WO2013008670A1 - Method of producing 1-chloro-3,3,3-trifluoropropyne - Google Patents

Method of producing 1-chloro-3,3,3-trifluoropropyne Download PDF

Info

Publication number
WO2013008670A1
WO2013008670A1 PCT/JP2012/066930 JP2012066930W WO2013008670A1 WO 2013008670 A1 WO2013008670 A1 WO 2013008670A1 JP 2012066930 W JP2012066930 W JP 2012066930W WO 2013008670 A1 WO2013008670 A1 WO 2013008670A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloro
trifluoropropene
reaction
base
trifluoropropyne
Prior art date
Application number
PCT/JP2012/066930
Other languages
French (fr)
Japanese (ja)
Inventor
覚 岡本
祥雄 西口
冬彦 佐久
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2013008670A1 publication Critical patent/WO2013008670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • B01J31/0268Phosphonium compounds, i.e. phosphine with an additional hydrogen or carbon atom bonded to phosphorous so as to result in a formal positive charge on phosphorous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/90Catalytic systems characterized by the solvent or solvent system used
    • B01J2531/98Phase-transfer catalysis in a mixed solvent system containing at least 2 immiscible solvents or solvent phases
    • B01J2531/985Phase-transfer catalysis in a mixed solvent system containing at least 2 immiscible solvents or solvent phases in a water / organic solvent system

Definitions

  • the present invention relates to an industrial production method of 1-chloro-3,3,3-trifluoropropyne.
  • Non-Patent Document 1 discloses that 1,2-dichloro-3,3,3-trifluoropropene is converted to solid hydroxylation.
  • a method is disclosed in which sodium is charged and gas is passed through a heated gas phase reactor.
  • Patent Document 1 discloses a method in which 1-chloro-3,3,3-trifluoropropane is chlorinated and then bubbled together with an inert gas in molten alkali.
  • Non-Patent Document 2 discloses a method for producing 1-iodo-3,3,3-trifluoroacetylene, an aqueous solution containing mercury chloride and potassium iodide in 3,3,3-trifluoroacetylene, an aqueous potassium hydroxide solution, and Is reacted to prepare the corresponding mercury acetylide (mercury 3,3,3-trifluoromethyl acetylide), followed by reaction with the theoretical amount of iodine (I 2 ) to give the corresponding 1-iodo- A method for obtaining 3,3,3-trifluoroacetylene is disclosed.
  • Non-Patent Document 3 discloses a method for producing an acetylene compound by reacting potassium hydroxide with a 1,2-dihalide compound or a chloroalkene compound in the presence of a phase transfer catalyst.
  • Non-Patent Document 1 has an extremely low yield (19%), and the reaction between 1,2-dichloro-3,3,3-trifluoropropene in a gas state and a solid base is limited to a solid surface only. Therefore, it is not always efficient in terms of industrial production.
  • Patent Document 1 Since the method described in Patent Document 1 uses molten alkali, a high temperature is required for the reaction. Particularly in an industrial scale reaction, a large amount of heat is required for starting the reaction, and post-treatment after completion of the reaction is difficult. It is. Also, corrosion of the reactor due to molten alkali becomes a problem.
  • Non-Patent Document 3 the corresponding acetylene compound has a very low yield (38% to 56%), and it is somewhat difficult to adopt it for production on an industrial scale.
  • Non-Patent Document 2 since the method of Non-Patent Document 2 is described that purification is very difficult, and further uses a mercury compound, this method is assumed to be 1-chloro-3,3,3 which is the subject of the present invention. -Even if it is replaced with trifluoropropene, it is extremely difficult to adopt industrially.
  • 1-chloro-3,3,3-trifluoropropyne which is the object of the present invention, is not always a satisfactory industrial production method for mass production, and the object is not It has been desired to establish a manufacturing method that is easy to implement on a general scale.
  • the present inventors have reacted 1-chloro-2-halogeno-3,3,3-trifluoropropene with a base in a liquid phase, thereby increasing the The knowledge of obtaining 1-chloro-3,3,3-trifluoropropyne with high selectivity and high yield was obtained.
  • the present inventors have obtained knowledge that the reaction further proceeds by adding a phase transfer catalyst as an additive to the reaction system.
  • the present invention provides a method for producing 1-chloro-3,3,3-trifluoropropyne described in the following [Invention 1] to [Invention 6].
  • [Invention 1] 1-chloro-3,3,3-trifluoro comprising 1-chloro-2-halogeno-3,3,3-trifluoropropene represented by the formula [1] and a base in a liquid phase.
  • a method for producing lopropyne. In the formula, X represents fluorine, chlorine, or bromine.
  • the base is at least one inorganic base selected from the group consisting of alkali metal alkoxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydroxides, and alkaline earth metal hydroxides; A method according to invention 1, wherein:
  • invention 3 The method according to invention 2, wherein the alkali metal is lithium, sodium, potassium, rubidium, or cesium, and the alkaline earth metal is magnesium, calcium, or strontium.
  • Invention 4 Invention 1 wherein 1-chloro-2-halogeno-3,3,3-trifluoropropene is 1,2-dichloro-3,3,3-trifluoropropene and the base is sodium hydroxide or potassium hydroxide The method described in 1.
  • invention 5 Either of the inventions 1 to 4, wherein a phase transfer catalyst is added to the system when reacting 1-chloro-2-halogeno-3,3,3-trifluoropropene with a base in a liquid phase. The method of crab.
  • phase transfer catalyst is a crown ether, cryptand, or onium salt.
  • 1-chloro-3-halogeno-3,3,3-trifluoropropene is allowed to react with 1-chloro-3,3,3-trifluoropropene in a high yield under mild conditions. It is possible to obtain trifluoropropyne. Further, for example, in a preferred embodiment of the present invention, when a phase transfer catalyst is used, purification and waste treatment are not burdened, and 1-chloro-3,3,3-trifluoro is aimed at high productivity. It can be used as an industrial production method of lopropyne.
  • the present invention is characterized in that 1-chloro-2-halogeno-3,3,3-trifluoropropene represented by the formula [1] is reacted with a base in a liquid phase. , 3,3-trifluoropropyne.
  • X in the formula [1] in 1-chloro-2-halogeno-3,3,3-trifluoropropene which is a starting material of the present invention, specifically includes fluorine, chlorine and bromine.
  • Specific compounds of -chloro-2-halogeno-3,3,3-trifluoropropene include 1-chloro-2,3,3,3-tetrafluoropropene, 1-chloro-2-bromo-3, Examples include 3,3-trifluoropropene and 1,2-dichloro-3,3,3-trifluoropropene.
  • 1,2-dichloro-3,3,3-trifluoropropene is preferably used because of its availability and usefulness of the resulting compound.
  • the starting material of the present invention is a compound having a double bond, and there are cis isomers and trans isomers which are structural isomers. Even if it is a cis isomer or a trans isomer, or a mixture of a cis isomer and a trans isomer, the reaction proceeds well without any particular problem.
  • Examples of the base used in the method of the present invention include organic bases such as alkylamines, pyridines, anilines, guanidines, pyridines, lutidines, morpholines, piperidines, pyrrolidines, pyrimidines, pyridazines, Ammonia, alkali metal alkoxide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal carboxylate, alkaline earth metal carboxylate, alkali metal hydroxide, alkaline earth metal hydroxide An inorganic base such as a product can be used.
  • organic bases such as alkylamines, pyridines, anilines, guanidines, pyridines, lutidines, morpholines, piperidines, pyrrolidines, pyrimidines, pyridazines, Ammonia, alkali metal alkoxide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal carboxylate, alka
  • organic base examples include triethylamine, diethylamine, diethylaminopyridine, N, N-dimethylaniline, dimethylbenzylamine, guanidine, N, N-diethylaniline, 1,8-diazabicyclo [5,4,0] undecene-7, 1,4-diazabicyclo [2,2,2] octane, pyridine, 2,4,6-trimethylpyridine, dimethylaminopyridine, 2,6-lutidine, 2-methylpyridine, N-methylmorpholine, piperidine, pyrrolidine, pyrimidine , Pyridazine, and morpholine.
  • a base having a high basicity such as guanidine, 1,8-diazabicyclo [5,4,0] undecene-7, is preferably used because the reaction time is shortened.
  • “high basicity” means a base having a pH of 8 or more as a base, but mainly having a pH of 10 or more.
  • Medium strength bases such as triethylamine, diethylamine, dimethylaminopyridine, N, N-dimethylaniline, dimethylbenzylamine, N, N-diethylaniline, pyridine, 2,4,6-trimethylpyridine, dimethylaminopyridine
  • the reaction proceeds with 2,6-lutidine, 2-methylpyridine, 2,6-lutidine, N-methylmorpholine, piperidine, pyrrolidine, pyrimidine, pyridazine, morpholine, etc., but compared with bases with high basicity Furthermore, since reaction time is required, there are few merits to use.
  • alkali metal hydroxides or alkaline earth metal hydroxides are preferred because they are economical and easy to handle.
  • the alkali metal is lithium, sodium, potassium, rubidium, or cesium
  • the alkaline earth metal is magnesium, calcium, or strontium.
  • alkali metal hydroxide or alkaline earth metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, and strontium hydroxide. It is done. Of these, potassium hydroxide, sodium hydroxide, calcium hydroxide, and magnesium hydroxide are preferable, and potassium hydroxide and sodium hydroxide are particularly preferable because they are inexpensive and can be industrially obtained in large quantities.
  • Specific examples of the alkali metal alkoxide include sodium methoxide and sodium ethoxide.
  • Inorganic bases with medium basicity such as alkali metal or alkaline earth metal carbonates (sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, etc.), carboxylic acids
  • alkali metal or alkaline earth metal carbonates sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, etc.
  • carboxylic acids carboxylic acids
  • the reaction can be carried out using a salt (sodium acetate, potassium acetate, etc.)
  • the reaction time is further required as compared with the above-mentioned base having a high basicity, so that the merit to use is particularly small.
  • the base used in the present invention can be used alone or in combination of two or more.
  • the amount of the base used in the present invention is required to be at least 1 mole per mole of 1-chloro-2-halogeno-3,3,3-trifluoropropene, and usually 1 to 10 moles per mole of propene.
  • the range can be appropriately selected, but is preferably 1 to 4 mol, more preferably 1 to 2 mol. Although it is possible to use more than 10 moles of base, there is no merit of using a large amount.
  • the conversion rate of the reaction may be lowered.
  • unreacted 1-chloro-2-halogeno-3,3,3-trifluoropropene can be recovered during the purification operation after the reaction and recycled to the next reaction.
  • a solvent can be added separately.
  • the solvent is not particularly limited as long as it does not participate in the reaction.
  • the method of the present invention performs the reaction in the liquid phase. It is possible to carry out the reaction by adding the aforementioned solvent into the reaction system. Note that 1-chloro-2-halogeno-3,3,3-trifluoropropene, which is a starting material of the present invention, may exist in a liquid state at normal temperature and normal pressure depending on the type of the starting material. Even if it is not added, the starting material itself can also serve as a solvent.
  • the base used in the present invention can be added in the form of a solution by separately adding the above-mentioned solvent when the base is solid at normal temperature and pressure because of ease of workability.
  • the concentration of the solution can be appropriately adjusted by those skilled in the art to such an extent that the reaction proceeds sufficiently and the base is sufficiently dissolved in the solvent.
  • it varies depending on the base, for example, in the case of an aqueous potassium hydroxide solution, it is usually 5 to 85% by mass, preferably 10 to 60% by mass, and more preferably 15 to 50% by mass.
  • phase transfer catalyst in addition to the solvent, a phase transfer catalyst can be used as an additive.
  • a phase transfer catalyst it is preferably used because the reaction is accelerated particularly when an alkali metal hydroxide is used as the base.
  • crown ether As the phase transfer catalyst, crown ether, cryptand, or onium salt can be used. Crown ether can enhance the reactivity by including a metal cation, and examples thereof include a combination of K cation and 18-crown-6, Na cation and 15-crown-5, Li cation and 12-crown-4. In addition, dibenzo or dicyclohexano derivatives of crown ether are also useful.
  • Cryptand is a polycyclic macrocyclic chelating agent that can form a complex (cryptate) with, for example, K cation, Na cation, Cs cation, Li cation, and activate the reaction. 4,7,13,18- Tetraoxa-1,10-diazabicyclo [8.5.5] icosane (cryptand 211), 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane (cryptand 222) ) And the like.
  • Onium salt is quaternary ammonium salt or quaternary phosphonium salt, tetramethylammonium chloride, tetramethylammonium bromide, tetra n-butylammonium chloride, tetra n-butylammonium bromide, benzyltriethylammonium chloride, methyltrioctylammonium chloride. Tetra n-butylphosphonium chloride, tetra n-butylphosphonium bromide, and methyltriphenylphosphonium chloride.
  • the reaction pressure is not particularly limited, and it can be operated at 0 to 2 MPa (absolute pressure standard; the same applies hereinafter), preferably 0 to 0.5 MPa, under normal pressure or pressurized conditions.
  • the reaction temperature is not particularly limited, but a liquid phase state or a gas phase state can be selected as a reaction system in relation to the reaction pressure, and is usually 0 ° C. to 80 ° C., preferably 20 ° C. to 40 ° C. near normal temperature.
  • the material of the reactor is not particularly limited as long as it can withstand the pressure. It is possible to use a reaction vessel made of glass, fluororesin, or a material lined with glass or fluororesin.
  • a pressure-resistant reaction vessel can also be used, but even in a liquefied state, the reaction proceeds without increasing the pressure in the reaction system so much that it can be carried out at normal pressure. not big.
  • 1-chloro-3,3,3-trifluoropropyne obtained by the method of the present invention exists as a gas at normal temperature and normal pressure. After the gas obtained after the reaction is passed through a cooled condenser, the gas is collected in a collection container and liquefied, and then subjected to high-precision distillation by further precise distillation without post-treatment. -Chloro-3,3,3-trifluoropropyne can be obtained.
  • reaction may be carried out continuously, semi-continuously or batchwise, and can be adjusted as appropriate by those skilled in the art.
  • % of the composition analysis value represents “area%” of the composition obtained by directly measuring the reaction mixture by gas chromatography (the detector is FID unless otherwise specified).
  • Example 1 A 500 ml glass three-necked round bottom flask equipped with a glass cooler in which a 5 ° C refrigerant was circulated, a glass trap of a dry ice-acetone bath adjusted to -78 ° C, and a glass protective tube for introducing a thermocouple was hydroxylated.
  • the solution was dissolved while stirring with a magnetic stirrer while cooling. After dissolution, the internal temperature was heated to 30 ° C.
  • Example 2 As a result of carrying out the reaction in the same manner as in Example 1 except that the base was 24.40 g (0.61 mol) of sodium hydroxide and 73.19 g of water, the purity of 1-chloro-3,3,3-trifluoropropyne was 96.7%, and the yield of 1-chloro-3,3,3-trifluoropropyne was 88.8%.
  • 1-chloro-3,3,3-trifluoropropyne can be produced with high selectivity and high yield by an easy operation.
  • 1-Chloro-3,3,3-trifluoropropyne targeted in the present invention is used as a functional material such as a refrigerant, an etchant, an aerosol, a physiologically active substance, an intermediate of a functional material, and a monomer of a polymer compound. it can.

Abstract

By means of the present invention, 1-chloro-3,3,3-trifluoropropyne can be obtained with a high yield by reacting 1-chloro-2-halogeno-3,3,3-trifluoropropene in a liquid phase with a base under moderate conditions. Further, even when using a phase-transfer catalyst, because of two-layer separation after the reaction, this method is a superior industrial production method because there is no load of purification or waste treatment. The obtained 1-chloro-3,3,3-trifluoropropyne is useful as a refrigerant, an etchant, a bioactive substance or functional material such as an aerosol, an intermediate of a functional material, or monomers of a polymer compound.

Description

1-クロロ-3,3,3-トリフルオロプロピンの製造方法Process for producing 1-chloro-3,3,3-trifluoropropyne
 本発明は、1-クロロ-3,3,3-トリフルオロプロピンの工業的な製造方法に関する。 The present invention relates to an industrial production method of 1-chloro-3,3,3-trifluoropropyne.
 1-クロロ-3,3,3-トリフルオロプロピン等、1位の炭素原子に塩素原子等のハロゲン原子が結合した3,3,3-トリフルオロプロピン類は、特異な性質を有するため単体の用途ならびにその誘導体が数多く研究されてきた。
Figure JPOXMLDOC01-appb-C000002
Since 3,3,3-trifluoropropynes such as 1-chloro-3,3,3-trifluoropropyne, which has a halogen atom such as a chlorine atom bonded to the carbon atom at the 1-position, have unique properties, Many uses and derivatives thereof have been studied.
Figure JPOXMLDOC01-appb-C000002
 本願発明の対象となる1-クロロ-3,3,3-トリフルオロプロピンの製造方法としては、非特許文献1では1,2-ジクロロ-3,3,3-トリフルオロプロペンを固体の水酸化ナトリウムを充填し、加熱した気相反応器にガスで流通させる方法が開示されている。 As a method for producing 1-chloro-3,3,3-trifluoropropyne which is an object of the present invention, Non-Patent Document 1 discloses that 1,2-dichloro-3,3,3-trifluoropropene is converted to solid hydroxylation. A method is disclosed in which sodium is charged and gas is passed through a heated gas phase reactor.
 特許文献1では1-クロロ-3,3,3-トリフルオロプロパンを塩素化後、イナートガスと共に溶融アルカリ中、バブリングさせる方法が開示されている。 Patent Document 1 discloses a method in which 1-chloro-3,3,3-trifluoropropane is chlorinated and then bubbled together with an inert gas in molten alkali.
 非特許文献2では、1-ヨード-3,3,3-トリフルオロアセチレンの製造方法について、3,3,3-トリフルオロアセチレンに、塩化水銀及びヨウ化カリウムを含む水溶液と水酸化カリウム水溶液とを混合させた溶液を反応させ、対応する水銀アセチリド(水銀3,3,3-トリフルオロメチルアセチリド)を調製し、続いて理論量のヨウ素(I2)を反応させて対応する1-ヨード-3,3,3-トリフルオロアセチレンを得る方法を開示している。 Non-Patent Document 2 discloses a method for producing 1-iodo-3,3,3-trifluoroacetylene, an aqueous solution containing mercury chloride and potassium iodide in 3,3,3-trifluoroacetylene, an aqueous potassium hydroxide solution, and Is reacted to prepare the corresponding mercury acetylide (mercury 3,3,3-trifluoromethyl acetylide), followed by reaction with the theoretical amount of iodine (I 2 ) to give the corresponding 1-iodo- A method for obtaining 3,3,3-trifluoroacetylene is disclosed.
 また、非特許文献3では、相間移動触媒存在下、1,2-ジハライド化合物もしくはクロロアルケン化合物に水酸化カリウムを反応させてアセチレン化合物を製造する方法が開示されている。 Non-Patent Document 3 discloses a method for producing an acetylene compound by reacting potassium hydroxide with a 1,2-dihalide compound or a chloroalkene compound in the presence of a phase transfer catalyst.
ロシア特許第169522号明細書Russian Patent No. 169522
 非特許文献1に記載の方法は、極めて収率が低く(19%)、ガス状態の1,2-ジクロロ-3,3,3-トリフルオロプロペンと固体の塩基の反応が固体表面のみに限定されてしまうことからも、工業的な製造という点で、必ずしも効率的とは言い難いものであった。 The method described in Non-Patent Document 1 has an extremely low yield (19%), and the reaction between 1,2-dichloro-3,3,3-trifluoropropene in a gas state and a solid base is limited to a solid surface only. Therefore, it is not always efficient in terms of industrial production.
 特許文献1に記載の方法は、溶融アルカリを用いるため、反応に際し、高温が必要であり、特に工業規模の反応では、反応の始動に多大な熱量を必要とし、反応終了後の後処理が困難である。また溶融アルカリによる反応器の腐食が問題となる。 Since the method described in Patent Document 1 uses molten alkali, a high temperature is required for the reaction. Particularly in an industrial scale reaction, a large amount of heat is required for starting the reaction, and post-treatment after completion of the reaction is difficult. It is. Also, corrosion of the reactor due to molten alkali becomes a problem.
 また、非特許文献3の方法は、対応するアセチレン化合物は非常に低収率であり(38%~56%)、工業的スケールでの製造として採用するにはいくぶん難がある。 In the method of Non-Patent Document 3, the corresponding acetylene compound has a very low yield (38% to 56%), and it is somewhat difficult to adopt it for production on an industrial scale.
 更に、非特許文献2の方法は、精製が大変難しい旨の記載がなされていること、更に水銀化合物を用いることから、仮にこの方法を本願発明で対象とする1-クロロ-3,3,3-トリフルオロプロペンに置き換えたとしても、工業的に採用することは極めて難しい。 Furthermore, since the method of Non-Patent Document 2 is described that purification is very difficult, and further uses a mercury compound, this method is assumed to be 1-chloro-3,3,3 which is the subject of the present invention. -Even if it is replaced with trifluoropropene, it is extremely difficult to adopt industrially.
 上述の様に、本発明の目的物である1-クロロ-3,3,3-トリフルオロプロピンを大量生産に採用される工業的製造法としては必ずしも満足できる方法ではなく、該目的物を工業的規模で実施容易である製造方法の確立が望まれていた。 As described above, 1-chloro-3,3,3-trifluoropropyne, which is the object of the present invention, is not always a satisfactory industrial production method for mass production, and the object is not It has been desired to establish a manufacturing method that is easy to implement on a general scale.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンを、液相中で塩基と反応させることにより、高選択率かつ高収率で1-クロロ-3,3,3-トリフルオロプロピンを得る知見を得た。また、本発明者らは、添加剤として相間移動触媒を反応系内に加えることでも、反応が更に進行する知見を得た。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have reacted 1-chloro-2-halogeno-3,3,3-trifluoropropene with a base in a liquid phase, thereby increasing the The knowledge of obtaining 1-chloro-3,3,3-trifluoropropyne with high selectivity and high yield was obtained. In addition, the present inventors have obtained knowledge that the reaction further proceeds by adding a phase transfer catalyst as an additive to the reaction system.
 すなわち、本発明は、以下の[発明1]~[発明6]に記載する、1-クロロ-3,3,3-トリフルオロプロピンの製造方法を提供する。 That is, the present invention provides a method for producing 1-chloro-3,3,3-trifluoropropyne described in the following [Invention 1] to [Invention 6].
 [発明1]
 式[1]で表される1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンに、液相中、塩基を反応させる工程を含む、1-クロロ-3,3,3-トリフルオロプロピンの製造方法。
Figure JPOXMLDOC01-appb-C000003
(式中、Xはフッ素、塩素、又は臭素を表す。)
[Invention 1]
1-chloro-3,3,3-trifluoro comprising 1-chloro-2-halogeno-3,3,3-trifluoropropene represented by the formula [1] and a base in a liquid phase. A method for producing lopropyne.
Figure JPOXMLDOC01-appb-C000003
(In the formula, X represents fluorine, chlorine, or bromine.)
 [発明2]
 塩基が、アルカリ金属アルコキシド、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の水酸化物、及びアルカリ土類金属の水酸化物からなる群より選ばれる少なくとも1種の無機塩基である、発明1に記載の方法。
[Invention 2]
The base is at least one inorganic base selected from the group consisting of alkali metal alkoxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydroxides, and alkaline earth metal hydroxides; A method according to invention 1, wherein:
 [発明3]
 アルカリ金属が、リチウム、ナトリウム、カリウム、ルビジウム、又はセシウムであり、アルカリ土類金属が、マグネシウム、カルシウム、又はストロンチウムである、発明2に記載の方法。
[Invention 3]
The method according to invention 2, wherein the alkali metal is lithium, sodium, potassium, rubidium, or cesium, and the alkaline earth metal is magnesium, calcium, or strontium.
 [発明4]
 1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンが1,2-ジクロロ-3,3,3-トリフルオロプロペンであり、塩基が水酸化ナトリウム又は水酸化カリウムである、発明1に記載の方法。
[Invention 4]
Invention 1 wherein 1-chloro-2-halogeno-3,3,3-trifluoropropene is 1,2-dichloro-3,3,3-trifluoropropene and the base is sodium hydroxide or potassium hydroxide The method described in 1.
 [発明5]
 1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンに、液相中、塩基を反応させる際、系内に相間移動触媒を添加することを特徴とする、発明1乃至4の何れかに記載の方法。
[Invention 5]
Either of the inventions 1 to 4, wherein a phase transfer catalyst is added to the system when reacting 1-chloro-2-halogeno-3,3,3-trifluoropropene with a base in a liquid phase. The method of crab.
 [発明6]
 相間移動触媒が、クラウンエーテル、クリプタンド、又はオニウム塩である、発明5に記載の方法。
[Invention 6]
The method according to invention 5, wherein the phase transfer catalyst is a crown ether, cryptand, or onium salt.
 本発明によれば、穏和な条件下、1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンに塩基を反応させることで、高収率で1-クロロ-3,3,3-トリフルオロプロピンを得ることが可能である。また、たとえば、本発明の好ましい態様は、相間移動触媒を用いた場合に、精製及び廃棄物処理も負荷がかからず、高い生産性を目的とする1-クロロ-3,3,3-トリフルオロプロピンの工業的な製造方法として用いることができる。 According to the present invention, 1-chloro-3-halogeno-3,3,3-trifluoropropene is allowed to react with 1-chloro-3,3,3-trifluoropropene in a high yield under mild conditions. It is possible to obtain trifluoropropyne. Further, for example, in a preferred embodiment of the present invention, when a phase transfer catalyst is used, purification and waste treatment are not burdened, and 1-chloro-3,3,3-trifluoro is aimed at high productivity. It can be used as an industrial production method of lopropyne.
 以下、本発明につき、さらに詳細に説明する。尚、本発明の範囲は、これらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。また、本明細書において引用された全ての刊行物、例えば先行技術文献、および公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。 Hereinafter, the present invention will be described in more detail. It should be noted that the scope of the present invention is not limited to these explanations, and can be changed and implemented as appropriate without departing from the spirit of the present invention other than the following examples. In addition, all publications cited in this specification, for example, prior art documents, and publications, patent publications and other patent documents are incorporated herein by reference.
 本発明は、式[1]で表される1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンに、液相中、塩基を反応させることを特徴とする、1-クロロ-3,3,3-トリフルオロプロピンの製造方法である。 The present invention is characterized in that 1-chloro-2-halogeno-3,3,3-trifluoropropene represented by the formula [1] is reacted with a base in a liquid phase. , 3,3-trifluoropropyne.
 本発明の出発原料である、1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンにおける式[1]中のXは、具体的にはフッ素、塩素、臭素が挙げられるが、1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンの具体的な化合物としては、1-クロロ-2,3,3,3-テトラフルオロプロペン、1-クロロ-2-ブロモ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンが挙げられる。これらの中でも、入手の容易さや、得られる化合物の有用性などから、1,2-ジクロロ-3,3,3-トリフルオロプロペンが好ましく用いられる。 X in the formula [1] in 1-chloro-2-halogeno-3,3,3-trifluoropropene, which is a starting material of the present invention, specifically includes fluorine, chlorine and bromine. Specific compounds of -chloro-2-halogeno-3,3,3-trifluoropropene include 1-chloro-2,3,3,3-tetrafluoropropene, 1-chloro-2-bromo-3, Examples include 3,3-trifluoropropene and 1,2-dichloro-3,3,3-trifluoropropene. Among these, 1,2-dichloro-3,3,3-trifluoropropene is preferably used because of its availability and usefulness of the resulting compound.
 本発明の出発原料である1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンは、二重結合を有する化合物であり、構造異性体であるシス体、トランス体が存在するが、シス体もしくはトランス体、又はシス体及びトランス体の混合物であっても反応に特に問題なく、良好に進行する。 The starting material of the present invention, 1-chloro-2-halogeno-3,3,3-trifluoropropene, is a compound having a double bond, and there are cis isomers and trans isomers which are structural isomers. Even if it is a cis isomer or a trans isomer, or a mixture of a cis isomer and a trans isomer, the reaction proceeds well without any particular problem.
 本発明の方法において使用する塩基としては、アルキルアミン類、ピリジン類、アニリン類、グアニジン類、ピリジン類、ルチジン類、モルホリン類、ピペリジン類、ピロリジン類、ピリミジン類、ピリダジン類などの有機塩基や、アンモニア、アルカリ金属アルコキシド、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属のカルボン酸塩、アルカリ土類金属のカルボン酸塩、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物などの無機塩基を用いることができる。 Examples of the base used in the method of the present invention include organic bases such as alkylamines, pyridines, anilines, guanidines, pyridines, lutidines, morpholines, piperidines, pyrrolidines, pyrimidines, pyridazines, Ammonia, alkali metal alkoxide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal carboxylate, alkaline earth metal carboxylate, alkali metal hydroxide, alkaline earth metal hydroxide An inorganic base such as a product can be used.
 有機塩基の具体例として、トリエチルアミン、ジエチルアミン、ジエチルアミノピリジン、N,N-ジメチルアニリン、ジメチルベンジルアミン、グアニジン、N,N-ジエチルアニリン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,4-ジアザビシクロ[2,2,2]オクタン、ピリジン、2,4,6-トリメチルピリジン、ジメチルアミノピリジン、2,6-ルチジン、2-メチルピリジン、N-メチルモルホリン、ピペリジン、ピロリジン、ピリミジン、ピリダジン、モルホリンが挙げられる。 Specific examples of the organic base include triethylamine, diethylamine, diethylaminopyridine, N, N-dimethylaniline, dimethylbenzylamine, guanidine, N, N-diethylaniline, 1,8-diazabicyclo [5,4,0] undecene-7, 1,4-diazabicyclo [2,2,2] octane, pyridine, 2,4,6-trimethylpyridine, dimethylaminopyridine, 2,6-lutidine, 2-methylpyridine, N-methylmorpholine, piperidine, pyrrolidine, pyrimidine , Pyridazine, and morpholine.
 有機塩基のうち、高い塩基性度を持つ塩基、例えばグアニジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7等を用いることは、反応時間が短縮されることからも、好ましく用いられる。なお、ここで言う「高い塩基性度」とは、塩基としてはpHが8以上であるが、主としてpHが10以上を持つものを言う。 Among organic bases, use of a base having a high basicity, such as guanidine, 1,8-diazabicyclo [5,4,0] undecene-7, is preferably used because the reaction time is shortened. . Here, “high basicity” means a base having a pH of 8 or more as a base, but mainly having a pH of 10 or more.
 中程度の強度を有する塩基である、トリエチルアミン、ジエチルアミン、ジメチルアミノピリジン、N,N-ジメチルアニリン、ジメチルベンジルアミン、N,N-ジエチルアニリン、ピリジン、2,4,6-トリメチルピリジン、ジメチルアミノピリジン、2,6-ルチジン、2-メチルピリジン、2,6-ルチジン、N-メチルモルホリン、ピペリジン、ピロリジン、ピリミジン、ピリダジン、モルホリン等でも反応は進行するが、高い塩基性度を持つ塩基と比べて更に反応時間を要することから、用いるメリットは少ない。 Medium strength bases such as triethylamine, diethylamine, dimethylaminopyridine, N, N-dimethylaniline, dimethylbenzylamine, N, N-diethylaniline, pyridine, 2,4,6-trimethylpyridine, dimethylaminopyridine The reaction proceeds with 2,6-lutidine, 2-methylpyridine, 2,6-lutidine, N-methylmorpholine, piperidine, pyrrolidine, pyrimidine, pyridazine, morpholine, etc., but compared with bases with high basicity Furthermore, since reaction time is required, there are few merits to use.
 前述した無機塩基のうち、経済性及び取り扱いが容易であることから、アルカリ金属の水酸化物又はアルカリ土類金属の水酸化物が好ましい。なお、ここでアルカリ金属とは、リチウム、ナトリウム、カリウム、ルビジウム、又はセシウムであり、アルカリ土類金属とは、マグネシウム、カルシウム、又はストロンチウムのことを言う。 Of the inorganic bases described above, alkali metal hydroxides or alkaline earth metal hydroxides are preferred because they are economical and easy to handle. Here, the alkali metal is lithium, sodium, potassium, rubidium, or cesium, and the alkaline earth metal is magnesium, calcium, or strontium.
 アルカリ金属の水酸化物又はアルカリ土類金属の水酸化物の、具体的な化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウムなどが挙げられる。これらのうち、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウムが好ましく、さらに安価で工業的に大量に入手できることから、水酸化カリウム、水酸化ナトリウムが特に好ましい。また、アルカリ金属アルコキシドの具体的な化合物としては、ナトリウムメトキシド、ナトリウムエトキシドなどが挙げられる。 Specific examples of the alkali metal hydroxide or alkaline earth metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, and strontium hydroxide. It is done. Of these, potassium hydroxide, sodium hydroxide, calcium hydroxide, and magnesium hydroxide are preferable, and potassium hydroxide and sodium hydroxide are particularly preferable because they are inexpensive and can be industrially obtained in large quantities. Specific examples of the alkali metal alkoxide include sodium methoxide and sodium ethoxide.
 中程度の塩基度を持つ無機塩基として、アルカリ金属またはアルカリ土類金属の炭酸塩(炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウムなど)、カルボン酸塩(酢酸ナトリウム、酢酸カリウムなど)を用いて反応を行うこともできるが、前述した高い塩基性度を持つ塩基と比べて更に反応時間を要することから、特に用いるメリットは少ない。 Inorganic bases with medium basicity such as alkali metal or alkaline earth metal carbonates (sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, etc.), carboxylic acids Although the reaction can be carried out using a salt (sodium acetate, potassium acetate, etc.), the reaction time is further required as compared with the above-mentioned base having a high basicity, so that the merit to use is particularly small.
 本発明で用いる塩基は、1種類又は2種類以上を併用して使用することもできる。 The base used in the present invention can be used alone or in combination of two or more.
 本発明で用いる塩基の量は、1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペン1モルに対し、少なくとも1モルを必要とし、該プロペン1モル当たり、通常1~10モルの範囲を適宜選択できるが、好ましくは1~4モルであり、更に好ましくは1~2モルである。また、10モルより多く塩基を使用することも可能であるが、大量に使用するメリットはない。 The amount of the base used in the present invention is required to be at least 1 mole per mole of 1-chloro-2-halogeno-3,3,3-trifluoropropene, and usually 1 to 10 moles per mole of propene. The range can be appropriately selected, but is preferably 1 to 4 mol, more preferably 1 to 2 mol. Although it is possible to use more than 10 moles of base, there is no merit of using a large amount.
 本発明において、1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペン1モルに対して、1モルより少ない塩基を用いた場合、反応の変換率が低下することがある。その際、反応後の精製操作の際に未反応の1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンを回収し、次の反応にリサイクルすることも可能である。 In the present invention, when less than 1 mol of base is used per 1 mol of 1-chloro-2-halogeno-3,3,3-trifluoropropene, the conversion rate of the reaction may be lowered. In this case, unreacted 1-chloro-2-halogeno-3,3,3-trifluoropropene can be recovered during the purification operation after the reaction and recycled to the next reaction.
 本発明において、溶媒を別途加えることができる。溶媒としては反応に関与しないものであれば特に制限はなく、例えばn-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等のアルカン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ジクロロメタン、クロロホルム等のハロゲン化炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アセトニトリル、プロピオニトリル、ブチルニトリル等のニトリル類、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、ヘキサメチルホスホリックトリアミド(HMPA)等のアミド類、エチレングリコール、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノアセテート等のグリコール類、メタノール、エタノール、2-プロパノール等のアルコール類、そして水などが例示できる。また、これらの溶媒は1種または2種以上を組み合わせて用いることもできる。 In the present invention, a solvent can be added separately. The solvent is not particularly limited as long as it does not participate in the reaction. For example, n-pentane, n-hexane, n-heptane, n-octane and other alkanes, benzene, toluene, xylene and other aromatic hydrocarbons, Ethers such as diethyl ether, tetrahydrofuran and dioxane, halogenated hydrocarbons such as dichloromethane and chloroform, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, nitriles such as acetonitrile, propionitrile and butyl nitrile, N, N -Amides such as dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), hexamethylphosphoric triamide (HMPA), ethylene glycol, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol Glycols such as monoacetate, alcohols such as methanol, ethanol, 2-propanol, and the like water can be exemplified. These solvents may be used alone or in combination of two or more.
 本発明の方法は、液相中で反応を行う。反応系内に前述の溶媒を加えて反応を行うことが可能である。なお、本願発明の出発原料である1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンは、その種類により常温・常圧下で液体状態として存在することがあり、その際は別途溶媒を加えなくても、出発原料自体、溶媒として兼ねることが可能である。 The method of the present invention performs the reaction in the liquid phase. It is possible to carry out the reaction by adding the aforementioned solvent into the reaction system. Note that 1-chloro-2-halogeno-3,3,3-trifluoropropene, which is a starting material of the present invention, may exist in a liquid state at normal temperature and normal pressure depending on the type of the starting material. Even if it is not added, the starting material itself can also serve as a solvent.
 本発明に使用される塩基は、作業性の容易さから、塩基が常温・常圧で固体の場合、上述の溶媒を別途加えて溶液として添加することも可能である。また、その溶液の濃度は充分反応が進行する程度に、また、塩基が充分溶媒に溶解する程度に当業者が適宜調整することができる。塩基により異なるが、例えば水酸化カリウム水溶液の場合、通常は5~85質量%とし、10~60質量%が好ましく、15~50質量%の範囲がより好ましい。 The base used in the present invention can be added in the form of a solution by separately adding the above-mentioned solvent when the base is solid at normal temperature and pressure because of ease of workability. The concentration of the solution can be appropriately adjusted by those skilled in the art to such an extent that the reaction proceeds sufficiently and the base is sufficiently dissolved in the solvent. Although it varies depending on the base, for example, in the case of an aqueous potassium hydroxide solution, it is usually 5 to 85% by mass, preferably 10 to 60% by mass, and more preferably 15 to 50% by mass.
 本発明において、溶媒の他に、添加剤として相間移動触媒を用いることができる。相間移動触媒を用いる場合、塩基として、特にアルカリ金属の水酸化物を用いた場合に、反応が促進することからも、好ましく用いられる。 In the present invention, in addition to the solvent, a phase transfer catalyst can be used as an additive. In the case of using a phase transfer catalyst, it is preferably used because the reaction is accelerated particularly when an alkali metal hydroxide is used as the base.
 相間移動触媒としては、クラウンエーテル、クリプタンド、又はオニウム塩を用いることができる。クラウンエーテルは金属カチオンを包摂して反応性を高めることができ、Kカチオンと18-クラウン-6、Naカチオンと15-クラウン-5、Liカチオンと12-クラウン-4の組み合わせ等が挙げられる。また、クラウンエーテルのジベンゾまたはジシクロヘキサノ誘導体等も有用である。 As the phase transfer catalyst, crown ether, cryptand, or onium salt can be used. Crown ether can enhance the reactivity by including a metal cation, and examples thereof include a combination of K cation and 18-crown-6, Na cation and 15-crown-5, Li cation and 12-crown-4. In addition, dibenzo or dicyclohexano derivatives of crown ether are also useful.
 クリプタンドは多環式大環状キレート化剤で、例えばKカチオン、Naカチオン、Csカチオン、Liカチオンと錯体(クリプテート)を形成し、反応を活性化することができ、4,7,13,18-テトラオキサ-1,10-ジアザビシクロ[8.5.5]イコサン(クリプタンド211)、4,7,13,16,21,24-ヘキサオキサ-1,10-ジアザビシクロ[8.8.8]ヘキサコサン(クリプタンド222)等が挙げられる。 Cryptand is a polycyclic macrocyclic chelating agent that can form a complex (cryptate) with, for example, K cation, Na cation, Cs cation, Li cation, and activate the reaction. 4,7,13,18- Tetraoxa-1,10-diazabicyclo [8.5.5] icosane (cryptand 211), 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane (cryptand 222) ) And the like.
 オニウム塩は、4級アンモニウム塩あるいは4級ホスホニウム塩があり、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラn-ブチルアンモニウムクロリド、テトラn-ブチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリド、メチルトリオクチルアンモニウムクロリド、テトラn-ブチルホスホニウムクロリド、テトラn-ブチルホスホニウムブロミド、メチルトリフェニルホスホニウムクロリドが挙げられる。 Onium salt is quaternary ammonium salt or quaternary phosphonium salt, tetramethylammonium chloride, tetramethylammonium bromide, tetra n-butylammonium chloride, tetra n-butylammonium bromide, benzyltriethylammonium chloride, methyltrioctylammonium chloride. Tetra n-butylphosphonium chloride, tetra n-butylphosphonium bromide, and methyltriphenylphosphonium chloride.
 相間移動触媒を用いた場合、反応終了液が2層分離するため、容易に後処理操作を行うことが可能である。 When a phase transfer catalyst is used, since the reaction completion liquid is separated into two layers, the post-treatment operation can be easily performed.
 本発明において、反応圧力は特に限定はなく、常圧または加圧条件下で、0~2MPa(絶対圧基準。以下同じ)、好ましくは0~0.5MPaで操作できる。 In the present invention, the reaction pressure is not particularly limited, and it can be operated at 0 to 2 MPa (absolute pressure standard; the same applies hereinafter), preferably 0 to 0.5 MPa, under normal pressure or pressurized conditions.
 反応温度は特に限定されないが、反応圧力との関係で反応系として液相状態または気相状態を選択でき、通常0℃~80℃、好ましくは常温付近の20℃~40℃である。 The reaction temperature is not particularly limited, but a liquid phase state or a gas phase state can be selected as a reaction system in relation to the reaction pressure, and is usually 0 ° C. to 80 ° C., preferably 20 ° C. to 40 ° C. near normal temperature.
 本発明の方法では、腐食性ガスの発生がないため、常圧又は加圧下で反応を行う際、反応器の材質としては圧力に耐えるものであれば材質に特に制限はなく、一般的なステンレス、ガラス、フッ素樹脂からなるか、または、ガラスもしくはフッ素樹脂によりライニングされた材料の反応容器を使用することができる。 In the method of the present invention, there is no generation of corrosive gas. Therefore, when the reaction is carried out at normal pressure or under pressure, the material of the reactor is not particularly limited as long as it can withstand the pressure. It is possible to use a reaction vessel made of glass, fluororesin, or a material lined with glass or fluororesin.
 耐圧反応容器を用いることもできるが、液化状態の場合でも、反応系内の圧力がそれ程上がることなく反応が進行する為、常圧でも十分に実施できることから、特に耐圧反応容器を用いるメリットはそれ程大きくない。 A pressure-resistant reaction vessel can also be used, but even in a liquefied state, the reaction proceeds without increasing the pressure in the reaction system so much that it can be carried out at normal pressure. not big.
 また、本発明の方法で得られた1-クロロ-3,3,3-トリフルオロプロピンは、常温・常圧で気体として存在する。反応後に得られた気体を、冷却したコンデンサーに流通させた後、該気体を捕集容器で捕集させて液化させた後、後処理をすることなく、さらに精密蒸留することで高純度の1-クロロ-3,3,3-トリフルオロプロピンを得ることができる。 In addition, 1-chloro-3,3,3-trifluoropropyne obtained by the method of the present invention exists as a gas at normal temperature and normal pressure. After the gas obtained after the reaction is passed through a cooled condenser, the gas is collected in a collection container and liquefied, and then subjected to high-precision distillation by further precise distillation without post-treatment. -Chloro-3,3,3-trifluoropropyne can be obtained.
 本発明では、連続的、又は半連続的もしくはバッチ式で反応を行っても良く、当業者が適宜調整することができる。 In the present invention, the reaction may be carried out continuously, semi-continuously or batchwise, and can be adjusted as appropriate by those skilled in the art.
 以下、実施例により本発明をさらに詳細に説明するが、これらの実施態様に限られない。ここで、組成分析値の「%」とは、反応混合物を直接ガスクロマトグラフィー(特に記述のない場合、検出器はFID)によって測定して得られた組成の「面積%」を表す。 Hereinafter, the present invention will be described in more detail by way of examples, but is not limited to these embodiments. Here, “%” of the composition analysis value represents “area%” of the composition obtained by directly measuring the reaction mixture by gas chromatography (the detector is FID unless otherwise specified).
 [実施例1]
 5℃の冷媒を循環させたガラス製冷却器と-78℃に調整したドライアイス-アセトン浴のガラストラップおよび熱電対投入用ガラス製保護管を取り付けた500mlガラス製三口丸底フラスコに、水酸化カリウム34.15g(0.61モル)、水102.46g、テトラブチルアンモニウムブロミド0.68gおよび1,2-ジクロロ-3,3,3-トリフルオロプロペン50.00g(0.303モル)を仕込み、冷却しながらマグネチックスターラーにて撹拌しながら溶解させた。溶解後、水浴にて内温を30℃まで加熱し、そのまま保持した。反応で発生した高濃度の1-クロロ-3,3,3-トリフルオロプロピンガスは、凝縮器出口に導かれた回収トラップ(アセトン+ドライアイスで冷却)に液化して捕集した。2時間加熱を続けてから反応器を冷却し、反応を終了した。反応終了後、回収トラップ側で捕集液30.84gを得た。
[Example 1]
A 500 ml glass three-necked round bottom flask equipped with a glass cooler in which a 5 ° C refrigerant was circulated, a glass trap of a dry ice-acetone bath adjusted to -78 ° C, and a glass protective tube for introducing a thermocouple was hydroxylated. Charge 34.15 g (0.61 mol) of potassium, 102.46 g of water, 0.68 g of tetrabutylammonium bromide and 50.00 g (0.303 mol) of 1,2-dichloro-3,3,3-trifluoropropene. The solution was dissolved while stirring with a magnetic stirrer while cooling. After dissolution, the internal temperature was heated to 30 ° C. in a water bath and maintained as it was. The high-concentration 1-chloro-3,3,3-trifluoropropyne gas generated by the reaction was collected by being liquefied in a recovery trap (cooled with acetone + dry ice) led to the condenser outlet. After 2 hours of heating, the reactor was cooled to complete the reaction. After completion of the reaction, 30.84 g of collected liquid was obtained on the collection trap side.
 得られた捕集液をガスクロマトグラフで分析したところ、1-クロロ-3,3,3-トリフルオロプロピンの純度は96.2%であり、1-クロロ-3,3,3-トリフルオロプロピン収率は79.2%であった。 When the collected liquid was analyzed by gas chromatography, the purity of 1-chloro-3,3,3-trifluoropropyne was 96.2%, and 1-chloro-3,3,3-trifluoropropyne was The yield was 79.2%.
 [実施例2]
 塩基を水酸化ナトリウム24.40g(0.61モル)、水73.19gとした以外は実施例1と同様に反応を実施した結果、1-クロロ-3,3,3-トリフルオロプロピンの純度は96.7%であり、1-クロロ-3,3,3-トリフルオロプロピン収率は88.8%であった。
[Example 2]
As a result of carrying out the reaction in the same manner as in Example 1 except that the base was 24.40 g (0.61 mol) of sodium hydroxide and 73.19 g of water, the purity of 1-chloro-3,3,3-trifluoropropyne Was 96.7%, and the yield of 1-chloro-3,3,3-trifluoropropyne was 88.8%.
 上述の通り、本発明によれば、実施容易な操作により高選択率かつ高収率で1-クロロ-3,3,3-トリフルオロプロピンを製造することができる。 As described above, according to the present invention, 1-chloro-3,3,3-trifluoropropyne can be produced with high selectivity and high yield by an easy operation.
 本発明で対象とする1-クロロ-3,3,3-トリフルオロプロピンは、冷媒、エッチング剤、エアゾール等の機能材料又は生理活性物質、機能性材料の中間体、高分子化合物のモノマーとして利用できる。 1-Chloro-3,3,3-trifluoropropyne targeted in the present invention is used as a functional material such as a refrigerant, an etchant, an aerosol, a physiologically active substance, an intermediate of a functional material, and a monomer of a polymer compound. it can.

Claims (6)

  1. 式[1]で表される1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンに、液相中、塩基を反応させる工程を含む、1-クロロ-3,3,3-トリフルオロプロピンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xはフッ素、塩素、又は臭素を表す。)
    1-chloro-3,3,3-trifluoro comprising 1-chloro-2-halogeno-3,3,3-trifluoropropene represented by the formula [1] and a base in a liquid phase. A method for producing lopropyne.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X represents fluorine, chlorine, or bromine.)
  2. 塩基が、アルカリ金属アルコキシド、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の水酸化物、及びアルカリ土類金属の水酸化物からなる群より選ばれる少なくとも1種の無機塩基である、請求項1に記載の方法。 The base is at least one inorganic base selected from the group consisting of alkali metal alkoxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydroxides, and alkaline earth metal hydroxides; The method of claim 1, wherein:
  3. アルカリ金属が、リチウム、ナトリウム、カリウム、ルビジウム、又はセシウムであり、アルカリ土類金属が、マグネシウム、カルシウム、又はストロンチウムである、請求項2に記載の方法。 The method according to claim 2, wherein the alkali metal is lithium, sodium, potassium, rubidium, or cesium, and the alkaline earth metal is magnesium, calcium, or strontium.
  4. 1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンが1,2-ジクロロ-3,3,3-トリフルオロプロペンであり、塩基が水酸化ナトリウム又は水酸化カリウムである、請求項1に記載の方法。 The 1-chloro-2-halogeno-3,3,3-trifluoropropene is 1,2-dichloro-3,3,3-trifluoropropene and the base is sodium hydroxide or potassium hydroxide. The method according to 1.
  5. 1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンに、液相中、塩基を反応させる際、系内に相間移動触媒を添加することを特徴とする、請求項1乃至4の何れかに記載の方法。 5. The phase transfer catalyst is added to the system when a base is reacted with 1-chloro-2-halogeno-3,3,3-trifluoropropene in a liquid phase. The method in any one.
  6. 相間移動触媒が、クラウンエーテル、クリプタンド、又はオニウム塩である、請求項5に記載の方法。 6. The method of claim 5, wherein the phase transfer catalyst is a crown ether, cryptand, or onium salt.
PCT/JP2012/066930 2011-07-08 2012-07-03 Method of producing 1-chloro-3,3,3-trifluoropropyne WO2013008670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011151586A JP2013018722A (en) 2011-07-08 2011-07-08 Method for producing 1-chloro-3,3,3-trifluoropropyne
JP2011-151586 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008670A1 true WO2013008670A1 (en) 2013-01-17

Family

ID=47505963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066930 WO2013008670A1 (en) 2011-07-08 2012-07-03 Method of producing 1-chloro-3,3,3-trifluoropropyne

Country Status (2)

Country Link
JP (1) JP2013018722A (en)
WO (1) WO2013008670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304449A (en) * 2017-01-23 2022-11-08 墨西哥氟石股份公司 Process for removing haloalkyne impurities from (hydro) halohydrocarbon compositions

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BONDI, A. B.: "Re-identification of C3HClF2 by analysis of its Diels-Alder products", JOURNAL OF FLUORINE CHEMISTRY, vol. 126, no. 11-12, 2005, pages 1549 - 1552 *
CHAMBERS, R. D.: "Eliminations from 2H-Heptafluorobut-2-ene", JOURNAL OF FLUORINE CHEMISTRY, vol. 79, no. 2, 1996, pages 121 - 124 *
HENNE, A. L.: "Preparation and directed chlorination of 1,1,1-trifluoropropane", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 64, 1942, pages 1157 - 9 *
MEAZZA, G.: "Aryl trifluoromethyl-1,2,3-triazoles", JOURNAL OF FLUORINE CHEMISTRY, vol. 55, no. 2, 1991, pages 199 - 206 *
SHCHEKOTIKHIN, A. M. ET AL.: "Fluoro derivatives of acetylenic hydrocarbons. alpha-Fluorinated perhalopropynes", ZHURNAL VSESOYUZNOGO KHIMICHESKOGO OBSHCHESTVA IM. D. I. MENDELEEVA, vol. 7, 1962, pages 580 - 2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304449A (en) * 2017-01-23 2022-11-08 墨西哥氟石股份公司 Process for removing haloalkyne impurities from (hydro) halohydrocarbon compositions
CN115368206A (en) * 2017-01-23 2022-11-22 墨西哥氟石股份公司 Process for removing haloalkyne impurities from (hydro) halohydrocarbon compositions

Also Published As

Publication number Publication date
JP2013018722A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5380882B2 (en) Method for producing 3,3,3-trifluoropropyne
US11267772B2 (en) Process for the preparation of 2,3,3,3-tetrafluoropropene
JP6860057B2 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
JP6132042B2 (en) Process for producing 1-chloro-2,3,3-trifluoropropene
JP6271676B2 (en) Method for producing tetrafluoropropene
JP2013519631A (en) Process for producing 2-chloro-3,3,3-trifluoropropene
JPWO2019189024A1 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
JP2017001990A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
WO2013008671A1 (en) Method of manufacturing 1-chloro-3,3,3-trifluoropropyne
JP7331700B2 (en) Method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoropentene
JP5816037B2 (en) Method for producing 3,3,3-trifluoropropanols
WO2013008670A1 (en) Method of producing 1-chloro-3,3,3-trifluoropropyne
JP5990990B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JP7259764B2 (en) Method for producing 5-chloro-1,1,2,2,3,3,4,4-octafluoropentane and production of 1-chloro-2,3,3,4,4,5,5-heptafluoropentene Method
JP2016079101A (en) Producing method of 1,1-dichloro-3,3,3-trifluoropropene
JP2016169192A (en) Method of producing 7-octenyl halide
CN117396453A (en) Process for producing 1-chloro-2, 3-trifluoropropene
WO2020149365A1 (en) Method for producing z-1,2-dichloro-3,3,3-trifluoropropene
JP2022524344A (en) Process for producing trifluoroiodomethane using metal trifluoroacetic acid salt
JP2022524499A (en) Process for producing trifluoroiodomethane using metallic trifluoroacetate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811858

Country of ref document: EP

Kind code of ref document: A1