。

Figure 0005209201
ここに、n=0-10であり、R1, R2, R3はすべて水素原子であるか、又は、R1、R2、R3のいずれかがメチル基であり他は水素原子である。 The organic acid chloride having an unsaturated group in the molecule represented by Formula 1 can be made highly pure by adding a tertiary amine and distilling it.
Figure 0005209201
Here, n = 0-10, and R 1 , R 2 , R 3 are all hydrogen atoms, or any of R 1 , R 2 , R 3 is a methyl group and the other is a hydrogen atom. is there.

前記第3級アミンとしては、トリエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン、N,N-ジメチルアミノピリジン、ヘキサメチレンテトラミン及びN,N-テトラメチル-1,2-エチレンジアミンの内のいずれか又はそれらの組み合わせを好適に用いることができる。中でも、環状第3級アミンであるヘキサメチレンテトラミンは、特に好適に用いることができる。ヘキサメチレンテトラミンの分子構造を式2に示す。

Figure 0005209201
Examples of the tertiary amine include triethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,4-diazabicyclo [2.2.2] octane, N, N-dimethylaminopyridine, hexamethylenetetramine and N , it can be suitably used either or a combination of N- tetramethyl-1,2-ethylenediamine. Among these, hexamethylenetetramine, which is a cyclic tertiary amine, can be particularly preferably used. The molecular structure of hexamethylenetetramine is shown in Formula 2.
Figure 0005209201

この方法は、前記有機酸クロライドがアクリル酸クロライド又はメタクリル酸クロライドである場合、特に好適に用いることができる。   This method can be particularly preferably used when the organic acid chloride is acrylic acid chloride or methacrylic acid chloride.

分子内に不飽和基を有する有機酸クロライドと第3級アミンを十混合させてから、有機酸クロライドの沸点付近の温度で常圧又は減圧で蒸留することにより、特に好適な結果を得ることができる。 The organic acid chloride and a tertiary amine having an unsaturated group in the molecule from by mixing ten minutes, atmospheric pressure or at a temperature near the boiling point of the organic acid chloride by distillation under reduced pressure, to obtain a particularly favorable results Can do.

本方法により、分子内に不飽和基を有する有機酸クロライドの純度を顕著に向上させることができる。純度95%のメタクリル酸クロライドは、本方法により純度99%以上となった。純度94%のアクリル酸クロライドも、本方法により純度99%以上となった。   By this method, the purity of the organic acid chloride having an unsaturated group in the molecule can be remarkably improved. The purity of methacrylic acid chloride with a purity of 95% became 99% or more by this method. Acrylic acid chloride with a purity of 94% was also more than 99% pure by this method.

他の化合物を製造する原料として本発明に係る高純度な分子内に不飽和基を有する有機酸クロライドを用いると、実施例に示したように、市販品を用いるより純度の高い生成物を高い収率で得ることができる。   When the organic acid chloride having an unsaturated group in the high-purity molecule according to the present invention is used as a raw material for producing another compound, as shown in the examples, a higher-purity product than a commercial product is used. The yield can be obtained.

分子内に不飽和基を有する有機酸クロライドの試薬及び工業品は多くの不純物を含む。どのような不純物がどの程度混在するかはその製造方法に依存するが、よく見られるのは式3に示されるような有機ハロゲン化合物、遊離酸、遊離塩酸、重合物、P又はS化合物等である。

Figure 0005209201
これら不純物を除くには、塩基性物質と選択的に反応させ、反応物を分離することが有効と考えられる。我々は種々の塩基性物質を検討した結果、第3級アミン、特にヘキサメチレンテトラミンが有効であることを見出した。 Organic acid chloride reagents and industrial products having unsaturated groups in the molecule contain many impurities. What impurities are mixed and how much depends on the manufacturing method, but the common ones are organic halogen compounds, free acids, free hydrochloric acids, polymers, P or S compounds as shown in Formula 3. is there.
Figure 0005209201
In order to remove these impurities, it is considered effective to selectively react with a basic substance to separate the reactants. As a result of examining various basic substances, we have found that tertiary amines, particularly hexamethylenetetramine, are effective.

有機酸クロライドに含まれる有機酸、及び遊離HClは、第3級アミン塩と加熱蒸留することにより、式4に示すようにアミン塩となり釜残渣として残る。

Figure 0005209201
The organic acid and free HCl contained in the organic acid chloride are heated and distilled with a tertiary amine salt to become an amine salt as shown in Formula 4 and remain as a kettle residue.
Figure 0005209201

有機酸クロライドのHCl付加体は系内でHClが脱離し、式5に示すように目的物に戻る。よって、蒸留物中に遊離HCl及び、HCl付加体が含まれることはない。

Figure 0005209201
この効果を得るには、分子内に不飽和基を有する有機酸クロライドと有機アミンを混合して後、まず両者を十分に反応させる必要がある。用いる有機酸クロライドと有機アミンの組み合わせによっては、混合しただけで直ちに反応が進行する場合もあるが、室温でしばらく放置するか、あるいは80℃以下の温度に加温して反応させる必要がある場合もある。反応が十分進行した後、常圧又は減圧下で有機酸クロライドの沸点付近の温度で蒸溜することにより、高純度品が得られる。 The HCl adduct of organic acid chloride desorbs in the system and returns to the target product as shown in Formula 5. Therefore, free HCl and an adduct of HCl are not contained in the distillate.
Figure 0005209201
In order to obtain this effect, after mixing an organic acid chloride having an unsaturated group in the molecule and an organic amine, it is necessary to first sufficiently react them. Depending on the combination of organic acid chloride and organic amine used, the reaction may proceed immediately after mixing, but it may be necessary to leave at room temperature for a while or to warm to 80 ° C or lower for the reaction. There is also. After the reaction has sufficiently proceeded, a high-purity product is obtained by distillation at a temperature near the boiling point of the organic acid chloride under normal pressure or reduced pressure.

ヘキサメチレンテトラミンを有機アミンとして用いると次のような特徴が生じる。
(1) 分子内に4つの塩基末端を有するので、不純物の1つであるHCl及び遊離有機酸を強く捕捉する。
(2) 不飽和基を有する有機酸クロライドは重合しやすいが、ヘキサメチレンテトラミンはその重合を促進しない。
(3) 合成法によっては、PやS化合物を含むものがある。このものを強く捕捉する。
(4) 蒸留後の残渣が液状であって、蒸留釜からの取り出しが容易である。
(5) 蒸留後の残渣を取り出した後、直ちに仕込みができる。
(6) 価格が安価である。
When hexamethylenetetramine is used as an organic amine, the following characteristics occur.
(1) Since it has four base ends in the molecule, it strongly captures one of impurities, HCl and free organic acid.
(2) An organic acid chloride having an unsaturated group is easily polymerized, but hexamethylenetetramine does not accelerate the polymerization.
(3) Some synthetic methods contain P and S compounds. Capture this thing strongly.
(4) The residue after distillation is liquid and can be easily taken out from the still.
(5) After taking out the residue after distillation, it can be charged immediately.
(6) The price is low.

ヘキサメチレンテトラミンを用いた場合、1%以下でホルムアルデヒドが生成されるが、次の反応には影響しない。オリゴマーやポリマーを含む副生成物は、有機酸クロライドとの沸点差が大きいため、蒸留により容易に分離除去することができる。   When hexamethylenetetramine is used, formaldehyde is produced at 1% or less, but this does not affect the next reaction. By-products containing oligomers and polymers have a large boiling point difference from organic acid chlorides, and can be easily separated and removed by distillation.

本発明の具体的な実施形態は、実施例として以下に述べる。しかし、もとより本発明は実施例に示された実施形態に限定されるものではない。   Specific embodiments of the present invention are described below as examples. However, the present invention is not limited to the embodiments shown in the examples.

工業用メタクリル酸クロライドから、ヘキサメチレンテトラミンを用いて高純度なメタクリル酸クロライドを製造する例を以下に示す。
工業用メタクリル酸クロライド(ガスクロマトグラフ(GC)分析純度95%)1kgに100ppmのMEHQ(ハイドロキノンモノメチルエーテル)とヘキサメチレンテトラミンを濃度2.5%になるように添加し、70-75℃(バス温度)で加熱下、一夜攪拌した。続いて、約65℃/200mmHgで蒸留した。収量は0.9kg(回収率90%)で、GC分析純度は99%以上であった。
釜残渣は液状で、容易に除去できた。釜残渣を除去した後、精製工程を再開した。精製工程を10回繰り返し行っても、収率は最初と同様の80-90%であり、GC分析の結果によれば、FID検出器(水素炎イオン化検出器)で100%、TCD検出器(熱伝導度検出器:ハロゲンに活性なもの)で99%以上の純度であった。
An example of producing high-purity methacrylic acid chloride from industrial methacrylic acid chloride using hexamethylenetetramine is shown below.
Add 100ppm MEHQ (hydroquinone monomethyl ether) and hexamethylenetetramine to 2.5kg in industrial methacrylic acid chloride (Gas chromatograph (GC) analysis purity 95%) at 70-75 ℃ (bath temperature). The mixture was stirred overnight under heating. Subsequently, it was distilled at about 65 ° C./200 mmHg. The yield was 0.9 kg (recovery rate 90%), and the GC analysis purity was 99% or more.
The kettle residue was liquid and could be easily removed. After removing the kettle residue, the purification process was resumed. Even if the purification process is repeated 10 times, the yield is 80-90%, which is the same as the first. According to the results of GC analysis, 100% with the FID detector (flame ionization detector) and TCD detector ( The thermal conductivity detector (active to halogen) had a purity of 99% or more.

試薬用メタクリル酸クロライドから、ヘキサメチレンテトラミンを用いて高純度なメタクリル酸クロライドを製造する例を以下に示す。
市販品試薬メタクリル酸クロライド(GC分析純度98%)500gに100ppmのMEHQとヘキサメチレンテトラミンを濃度2.5%になるように添加し、70-75℃(バス温)で加熱下、1時間攪拌した。続いて、75℃(バス温)/200mmHgで蒸留した。収量は470g(回収率94%)で、GC分析純度は99%以上であった。
釜残渣は液状で、容易に除去することができた。実施例1と同様に、釜残渣除去後、同様の方法で酸クロライドの精製工程を数10回繰り返しても、同様に高純度品を得ることができた。
An example of producing high purity methacrylic acid chloride from methacrylic acid chloride for reagents using hexamethylenetetramine is shown below.
100 ppm of MEHQ and hexamethylenetetramine were added to 500 g of commercially available reagent methacrylic acid chloride (GC analysis purity 98%) to a concentration of 2.5%, and the mixture was stirred at 70-75 ° C. (bath temperature) for 1 hour. Subsequently, it was distilled at 75 ° C. (bath temperature) / 200 mmHg. The yield was 470 g (recovery rate 94%), and the GC analysis purity was 99% or more.
The kettle residue was liquid and could be easily removed. In the same manner as in Example 1, after removing the kettle residue and repeating the acid chloride purification step several tens of times in the same manner, a high-purity product was obtained in the same manner.

工業用アクリル酸クロライドから、ヘキサメチレンテトラミンを用いて高純度なアクリル酸クロライドを製造する例を以下に示す。
工業品アクリル酸クロライド(GC分析純度94%)1kgに100ppmのMEHQとヘキサメチレンテトラミンを濃度2.5%になるように添加し、45-50℃(バス温)で加熱下、1時間攪拌した。続いて、48〜55℃(バス温)/200mmHgで蒸留した。収量は0.87kg(回収率87%)で、GC分析純度は99%以上であった。
釜残渣は液状で、容易に除去できた。釜残渣除去後、酸クロライドを新たに投入し、精製工程を10回繰り返し行っても、収率は80-95%であった。GC分析の結果、FID検出器で100%、TCD検出器(ハロゲンに活性)で99%以上の純度であった。
An example of producing high-purity acrylic acid chloride from industrial acrylic acid chloride using hexamethylenetetramine is shown below.
100 ppm of MEHQ and hexamethylenetetramine were added to 1 kg of industrial product acrylic acid chloride (GC analysis purity 94%) to a concentration of 2.5%, and the mixture was stirred at 45-50 ° C. (bath temperature) for 1 hour. Subsequently, it was distilled at 48 to 55 ° C. (bath temperature) / 200 mmHg. The yield was 0.87 kg (recovery rate 87%), and the GC analysis purity was 99% or more.
The kettle residue was liquid and could be easily removed. After removing the kettle residue, acid chloride was newly added and the purification process was repeated 10 times. The yield was 80-95%. As a result of GC analysis, the purity was 100% with an FID detector and 99% or more with a TCD detector (active to halogen).

試薬用アクリル酸クロライドから、ヘキサメチレンテトラミンを用いて高純度なアクリル酸クロライドを製造する例を以下に示す。
試薬用アクリル酸クロライド(GC分析純度98%)500gに100ppmのMEHQとヘキサメチレンテトラミンを濃度2.5%になるように添加し、45-50℃(バス温)で加熱下、一夜攪拌した。続いて、48〜55℃(バス温)/200mmHgで蒸留した。収量は480g(回収率96%)で、GC分析純度は99%以上であった。
釜残渣は液状で容易に除去できた。実施例3と同様に、釜残渣を除去し、同様の精製工程を数10回繰り返しても、同様に高純度品を得ることができた。
An example of producing high-purity acrylic acid chloride from reagent-use acrylic acid chloride using hexamethylenetetramine is shown below.
100 ppm of MEHQ and hexamethylenetetramine were added to 500 g of reagent acrylic acid chloride (GC analysis purity 98%) to a concentration of 2.5%, and the mixture was stirred overnight at 45-50 ° C. (bath temperature). Subsequently, it was distilled at 48 to 55 ° C. (bath temperature) / 200 mmHg. The yield was 480 g (recovery 96%), and the GC analysis purity was 99% or more.
The kettle residue was liquid and could be easily removed. Similarly to Example 3, even when the kettle residue was removed and the same purification process was repeated several tens of times, a high-purity product could be obtained similarly.

工業用メタクリル酸クロライドから、4-ジメチルアミノピリジンを用いて高純度なメタクリル酸クロライドを製造する例を以下に示す。
工業品メタクリル酸クロライド(GC分析純度95%)1kgに100ppmのMEHQと4-N,N'ジメチルアミノピリジンを濃度2.5%になるように添加し、70-75℃(バス温)に保持しつつ、一夜攪拌した。続いて、75℃(バス温)/200mmHgで蒸留した。収量は0.8kg(回収率80%)で、GC分析純度は99%以上であった。
釜残渣は固体であった。その除去のために、まずIPA(イソプロピルアルコール)を入れて釜を洗浄した。続いてメタノールを発熱を抑えながら徐々に加え、さらにIPA/水(1:1)の10%NaOH溶液にて、完全に酸クロライドを中和した。そのIPA溶液を除去後、水洗し、THF(テトラヒドロフラン)及びメタノールにて洗浄した。また、蒸留塔を洗浄するために、まずTHF、続いてメタノールにて常圧蒸留し、洗浄後、真空下において乾燥した。
An example of producing high-purity methacrylic acid chloride from industrial methacrylic acid chloride using 4-dimethylaminopyridine is shown below.
While adding 100ppm MEHQ and 4-N, N'dimethylaminopyridine to 2.5kg in 1kg of industrial product methacrylic acid chloride (GC analysis purity 95%), keep it at 70-75 ℃ (bath temperature) , Stirred overnight. Subsequently, it was distilled at 75 ° C. (bath temperature) / 200 mmHg. The yield was 0.8 kg (80% recovery rate), and the GC analysis purity was 99% or more.
The kettle residue was a solid. For the removal, IPA (isopropyl alcohol) was first added to wash the kettle. Subsequently, methanol was gradually added while suppressing heat generation, and the acid chloride was completely neutralized with a 10% NaOH solution of IPA / water (1: 1). The IPA solution was removed, washed with water, and washed with THF (tetrahydrofuran) and methanol. Further, in order to wash the distillation tower, first, atmospheric distillation was carried out with THF and then with methanol, and after washing, it was dried under vacuum.

本実施例に示したように、ヘキサメチレンテトラミン以外の有機アミンを用いた場合は、高純度品を得るという本来の目的は達成できるが、固体残渣が釜に残るため、その除去が煩雑になる。工業的には、釜を容易に繰り返し使用できることが重要であるため、ヘキサメチレンテトラミンを用いることが望ましい。   As shown in this example, when an organic amine other than hexamethylenetetramine is used, the original purpose of obtaining a high-purity product can be achieved, but the solid residue remains in the kettle, so that the removal becomes complicated. . Industrially, it is important to use the kettle easily and repeatedly, so it is desirable to use hexamethylenetetramine.

実施例1で得られた高純度メタクリル酸クロライドと市販試薬用メタクリル酸クロライドとの活性を、式6に示すエステル化法により比較した。

Figure 0005209201
The activities of the high-purity methacrylic acid chloride obtained in Example 1 and the methacrylic acid chloride for commercial reagents were compared by the esterification method shown in Formula 6.
Figure 0005209201

2-アダマンタノン20gにTHF180mLを添加して、-20℃付近で冷却下、メチルクロライドを10.1gバブリングした。続いてLiを添加し、完全に溶解させてLi体(式6、化合物1)をほぼ99%の収量で得た。
上記Li体に、1.2当量のいろいろな純度のメタクリル酸クロライドを滴下し、生成物(式6、化合物3)をGC(ガスクロマトグラフィー)法により分析した。使用した量を1として、目的物(式6、化合物3)の転化率を求めた。
180 mL of THF was added to 20 g of 2-adamantanone, and 10.1 g of methyl chloride was bubbled under cooling at around -20 ° C. Subsequently, Li was added and completely dissolved to obtain a Li form (formula 6, compound 1) with a yield of approximately 99%.
1.2 equivalents of methacrylic acid chloride of various purity was dropped into the Li body, and the product (formula 6, compound 3) was analyzed by GC (gas chromatography) method. Taking the amount used as 1, the conversion of the target product (formula 6, compound 3) was determined.

上記エステル化反応の結果を図1に示す。図1において、横軸は反応時間を、縦軸はエステル化率を示す。反応時間0は、滴下終了直後とした。反応は速いので、この時点でかなり進行している。◆は、実施例1で得られた高純度メタクリル酸クロライドを用いた場合(Lot101)を示す。■は、メタクリル酸クロライド市販試薬を単に減圧蒸留したものを用いた場合を示す(Lot102)。▲は、メタクリル酸クロライド市販試薬をそのまま使用した場合を示す(Lot103)。   The result of the esterification reaction is shown in FIG. In FIG. 1, the horizontal axis represents the reaction time, and the vertical axis represents the esterification rate. Reaction time 0 was set immediately after completion of the dropping. Since the reaction is fast, it is quite advanced at this point. The symbol ♦ indicates the case where the high purity methacrylic acid chloride obtained in Example 1 is used (Lot101). (1) shows the case where a commercially available reagent for methacrylic acid chloride is simply distilled under reduced pressure (Lot102). A triangle indicates a case where a commercially available methacrylic acid chloride reagent is used as it is (Lot103).

実施例1の方法で得られた16.5gの高純度メタクリル酸クロライドを上記Li体(式6、化合物1)に-20℃位で、滴下して反応させた場合、反応は約30分後には終了し、転化率は99.45%(GC)であった。反応終了後、洗浄、濃縮すると32.1g(粗収率:103%)の2-メチル-2-アダマンチルメタクリレート(式6、化合物3)を得た。そのときのGC純度は99.4%で、ほぼ定量的に目的物が得られる(図1、Lot101)。この得られた粗体を精製すると、約90%の実収率で高純度品を得た。   When 16.5 g of high-purity methacrylic acid chloride obtained by the method of Example 1 was reacted dropwise at about −20 ° C. to the above Li-form (formula 6, compound 1), the reaction was carried out after about 30 minutes. Upon completion, the conversion was 99.45% (GC). After completion of the reaction, washing and concentration yielded 32.1 g (crude yield: 103%) of 2-methyl-2-adamantyl methacrylate (formula 6, compound 3). The GC purity at that time is 99.4%, and the target product can be obtained almost quantitatively (FIG. 1, Lot 101). The crude product thus obtained was purified to obtain a high-purity product with an actual yield of about 90%.

市販試薬品を単蒸留して得たメタクリル酸クロライド16.5gを、上記と同様にLi体(式6、化合物1)に滴下し反応させた。反応終了後、洗浄、濃縮すると31.2g(収率:100%)の粗2-メチル-2-アダマンチルメタクリレートを得た(図1、Lot102)。そのときのGC純度は約87%であった。この粗体を精製すると約59%の実収率で目的物を得た。
市販試薬品を蒸留せずにそのまま用いて、同様の反応を試みた。その結果、29g(平均収率:93%)の粗2-メチル-2-アダマンチルメタクリレート(式6、化合物3)を得た。その時のGC純度は、73%(図1、Lot103)であった。この粗体を精製すると、約45%の実収率で目的物を得た。以上の結果が示すように、本発明の方法により得た酸クロライドを用いると、高収率で目的物を得ることができる。
16.5 g of methacrylic acid chloride obtained by simple distillation of a commercially available reagent product was dropped into a Li form (formula 6, compound 1) and reacted as described above. After completion of the reaction, washing and concentration yielded 31.2 g (yield: 100%) of crude 2-methyl-2-adamantyl methacrylate (FIG. 1, Lot 102). The GC purity at that time was about 87%. The crude product was purified to obtain the target product with an actual yield of about 59%.
A similar reaction was attempted using the commercial reagent as it was without distillation. As a result, 29 g (average yield: 93%) of crude 2-methyl-2-adamantyl methacrylate (formula 6, compound 3) was obtained. The GC purity at that time was 73% (FIG. 1, Lot103). The crude product was purified to obtain the target product with an actual yield of about 45%. As the above results show, when the acid chloride obtained by the method of the present invention is used, the target product can be obtained in high yield.

図1によれば、本発明の方法で精製したメタクリル酸クロライドを用いると99.45%(GC)の転化率が得られ、エステル化はほぼ完全であった。これに対し不純な酸クロライドを用いると、収率が大幅に下った。また、本発明の方法で精製した有機酸クロライドを用いれば、反応性も高く約30分以内に反応が終了する。   According to FIG. 1, when using the methacrylic acid chloride purified by the method of the present invention, a conversion of 99.45% (GC) was obtained and the esterification was almost complete. On the other hand, when an impure acid chloride was used, the yield was greatly reduced. If the organic acid chloride purified by the method of the present invention is used, the reactivity is high and the reaction is completed within about 30 minutes.

なお、試薬用メタクリル酸クロライドをそのまま、或いは単に蒸留してエステル化反応に用いた場合には、反応は完全には進まず収率が低い。この結果は、GCでは分析しえない不純物が共存していると予測している。特に、そのまま用いた場合において120分後に転化率が低下しているのは、不純物による副反応の進行によると思われる。   When the methacrylic acid chloride for reagent is used as it is or simply distilled and used for the esterification reaction, the reaction does not proceed completely and the yield is low. This result predicts the presence of impurities that cannot be analyzed by GC. In particular, when used as it is, the decrease in the conversion rate after 120 minutes seems to be due to the progress of side reactions due to impurities.

アクリル酸クロライドについても式7で示されるように同様の方法で比較した。

Figure 0005209201
2-Adamantanone 20gからLi体をほぼ99%のGC転化率で得た(式7、化合物1)。いろいろな純度のアクリル酸クロライドをLi体(式7、化合物1)の1.2当量滴下し、生成物をGC法により分析した。使用したLi体の量を1として、目的物(式7、化合物3)の転化率を求めた。 Acrylic acid chlorides were also compared by the same method as shown in Formula 7.
Figure 0005209201
Li-form was obtained from 20 g of 2-Adamantanone with a GC conversion of approximately 99% (Formula 7, Compound 1). 1.2 equivalents of Li-form (formula 7, compound 1) were added dropwise with acrylic acid chloride of various purity, and the product was analyzed by GC method. The conversion rate of the target product (formula 7, compound 3) was determined with the amount of Li-form used being 1.

得られたLi体(式7、化合物1)に実施例3の方法で蒸留したアクリル酸クロライドを14.5g滴下して反応させた。反応終了後、洗浄、濃縮すると32.1g(収率:110%)の粗2-メチル-2-アダマンチルアクリレートを得た。そのときのGC純度は98%で、ほぼ定量的に目的物を得ていることを転化率で示していた。この得られた粗体を精製し、約85%の実収率で目的物を得た。
試薬用を単蒸留して得たアクリル酸クロライドを用いて同様にエステル化反応を行った。同様に得られたLi体(式7)に、単蒸留したアクリル酸クロライドを14.5g滴下して反応させた。反応終了後、洗浄、濃縮して27.8g(収率:95%)の粗2-メチル-2-アダマンチルアクリレートを得た。そのときのGC純度は約75%であった。
14.5 g of acrylic acid chloride distilled by the method of Example 3 was dropped and reacted with the obtained Li form (formula 7, compound 1). After completion of the reaction, washing and concentration yielded 32.1 g (yield: 110%) of crude 2-methyl-2-adamantyl acrylate. The GC purity at that time was 98%, and the conversion rate showed that the target product was obtained almost quantitatively. The resulting crude product was purified to obtain the target product with an actual yield of about 85%.
The esterification reaction was similarly carried out using acrylic acid chloride obtained by simple distillation of the reagent. Similarly, 14.5 g of simple distilled acrylic acid chloride was added dropwise to the Li body (formula 7) obtained and reacted. After completion of the reaction, washing and concentration yielded 27.8 g (yield: 95%) of crude 2-methyl-2-adamantyl acrylate. The GC purity at that time was about 75%.

結果を図2に示す。反応時間0は、滴下終了直後としているので、この時点で反応は殆ど完結している。◆は、実施例3の方法で精製した高純度アクリル酸クロライドを用いた場合を示す(Lot105)。■は、試薬用アクリル酸クロライドを単に減圧蒸留したものを用いた場合を示す(Lot106)。
この図によれば、本発明の方法で精製した有機酸クロライドを用いると98%(GC)を超える高い転化率が得られ、ほぼ完全にエステル化されていた。これに対し不純な酸クロライドを用いると、収率が大幅に下がった。また、本発明の方法で精製した有機酸クロライドを用いれば、反応は極めて速く終了する。
The results are shown in FIG. Since the reaction time 0 is immediately after completion of the dropping, the reaction is almost complete at this point. The symbol ♦ indicates the case where high-purity acrylic acid chloride purified by the method of Example 3 is used (Lot105). (2) shows the case where the reagent acrylic acid chloride is simply distilled under reduced pressure (Lot106).
According to this figure, when the organic acid chloride purified by the method of the present invention was used, a high conversion rate exceeding 98% (GC) was obtained, and the esterification was almost complete. In contrast, the use of impure acid chloride significantly reduced the yield. Moreover, if the organic acid chloride refine | purified by the method of this invention is used, reaction will be complete | finished very rapidly.

なお、有機酸クロライドを蒸留する際に添加する有機アミンの濃度は、蒸留前の有機酸クロライドの純度に応じて適宜増減させると良い。市販されている有機酸クロライドの純度を考慮すると、一般的には、有機アミンを濃度1〜20%となるように添加すれば、高純度有機酸クロライドを製造することができる。
また、試薬用をそのままあるいは単に蒸留してエステル化反応に用いると反応は完全に進まず収率が低い。これはGCでは分析しえない不純物の共存のためと予測している。
In addition, it is good to increase / decrease the density | concentration of the organic amine added when distilling an organic acid chloride suitably according to the purity of the organic acid chloride before distillation. Considering the purity of the commercially available organic acid chloride, generally, a high-purity organic acid chloride can be produced by adding an organic amine to a concentration of 1 to 20%.
If the reagent is used as it is or simply distilled and used in the esterification reaction, the reaction does not proceed completely and the yield is low. This is due to the coexistence of impurities that cannot be analyzed by GC.

3種類のメタクリル酸クロライドを用いたときの反応転化率の比較図。The comparison figure of reaction conversion rate when using three types of methacrylic acid chlorides. 2種類のアクリル酸クロライドを用いたときの反応転化率の比較図。The comparison figure of the reaction conversion rate when using two types of acrylic acid chlorides.

Claims (5)

式1で示される分子内に不飽和基を有する有機酸クロライドに、第3級アミンを加えて蒸留することを特徴とする分子内に不飽和基を有する高純度有機酸クロライドの製造方法。
Figure 0005209201
ここに、n=0-10であり、R1, R2, R3はすべて水素原子であるか、又は、R1、R2、R3のいずれかがメチル基であり他は水素原子である。
A method for producing a high-purity organic acid chloride having an unsaturated group in a molecule, wherein a tertiary amine is added to the organic acid chloride having an unsaturated group in the molecule represented by Formula 1 and distilled.
Figure 0005209201
Here, n = 0-10, and R 1 , R 2 , R 3 are all hydrogen atoms, or any of R 1 , R 2 , R 3 is a methyl group and the other is a hydrogen atom. is there.
前記第3級アミンとして、トリエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン、N,N-ジメチルアミノピリジン、ヘキサメチレンテトラミン及びN,N-テトラメチル-1,2-エチレンジアミンの内のいずれか又はそれらの組み合わせを用いることを特徴とする、請求項1に記載の分子内に不飽和基を有する高純度有機酸クロライドの製造方法。 Examples of the tertiary amine include triethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,4-diazabicyclo [2.2.2] octane, N, N-dimethylaminopyridine, hexamethylenetetramine and N, characterized by using one or a combination of N- tetramethyl-1,2-ethylenediamine, process for producing a high purity organic acid chloride having unsaturated groups in the molecule of claim 1 . 前記第3級アミンとしてヘキサメチレンテトラミンを用いることを特徴とする、請求項1に記載の分子内に不飽和基を有する高純度有機酸クロライドの製造方法。 The method for producing a high-purity organic acid chloride having an unsaturated group in the molecule according to claim 1, wherein hexamethylenetetramine is used as the tertiary amine. 前記有機酸クロライドがアクリル酸クロライド又はメタクリル酸クロライドである、請求項1から請求項3のいずれかに記載の分子内に不飽和基を有する高純度有機酸クロライドの製造方法。   The method for producing a high-purity organic acid chloride having an unsaturated group in the molecule according to any one of claims 1 to 3, wherein the organic acid chloride is acrylic acid chloride or methacrylic acid chloride. 分子内に不飽和基を有する有機酸クロライドと第3級アミンを十混合させてから、常圧又は減圧下、有機酸クロライドの沸点付近の温度で蒸溜することを特徴とする、請求項1から請求項4のいずれかに記載の分子内に不飽和基を有する高純度有機酸クロライドの製造方法。 The organic acid chloride and a tertiary amine having an unsaturated group in the molecule were allowed to mix sufficiently, atmospheric or characterized by distillation under reduced pressure, a temperature around the boiling point of the organic acid chloride, according to claim 1 The manufacturing method of the high purity organic acid chloride which has an unsaturated group in the molecule | numerator in any one of Claim 1-4.
JP2006324015A 2006-11-30 2006-11-30 Method for producing high-purity organic acid chloride having an unsaturated group in the molecule Active JP5209201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324015A JP5209201B2 (en) 2006-11-30 2006-11-30 Method for producing high-purity organic acid chloride having an unsaturated group in the molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324015A JP5209201B2 (en) 2006-11-30 2006-11-30 Method for producing high-purity organic acid chloride having an unsaturated group in the molecule

Publications (2)

Publication Number Publication Date
JP2008137920A JP2008137920A (en) 2008-06-19
JP5209201B2 true JP5209201B2 (en) 2013-06-12

Family

ID=39599777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324015A Active JP5209201B2 (en) 2006-11-30 2006-11-30 Method for producing high-purity organic acid chloride having an unsaturated group in the molecule

Country Status (1)

Country Link
JP (1) JP5209201B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740432A (en) * 1980-08-25 1982-03-06 Mitsubishi Chem Ind Ltd Production of carboxylic acid chloride
JP3477532B2 (en) * 1992-08-21 2003-12-10 住友精化株式会社 Method for producing methacrylic acid chloride
JP3332341B2 (en) * 1998-03-12 2002-10-07 株式会社日本触媒 Method for producing acid chloride
JP2004292374A (en) * 2003-03-27 2004-10-21 Konica Minolta Chemical Co Ltd Method for producing carboxylic acid halide
JP2005343793A (en) * 2004-05-31 2005-12-15 Idemitsu Kosan Co Ltd Method for producing unsaturated carboxylic acid halide and method for producing adamantane compound by using the same unsaturated carboxylic acid halide

Also Published As

Publication number Publication date
JP2008137920A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP2000229911A (en) Production of 2-alkyl-2-adamantyl (meth)acrylates
KR100852900B1 (en) Method of manufacturing perfluroalkadiene
JP5359052B2 (en) Method for producing fluorine-containing monomer
JP5209201B2 (en) Method for producing high-purity organic acid chloride having an unsaturated group in the molecule
US9303003B2 (en) Process for producing glycidyl (meth)acrylate
JPH0459308B2 (en)
JP3885249B2 (en) Purification method of glycidyl (meth) acrylate
JPH04187682A (en) Purification of glycidyl acrylate or glycidyl methacrylate
JP5018067B2 (en) Method for producing fluorine-containing alkane esters
JP2007308464A (en) Manufacturing method of 2-methyl-2-adamantyl (meth)acrylate
JP2005132790A (en) Method for producing 2-methyl-2-hydroxy-1-propyl (meth)acrylate
JPH08239371A (en) Production of glycidyl methacrylate or glycidyl acrylate
JP6041643B2 (en) Method for producing 3,3,3-trifluoropropionyl compound
JP4752343B2 (en) 2-trifluoromethylacrylic acid-3-hydroxypropyl ester and process for producing the same
JP5803420B2 (en) Process for producing β, β-difluoro-α, β-unsaturated carbonyl compound
JP3545034B2 (en) Method for producing α-hydroxyisobutyrate esters
JP2016135803A (en) Manufacturing method of perfluoroalkenyl oxy group-containing arene compound
JP2016169192A (en) Method of producing 7-octenyl halide
JP2021080211A (en) Method for producing (meth)acrylic acid anhydride
JPH0656745A (en) Production of 2-@(3754/24)3-oxobutyl)acrylic acid alkyl ester
JPH05221890A (en) Method for treating carbon tetrachloride
JP2006117549A (en) Method for production of polycyclic (meth)acrylate including cyano groups
JP2007217354A (en) Manufacturing method of vinylphenanthrene
JP2005298378A (en) Method for producing 1,3-diadamantyl ester compounds
JPH0656746A (en) Production of 2-@(3754/24)3-oxobutyl)acrylic acid alkyl ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5209201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250