JP2021080211A - Method for producing (meth)acrylic acid anhydride - Google Patents

Method for producing (meth)acrylic acid anhydride Download PDF

Info

Publication number
JP2021080211A
JP2021080211A JP2019209134A JP2019209134A JP2021080211A JP 2021080211 A JP2021080211 A JP 2021080211A JP 2019209134 A JP2019209134 A JP 2019209134A JP 2019209134 A JP2019209134 A JP 2019209134A JP 2021080211 A JP2021080211 A JP 2021080211A
Authority
JP
Japan
Prior art keywords
meth
acrylic acid
acrylate
anhydride
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019209134A
Other languages
Japanese (ja)
Inventor
菊川 正
Tadashi Kikukawa
正 菊川
丈 木村
Jo Kimura
丈 木村
晶 川崎
Akira Kawasaki
晶 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019209134A priority Critical patent/JP2021080211A/en
Publication of JP2021080211A publication Critical patent/JP2021080211A/en
Pending legal-status Critical Current

Links

Abstract

To provide an industrially useful method for producing a (meth)acrylic acid anhydride capable of producing a (meth)acrylic acid anhydride with high yield and high purity.SOLUTION: There is provided a method for producing a (meth)acrylic acid anhydride by reacting a (meth)acrylic acid alkali metal salt and sulfonyl chloride in an organic solvent. The (meth)acrylic acid alkali metal salt includes lithium (meth)acrylate, sodium (meth)acrylate, potassium (meth)acrylate or the like. Among these (meth)acrylic acid alkali metal salts, preferable are sodium acrylate, potassium acrylate, sodium methacrylate and potassium methacrylate in consideration of market feedability, reactivity and easiness of treatment after the reaction. In addition, the sulfonyl chloride includes benzenesulfonyl chloride, p-toluenesulfonyl chloride and methanesulfonyl chloride.SELECTED DRAWING: None

Description

本発明は、(メタ)アクリル酸無水物の製造方法に関する。 The present invention relates to a method for producing (meth) acrylic anhydride.

アクリル酸無水物及びメタクリル酸無水物(以下、両者を合わせて「(メタ)アクリル酸無水物」という)の製造方法として、酸クロリドとカルボン酸を反応させる方法(特許文献1)、酸クロリドとカルボン酸金属塩を反応させる方法(非特許文献1)、高級カルボン酸と無水酢酸を反応させる方法(特許文献2、非特許文献2)、カルボン酸とスルホニルクロリドを反応させる方法(非特許文献3、4、特許文献3)、アクリル酸金属塩と無機酸クロリドを反応させる方法(特許文献4)、アクリル酸とジケテンを反応させる方法(特許文献5)等、様々な方法が知られている。 As a method for producing an acrylic anhydride and a methacrylic anhydride (hereinafter, both are collectively referred to as "(meth) acrylic anhydride"), a method of reacting an acid chloride with a carboxylic acid (Patent Document 1), an acid chloride and the like. A method of reacting a carboxylic acid metal salt (Non-Patent Document 1), a method of reacting a higher carboxylic acid with anhydrous acetic acid (Patent Document 2 and Non-Patent Document 2), and a method of reacting a carboxylic acid with sulfonyl chloride (Non-Patent Document 3). 4. Various methods are known, such as a method of reacting an acrylic acid metal salt with an inorganic acid chloride (Patent Document 4), a method of reacting an acrylic acid with diketen (Patent Document 5), and the like.

特開平09-104642号公報Japanese Unexamined Patent Publication No. 09-104642 特開平05-339194号公報Japanese Unexamined Patent Publication No. 05-339194 特開2004-035523号公報Japanese Unexamined Patent Publication No. 2004-035523 特開昭55-089242号公報Japanese Patent Application Laid-Open No. 55-089242 米国特許第2476859号U.S. Pat. No. 2,476859

J. Org. Chem., 60(7) 2271, 1995J. Org. Chem., 60 (7) 2271, 1995 J. Am. Chem. Soc., Vol. 63, p.699, 1941J. Am. Chem. Soc., Vol. 63, p.699, 1941 J. Chem. Res.,Synop., p.100, 1984J. Chem. Res., Synop., P.100, 1984 Lett. Org. Chem., Vol. 14, No. 6, 2017Lett. Org. Chem., Vol. 14, No. 6, 2017

酸クロリドは安定供給が難しく、又、比較的高価であるため、酸クロリドを原料に含む方法は、工業的に有用でない。
また、高級カルボン酸と無水酢酸を反応させる方法では、カルボン酸と無水酢酸の混合酸無水物が生成されるため、これを除去する必要があるが、完全に除去することが難しく、高純度の(メタ)アクリル酸無水物を得ることが困難である。また、混合酸無水物を除去するための工程は高温下で行われるため、低沸点の(メタ)アクリル酸無水物の合成には不向きである。
Since acid chloride is difficult to supply stably and is relatively expensive, the method containing acid chloride as a raw material is not industrially useful.
Further, in the method of reacting a higher carboxylic acid with acetic anhydride, a mixed acid anhydride of a carboxylic acid and acetic anhydride is produced, which needs to be removed, but it is difficult to completely remove it, and it is highly pure. It is difficult to obtain (meth) acrylic anhydride. Further, since the step for removing the mixed acid anhydride is performed at a high temperature, it is not suitable for the synthesis of a low boiling point (meth) acrylic anhydride.

カルボン酸とスルホニルクロリドを反応させる方法は、系に存在するトリエチルアミンを除去するために水処理及び精留する必要がある(非特許文献3、特許文献3)、系内で炭酸塩及びスルホニル塩を形成するために大量の溶媒が必要となる(非特許文献4)等の理由により、工業的実施に適していない。 The method of reacting a carboxylic acid with a sulfonyl chloride requires water treatment and rectification to remove triethylamine present in the system (Non-Patent Documents 3 and 3), and carbonates and sulfonyl salts are added in the system. It is not suitable for industrial practice because a large amount of solvent is required for formation (Non-Patent Document 4) and the like.

特許文献4に記載されているアクリル酸金属塩と無機酸クロリドを反応させる方法は、大量の二酸化硫黄が発生するため、耐腐食性を有する材質の容器や装置を用いる必要がある。また、製品中に混入する微量の二酸化硫黄を除去することが困難であり、高純度のアクリル酸無水物を得ることが非常に難しい。
特許文献5に記載されている方法は反応の進行が極めて遅く、収率が低いという欠点がある。
The method of reacting an acrylic acid metal salt with an inorganic acid chloride described in Patent Document 4 generates a large amount of sulfur dioxide, so that it is necessary to use a container or device made of a material having corrosion resistance. In addition, it is difficult to remove a trace amount of sulfur dioxide mixed in the product, and it is very difficult to obtain a high-purity acrylic anhydride.
The method described in Patent Document 5 has the disadvantages that the reaction proceeds extremely slowly and the yield is low.

本発明が解決しようとする課題は、(メタ)アクリル酸無水物を高収率で且つ高純度で製造できる、工業的に有用な(メタ)アクリル酸無水物の製造方法を提供することである。 An object to be solved by the present invention is to provide an industrially useful method for producing (meth) acrylic anhydride, which can produce (meth) acrylic anhydride in high yield and with high purity. ..

本発明者らは、(メタ)アクリル酸無水物の製造方法において、原材料が安価であり工業的に容易に入手可能な材料を中心に、(メタ)アクリル酸無水物を高収率で且つ高純度で製造できる反応系を探索した結果、シンプルな製造方法を見出し、本発明に至った。 In the method for producing (meth) acrylic anhydride, the present inventors mainly produce (meth) acrylic anhydride in high yield and high, focusing on materials whose raw materials are inexpensive and easily available industrially. As a result of searching for a reaction system that can be produced with purity, a simple production method was found, and the present invention was reached.

すなわち本発明は、(メタ)アクリル酸アルカリ金属塩とスルホニルクロリドとを有機溶媒中で反応させることを特徴とする(メタ)アクリル酸無水物の製造法である。
なお、本発明において、「(メタ)アクリル酸」とは、従来より慣用されているようにアクリル酸とメタクリル酸の総称を意味する。
That is, the present invention is a method for producing a (meth) acrylic anhydride, which comprises reacting a (meth) acrylic acid alkali metal salt with a sulfonyl chloride in an organic solvent.
In the present invention, "(meth) acrylic acid" means a general term for acrylic acid and methacrylic acid as has been conventionally used.

本発明の製造方法は、触媒としてのトリエチルアミンなどは不要であり、水処理工程も必要ない。従って、本発明の製造方法を用いることにより、実験室的にも工業的にも容易に(メタ)アクリル酸無水物を製造することができ、しかも(メタ)アクリル酸無水物を高収率で且つ高純度で製造することができる。 The production method of the present invention does not require triethylamine or the like as a catalyst, and does not require a water treatment step. Therefore, by using the production method of the present invention, (meth) acrylic anhydride can be easily produced both laboratoryally and industrially, and (meth) acrylic anhydride can be produced in high yield. Moreover, it can be produced with high purity.

本発明において、(メタ)アクリル酸無水物は、(メタ)アクリル酸アルカリ金属塩とスルホニルクロリドとを有機溶媒中で反応させることにより製造されることを特徴とする。 In the present invention, the (meth) acrylic anhydride is produced by reacting a (meth) acrylic acid alkali metal salt with a sulfonyl chloride in an organic solvent.

本発明で使用される(メタ)アクリル酸アルカリ金属塩としては、(メタ)アクリル酸リチウム、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム等が挙げられる。これらの(メタ)アクリル酸アルカリ金属塩の中でも、市場の供給性、反応性、反応後の処理の容易性を考慮すると、アクリル酸ナトリウム、アクリル酸カリウム、メタクリル酸ナトリウム、及びメタクリル酸カリウムが好ましい。 Examples of the (meth) acrylic acid alkali metal salt used in the present invention include (meth) lithium acrylate, sodium (meth) acrylate, potassium (meth) acrylate and the like. Among these (meth) acrylic acid alkali metal salts, sodium acrylate, potassium acrylate, sodium methacrylate, and potassium methacrylate are preferable in consideration of market availability, reactivity, and ease of post-reaction treatment. ..

本発明で使用されるスルホニルクロリドとしては、ベンゼンスルホニルクロリド、p-トルエンスルホニルクロリド及びメタンスルホニルクロリドが挙げられる。これらは、いずれも市場供給性、反応性、処理の容易性の点で優れている。 Examples of the sulfonyl chloride used in the present invention include benzenesulfonyl chloride, p-toluenesulfonyl chloride and methanesulfonyl chloride. All of these are excellent in terms of market availability, reactivity, and ease of processing.

本発明で使用される有機溶媒としては、ジクロロメタン、アセトン、ジメトキシエタン、THF(テトラヒドロフラン)、ジオキサン、メチルシクロペンチルエーテル、アセトニトリル、トルエン等が挙げられる。これら溶媒のうち、低沸点であること(高沸点溶媒は、目的とする(メタ)アクリル酸無水物が共沸し、収率の低下をまねく)、系での副反応性が低いこと、収率が高いこと、低価格であることを考慮すると、ジクロロメタン、アセトン、THF、ジメトキシエタンがより好ましい。これらの例示した4種類の溶媒は何れも使用可能であるが、ジクロロメタンは環境規制の問題があり、エーテル結合を有する化合物(THF及びジメトキシエタン、メチルシクロペンチルエーテル等)は、系に微量に存在するエポキサイドの重合を誘発する可能性があるため、アセトンが最も好ましい。 Examples of the organic solvent used in the present invention include dichloromethane, acetone, dimethoxyethane, THF (tetrahydrofuran), dioxane, methyl cyclopentyl ether, acetonitrile, toluene and the like. Among these solvents, the low boiling point (the high boiling point solvent azeotropes the target (meth) acrylic acid anhydride, which leads to a decrease in yield), the side reactivity in the system is low, and the yield is low. Dichloromethane, acetone, THF and dimethoxyethane are more preferred in view of their high rate and low cost. All of these four types of solvents exemplified can be used, but dichloromethane has a problem of environmental regulation, and compounds having an ether bond (THF and dimethoxyethane, methyl cyclopentyl ether, etc.) are present in a trace amount in the system. Acetone is most preferred as it can induce polymerization of epoxiside.

上述した8種類の有機溶媒のうち、ジクロロメタン、アセトン、ジメトキシエタン、ジオキサン、トルエンとアクリル酸無水物との共沸の確認のため、アクリル酸無水物10.0g、溶媒180mlを混合し、4.2kPaで減圧濃縮を行った。表1はその結果をまとめたものである。

Figure 2021080211
Of the eight types of organic solvents mentioned above, in order to confirm azeotrope of dichloromethane, acetone, dimethoxyethane, dioxane, toluene and acrylate anhydride, 10.0 g of acrylate anhydride and 180 ml of solvent were mixed at 4.2 kPa. Concentration under reduced pressure was performed. Table 1 summarizes the results.
Figure 2021080211

本発明の製造方法では、(メタ)アクリル酸アルカリ金属塩を溶媒に加え、撹拌して分散させながら、20℃前後でスルホニルクロリドを投入する。そして、原料消失をガスクロマトグラフィー(GC)で確認した後、濾過し、溶媒濃縮に続いて蒸留をするという操作だけで、目的とする(メタ)アクリル酸無水物を収率良く得ることができる。このとき、上述した4種類の溶媒のいずれかを用いれば、(メタ)アクリル酸アルカリ金属塩の1〜6倍量、好ましくは2〜3倍量の溶媒で(メタ)アクリル酸アルカリ金属塩が十分に分散するため、溶媒の使用量が少なくて済む。 In the production method of the present invention, a (meth) acrylic acid alkali metal salt is added to a solvent, and sulfonyl chloride is added at about 20 ° C. while stirring and dispersing. Then, the desired (meth) acrylic anhydride can be obtained in good yield only by confirming the disappearance of the raw material by gas chromatography (GC), filtering, concentrating the solvent, and then distilling. .. At this time, if any of the above-mentioned four kinds of solvents is used, the (meth) acrylic acid alkali metal salt can be obtained in an amount of 1 to 6 times, preferably 2 to 3 times the amount of the (meth) acrylic acid alkali metal salt. Since it is sufficiently dispersed, the amount of solvent used can be small.

本発明の代表的な反応例及びその化学反応式を以下に示す。

Figure 2021080211
Typical reaction examples of the present invention and their chemical reaction formulas are shown below.
Figure 2021080211

Figure 2021080211
Figure 2021080211

上記化学反応式から、2molの(メタ)アクリル酸ナトリウムと1molの p-メタンスルホニルクロリド、p-ベンゼンスルホニルクロリド、p-トルエンスルホニルクロリド(以下、PTS−Cl等という)が反応して1molの(メタ)アクリル酸無水物が得られることは明らかであるが、工業的には、2molの(メタ)アクリル酸ナトリウムに対してPTS−Cl等の量を0.98molにする等、1molよりも少なくすることが好ましい。これは、処理又は蒸留工程で反応系にPTS−Cl等が存在すると、PTS−Cl等が腐食性のある酸に解離し、製品となる(メタ)アクリル酸無水物に悪影響を与える可能性があることから、未反応のPTS−Cl等が生じることを避けるためである。 From the above chemical reaction formula, 2 mol of sodium (meth) acrylate reacts with 1 mol of p-methanesulfonyl chloride, p-benzenesulfonyl chloride, and p-toluenesulfonyl chloride (hereinafter referred to as PTS-Cl, etc.) to 1 mol (hereinafter referred to as PTS-Cl, etc.). It is clear that a meta) acrylate anhydride can be obtained, but industrially, the amount of PTS-Cl or the like is reduced to 0.98 mol or less than 1 mol with respect to 2 mol of sodium (meth) acrylate. Is preferable. This is because if PTS-Cl or the like is present in the reaction system in the treatment or distillation step, PTS-Cl or the like may be dissociated into a corrosive acid, which may adversely affect the (meth) acrylic anhydride produced as a product. This is to avoid the occurrence of unreacted PTS-Cl and the like.

本発明においては、溶媒中にアルカリ金属塩を分散させ、その分散状態の中にスルホニルクロリドを添加することにより反応が進行する。この反応は発熱反応であるため、適時少量ずつスルホニルクロリドを添加するか、0℃〜70℃、好ましくは室温〜50℃の範囲で反応させる。反応はガスクロマトグラフ(GC)によりチェックしながらPTS−Clが消失するまで続ける。通常の反応時間は2時聞から48時間の範囲である。この反応系では、重合化が進む可能性が高いため、重合が起きないようにするために重合禁止剤を添加すると良い。重合禁止剤としては、例えばフェノチアジン、ハイドロキノン、4-メトキシフェノール、2,6-ジ-tert-ブチル-p-クレゾール、2-ヒドロキシ-1,4-ナフトキノン、テトラ(C12〜C15アルキル)-4,4'-イソプロピリデンジフェニルジホスファイト及び種々の市販されている重合禁止剤の何れを用いても良く、2種以上を用いても良い。
通常、アルカリ金属塩に対して5ppm〜500ppmの重合禁止剤を用いることができ、100〜300ppmの重合禁止剤を用いるのがより好ましい。
In the present invention, the reaction proceeds by dispersing the alkali metal salt in the solvent and adding sulfonyl chloride in the dispersed state. Since this reaction is an exothermic reaction, sulfonyl chloride is added little by little at appropriate times, or the reaction is carried out in the range of 0 ° C. to 70 ° C., preferably room temperature to 50 ° C. The reaction is continued until PTS-Cl disappears, checking with a gas chromatograph (GC). Normal reaction times range from 2 o'clock to 48 hours. In this reaction system, there is a high possibility that polymerization will proceed, so it is advisable to add a polymerization inhibitor to prevent polymerization from occurring. Examples of polymerization inhibitors include phenothiazine, hydroquinone, 4-methoxyphenol, 2,6-di-tert-butyl-p-cresol, 2-hydroxy-1,4-naphthoquinone, tetra (C12 to C15 alkyl) -4, Any of 4'-isopropyridene diphenyldiphosphite and various commercially available polymerization inhibitors may be used, and two or more thereof may be used.
Generally, a polymerization inhibitor of 5 ppm to 500 ppm can be used with respect to the alkali metal salt, and it is more preferable to use a polymerization inhibitor of 100 to 300 ppm.

上述の反応の後、濾過し、溶媒の濃縮、続いて減圧蒸留することにより目的とするアクリル酸無水物、メタクリル酸無水物が、高純度で且つ高収率で得られる。このように水処理および乾燥剤による乾燥工程を必要とせず、簡便な操作で目的とする酸無水物が得られる。 After the above reaction, the desired acrylic anhydride and methacrylic anhydride can be obtained with high purity and high yield by filtering, concentrating the solvent, and then distilling under reduced pressure. As described above, the desired acid anhydride can be obtained by a simple operation without requiring a water treatment and a drying step with a desiccant.

以下、本発明の具体的な実施例について詳述するが、これらに限定されるものではない。以下の実施例において、(メタ)アクリル酸無水物の同定はガスクロマトグラフィー(以下GCという)により行った。また、蒸留後の(メタ)アクリル酸無水物には重合禁止剤である4-メトキシフェノールを200ppm添加した。 Hereinafter, specific examples of the present invention will be described in detail, but the present invention is not limited thereto. In the following examples, the identification of (meth) acrylic anhydride was performed by gas chromatography (hereinafter referred to as GC). In addition, 200 ppm of 4-methoxyphenol, which is a polymerization inhibitor, was added to the (meth) acrylic anhydride after distillation.

[実施例1]
<アクリル酸無水物の合成;アクリル酸ナトリウム、p-トルエンスルホニルクロリド(TsCl)系>
撹拌機、温度計を備えた300mlの4つ口フラスコに純空気を通しながら25℃下でアセトン77.7mL、アクリル酸ナトリウム25.9g(0.28mol)、4-メトキシフェノール25.9mg及びフェノチアジン25.9mgを仕込み、撹拌して分散させた。そこに、TsCl25.0g(0.13mol)を添加した。その後、48時間をかけて熟成した。その粗体の転化率は98.7%であった。
[Example 1]
<Synthesis of acrylic anhydride; sodium acrylate, p-toluenesulfonyl chloride (TsCl) system>
Add 77.7 mL of acetone, 25.9 g (0.28 mol) of sodium acrylate, 25.9 mg of 4-methoxyphenol and 25.9 mg of phenothiazine at 25 ° C while passing pure air through a 300 ml four-necked flask equipped with a stirrer and a thermometer. , Stirred and dispersed. To this, 25.0 g (0.13 mol) of TsCl was added. After that, it was aged for 48 hours. The conversion rate of the crude body was 98.7%.

反応終了後、濾紙を用いて濾過し、アセトン100mlで3回洗浄を行った後、アセトンを減圧留去し、粗体アクリル酸無水物16.3g(TsClに対して粗体収率98.6%、GC純度
92.4%)を得た。
続いて、上記粗体を純空気下で減圧蒸留し、アクリル酸無水物14.1g(b.p. 40℃(O.4kPa)、TsClに対して収率85.2%、GC純度99.6%)を得た。
After completion of the reaction, the mixture was filtered using a filter paper, washed 3 times with 100 ml of acetone, and then acetone was distilled off under reduced pressure to 16.3 g of crude acrylic anhydride (crude yield 98.6% with respect to TsCl, GC). purity
92.4%) was obtained.
Subsequently, the crude product was distilled under reduced pressure under pure air to obtain 14.1 g of acrylic anhydride (bp 40 ° C. (O.4 kPa), yield 85.2% with respect to TsCl, GC purity 99.6%).

[実施例2]
<アクリル酸無水物の合成;アクリル酸ナトリウム、メタンスルホニルクロリド(MsCl)系>
撹拌機、温度計を備えた300mlの4つ口フラスコに純空気を通しながら氷浴下でアセトン129.3mL、アクリル酸ナトリウム43.1g(0.46mol)、4-メトキシフェノール43.1mg、及びフェノチアジン43.1mgを仕込み、撹拌し、分散させた。そこに、MsCl 25.0g(0.22mol)を5分かけて滴下した。その後、氷浴下で撹拌し、発熱が収まったことを確認したところで外温を25℃にし、2時間かけて熟成しつつGCにより反応を追跡し、MsClが消失したことを確認した。そのときの組体の転化率は99.8%であった。
[Example 2]
<Synthesis of acrylic anhydride; sodium acrylate, methanesulfonyl chloride (MsCl) system>
129.3 mL of acetone, 43.1 g (0.46 mol) of sodium acrylate, 43.1 mg of 4-methoxyphenol, and 43.1 mg of phenothiazine under an ice bath while passing pure air through a 300 ml four-necked flask equipped with a stirrer and a thermometer. It was charged, stirred and dispersed. 25.0 g (0.22 mol) of MsCl was added dropwise thereto over 5 minutes. Then, the mixture was stirred under an ice bath, and when it was confirmed that the exotherm had subsided, the outside temperature was set to 25 ° C., and the reaction was followed by GC while aging for 2 hours, and it was confirmed that MsCl had disappeared. The conversion rate of the braid at that time was 99.8%.

反応終了後、濾紙を用いて濾過し、アセトン100mlで3回洗浄を行った後、アセトンを減圧留去し、粗体アクリル酸無水物27.7g(MsClに対して組体収率100.7%、GC純度96.6%)を得た。
続いて、上記粗体を純空気下で減圧蒸留し、アクリル酸無水物24.9g(b.p. 40℃(O.4kPa)、MsClに対して収率90.7%、GC純度99.1%)を得た。
After completion of the reaction, the mixture was filtered using a filter paper, washed 3 times with 100 ml of acetone, and then the acetone was distilled off under reduced pressure to obtain 27.7 g of crude acrylic anhydride (100.7% of assembly yield based on MsCl, GC). Purity 96.6%) was obtained.
Subsequently, the crude product was distilled under reduced pressure under pure air to obtain 24.9 g of acrylic anhydride (bp 40 ° C. (O.4 kPa), yield 90.7% with respect to MsCl, GC purity 99.1%).

[実施例3]
<アクリル酸無水物の合成;アクリル酸カリウム、TsCl系>
撹拌機、温度計を備えた300mlの4つ口フラスコに純空気を通しながら25℃下でアセトン91.0mL、アクリル酸カリウム30.3g(0.28mol)、4-メトキシフェノール30.3mg、及びフェノチアジン30.3mgを仕込み、撹拌し分散させた。そこに、TsCl25.0g(0.13mol)を添加した。その後、7時間かけて熟成した。その粗体の転化率は98.7%であった。
[Example 3]
<Synthesis of acrylate anhydride; potassium acrylate, TsCl type>
Acetone 91.0 mL, potassium acrylate 30.3 g (0.28 mol), 4-methoxyphenol 30.3 mg, and phenothiazine 30.3 mg at 25 ° C while passing pure air through a 300 ml four-necked flask equipped with a stirrer and a thermometer. It was charged, stirred and dispersed. To this, 25.0 g (0.13 mol) of TsCl was added. After that, it was aged for 7 hours. The conversion rate of the crude body was 98.7%.

反応終了後、濾紙を用いて濾過し、アセトン100mlで3回洗浄を行った後、アセトンを減圧留去し、粗体アクリル酸無水物16.6g(TsClに対して粗体収率100.3%、GC純度94.7%)を得た。
続いて、上記粗体を純空気下で減圧蒸留して、アクリル酸無水物14.5g(b.p. 40℃ (O.4kPa)、TsClに対して収率90.5%、GC純度99.1%)を得た。
After completion of the reaction, the mixture was filtered using a filter paper, washed with 100 ml of acetone three times, and then acetone was distilled off under reduced pressure to obtain 16.6 g of crude acrylic anhydride (crude yield 100.3% with respect to TsCl, GC). Purity 94.7%) was obtained.
Subsequently, the crude product was distilled under reduced pressure under pure air to obtain 14.5 g of acrylic anhydride (bp 40 ° C. (O.4 kPa), yield 90.5% with respect to TsCl, GC purity 99.1%).

[実施例4]
<アクリル酸無水物の合成;アクリル酸カリウム、MsCl系>
撹拌機、温度計を備えた300mlの4つ口フラスコに純空気を通しながら氷浴下でアセトン151.5mL、アクリル酸カリウム50.5g(0.46mol)、4-メトキシフェノーノレ50.5mg、及びフェノチアジン50.5mgを仕込み、撹拌して分散させた。そこに、MsCl 25.0g(0.22mol)を30分かけて滴下した。その後、氷浴下で撹拌し、発熱が収まったのを確認したところで外温を25℃とし、1時間をかけて熟成しつつGCにより反応を追跡したところ、MsClが消失したのを確認した。その粗体の転化率は99.1%であった。
[Example 4]
<Synthesis of acrylic anhydride; potassium acrylate, MsCl type>
Acetone 151.5 mL, potassium acrylate 50.5 g (0.46 mol), 4-methoxyphenonole 50.5 mg, and phenothiazine 50.5 mg under an ice bath while passing pure air through a 300 ml four-necked flask equipped with a stirrer and a thermometer. Was charged, stirred and dispersed. 25.0 g (0.22 mol) of MsCl was added dropwise thereto over 30 minutes. Then, the mixture was stirred under an ice bath, and when it was confirmed that the exotherm had subsided, the outside temperature was set to 25 ° C., and the reaction was followed by GC while aging for 1 hour. As a result, it was confirmed that MsCl had disappeared. The conversion rate of the crude body was 99.1%.

反応終了後、濾紙を用いて濾過し、アセトン100mLで3回洗浄を行った後、アセトンを減圧留去し、粗体アクリル酸無水物28.5g(MsClに対して粗体収率103.5%、GC純度95.3%)を得た。
上記粗体を純空気下で減圧蒸留すると、アクリル酸無水物25.7g (b.p.40℃(O.4kPa)、MsClに対して収率93.3%、GC純度99.3%)を得た。
After completion of the reaction, the mixture was filtered using a filter paper, washed with 100 mL of acetone three times, and then acetone was distilled off under reduced pressure to obtain 28.5 g of crude acrylic anhydride (crude yield 103.5% with respect to MsCl, GC). Purity 95.3%) was obtained.
The crude product was distilled under reduced pressure under pure air to obtain 25.7 g of acrylic anhydride (bp 40 ° C. (O.4 kPa), yield 93.3% with respect to MsCl, GC purity 99.3%).

[実施例5]
<メタクリル酸無水物の合成;メタクリル酸ナトリウム、TsCl系>
撹拌機、温度計を備えた300mlの4つ口フラスコに純空気を通しながら25℃下でアセトン89.3mL、メタクリル酸ナトリウム29.8g(0.28mol、4-メトキシフェノール29.8mg、及びフェノチアジン29.8mgを仕込み、撹拌して分散させ、そこにTsCl 25.0g(0.13mol)を添加した。その後、7時間をかけて熟成しつつ、GCにより反応を追跡したところ、TsClが消失したのを確認した。その粗体の転化率は99.6%であった。
[Example 5]
<Synthesis of methacrylic anhydride; sodium methacrylate, TsCl type>
Acetone 89.3 mL, sodium methacrylate 29.8 g (0.28 mol, 4-methoxyphenol 29.8 mg, and phenothiazine 29.8 mg) were charged at 25 ° C while passing pure air through a 300 ml four-necked flask equipped with a stirrer and a thermometer. , Stirred and dispersed, and 25.0 g (0.13 mol) of TsCl was added thereto. Then, when the reaction was followed by GC while aging for 7 hours, it was confirmed that TsCl had disappeared. The conversion rate of the body was 99.6%.

反応終了後、濾紙を用いて濾過し、アセトン100mlで3回洗浄を行った後、アセトンを減圧留去し、粗体メタクリル酸無水物20.9g(TsClに対して粗体収率103.4%、GC純度94.6%)を得た。
続いて上記粗体を純空気下で減圧蒸留し、メタクリル酸無水物17.8g (b.p. 53℃(O.4kPa)、TsClに対して収率87.9%、GC純度99.6%)を得た。
After completion of the reaction, the mixture was filtered using a filter paper, washed with 100 ml of acetone three times, and then acetone was distilled off under reduced pressure to obtain 20.9 g of crude methacrylic anhydride (crude yield 103.4% with respect to TsCl, GC). Purity 94.6%) was obtained.
Subsequently, the crude product was distilled under reduced pressure under pure air to obtain 17.8 g of methacrylic anhydride (bp 53 ° C. (O.4 kPa), yield 87.9% with respect to TsCl, GC purity 99.6%).

[実施例6]
<メタクリル酸無水物の合成;メタクリル酸ナトリウム、MsCl系>
撹拌機、温度計を備えた300mlの4つ口フラスコに純空気を通しながら氷浴下でアセトン148.6mL、メタクリル酸ナトリウム49.5g(0.46mol)、4-メトキシフェノール49.5mg、及びフェノチアジン49.5mgを仕込み、撹拌して分散させた。そこにMsCl 25.0g(0.22mol)を5分かけて滴下した。その後、氷浴下で撹拌し、発熱が収まったのを確認したところで外温25℃とし、1時間かけて熟成しつつGCにより反応を追跡したところ、MsClが消失したことを確認した。その粗体の転化率は100.0%であった。
[Example 6]
<Synthesis of methacrylic anhydride; sodium methacrylate, MsCl type>
148.6 mL of acetone, 49.5 g (0.46 mol) of sodium methacrylate, 49.5 mg of 4-methoxyphenol, and 49.5 mg of phenothiazine under an ice bath while passing pure air through a 300 ml four-necked flask equipped with a stirrer and a thermometer. It was charged, stirred and dispersed. 25.0 g (0.22 mol) of MsCl was added dropwise thereto over 5 minutes. Then, the mixture was stirred under an ice bath, and when it was confirmed that the exotherm had subsided, the outside temperature was set to 25 ° C., and the reaction was followed by GC while aging for 1 hour. As a result, it was confirmed that MsCl had disappeared. The conversion rate of the crude material was 100.0%.

反応終了後、濾紙を用いて濾過し、アセトン100mlで3回洗浄を行った後、アセトンを減圧留去して、粗体メタクリル酸無水物34.6g(MsClに対して粗体収率102.8%、GC純度97.7%)を得た。
上記粗体を純空気下で減圧蒸留すると、メタクリル酸無水物 31.0g(b.p.53℃(O.4kPa)、MsClに対して収率92.1%、GC純度99.2%)を得た。
After completion of the reaction, the mixture was filtered using a filter paper, washed 3 times with 100 ml of acetone, and then the acetone was distilled off under reduced pressure to obtain 34.6 g of crude methacrylic anhydride (crude yield 102.8% with respect to MsCl). GC purity 97.7%) was obtained.
The crude product was distilled under reduced pressure under pure air to obtain 31.0 g of methacrylic anhydride (bp53 ° C. (O.4 kPa), yield 92.1% with respect to MsCl, GC purity 99.2%).

[実施例7]
<メタクリル酸無水物の合成;メタクリル酸カリウム、TsCl系>
撹拌機、温度計を備えた300mlの4つ口フラスコに純空気を通しながら25℃下でアセトン102.6mL、メタクリル酸カリウム34.2g(0.28mol)、4-メトキシフェノール34.2mg、及びフェノチアジン34.2mgを仕込み、撹拌して分散させた。そこにTsCl 25.0g(0.13mol)を添加した。その後、3時間をかけて熟成しつつ、GCにより反応を追跡したところTsClが消失したことを確認した。その粗体の転化率は99.6%であった。
[Example 7]
<Synthesis of methacrylic anhydride; potassium methacrylate, TsCl type>
Acetone 102.6 mL, potassium methacrylate 34.2 g (0.28 mol), 4-methoxyphenol 34.2 mg, and phenothiazine 34.2 mg at 25 ° C while passing pure air through a 300 ml four-necked flask equipped with a stirrer and a thermometer. It was charged, stirred and dispersed. 25.0 g (0.13 mol) of TsCl was added thereto. Then, while aging for 3 hours, the reaction was followed by GC, and it was confirmed that TsCl disappeared. The conversion rate of the crude body was 99.6%.

反応終了後、濾紙を用いて濾過し、アセトン100mlで3回洗浄を行った後、アセトンを減圧留去し、粗体メタクリル酸無水物16.5g(TsClに対して粗体収率100.0%、GC純度95.6%)を得た。
続いて、上記粗体を純空気下で減圧蒸留し、メタクリル酸無水物14.7g(b.p. 53℃(O.4kPa)、TsClに対して収率88.7%、GC純度99.4%)を得た。
After completion of the reaction, the mixture was filtered using a filter paper, washed with 100 ml of acetone three times, and then acetone was distilled off under reduced pressure to obtain 16.5 g of crude methacrylic anhydride (crude yield 100.0% based on TsCl, GC). Purity 95.6%) was obtained.
Subsequently, the crude product was distilled under reduced pressure under pure air to obtain 14.7 g of methacrylic anhydride (bp 53 ° C. (O.4 kPa), yield 88.7% with respect to TsCl, GC purity 99.4%).

[実施例8]
<メタクリル酸無水物の合成;メタクリル酸カリウム、MsCl系>
撹拌機、温度計を備えた300mlの4つ口フラスコに純空気を氷浴下でアセトン148.6mL、メタクリル酸カリウム49.5g(0.46mol)、4-メトキシフェノール49.5mg、及びフェノチアジン49.5mgを仕込み、撹拌して分散させた。そこに、MsCl 25.0g(0.22mol)を30分かけて滴下した。その後、氷浴下で撹拌し、発熱が収まったのを確認したところで外温25℃とし、1時間をかけて熟成しつつ、GCにより反応を追跡したところ、MsClが消失したのを確認した。その粗体の転化率は99.0%であった。
[Example 8]
<Synthesis of methacrylic anhydride; potassium methacrylate, MsCl type>
In a 300 ml four-necked flask equipped with a stirrer and a thermometer, pure air was charged with 148.6 mL of acetone, 49.5 g (0.46 mol) of potassium methacrylate, 49.5 mg of 4-methoxyphenol, and 49.5 mg of phenothiazine under an ice bath. It was stirred and dispersed. 25.0 g (0.22 mol) of MsCl was added dropwise thereto over 30 minutes. Then, the mixture was stirred under an ice bath, and when it was confirmed that the exotherm had subsided, the outside temperature was set to 25 ° C., and the reaction was followed by GC while aging for 1 hour. As a result, it was confirmed that MsCl had disappeared. The conversion rate of the crude body was 99.0%.

反応終了後、濾紙を用いて濾過し、アセトン100mLで3回洗浄を行った後、アセトンを減圧留去し、粗体メタクリル酸無水物27.8g(MsClに対して粗体収率101.0%、GC純度98.0%)を得た。
続いて、上記粗体を純空気下で減圧蒸留し、メタクリル酸無水物26.1g(b.p.53℃(O.4kPa)、MsClに対して収率94.8%、GC純度99.6%)を得た。
After completion of the reaction, the mixture was filtered using a filter paper, washed 3 times with 100 mL of acetone, and then the acetone was distilled off under reduced pressure to obtain 27.8 g of crude methacrylic anhydride (crude yield 101.0% with respect to MsCl, GC). Purity 98.0%) was obtained.
Subsequently, the crude product was distilled under reduced pressure under pure air to obtain 26.1 g of methacrylic anhydride (bp53 ° C. (O.4 kPa), yield 94.8% with respect to MsCl, GC purity 99.6%).

実施例1〜8の結果を以下の表2にまとめた。

Figure 2021080211
The results of Examples 1 to 8 are summarized in Table 2 below.
Figure 2021080211

Claims (4)

(メタ)アクリル酸アルカリ金属塩とスルホニルクロリドとを有機溶媒中で反応させることを特徴とする(メタ)アクリル酸無水物の製造方法。 A method for producing a (meth) acrylic anhydride, which comprises reacting a (meth) acrylic acid alkali metal salt with a sulfonyl chloride in an organic solvent. 請求項1に記載の製造方法において、
前記(メタ)アクリル酸アルカリ金属塩が、アクリル酸リチウム、アクリル酸ナトリウム、アクリル酸カリウム、メタクリル酸リチウム、メタクリル酸ナトリウム、及びメタクリル酸カリウムから成る群から選ばれることを特徴とする(メタ)アクリル酸無水物の製造方法。
In the manufacturing method according to claim 1,
The (meth) acrylic acid alkali metal salt is selected from the group consisting of lithium acrylate, sodium acrylate, potassium acrylate, lithium methacrylate, sodium methacrylate, and potassium methacrylate. Method for producing acid anhydride.
請求項1または2に記載の製造方法において、
前記スルホニルクロリドが、ベンゼンスルホニルクロリド、p-トルエンスルホニルクロリドまたはメタンスルホニルクロリドであることを特徴とする(メタ)アクリル酸無水物の製造方法。
In the manufacturing method according to claim 1 or 2.
A method for producing a (meth) acrylic anhydride, wherein the sulfonyl chloride is a benzenesulfonyl chloride, a p-toluenesulfonyl chloride or a methanesulfonyl chloride.
請求項1〜3のいずれかに記載の製造方法において、
前記有機溶媒が、ジクロロメタン、アセトン、ジメトキシエタン、THF、ジオキサン、アセトニトリル、トルエンから成る群から選ばれることを特徴とする(メタ)アクリル酸無水物の製造方法。
In the manufacturing method according to any one of claims 1 to 3.
A method for producing a (meth) acrylic anhydride, wherein the organic solvent is selected from the group consisting of dichloromethane, acetone, dimethoxyethane, THF, dioxane, acetonitrile, and toluene.
JP2019209134A 2019-11-19 2019-11-19 Method for producing (meth)acrylic acid anhydride Pending JP2021080211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019209134A JP2021080211A (en) 2019-11-19 2019-11-19 Method for producing (meth)acrylic acid anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019209134A JP2021080211A (en) 2019-11-19 2019-11-19 Method for producing (meth)acrylic acid anhydride

Publications (1)

Publication Number Publication Date
JP2021080211A true JP2021080211A (en) 2021-05-27

Family

ID=75964089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209134A Pending JP2021080211A (en) 2019-11-19 2019-11-19 Method for producing (meth)acrylic acid anhydride

Country Status (1)

Country Link
JP (1) JP2021080211A (en)

Similar Documents

Publication Publication Date Title
JP5200464B2 (en) Process for producing fluorine-containing alkylsulfonylaminoethyl α-substituted acrylates
JP2818652B2 (en) Method for producing isobornyl (meth) acrylate
JP4736474B2 (en) Process for producing fluorine-containing alkylsulfonylaminoethyl α-substituted acrylates
JP2009029707A (en) Method for producing fluoroalkane sulfonamide derivative
JP2021080211A (en) Method for producing (meth)acrylic acid anhydride
JP5659658B2 (en) Process for producing α, α-difluoroesters
JP6086163B2 (en) Method for producing 2&#39;-trifluoromethyl group-substituted aromatic ketone
JP5018067B2 (en) Method for producing fluorine-containing alkane esters
JP6074670B2 (en) Process for producing arene compounds containing perfluoroalkenyloxy groups
JP4118555B2 (en) Method for producing N- (adamantyl) amide compound
US20200087254A1 (en) Racemic beta-aminosulfone compounds
JP6685367B2 (en) Method for producing adamantyl (meth) acrylate compound
JP2006312644A (en) METHOD FOR PRODUCING beta-KETONITRILES
JP2009256307A (en) Adamantyl ester of unsaturated carboxylic acid and method for producing the same
JP2008105955A (en) Method for producing (meth)acrylic ester
JP4030289B2 (en) Process for producing β-ketonitriles
JPH05140034A (en) Production of o-alkoxybenzoic acid
JP2009256306A (en) Adamantane derivative having polymerizable unsaturated group, and method for producing the same
UA78876C2 (en) Process for production of an acetylenic compound
JP2005343793A (en) Method for producing unsaturated carboxylic acid halide and method for producing adamantane compound by using the same unsaturated carboxylic acid halide
JP5209201B2 (en) Method for producing high-purity organic acid chloride having an unsaturated group in the molecule
JP6434261B2 (en) Iodobenzamide type alcohol oxidation catalyst
JP2022156436A (en) Method for producing 3-(meth)acryloyl sulfolane
JP2001233827A (en) New (meth)acrylic acid ester and method for producing the same
JP2012036138A (en) Method for producing adamantyl di(meth)acrylate, adamantyl di(meth)acrylate obtained by the method, and material including adamantyl di(meth)acrylate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20191202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240409