JP2016169192A - Method of producing 7-octenyl halide - Google Patents

Method of producing 7-octenyl halide Download PDF

Info

Publication number
JP2016169192A
JP2016169192A JP2015051221A JP2015051221A JP2016169192A JP 2016169192 A JP2016169192 A JP 2016169192A JP 2015051221 A JP2015051221 A JP 2015051221A JP 2015051221 A JP2015051221 A JP 2015051221A JP 2016169192 A JP2016169192 A JP 2016169192A
Authority
JP
Japan
Prior art keywords
octenyl
halide
mol
octen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015051221A
Other languages
Japanese (ja)
Inventor
佐藤 純子
Junko Sato
純子 佐藤
克爾 宇治田
Katsuji Ujita
克爾 宇治田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2015051221A priority Critical patent/JP2016169192A/en
Publication of JP2016169192A publication Critical patent/JP2016169192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method that allows high-yield, inexpensive and industrially advantageous production of 7-octenyl halide.SOLUTION: A method of producing 7-octenyl halide comprises reacting 7-octene-1-ol with thionyl halide represented by the general formula (I) in the figure, where X represents a chlorine atom, bromine atom or iodine atom.SELECTED DRAWING: None

Description

本発明は、7−オクテニルハライドの製造方法に関する。   The present invention relates to a method for producing 7-octenyl halide.

7−オクテニルハライドの製造方法としては、例えば
(1)1,7−オクタジエンを塩素化または臭素化またはヨウ素化する方法(特許文献1、非特許文献1、2参照)、
(2)8−クロロ−1−オクチンをリンドラー触媒存在下水添し、7−オクテニルクロリドを製造する方法(非特許文献3参照)、
(3)7−オクテニルブロミドとテトラメチルアンモニウムクロリドより7−オクテニルクロリドを製造する方法(特許文献1参照)、
(4)アリルマグネシウムブロミドと1−ブロモ−5−クロロペンタンを反応させる方法(非特許文献4、5参照)、
(5)アリルマグネシウムクロリドと1,5−ジクロロペンタンを反応させる方法(非特許文献6参照)、
(6)アリルマグネシウムブロミドと1,5−ジブロモペンタンを反応させる方法(特許文献3参照)、
(7)メチルトリ(5−クロロペンタン)ホウ素銅とアリルクロリドを反応させる方法(非特許文献7参照)
などが挙げられる。
As a manufacturing method of 7-octenyl halide, for example, (1) 1,7-octadiene is chlorinated or brominated or iodinated (see Patent Document 1, Non-Patent Documents 1 and 2),
(2) A method of producing 7-octenyl chloride by hydrogenating 8-chloro-1-octyne in the presence of a Lindlar catalyst (see Non-Patent Document 3),
(3) A method for producing 7-octenyl chloride from 7-octenyl bromide and tetramethylammonium chloride (see Patent Document 1),
(4) A method of reacting allylmagnesium bromide and 1-bromo-5-chloropentane (see Non-Patent Documents 4 and 5),
(5) A method of reacting allylmagnesium chloride and 1,5-dichloropentane (see Non-Patent Document 6),
(6) A method of reacting allylmagnesium bromide with 1,5-dibromopentane (see Patent Document 3),
(7) Method of reacting methyltri (5-chloropentane) boron copper with allyl chloride (see Non-Patent Document 7)
Etc.

欧州特許出願公開第99572号明細書European Patent Application No. 99572 米国特許第3459819号明細書US Pat. No. 3,598,819 国際公開第2004/113419号International Publication No. 2004/113419

ジャーナル オブ ポリマー サイエンス,パート エー:ゼネラル ペーパーズ(Journal of Polymer Science,Part A:General Papers)、3巻、7号、2491頁、1965年Journal of Polymer Science, Part A: General Papers (Part A: General Papers), Vol. 7, No. 7, p. 2491, 1965 テトラへドロン レターズ(Tetrahedron Letters)、25巻、48号、5525頁、1984年Tetrahedron Letters, 25, 48, 5525, 1984 ガゼッタ キミカ イタリアナ(Gazzeta Chimica Italiana)、106巻、187頁、1976年Gazetta Chimica Italiana, 106, 187, 1976 オーガニック シンセシズ(Organic Syntheses),76巻、221頁、1999年Organic Synthesis, 76, 221 (1999) テトラへドロン レターズ(Tetrahedron Letters)、36巻、47号、8565頁、1995年Tetrahedron Letters, 36, 47, 8565, 1995 テトラへドロン(Tetrahedron)、60巻、28号、6001頁、2004年Tetrahedron, 60, 28, 6001, 2004 ブリトゥン オブ ザ ケミカル ソサイエティ オブ ジャパン(Bulletin of theChemical Society of Japan)、50巻、8号、2199頁、1977年Bulletin of the Chemical Society of Japan, Vol. 50, No. 8, pp. 2199, 1977 (Bulletin of the Chemical Society of Japan)

しかしながら、上記(1)の方法では、両末端へのハロゲン化が進行し生成物の選択性が低く、(2)や(3)の方法では、原料となる8−クロロ−1−オクチンあるいは7−オクテニルブロミドの入手が困難であり、(4)〜(6)の方法では、いずれも高価な反応剤を用いる必要があると共に、反応後処理後に廃棄物が大量に発生し、加えて(5)の方法では収率29%と低く工業的に製造することは困難である。また、(7)の方法では、メチルトリ(5−クロロペンタン)ホウ素銅を得るまでに多工程を要し、反応処理後の廃棄物も大量に発生するという問題があった。このため、上記(1)〜(8)の方法では7−オクテニルハライドを工業的に安価に製造することは困難であった。   However, in the method (1), halogenation at both ends proceeds and the selectivity of the product is low. In the methods (2) and (3), 8-chloro-1-octyne or 7 as a raw material is used. -Octenyl bromide is difficult to obtain, and in any of the methods (4) to (6), it is necessary to use an expensive reagent, and a large amount of waste is generated after the post-reaction treatment. In the method 5), the yield is as low as 29% and it is difficult to produce it industrially. Further, the method (7) has a problem that many steps are required until methyltri (5-chloropentane) boron copper is obtained, and a large amount of waste is generated after the reaction treatment. For this reason, it has been difficult to produce 7-octenyl halide industrially at low cost by the methods (1) to (8).

しかして、本発明の目的は、7−オクテニルハライドを、好収率かつ安価に、工業的に有利に製造し得る方法を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of industrially advantageously producing 7-octenyl halide at a good yield and low cost.

本発明者らは、鋭意検討した結果、工業的に入手しやすい7−オクテン−1−オールとハロゲン化チオニルを反応させると、驚くべきことに、末端二重結合へハロゲン化水素が付加した副生成物の生成が抑制され、目的生成物である7−オクテニルハライドが高収率で得られることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have surprisingly found that when 7-octen-1-ol, which is industrially available, is reacted with thionyl halide, a hydrogen halide is added to the terminal double bond. The production of the product was suppressed, and it was found that the target product, 7-octenyl halide, was obtained in high yield, and the present invention was completed.

すなわち、本発明は、
[1]7−オクテン−1−オールを、下記一般式(I)

Figure 2016169192
That is, the present invention
[1] 7-octen-1-ol is represented by the following general formula (I)
Figure 2016169192

(式中、Xは、塩素原子、臭素原子またはヨウ素原子を表す)
で示されるハロゲン化チオニルと反応させることを特徴とする7−オクテニルハライドの製造方法。
[2]Xが塩素原子であることを特徴とする、[1]の製造方法。
[3]塩基の存在下に行う、[1]または[2]の製造方法。
[4]反応温度が20〜200℃である、[1]〜[3]のいずれかの製造方法。
を提供する。
(In the formula, X represents a chlorine atom, a bromine atom or an iodine atom)
A process for producing a 7-octenyl halide, characterized by reacting with a thionyl halide represented by the formula:
[2] The production method of [1], wherein X is a chlorine atom.
[3] The production method of [1] or [2], which is carried out in the presence of a base.
[4] The production method of any one of [1] to [3], wherein the reaction temperature is 20 to 200 ° C.
I will provide a.

本発明によれば、医薬品、農薬、各種化学品、樹脂などの原料として有用である7−オクテニルハライドを、好収率かつ安価に、工業的に有利に製造することができる。   According to the present invention, 7-octenyl halide, which is useful as a raw material for pharmaceuticals, agricultural chemicals, various chemicals, resins and the like, can be industrially advantageously produced in good yield and low cost.

式(I)中のXは、塩素原子、臭素原子またはヨウ素原子を表す。これらのうち、塩素原子が好ましい。式(I)で表されるハロゲン化チオニルの使用量は、7−オクテン−1−オールに対して通常0.8〜5モル倍の範囲が好ましく、経済性および後処理の容易さの観点から、1〜3モル倍の範囲がより好ましい。   X in the formula (I) represents a chlorine atom, a bromine atom or an iodine atom. Of these, a chlorine atom is preferred. The amount of thionyl halide represented by the formula (I) is preferably in the range of 0.8 to 5 mol times based on 7-octen-1-ol, from the viewpoint of economy and ease of post-treatment. The range of 1-3 mole times is more preferable.

本発明の製造方法は、塩基の存在下または非存在下で実施できるが、塩基の存在下で実施するのが好ましい。塩基の存在下に反応を実施する場合に使用できる塩基としては、例えばトリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、1,4−ジアザビシクロ[2.2.2]オクタンなどの三級アミン;ピリジン、2−ピコリン、2,6−ルチジンなどの含窒素複素環式芳香族化合物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸マグネシウム、炭酸カルシウムなどのアルカリ土類金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩;水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物;水素化マグネシウム、水素化カルシウムなどのアルカリ土類金属水素化物;ナトリウムメトキシド、ナトリウムエトキシドなどのアルコラートなどが挙げられる。中でも、三級アミンや含窒素複素環式芳香族化合物が好ましく、含窒素複素環式芳香族化合物がより好ましく、ピリジンが特に好ましい。
本発明の製造方法を塩基の存在下で実施することにより、副生成物、特に7−オクテン−1−オールの末端二重結合へハロゲン化水素が付加した副生成物の生成をより効果的に抑制できる。末端二重結合へのハロゲン化水素付加の抑制効果は塩基が三級アミンや含窒素複素環式芳香族化合物である場合に特に顕著であり、特にピリジンを用いるのが効果的である。
塩基の使用量は、7−オクテン−1−オールに対して通常0.001〜5モル倍の範囲が好ましく、経済性および後処理の容易さの観点から、0.01〜3モル倍の範囲がより好ましい。
The production method of the present invention can be carried out in the presence or absence of a base, but is preferably carried out in the presence of a base. Examples of bases that can be used when the reaction is carried out in the presence of a base include tertiary amines such as triethylamine, tributylamine, diisopropylethylamine, 1,4-diazabicyclo [2.2.2] octane; pyridine, 2-picoline Nitrogen-containing heterocyclic aromatic compounds such as 2,6-lutidine; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate; sodium hydrogen carbonate and potassium hydrogen carbonate Alkali metal hydrogencarbonates such as sodium hydride and potassium hydride; alkaline earth metal hydrides such as magnesium hydride and calcium hydride; alcoholates such as sodium methoxide and sodium ethoxide Can be mentioned. Of these, tertiary amines and nitrogen-containing heterocyclic aromatic compounds are preferred, nitrogen-containing heterocyclic aromatic compounds are more preferred, and pyridine is particularly preferred.
By carrying out the production method of the present invention in the presence of a base, by-products, in particular, by-products in which hydrogen halide is added to the terminal double bond of 7-octen-1-ol are more effectively produced. Can be suppressed. The effect of suppressing the addition of hydrogen halide to the terminal double bond is particularly remarkable when the base is a tertiary amine or a nitrogen-containing heterocyclic aromatic compound, and it is particularly effective to use pyridine.
The amount of base used is preferably in the range of usually 0.001 to 5 mol times relative to 7-octen-1-ol, and in the range of 0.01 to 3 mol times from the viewpoint of economy and ease of post-treatment. Is more preferable.

本発明の製造方法は、溶媒の存在下または非存在下で実施できる。溶媒の存在下に反応を実施する場合に使用できる溶媒としては、反応に関与しないものであれば特に制限されず、例えばペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素;クロロベンゼン、フルオロベンゼンなどのハロゲン化芳香族炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタン、ジグライム、トリグライム、テトラグライムなどのエーテル;ジクロロメタン、クロロホルム、1,2−ジクロロエタンなどのハロゲン化脂肪族炭化水素などが挙げられる。これらの溶媒は、1種類を単独で使用しても良いし、2種類以上を混合して使用しても良い。溶媒の存在下に反応を実施する場合、溶媒の使用量に特に制限はないが、通常7−オクテン−1−オールに対して、通常、0.1〜100質量倍の範囲が好ましく、0.5〜10質量倍の範囲であるのがより好ましく、1〜5質量倍の範囲であるのがさらに好ましい。なお、7−オクテニルハライドの生産性の観点からは、溶媒を使用せずに本発明の製造方法を実施することが好ましい。   The production method of the present invention can be carried out in the presence or absence of a solvent. The solvent that can be used when the reaction is carried out in the presence of a solvent is not particularly limited as long as it does not participate in the reaction. For example, aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; benzene, toluene, xylene , Aromatic hydrocarbons such as mesitylene; halogenated aromatic hydrocarbons such as chlorobenzene and fluorobenzene; diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diglyme, triglyme, tetraglyme, etc. Ether; Halogenated aliphatic hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane and the like. These solvents may be used alone or in combination of two or more. When the reaction is carried out in the presence of a solvent, the amount of the solvent used is not particularly limited, but is usually preferably in the range of 0.1 to 100 times by mass with respect to 7-octen-1-ol. It is more preferably in the range of 5 to 10 times by mass, and further preferably in the range of 1 to 5 times by mass. In addition, it is preferable to implement the manufacturing method of this invention, without using a solvent from a viewpoint of productivity of 7-octenyl halide.

本発明の製造方法において、反応温度は、20〜200℃の範囲であるのが好ましく、50〜150℃の範囲であるのがより好ましい。20℃より低い場合、反応中間体であるクロロ亜硫酸エステルから目的物への反応速度が非常に遅く、200℃より高い場合は、二重結合への塩素付加による不純物増加が著しい。反応時間は、7−オクテン−1−オール、塩基、ハロゲン化チオニル(I)及び溶媒の種類や使用量などにより異なるが、通常5分間〜48時間の範囲である。   In the production method of the present invention, the reaction temperature is preferably in the range of 20 to 200 ° C, more preferably in the range of 50 to 150 ° C. When the temperature is lower than 20 ° C., the reaction rate from the reaction intermediate chlorosulfite ester to the target product is very slow. When the temperature is higher than 200 ° C., the increase in impurities due to the addition of chlorine to the double bond is remarkable. While the reaction time varies depending on the type and amount of 7-octen-1-ol, base, thionyl halide (I) and solvent used, it is generally in the range of 5 minutes to 48 hours.

本発明の製造方法においては、例えば、回分式反応器に7−オクテン−1−オール、塩基、及び溶媒を混合し、ハロゲン化チオニル(I)を滴下し所定温度で攪拌することにより行う。また、反応圧力に特に制限はなく、減圧下、常圧下、加圧下のいずれでも実施できるが、反応により発生する塩酸および亜硫酸ガス等の除外を行う上では、減圧下または常圧下であることが好ましい。   In the production method of the present invention, for example, 7-octen-1-ol, a base, and a solvent are mixed in a batch reactor, and thionyl (I) halide is added dropwise and stirred at a predetermined temperature. The reaction pressure is not particularly limited and can be performed under reduced pressure, normal pressure, or increased pressure. However, in order to exclude hydrochloric acid and sulfurous acid gas generated by the reaction, the reaction pressure may be under reduced pressure or normal pressure. preferable.

反応終了後に得られる7−オクテニルハライドは、有機化合物の単離・精製において通常用いられる方法により単離することができる。例えば、反応混合物を中和および水洗した後、減圧蒸留およびシリカゲルクロマトグラフィーなどにより精製することで、目的とする7−オクテニルハライドを得ることができる。   The 7-octenyl halide obtained after completion of the reaction can be isolated by a method usually used in the isolation and purification of organic compounds. For example, the target 7-octenyl halide can be obtained by neutralizing and washing the reaction mixture and then purifying it by distillation under reduced pressure or silica gel chromatography.

なお、本発明において使用される7−オクテン−1−オールは、例えば、ブタジエンの水和二量化により工業的に製造される2,7−オクタジエン−1−オールを銅系触媒またはクロム系触媒の存在下に異性化させることによって得られる7−オクテン−1−アールを、クロムの酸化物からなる触媒またはクロム、銅及び亜鉛からなる群から選ばれる少なくとも二種の金属の組み合わせからなる金属酸化物触媒の存在下70〜150℃の温度で水素化する方法(特開昭58−225033号参照)または7−オクテン−1−アールを、銅系触媒の存在下150℃より高く200℃以下の温度でかつ転化率を95%以下に水素化する方法(特開平10−226659号参照)により容易に入手できる。   The 7-octen-1-ol used in the present invention is, for example, 2,7-octadien-1-ol produced industrially by hydration dimerization of butadiene as a copper catalyst or a chromium catalyst. 7-octen-1-al obtained by isomerization in the presence of a catalyst comprising a chromium oxide or a metal oxide comprising a combination of at least two metals selected from the group consisting of chromium, copper and zinc A method of hydrogenating at a temperature of 70 to 150 ° C. in the presence of a catalyst (see JP-A-58-225033) or 7-octen-1-al at a temperature higher than 150 ° C. and not higher than 200 ° C. in the presence of a copper-based catalyst And can be easily obtained by a method of hydrogenating the conversion to 95% or less (see JP-A-10-226659).

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

<実施例1>
攪拌機、冷却管、温度計、滴下ロートを備えた500ml反応器に7−オクテン−1−オール140.1g(純度92.1%;1.01mol)、ピリジン3.24g(0.041mol)を投入し、内部の混合物の温度を攪拌下に3℃まで冷却した。ついで、塩化チオニル137.7g(1.10mol)を内温10℃以下を保ちながら2時間かけて滴下した。滴下終了後、内温60〜70℃に加熱し、4時間加熱攪拌を行った。冷却後、水70gを加え攪拌静置ののち、水相を分離し、さらに有機相を、5%炭酸水素ナトリウム水溶液133g、次いで水70gで洗浄した。分離した有機相をガスクロマトグラフィーで分析した結果、7−オクテニルクロリド138.5g(0.944mol;収率94%)が生成していることがわかった。該反応液を蒸留精製することにより、7−オクテニルクロリド131.6g(0.897mol;累計収率89%)を得た。
<Example 1>
Into a 500 ml reactor equipped with a stirrer, a condenser, a thermometer and a dropping funnel, 140.1 g of 7-octen-1-ol (purity 92.1%; 1.01 mol) and 3.24 g (0.041 mol) of pyridine were charged. The temperature of the internal mixture was cooled to 3 ° C. with stirring. Next, 137.7 g (1.10 mol) of thionyl chloride was added dropwise over 2 hours while maintaining the internal temperature at 10 ° C. or lower. After completion of dropping, the internal temperature was heated to 60 to 70 ° C., and the mixture was heated and stirred for 4 hours. After cooling, 70 g of water was added and the mixture was allowed to stand for stirring. The aqueous phase was separated, and the organic phase was washed with 133 g of 5% aqueous sodium hydrogen carbonate solution and then with 70 g of water. As a result of analyzing the separated organic phase by gas chromatography, it was found that 138.5 g (0.944 mol; yield 94%) of 7-octenyl chloride was produced. The reaction solution was purified by distillation to obtain 131.6 g (0.897 mol; cumulative yield 89%) of 7-octenyl chloride.

<実施例2>
攪拌機、冷却管、温度計、滴下ロートを備えた50ml反応器に7−オクテン−1−オール13.8g(純度92.9%;0.10mol)、トリエチルアミン0.40g(4.0mmol)を投入し、内部の混合物の温度を攪拌下に2℃まで冷却した。ついで、塩化チオニル13.2g(0.11mol)を内温10℃以下を保ちながら0.5時間かけて滴下した。滴下終了後、内温60〜70℃に加熱し、3時間加熱攪拌を行った。冷却後、トルエン60g、水22gを加え攪拌静置ののち、水相を分離し、さらに有機相を、5%炭酸水素ナトリウム水溶液22g、次いで水20gで洗浄した。分離した有機相を濃縮し、ガスクロマトグラフィーで分析した結果、7−オクテニルクロリド13.0g(0.088mol;収率88%)が生成していることがわかった。該反応液を蒸留精製することにより、7−オクテニルクロリド12.3g(0.084mol;累計収率84%)を得た。
<Example 2>
7-octen-1-ol 13.8 g (purity 92.9%; 0.10 mol) and triethylamine 0.40 g (4.0 mmol) were charged into a 50 ml reactor equipped with a stirrer, a condenser, a thermometer and a dropping funnel. The temperature of the internal mixture was cooled to 2 ° C. with stirring. Subsequently, thionyl chloride (13.2 g, 0.11 mol) was added dropwise over 0.5 hours while maintaining the internal temperature at 10 ° C. or lower. After completion of the dropping, the mixture was heated to an internal temperature of 60 to 70 ° C. and stirred for 3 hours. After cooling, 60 g of toluene and 22 g of water were added and the mixture was allowed to stand, and then the aqueous phase was separated. The organic phase was washed with 22 g of 5% aqueous sodium hydrogen carbonate solution and then with 20 g of water. The separated organic phase was concentrated and analyzed by gas chromatography. As a result, it was found that 13.0 g (0.088 mol; yield 88%) of 7-octenyl chloride was produced. The reaction solution was purified by distillation to obtain 12.3 g (0.084 mol; cumulative yield 84%) of 7-octenyl chloride.

<実施例3>
攪拌機、冷却管、温度計、滴下ロートを備えた50ml反応器に7−オクテン−1−オール13.9g(純度92.9%;0.10mol)を投入し、25℃で攪拌を行った。ついで、塩化チオニル13.1g(0.11mol)を内温40℃以下を保ちながら0.5時間かけて滴下した。滴下終了後、内温90〜100℃に加熱し、6時間加熱攪拌を行った。冷却後、トルエン60g、水20gを加え攪拌静置ののち、水相を分離し、さらに有機相を5%炭酸水素ナトリウム水溶液25g、次いで水20gで洗浄した。分離した有機相を濃縮し、ガスクロマトグラフィーで分析した結果、7−オクテニルクロリド12.4g(0.085mol;収率85%)が生成していることがわかった。該反応液を蒸留精製することにより、7−オクテニルクロリド11.7g(0.080mol;累計収率80%)を得た。
<Example 3>
To a 50 ml reactor equipped with a stirrer, a condenser, a thermometer, and a dropping funnel, 13.9 g (purity 92.9%; 0.10 mol) of 7-octen-1-ol was charged and stirred at 25 ° C. Next, 13.1 g (0.11 mol) of thionyl chloride was added dropwise over 0.5 hours while maintaining the internal temperature at 40 ° C. or lower. After completion of dropping, the internal temperature was heated to 90 to 100 ° C., and the mixture was heated and stirred for 6 hours. After cooling, 60 g of toluene and 20 g of water were added and the mixture was allowed to stand, and the aqueous phase was separated. The organic phase was washed with 25 g of a 5% aqueous sodium hydrogen carbonate solution and then with 20 g of water. The separated organic phase was concentrated and analyzed by gas chromatography. As a result, it was found that 12.4 g (0.085 mol; yield 85%) of 7-octenyl chloride was produced. The reaction solution was purified by distillation to obtain 11.7 g (0.080 mol; cumulative yield 80%) of 7-octenyl chloride.

<実施例4>
攪拌機、冷却管、温度計、滴下ロートを備えた50ml反応器に7−オクテン−1−オール6.99g(純度91.7%;0.05mol)、ピリジン5.93g(0.075mol)、トルエン15mlを投入し、内部の混合物の温度を攪拌下に5℃まで冷却した。ついで、塩化チオニル6.65g(0.055mol)を内温15℃以下を保ちながら0.5時間かけて滴下した。滴下終了後、内温60℃に加熱し、10時間加熱攪拌を行った。冷却後、水30gを加え攪拌静置ののち、水相を分離し、さらに有機相を、5%炭酸水素ナトリウム水溶液30g、次いで水30gで洗浄した。分離した有機相をガスクロマトグラフィーで分析した結果、7−オクテニルクロリド6.97g(0.0475mol;収率95%)が生成していることがわかった。該反応液を蒸留精製することにより、7−オクテニルクロリド6.61g(0.0451mol;累計収率90%)を得た。
<Example 4>
In a 50 ml reactor equipped with a stirrer, a condenser, a thermometer, and a dropping funnel, 7.99 g of 7-octen-1-ol (purity 91.7%; 0.05 mol), 5.93 g (0.075 mol) of pyridine, toluene 15 ml was charged and the temperature of the internal mixture was cooled to 5 ° C. with stirring. Subsequently, 6.65 g (0.055 mol) of thionyl chloride was added dropwise over 0.5 hours while maintaining the internal temperature at 15 ° C. or lower. After completion of dropping, the mixture was heated to an internal temperature of 60 ° C. and stirred for 10 hours. After cooling, 30 g of water was added and the mixture was allowed to stand for stirring. The aqueous phase was separated, and the organic phase was washed with 30 g of 5% aqueous sodium hydrogen carbonate solution and then with 30 g of water. As a result of analyzing the separated organic phase by gas chromatography, it was found that 6.97 g (0.0475 mol; yield 95%) of 7-octenyl chloride was produced. The reaction solution was purified by distillation to obtain 6.61 g (0.0451 mol; cumulative yield 90%) of 7-octenyl chloride.

<実施例5>
実施例1において、塩化チオニルのかわりに臭化チオニルを用いる以外は同様に実施し、蒸留精製後の収率86%で7−オクテニルブロミドを得た。
<Example 5>
The same procedure as in Example 1 was carried out except that thionyl bromide was used in place of thionyl chloride to obtain 7-octenyl bromide in a yield of 86% after purification by distillation.

本発明の方法により得られる7−オクテニルハライドは、反応性に富む末端ビニル基および第一級ハロゲン基を有していることから工業的に極めて有用な化合物であり、医薬品、農薬、各種化学品、樹脂などの原料として有用である。   The 7-octenyl halide obtained by the method of the present invention is an industrially extremely useful compound because it has a highly reactive terminal vinyl group and primary halogen group. It is useful as a raw material for products and resins.

Claims (4)

7−オクテン−1−オールを、下記一般式(I)
Figure 2016169192
(式中、Xは、塩素原子、臭素原子またはヨウ素原子を表す)
で示されるハロゲン化チオニルと反応させることを特徴とする7−オクテニルハライドの製造方法。
7-octen-1-ol is represented by the following general formula (I)
Figure 2016169192
(In the formula, X represents a chlorine atom, a bromine atom or an iodine atom)
A process for producing a 7-octenyl halide, characterized by reacting with a thionyl halide represented by the formula:
Xが塩素原子であることを特徴とする、請求項1に記載の製造方法。   The production method according to claim 1, wherein X is a chlorine atom. 塩基の存在下に行う、請求項1または2に記載の製造方法。   The production method according to claim 1 or 2, which is carried out in the presence of a base. 反応温度が20〜200℃である、請求項1〜3のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-3 whose reaction temperature is 20-200 degreeC.
JP2015051221A 2015-03-13 2015-03-13 Method of producing 7-octenyl halide Pending JP2016169192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051221A JP2016169192A (en) 2015-03-13 2015-03-13 Method of producing 7-octenyl halide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051221A JP2016169192A (en) 2015-03-13 2015-03-13 Method of producing 7-octenyl halide

Publications (1)

Publication Number Publication Date
JP2016169192A true JP2016169192A (en) 2016-09-23

Family

ID=56983151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051221A Pending JP2016169192A (en) 2015-03-13 2015-03-13 Method of producing 7-octenyl halide

Country Status (1)

Country Link
JP (1) JP2016169192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033813A1 (en) * 2015-08-27 2017-03-02 株式会社クラレ Method for producing alkenyl halide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054885A1 (en) * 2009-11-04 2011-05-12 Universiteit Gent 1-substituted 2-azabicyclo [3.1.1] heptyl derivatives useful as nicotinic acetylcholine receptor modulators for treating neurologic disorders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054885A1 (en) * 2009-11-04 2011-05-12 Universiteit Gent 1-substituted 2-azabicyclo [3.1.1] heptyl derivatives useful as nicotinic acetylcholine receptor modulators for treating neurologic disorders

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BRODY, FREDERICK; BOGERT, MARSTON TAYLOR: "Synthesis of a pyridine analog of hydnocarpic acid and of a lower homolog", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 65, JPN6018025098, 1943, pages 1075-80 *
GADWOOD, ROBERT C.; LETT, RENEE M.; WISSINGER, JANE E.: "Total synthesis of (±)-poitediol and (±)-dactylol", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 108(20), JPN6018025101, 1986, pages 6343-50 *
JOHNSON, DAVID K.; DONAHOE, JOANNE; KANG, JEEHEE: "Dilithium tetrachlorocuprate catalyzed coupling of allylmagnesium bromide with α,ω-dihaloalkanes", SYNTHETIC COMMUNICATIONS, vol. 24(11), JPN6018025093, 1994, pages 1557-64 *
MIRVISS, STANLEY B.: "Synthesis of ω-unsaturated acids", JOURNAL OF ORGANIC CHEMISTRY, vol. 54(8), JPN6018025096, 1989, pages 1948-51 *
ODINOKOV, V. N.; ISHMURATOV, G. YU.; BOTSMAN, L. P.; VAKHIDOV, R. R.; LADENKOVA, I. M.; KARGAPOL'TSE: "Insect pheromones and their analogues. XL. Synthesis of dodec-3Z-en-11RS-olide (ferrulactone II) - A", KHIMIYA PRIRODNYKH SOEDINENII, vol. (3,4), JPN6018025091, 1992, pages 423-429 *
WILLAND-CHARNLEY, RACHEL; PUFFER, BENJAMIN W.; DUSSAULT, PATRICK H.: "Oxacycle Synthesis via Intramolecular Reaction of Carbanions and Peroxides", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136(16), JPN6018025089, 2014, pages 5821-5823, Supporting Information *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033813A1 (en) * 2015-08-27 2017-03-02 株式会社クラレ Method for producing alkenyl halide

Similar Documents

Publication Publication Date Title
EP2814796B1 (en) Process for making tetrafluoropropene
JP2012056898A (en) Method for producing alkane thiol
JP2020183395A (en) Process for the preparation of 1-(3,5-dichlorophenyl)-2,2,2-trifluoroethanone and derivatives thereof
JP5412742B2 (en) Process for producing 4-perfluoroisopropylanilines
CN105016966A (en) Preparation method of (E)-1-chloro-6,6-dimethyl-2-heptene-4-alkyne
JP2016169192A (en) Method of producing 7-octenyl halide
JPWO2016043079A1 (en) Method for producing 2&#39;-trifluoromethyl group-substituted aromatic ketone
JP6498048B2 (en) Fluorine-containing organic compound and method for producing biaryl compound using this and Grignard reagent
WO2017033813A1 (en) Method for producing alkenyl halide
JP4260133B2 (en) Process for producing 2-trifluoromethyl-6-fluorobenzal chloride and derivatives thereof
JP4489532B2 (en) 3-Formyl-5-trifluoromethylbenzonitrile derivative and process for producing the same
JPS5826733B2 (en) Ensocaldehydono Seizouhouhou
US6814895B2 (en) Process for the synthesis of 1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-one
JP5374085B2 (en) Process for producing 4-alkylresorcinol and 4-alkenylresorcinol
WO2005090289A1 (en) 3-formyl-5-trifluoromethylbenzonitrile derivative and process for producing the same
JP4617551B2 (en) Method for producing di-t-butyl dicarbonate
JPH07126198A (en) Production of allyl bromides
JP2023158278A (en) Method for producing n-acetyl indole compound
JP2023138109A (en) Method for producing 3-chlorophthalide
MXPA05004124A (en) Process for production of an acetylenic compound.
WO2013008670A1 (en) Method of producing 1-chloro-3,3,3-trifluoropropyne
JPH0748292A (en) Production of 4-phenyl-1-butene
JP2002363112A (en) Method for producing chlorinated hydrocarbon
JPH0150221B2 (en)
JP2003081892A (en) Method for producing 3,5-bis(trifluoromethyl) bromobenzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181225