JP5202369B2 - PRC equipment - Google Patents
PRC equipment Download PDFInfo
- Publication number
- JP5202369B2 JP5202369B2 JP2009023895A JP2009023895A JP5202369B2 JP 5202369 B2 JP5202369 B2 JP 5202369B2 JP 2009023895 A JP2009023895 A JP 2009023895A JP 2009023895 A JP2009023895 A JP 2009023895A JP 5202369 B2 JP5202369 B2 JP 5202369B2
- Authority
- JP
- Japan
- Prior art keywords
- train
- station
- time
- signal
- crossing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010586 diagram Methods 0.000 claims description 42
- 238000012545 processing Methods 0.000 claims description 35
- 238000011946 reduction process Methods 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 11
- 238000004904 shortening Methods 0.000 claims description 5
- 230000001934 delay Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 33
- 230000008569 process Effects 0.000 description 29
- 230000003111 delayed effect Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Landscapes
- Train Traffic Observation, Control, And Security (AREA)
Description
この発明は、鉄道の列車運行管理システムにおけるPRC装置(自動進路制御装置)の機能拡張に関する。 The present invention relates to function expansion of a PRC device (automatic route control device) in a train operation management system for railways.
鉄道の線路にあっては道路と交差する所に踏切が設置されており、踏切には踏切制御装置が付設されていて、列車が踏切を通過するときには警報が発せられるようになっているが、実用に供されている踏切制御装置は(例えば特許文献1参照)、個々の列車を監視単位として踏切の警報開始時期を決定しており、踏切警報開始時期の決定に際して上下列車などの複数列車や列車群を関連付けて処理するようにはなっていない。 A railroad crossing has a railroad crossing where it crosses the road, and a railroad crossing control device is attached to the railroad crossing, so that a warning is issued when the train passes the railroad crossing, Railroad crossing control devices that are put into practical use (see, for example, Patent Document 1) determine the alarm start timing of a railroad crossing with each train as a monitoring unit. It is not designed to associate train groups.
また、鉄道の線路には必要な各箇所に転てつ機や信号機が設置されており、多くの線路が区間分けされており、各区間における列車在線状況を検出するために、線路に沿って軌道回路が敷設されている。そして、軌道回路の列車検知結果に応じて駅内や一駅間といった狭い範囲については連動装置が転てつ機や信号機を制御するようになっている。
さらに(例えば非特許文献1参照)、CTC装置(列車集中制御装置)が設置されている線路では、軌道回路の各区間の列車在線情報(列車位置)や各信号機の現示(信号現示)が各駅のCTC駅装置を介して管理センターのCTC中央装置に収集されるようになっている。
In addition, railroad tracks are equipped with turnovers and traffic lights at each necessary location, and many tracks are divided into sections. In order to detect the status of trains in each section, along the tracks Track circuit is laid. And according to the train detection result of a track circuit, about a narrow range, such as the inside of a station or between one station, an interlocking device turns and controls a machine and a signal machine.
Furthermore (for example, refer to Non-Patent Document 1), in the track where the CTC device (train central control device) is installed, the train line information (train position) of each section of the track circuit and the indication of each signal (signal indication) Are collected in the CTC central unit of the management center via the CTC station unit of each station.
また、CTC装置に加えて、列車運行の実行ダイヤを作成するためのEDP装置(運転整理装置)や、CTC装置を介して多数の転てつ機や信号機を制御することにより列車の進路制御を行うPRC装置(自動進路制御装置)まで具備した列車運行管理システムでは、CTC装置を介して列車運行状況情報を収集することにより列車追跡が行われるとともに、列車運行状況情報と実行ダイヤとに基づいて広い範囲に亘る列車の進路制御が自動で行われるようになっている。 Moreover, in addition to the CTC device, the EDP device (operation control device) for creating a train operation execution diagram, and a number of turning machines and traffic lights are controlled via the CTC device, thereby controlling the course of the train. In the train operation management system equipped up to the PRC device (automatic route control device) to perform, the train tracking is performed by collecting the train operation status information via the CTC device, and based on the train operation status information and the execution diagram Route control of trains over a wide range is automatically performed.
なお、列車運行状況情報には管理対象線区内の列車位置や信号現示が総て含まれており、実行ダイヤは列車毎に規定され、各列車の実行ダイヤには、停車駅と出発時刻と進路情報との組データが、複数・多数、走行順に並べられている。
また、進路情報には、例えば、各駅における場内信号機や出発信号機、駅内で入換作業がある場合には入換信号機の名称(番号)、その制御すべき順序、制御する時刻(信号反位時刻)などが含まれている。
In addition, the train operation status information includes all train positions and signal indications in the line to be managed, execution schedules are specified for each train, and each train execution schedule includes the stop station and departure time. And a plurality of sets of route information are arranged in order of travel.
The route information includes, for example, on-site signal and departure signal at each station, and when there is a replacement work in the station, the name (number) of the replacement signal, the order to be controlled, and the control time (signal inversion). Time).
しかしながら、このような従来のPRC装置ではダイヤ通りの列車運行が優先され、従来のEDP装置ではダイヤに踏切の情報が反映されず、従来の踏切制御装置では警報開始時期が列車単位で決定されるにすぎない。何れの装置も、複数の列車が同じ踏切を通過することが踏切の開閉(解放/遮断)状況に及ぼす影響まで考慮したものとはなっていない。このため、例えば、上り列車により警報が始まってから当該列車が踏切を通過して警報が停止した後、直ちに下り列車が同じ踏切に接近すると、間髪を入れずに再び警報が始まって、道路通行・道路交通の遮断時間が長くなってしまう。下り列車の踏切通過に上り列車の踏切通過が続いた場合も、同様に踏切の閉時間が長くて、不都合である。
そこで、列車運行を多少遅らせてでも踏切の閉時間を短縮することができるようシステムを改良することが目的となるが、設置台数の多い踏切制御装置の改造は回避して、設置台数の少ないPRC装置などの改造で目的を達成することが技術的な課題となる。
However, in such a conventional PRC apparatus, priority is given to train operation according to the schedule, and in the conventional EDP apparatus, information on the level crossing is not reflected in the diagram, and in the conventional level crossing control apparatus, the alarm start timing is determined on a train basis. Only. None of the devices takes into account the effect of multiple trains passing through the same level crossing on the level of opening / closing (release / shutoff) of the level crossing. For this reason, for example, after an alarm is started by an up train, after the train has passed the railroad crossing and the alarm has stopped, if the down train immediately approaches the same railroad crossing, the alarm will start again without any delay and road traffic・ The road traffic interruption time will be longer. If the going through of the descending train is followed by the passing of the going up train, it is also inconvenient because the closing time of the crossing is long.
Therefore, the purpose is to improve the system so that the closing time of the railroad crossing can be shortened even if the train operation is somewhat delayed, but avoiding the modification of the railroad crossing control device with a large number of installations, the PRC with a small number of installations Achieving the purpose by modifying the equipment is a technical issue.
本発明のPRC装置は(解決手段1)、このような課題を解決するために創案されたものであり、収集した列車運行状況情報と保持している実行ダイヤに基づいて列車の進路制御を行うPRC装置において、閉時間短縮処理対象として停車駅と踏切とを対応付けておくデータを含んでおり且つその停車駅と踏切とについて停車駅を出発してから踏切に到達するまで列車が走行するであろう推定到達時間を取得可能とする拡張データを保持するとともに、前記進路制御に際して、停車駅に到着した列車の出発を規制する出発信号機を進行指示信号に制御する(反位にするという)信号反位時刻を該列車の実行ダイヤに基づいて設定する標準設定を行い、閉時間短縮処理対象の踏切を現停車駅と共に挟む次駅を前記拡張データに基づき検索してこの次駅に停車中であって擦れ違う予定の列車の有無を前記列車運行状況情報に基づいて調べ、有る場合には前記拡張データを参照して現停車駅と次駅とから踏切までの推定到達時間を求め更に両列車の踏切通過予定時刻を求めてその差から遅延時間を得るとともに遅延の有効性を判定し、有効な場合には取得済み遅延時間を用いて標準設定済みの信号反位時刻を遅らせる遅延設定を行うようにしたことを特徴とする。 The PRC apparatus of the present invention (Solution 1) was created in order to solve such a problem, and performs the course control of the train based on the collected train operation status information and the held execution schedule. In the PRC device, data that associates a stop station and a railroad crossing as a closing time reduction process target is included, and the train travels from the stop station to the railroad crossing until the railroad crossing is reached. A signal that holds the extended data that enables the estimated arrival time to be acquired and controls the departure signal that regulates the departure of the train that has arrived at the stop station to be a traveling instruction signal (inverted) during the route control. A standard setting is made to set the inversion time based on the execution schedule of the train, and the next station that sandwiches the crossing for the closing time reduction process together with the current stop station is searched based on the extended data. Based on the train operation status information, the presence or absence of a train that is parked at the next station and is scheduled to rub is checked, and if there is, the estimated arrival time from the current stop station and the next station to the railroad crossing with reference to the extended data In addition, the estimated crossing time of both trains is obtained, the delay time is obtained from the difference, and the effectiveness of the delay is determined, and if it is valid, the standard signal inversion time is obtained using the acquired delay time. It is characterized in that a delay setting for delaying is performed.
また、本発明のPRC装置は(解決手段2)、上記解決手段1のPRC装置であって、前記実行ダイヤには通過駅の識別データと通過予定時刻のデータとが含まれており、前記拡張データには閉時間短縮処理対象として通過駅と踏切とを対応付けておくデータが含まれており更にその通過駅と踏切とについて通過駅に進入してから踏切に到達するまで列車が走行するであろう推定到達時間を取得可能とするデータも含まれており、前記進路制御に際して、通過駅に進入した列車の通過を規制する出発信号機を進行指示信号に制御する信号反位時刻を該列車の実行ダイヤに基づいて設定する標準設定を行い、閉時間短縮処理対象の踏切を現通過駅と共に挟む次駅を前記拡張データに基づき検索して両駅の間で擦れ違う予定の列車の有無を前記列車運行状況情報に基づいて調べ、有る場合には前記拡張データを参照して現通過駅と次駅とから踏切までの推定到達時間を求め更に両列車の踏切通過予定時刻を求めてその差から遅延時間を得るとともに遅延の有効性を判定し、有効な場合には取得済み遅延時間を用いて標準設定済みの信号反位時刻を遅らせる遅延設定を行うようにしたことを特徴とする。 The PRC apparatus according to the present invention is (the solution means 2), the PRC apparatus according to the solution means 1, wherein the execution diagram includes identification data of a passing station and data of a scheduled passage time, and the extension The data includes data associating passing stations and railroad crossings as the closing time reduction processing target, and the train travels from the entrance to the passing station until it reaches the railroad crossing. Data that makes it possible to acquire the estimated arrival time will also be included, and in the course control, the signal inversion time for controlling the departure signal that regulates the passage of the train that has entered the passing station to the travel instruction signal Perform the standard setting to be set based on the execution diagram, search the next station that sandwiches the crossing for the closing time reduction process with the current passing station based on the extended data, and whether or not there is a train that is scheduled to rub between the two stations Investigate based on operation status information, and if there is, obtain the estimated arrival time from the current passing station and the next station to the railroad crossing with reference to the extended data, and further calculate the estimated crossing time of both railroads and delay from the difference It is characterized in that the time is obtained and the effectiveness of the delay is determined, and if it is valid, the delay setting is performed to delay the signal inversion time that has been set in the standard using the acquired delay time.
さらに、本発明のPRC装置は(解決手段3)、上記解決手段1,2のPRC装置であって、管理対象線区内の閉そく信号機も制御可能になっており、前記実行ダイヤには閉そく信号機の直前区間の識別データと該区間の通過予定時刻のデータとが含まれており、前記拡張データには閉時間短縮処理対象として閉そく信号機の直前区間と踏切とを対応付けておくデータが含まれており更にその直前区間と踏切とについて直前区間に進入してから踏切に到達するまで列車が走行するであろう推定到達時間を取得可能とするデータも含まれており、前記進路制御に際して、直前区間に進入した列車の通過を規制する閉そく信号機を進行指示信号に制御する信号反位時刻を該列車の実行ダイヤに基づいて設定する標準設定を行い、閉時間短縮処理対象の踏切を直前区間と共に挟む次駅または先方区間を前記拡張データに基づき検索して両区間の間で擦れ違う予定の列車の有無を前記列車運行状況情報に基づいて調べ、有る場合には前記拡張データを参照して現直前区間と次駅または先方区間とから踏切までの推定到達時間を求め更に両列車の踏切通過予定時刻を求めてその差から遅延時間を得るとともに遅延の有効性を判定し、有効な場合には取得済み遅延時間を用いて標準設定済みの信号反位時刻を遅らせる遅延設定を行うようにしたことを特徴とする。 Further, the PRC apparatus of the present invention (Solution means 3) is the PRC apparatus of the above solution means 1 and 2, and can also control the closing signal in the line to be managed, and the execution diagram includes the closing signal. Includes the identification data of the immediately preceding section and the data of the scheduled passage time of the section, and the extended data includes data associating the immediately preceding section of the traffic signal and the railroad crossing as the closing time reduction processing target. In addition, for the immediately preceding section and the level crossing, there is also included data that makes it possible to obtain an estimated arrival time that the train will travel from entering the previous section until reaching the level crossing. A standard setting is made to set the signal inversion time for controlling the traffic signal that restricts the passage of the train that has entered the section to the travel instruction signal based on the execution schedule of the train, Based on the extended data, the next station or the destination section sandwiching the railroad crossing with the immediately preceding section is searched based on the train operation status information, and if there is a train scheduled to rub between both sections, the extended data To obtain the estimated arrival time from the current immediately preceding section and the next station or the destination section to the railroad crossing, further determine the scheduled crossing time of both trains, obtain the delay time from the difference and determine the effectiveness of the delay, When valid, the delay setting for delaying the signal inversion time that has been set as standard using the acquired delay time is performed.
また、本発明のPRC装置は(解決手段4)、収集した列車運行状況情報と保持している実行ダイヤとに基づいて列車の進路制御を行うPRC装置において、場内信号機の停止指示信号に応じて列車が停止するとその列車によって閉め続けられる踏切を挟む手前側駅と先方側駅とを閉時間短縮処理対象として対応付けておく拡張データを保持するとともに、前記進路制御に際して、前記拡張データにて閉時間短縮処理対象の手前側駅とされている停車駅の出発信号機の現示を停止指示信号から進行指示信号に切り替えるとき、前記拡張データにて当該停車駅と対応付けられている先方側駅の場内信号機の現示が停止指示信号であればそれが進行指示信号に変わるまで待ってから切り替えるようにしたことを特徴とする。 Further, the PRC device according to the present invention (solution 4) is a PRC device that controls the course of a train based on the collected train operation status information and the execution schedule that is held. When the train stops, it holds extension data that associates the near station and the near station across the level crossing that is kept closed by the train as the closing time reduction processing target, and closes the extension data during the course control. When switching from the stop instruction signal to the progress instruction signal, the signal indicating the destination station associated with the stop station in the extension data when switching the indication of the departure signal from the stop station that is the near station to be processed for time reduction. If the display of the on-site signal is a stop instruction signal, it is switched after waiting until it changes to a progress instruction signal.
このような本発明のPRC装置にあっては(解決手段1)、拡張データで閉時間短縮処理対象とされた踏切を通過する列車については、踏切の警報開始時期の調整・制御が個々の列車単位で行われるのでなく、踏切の近くで擦れ違う可能性の高い上下列車などを列車群として把握したうえで、停車駅での出発時刻を遅延させることで、踏切の閉時間の短縮に資する適正な警報開始時期の調整・制御がなされる。具体的には、既述の列車追跡を行って対象線区の列車群の位置を把握するとともに、実行ダイヤを保持していて各列車の出発時刻や進路などの運行情報に基づいて各列車の進路を制御するPRC装置によって処理され、上下列車がなるべく同時に踏切に到達できるよう、踏切到達推定時刻の早い方の出発時刻が遅延させられる。これにより、踏切の閉時間の短縮される頻度が高まる。 In such a PRC apparatus of the present invention (solution 1), for trains passing through a crossing that is subject to the closing time reduction process in the extended data, the adjustment / control of the alarm start timing of the crossing is performed for each train. Appropriate to contribute to shortening the closing time of railroad crossings by delaying the departure time at the stop station after grasping the upper and lower trains that are likely to rub against each other near the railroad crossing as a train group The alarm start time is adjusted and controlled. Specifically, the above-mentioned train tracking is performed to grasp the position of the train group in the target line section, and the execution schedule is held, and the train information of each train is based on the operation information such as departure time and route of each train. Processed by the PRC device that controls the route, the earlier departure time of the crossing arrival estimated time is delayed so that the upper and lower trains can reach the crossing as soon as possible. This increases the frequency with which the crossing closing time is shortened.
ただし、そのように列車の出発の時期を遅延させるのは、直接的なのは一方の列車だけであっても、該当列車のその後の進行や後続列車の進行にまで影響の及ぶ場合があり、そのような間接的な遅延まで考慮すると、対象線区全体での列車運行の遅れにも繋がりかねない。こういった結果を招くような道路通行・道路交通の遮断時間の短縮は、道路の渋滞の緩和に役立つとは言っても、鉄道輸送の定時性を損なうため、そのような相反する二つの要請について利害得失を勘案したうえで、閉時間短縮処理対象や有効判定閾値が定められる。 However, even if only one of the trains delays the departure time of the train in such a way, it may affect the subsequent progress of the corresponding train and the subsequent train. Considering even indirect delays, this may lead to delays in train operation in the entire target area. Although shortening the road traffic / road traffic interruption time that leads to these results will help reduce road congestion, it impairs the punctuality of rail transport, so two conflicting requests Taking into account the pros and cons of, the closing time reduction processing target and the validity determination threshold are determined.
例えば、折り返し駅とその隣接駅との間に踏切がある場合には、隣接駅における出発時期の遅れが他には余り及ばなくて、実用上の影響が少ないので、実用化しやすい。
また、有効判定閾値を大きくすると、ある程度までは、遅延調整時間が広がり、調整対象列車が増えるので、道路の渋滞の緩和の効果が高まる。一方、有効判定閾値を小さくすると、遅延調整時間が狭まり、調整対象列車が減るので、鉄道輸送の定時性が維持される。そのため、原則として、鉄道輸送の定時性の確保が十分に見込める範囲内で、道路の渋滞の緩和に資するよう、対象踏切等や有効判定閾値が選定される。
For example, when there is a railroad crossing between a turn-around station and its adjacent station, the delay in the departure time at the adjacent station is not so much other than that, and there is little practical impact, so it is easy to put it to practical use.
Further, if the validity determination threshold value is increased, the delay adjustment time is extended to a certain extent, and the number of adjustment target trains is increased. Therefore, the effect of alleviating traffic congestion on the road is enhanced. On the other hand, if the validity determination threshold is reduced, the delay adjustment time is reduced and the number of trains to be adjusted is reduced, so that the regularity of rail transport is maintained. Therefore, as a general rule, the target level crossing and the effective determination threshold are selected so as to contribute to alleviation of traffic congestion within a range in which the punctuality of railway transportation can be sufficiently ensured.
なお、踏切警報制御区間に列車が到達したことを検知して踏切警報を開始する機能・論理や、列車が踏切を通過し終わったことを検知して踏切警報を停止する機能・論理は、従来通り踏切警報制御装置が担当するので、仮に本発明のPRC装置が故障したとしても、踏切警報の安全性が損なわれることはない。
したがって、この発明によれば、踏切の閉時間を短縮しうるPRC装置を実用化に好適な態様で実現することができる。
The function / logic that detects that a train has reached the level crossing warning control section and starts a level crossing alarm, or the function / logic that detects that a train has passed the level crossing and stops the level crossing alarm, Since the street crossing warning control device is in charge, even if the PRC device of the present invention breaks down, the safety of the level crossing warning is not impaired.
Therefore, according to the present invention, a PRC device that can shorten the closing time of a railroad crossing can be realized in a mode suitable for practical use.
また、本発明のPRC装置にあっては(解決手段2)、閉時間短縮処理対象が停車駅だけでなく通過駅にも拡大される。
さらに、本発明のPRC装置にあっては(解決手段3)、閉時間短縮処理対象が停車駅だけでなく駅間の区間にも拡大される。
In the PRC device of the present invention (solution 2), the closed time reduction processing target is expanded not only to the stop station but also to the passing station.
Furthermore, in the PRC apparatus of the present invention (Solution means 3), the closed time reduction processing target is expanded not only to the stop station but also to the section between stations.
また、本発明のPRC装置にあっては(解決手段4)、踏切の先にある先方側駅に設置されている場内信号機が停止指示信号を現示しているときそれに応じて列車が停止するとその列車によって踏切が閉め続けられてしまう状況下で、手前側駅に列車が到着してから手前側駅の出発信号機に進行指示信号を現示させるに際して、先方側駅の場内信号機が停止指示信号を現示している間は手前側駅の出発信号機の現示変更が待たされ、先方側駅の場内信号機の現示が進行指示信号になってから手前側駅の出発信号機の現示が進行指示信号に変更される。
これにより、列車が踏切に止まりそうなときには列車が手前駅に留め置かれるため、踏切の警報開始時期の適正化に資するので、不要に警報する時間や頻度が少なくなる。
よって、この発明によれば、踏切の閉時間を短縮しうるPRC装置が実現される。
Further, in the PRC device of the present invention (Solution means 4), when the on-site traffic signal installed at the destination station at the crossing point shows a stop instruction signal, the train stops accordingly. Under the situation where the railroad crossing is kept closed by the train, when the train station arrives at the front station and the departure signal at the front station displays the progress instruction signal, the signal at the destination station gives a stop instruction signal. While the display is in progress, the display change of the departure signal at the near station is awaited, and the display of the signal at the station at the near station becomes a progress instruction signal, and then the display of the departure signal at the near station is a progress instruction signal. Changed to
As a result, when the train is likely to stop at the railroad crossing, the train is kept at the near station, which contributes to the optimization of the alarm start timing of the railroad crossing, and therefore the time and frequency of unnecessary alarming are reduced.
Therefore, according to the present invention, a PRC device that can shorten the closing time of a railroad crossing is realized.
このような本発明のPRC装置について、これを実施するための具体的な形態を、以下の実施例1〜3により説明する。
図1〜3に示した実施例1は、上述した解決手段1(出願当初の請求項1)を具現化したものであり、図4〜6に示した実施例2は、上述した解決手段2,3(出願当初の請求項2,3)を具現化したものであり、図7に示した実施例3は、上述した解決手段4(出願当初の請求項4)を具現化したものである。
With respect to such a PRC apparatus of the present invention, specific modes for carrying out this will be described with reference to the following first to third embodiments.
The embodiment 1 shown in FIGS. 1 to 3 embodies the above-described solution 1 (claim 1 at the beginning of the application), and the embodiment 2 shown in FIGS. 4 to 6 is the solution 2 described above. , 3 (claims 2 and 3 as originally filed), and the third embodiment shown in FIG. 7 embodies the above-described solution 4 (claim 4 as originally filed). .
本発明のPRC装置の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、列車運行管理システム及びそれに含まれているPRC装置10の構造を示し、(a)が列車運行管理システムのブロック図、(b)がPRC装置10の実行ダイヤ11のデータ構造、(c)が拡張データ12の一形態、(d)が拡張データ12の別形態である。また、図2は、(a)がPRC装置10の進路制御プログラム13及び拡張プログラム14の信号反位時刻設定処理のフローチャート、(b)が信号反位制御のフローチャートである。
A specific configuration of the PRC device according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of a train operation management system and the
このPRC装置10は(図1(a)参照)、従来のPRC装置と同じく、転てつ機や,場内信号機,出発信号機15に加えて軌道回路も敷設された線路を対象にした列車運行管理システムに組み込まれるものであり、CTC装置等を介して管理対象線区内の各列車の列車運行状況情報を収集するとともに、その列車運行状況情報とEDP装置や自装置で作成や更新し自装置に保持している実行ダイヤ11とに基づいて、CTC装置等を介して管理対象線区内の転てつ機や,場内信号機,出発信号機15を制御することにより、管理対象線区内の各列車について進路制御を行うようになっている。
This PRC device 10 (see FIG. 1 (a)), like the conventional PRC device, manages the train operation for the track where the track circuit is also laid in addition to the turning machine, the traffic signal, and the
既述したように、列車運行状況情報には列車位置や信号現示が含まれており、実行ダイヤ11は列車毎に規定され(図1(b)参照)、各列車の実行ダイヤには、停車駅と進路情報との組データが走行順に並べられている他、列車の種別データが含まれている。進路情報には出発時刻や信号反位時刻が含まれている。列車が停車駅のホームに到着したときの列車位置は、駅番号で示され、そのホーム前端の出発信号機15の現示を停止指示信号から進行指示信号に切り替える予定時刻である信号反位時刻は、時分秒といった制御時刻で示されるが、何れも、列車毎に且つ停車駅毎にデータ領域が確保されており、列車の進行に伴って随時更新されるものである。
As described above, the train operation status information includes the train position and signal indication, the execution diagram 11 is defined for each train (see FIG. 1B), and the execution diagram of each train includes The group data of the stop station and the route information are arranged in the order of travel, and the train type data is included. The route information includes departure time and signal inversion time. The train position when the train arrives at the platform of the stop station is indicated by the station number, and the signal inversion time that is the scheduled time to switch the indication of the
また、このPRC装置10には(図1(a)参照)、従来のPRC装置と異なり、拡張データ12が保持されており、拡張プログラム14がインストールされている。
拡張データ12には、列車のデッドロックを防止するための遅延処理未済フラグが含まれている(図1(b)参照)。遅延処理未済フラグは、停車駅毎に設定されても良く少なくとも列車毎に設定されるものであり、値が「未」であれば該当列車の信号反位時刻が標準設定されたままであることを示し、値が「済」であれば該当列車の信号反位時刻が標準設定に加えて遅延設定もなされたことを示している。
In addition, unlike the conventional PRC device, the PRC device 10 (see FIG. 1A) holds extended
The
拡張データ12には、拡張プログラム14の閉時間短縮処理対象とされる停車駅と踏切とを対応付けておくデータも含まれている(図1(c),(d)参照)。そのデータには、各対応付けの停車駅と踏切とについて停車駅を出発してから踏切に到達するまで列車が走行するであろう推定到達時間を算出可能とするデータが設定されるようになっており、この実施例では、データ設定作業の楽な態様のもの(図1(c)参照)とプログラムで参照し易い態様のもの(図1(d)参照)が共に含まれているが、何れか一方だけで済ますことも可能であり、推定到達時間を算出可能であれば他の態様であっても良く、例えばインデックスキーを複数指定できるデータベースを流用したものでも良い。
The
この拡張データ12に必要なデータ項目の具体例を挙げると、データ設定用には(図1(c)参照)、踏切と進路情報との組毎に、進路情報と上り駅番号とそこから踏切までの距離と下り駅番号とそこから踏切までの距離とが含められる。また、プログラム参照用には(図1(d)参照)、列車が到着して出発しようとしている現停車駅を示す停車駅番号と進路情報との組毎に、その現停車駅から踏切までの距離と,踏切を挟んでいる相手方の駅である次駅を示す次駅番号と,この次駅から踏切までの距離とが含められる。この実施例では、データ設定用のデータ項目(図1(c)参照)を一通り入力しておけば、データ変換ツールによってプログラム参照用のもの(図1(d)参照)を自動作成することができるようにもなっている。
Specific examples of data items necessary for the
進路制御プログラム13は、既述したように列車運行状況情報と実行ダイヤ11とに基づいて列車の進路制御を行うものであり、その進路制御において、列車が停車駅に到着すると、ホーム進入時に信号反位時刻設定処理を行い(図2(a)参照)、信号反位時刻到来時には信号反位制御を行う(図2(b)参照)。進路制御プログラム13の信号反位時刻設定処理では(図2(a)ステップS11参照)、停車駅に到着した列車の出発を規制する出発信号機15を進行指示信号に制御する(反位にするという)信号反位時刻を該列車の実行ダイヤ11に基づいて設定する標準設定が行われる。例えば、定時到着時には、実行ダイヤ11の出発時刻の20秒前の時刻が設定され、遅れ到着時には、到着時刻の15秒後の時刻が設定されるようになっている。また、進路制御プログラム13の信号反位制御では(図2(b)ステップS21参照)、該当する出発信号機15を進行指示信号に制御することが行われて、その出発信号機15の現示が停止指示信号から進行指示信号に変更されるようになっている。
The
拡張プログラム14は、その信号反位時刻設定処理と信号反位制御とについて機能を拡張したものであり、拡張プログラム14の信号反位時刻設定処理は(図2(a)ステップS12〜S18参照)、進路制御プログラム13の信号反位時刻設定処理の直後に続けて行われるようになっている。また、拡張プログラム14の信号反位制御処理は(図2(b)ステップS22参照)、進路制御プログラム13の信号反位制御処理の直後に続けて行われるようになっている。
The
拡張プログラム14の信号反位時刻設定処理では(図2(a)ステップS12〜S18参照)、先ず(ステップS12)、閉時間短縮処理対象の踏切を現停車駅と共に挟む次駅を拡張データ12(図1(d))に基づき検索し、それで得た次駅に停車中であって擦れ違う予定の別列車の有無を列車運行状況情報や実行ダイヤ11に基づいて調べ、擦れ違う予定の別列車が無ければ信号反位時刻設定処理を終えるが、擦れ違う予定の別列車が有る場合には処理を続けるようになっている。
In the signal inversion time setting process of the extension program 14 (see steps S12 to S18 in FIG. 2A), first (step S12), the next station sandwiching the crossing subject of the closing time shortening process together with the current stop station is set as the extension data 12 ( Search based on Fig. 1 (d)), and check whether there is another train that is parked at the next station and is scheduled to rub, based on the train operation status information and
続く処理では(ステップS13)、次駅の別列車に係る遅延処理未済フラグが「済」になっていれば列車のデッドロックを防止するため信号反位時刻設定処理を終えるが、次駅の別列車に係る遅延処理未済フラグが「未」になっている場合には処理を続ける。
また(ステップS14)、列車運行状況情報に基づいて次駅の別列車が抑止中であるか否かを調べ、抑止中であれば待ち合わせる意味が無いので信号反位時刻設定処理を終えるが、抑止中でない場合は処理を続けるようになっている。
In the subsequent processing (step S13), if the delay processing incomplete flag relating to another train at the next station is “completed”, the signal inversion time setting processing is finished to prevent the deadlock of the train. If the delay processing incomplete flag relating to the train is “not yet”, the processing is continued.
Further, (step S14), it is checked whether another train at the next station is being suppressed based on the train operation status information, and if it is being suppressed, there is no point in waiting, so the signal inversion time setting process ends. If not, the process is continued.
それから(ステップS15)、拡張データ12を参照して現停車駅から踏切までの推定到達時間Taと次駅から踏切までの推定到達時間Tbとを求め、更に現停車駅の列車が予定通り出発すれば踏切を通過するであろう踏切通過予定時刻Tca(=現停車駅の出発制御タイミング(標準設定された信号反位時刻)+Ta)を求めるとともに、次駅の列車が予定通り出発すれば踏切を通過するであろう踏切通過予定時刻Tcb(=次駅の出発制御タイミング(標準設定された信号反位時刻)+Tb)を求め、それから、その差(Tca−Tcb)から遅延時間Tdを算出するようになっている。推定到達時間の算出では、実行ダイヤ11の列車種別から列車の速度を定め、この速度と拡張データ12の距離とを掛けるようになっている。踏切通過予定時刻の算出に用いる出発制御タイミングには、列車と駅を特定して実行ダイヤ11から得られる進路情報に含まれている信号反位時刻を用いるようになっている。
Then (step S15), the estimated arrival time Ta from the current stop station to the railroad crossing and the estimated arrival time Tb from the next station to the railroad crossing are obtained with reference to the
また(ステップS16)、道路通行・道路交通の遮断時間の短縮の利益と鉄道輸送の定時性の喪失の損害とを勘案して予め一定値に決定された有効判定閾値γを用いて遅延が有効か無効かを判定する。具体的には、例えば有効判定閾値γを正値で設定した場合、判別式[Td<0 and Td<|γ|]が満たされれば有効と判定し、そうでなければ無効と判定する。比較条件[Td<0]は現停車駅の該列車の遅延を優先すべきことを意味し、比較条件[Td<|γ|]は過剰遅延にならない適正な範囲や鉄道輸送の定時性の確保の限界を意味する。なお、有効判定閾値γを負値で設定した場合、判別式は[γ<Td<0]になる。また、判別式や算出式を適宜微修正すれば、遅延時間Tdを(Tcb−Tca)で算出しても良い。 Further, (step S16), the delay is effective by using the validity judgment threshold γ determined in advance in consideration of the benefit of shortening the time for blocking road traffic and road traffic and the loss of punctuality of rail transport. Or invalid. Specifically, for example, when the validity determination threshold γ is set to a positive value, it is determined to be valid if the discriminant [Td <0 and Td <| γ |] is satisfied, and otherwise, it is determined to be invalid. The comparison condition [Td <0] means that the delay of the train at the current stop station should be prioritized, and the comparison condition [Td <| γ |] ensures an appropriate range that does not cause an excessive delay and the punctuality of railway transportation. Means the limit. When the validity determination threshold γ is set as a negative value, the discriminant is [γ <Td <0]. Further, the delay time Td may be calculated by (Tcb−Tca) if the discriminant or calculation formula is finely corrected as appropriate.
この遅延の有効性の判定は現停車駅と次駅とに挟まれている全踏切について行われ(ステップS16の無効,ステップS17のNo)、有効なものが見つからなかったときには信号反位時刻設定処理を終えるが(ステップS17のYes)、有効なものが見つかったときには処理を続けて遅延設定を行うようになっている(ステップS16の有効)。
そして(ステップS18)、遅延設定処理では、取得済み遅延時間Tdを用いて現停車駅の列車に係る標準設定済みの信号反位時刻を遅延時間Tdだけ遅らせるようになっている。また、列車のデッドロックを防止するため、現停車駅の列車に係る遅延処理未済フラグの値を「未」から「済」に変更することも行うようになっている。
The determination of the effectiveness of this delay is performed for all railroad crossings between the current stop station and the next station (invalid in step S16, No in step S17). If no valid one is found, the signal inversion time is set. Although the processing is finished (Yes in step S17), when a valid one is found, the processing is continued and delay setting is performed (valid in step S16).
Then, (step S18), in the delay setting process, the signal inversion time that is already set for the train at the current stop station is delayed by the delay time Td using the acquired delay time Td. Further, in order to prevent deadlock of the train, the value of the delay processing incomplete flag relating to the train at the current stop station is changed from “not yet” to “completed”.
拡張プログラム14の信号反位制御処理では(図2(b)ステップS22参照)、これは上述したように従来の進路制御プログラム13の信号反位制御処理に続けて行われるものであり、列車のデッドロックを防止するための遅延処理未済フラグを「済」から「未」に戻すようになっている。なお、遅延処理未済フラグを駅毎に設定するものとすれば、遅延処理未済フラグを「済」から「未」に戻す処理を省くことができる場合もある。また、必要以上に煩雑となる詳細な説明は割愛するが、信号反位時刻設定処理と信号反位制御処理は同じ遅延処理未済フラグを更新するので、それらのプログラムには、フラグ参照からフラグ更新までを不可分とするフラグアクセス排他機能を持たせる必要があれば、適切なフラグアクセス排他機能も付加される。
In the signal inversion control process of the expansion program 14 (see step S22 in FIG. 2B), this is performed following the signal inversion control process of the conventional
この実施例1のPRC装置10について、その使用態様及び動作を、図面を引用して説明する。図3(a)〜(d)は、何れも、列車運行状況例の記号図である。
上り線と下り線とが並んでいる線区に甲駅と乙駅とが隣り合って設けられており、両駅間に二つの踏切X,Yが存在している所で、列車Aが上り線を走行し、列車Bが下り線を走行する場合を具体例として、説明する。
The use mode and operation of the
The station A and B station are located next to each other in the line where the up line and down line are lined up, and there are two railroad crossings X and Y between the two stations. A case where the vehicle travels on the line and the train B travels on the down line will be described as a specific example.
PRC装置10は、従来装置と同様、CTC等を具備した列車運行管理システムに組み込まれて使用され、列車運行状況情報を収集する列車追跡と実行ダイヤ11に基づく進路制御とを行えるよう、基本的な状態が整えられているものとする(図1(a)参照)。また、拡張データ12については、遅延処理未済フラグが総て値を「未」に初期化され、甲駅と乙駅と踏切Xと踏切Yとが閉時間短縮処理対象になるよう停車駅と踏切とが対応付けされている(図1(c),(d)参照)。さらに、PRC装置10では、列車の自動進路制御に際して、進路制御プログラム13と共に拡張プログラム14も実行される。
Like the conventional apparatus, the
そして、PRC装置10で、列車追跡によって列車Aの甲駅に着いたことが判明すると(図3参照)、甲駅を現停車駅として列車Aについて信号反位時刻設定処理が開始されて(図2(a)参照)、列車Aの出発を規制する甲駅の出発信号機15を進行指示信号に制御する信号反位時刻に対し列車Aの実行ダイヤ11に基づく標準設定が行われる(図2(a)ステップS11参照)。それから、閉時間短縮処理対象の踏切X,Yを現停車駅の甲駅と共に挟む次駅が拡張データ12に基づく検索によって求められ、これで次駅と分かった乙駅に停車中であって擦れ違う予定の列車の有無が列車運行状況情報に基づいて調べられる(図2(a)ステップS13参照)。
When the
そして、列車Aが甲駅に着いても(図3参照)、擦れ違うかもしれない別列車が全く来ていない場合や(図3(a)参照)、既に列車Bが乙駅を出発してしまった場合には(図3(b)参照)、標準設定の信号反位時刻がそのまま信号反位制御に使用される。なお、列車Bが乙駅に到着したときは乙駅を現停車駅として列車Bについて信号反位時刻設定処理が開始され、そのときも、次駅の甲駅に別列車Aが無ければ(図3(c)参照)、列車Bの信号反位時刻が標準設定のまま使用される。 And even if train A arrives at Kou station (see Fig. 3), or if there is no other train that may be rubbing (see Fig. 3 (a)), train B has already left Oto station. In the case (see FIG. 3B), the standard signal inversion time is used for signal inversion control as it is. When train B arrives at Otsu Station, signal inversion time setting processing for train B is started with Otsu Station as the current stop station, and even if there is no other train A at the next station Kou Station (Fig. 3 (c)), the signal inversion time of the train B is used with the standard setting.
これに対し、列車Aが甲駅に着いたとき乙駅に擦れ違い列車Bが停車していた場合(図3(d)参照)、遅延設定に向けて更なる判別がなされる(ステップS13〜S17)。具体的には、先ず、列車のデッドロックを防止するため次駅の別列車である乙駅の列車Bに係る遅延処理未済フラグが「未」になっていることが確認され(ステップS13)、乙駅の列車Bが抑止中でないことが確認され(ステップS14)、何れか一方でも確認できなければ遅延設定が回避されて列車Aに係る標準設定の信号反位時刻がそのまま信号反位制御に使用されるが、両方ともそうであると確認できれば、次の判定も行われる。 On the other hand, when the train A arrives at the former station, the train B is rubbed against the train station B (see FIG. 3D), and further determination is made toward the delay setting (steps S13 to S17). ). Specifically, first, it is confirmed that the delay processing incomplete flag relating to the train B of Otsu Station, which is another train of the next station, is “not yet” in order to prevent a deadlock of the train (step S13). It is confirmed that the train B at the station B is not being suppressed (step S14). If neither of the trains can be confirmed, the delay setting is avoided and the standard signal inversion time for the train A is used as it is for the signal inversion control. Used, but if both can be confirmed, the next decision is also made.
すなわち、踏切Xについて遅延時間Tdの算出と遅延有効の判定とが行われ(ステップS15〜S16)、有効の判定結果が出なければ(ステップS17)、更に踏切Yについて遅延時間Tdの算出と遅延有効の判定とが行われ(ステップS15〜S16)、有効な踏切が見つからなければ遅延設定が回避されて列車Aに係る標準設定の信号反位時刻がそのまま信号反位制御に使用されるが、遅延時間Tdの有効な踏切が見つかれば例えば踏切Xの遅延時間Tdが有効であった場合、踏切Xと甲駅と列車Aとの関係に基づいて列車Aに係る信号反位時刻に遅延設定が行われるとともに、列車のデッドロック防止のため列車Aに係る遅延処理未済フラグが「未」から「済」に変更される(ステップS18)。 That is, the delay time Td is calculated for the crossing X and the delay validity is determined (steps S15 to S16), and if no valid determination result is obtained (step S17), the delay time Td is calculated and the delay is further calculated for the crossing Y. It is determined that it is valid (steps S15 to S16), and if no valid level crossing is found, the delay setting is avoided and the standard signal inversion time related to the train A is used as it is for signal inversion control. If a valid level crossing of the delay time Td is found, for example, if the delay time Td of the level crossing X is valid, a delay setting is made at the signal inversion time related to the train A based on the relationship between the level crossing X, the station A, and the train A. At the same time, the delay processing incomplete flag relating to train A is changed from “not yet” to “completed” in order to prevent deadlock of the train (step S18).
なお(図3(d)参照)、踏切Xに係る遅延時間Tdの算出は、拡張データ12を参照して甲駅から踏切Xまでの推定到達時間Taxと乙駅から踏切Xまでの推定到達時間Tbxとを求め、更に甲駅の列車Aが予定通り出発すれば踏切Xを通過するであろう踏切通過予定時刻Tca(=甲駅の出発制御タイミング(標準設定された信号反位時刻)+Tax)を求めるとともに、乙駅の列車Bが予定通り出発すれば踏切Xを通過するであろう踏切通過予定時刻Tcb(=乙駅の出発制御タイミング(標準設定された信号反位時刻)+Tbx)を求め、それから、その差(Tca−Tcb)を算出して遅延時間Tdとすることで行われる。
Note that the delay time Td related to the crossing X is calculated by referring to the
また、踏切Yに係る遅延時間Tdの算出は、やはり拡張データ12を参照して甲駅から踏切Yまでの推定到達時間Tayと乙駅から踏切Yまでの推定到達時間Tbyとを求め、更に甲駅の列車Aが予定通り出発すれば踏切Yを通過するであろう踏切通過予定時刻Tca(=甲駅の出発制御タイミング(標準設定された信号反位時刻)+Tay)を求めるとともに、乙駅の列車Bが予定通り出発すれば踏切Yを通過するであろう踏切通過予定時刻Tcb(=乙駅の出発制御タイミング(標準設定された信号反位時刻)+Tby)を求め、それから、その差(Tca−Tcb)を算出して遅延時間Tdとすることで行われる。さらに、列車Aに係る信号反位時刻を遅延設定するのは、列車Aに係る信号反位時刻を標準設定済みの時刻から遅延時間Tdだけ遅らせるよう設定し直すことで行われる。
Further, the delay time Td related to the crossing Y is calculated by obtaining the estimated arrival time Tay from the station A to the crossing Y and the estimated arrival time Tby from the station B to the crossing Y with reference to the
数値例を挙げると、有効判定閾値γが80秒であり、列車Aの出発制御タイミング(標準設定された信号反位時刻)が17:00で推定到達時間Taが30秒であり、列車Bの出発制御タイミング(標準設定された信号反位時刻)が17:01で推定到達時間Tbが40秒である場合、列車Aの踏切通過予定時刻Tcaが17:00:30(=17:00:00+0:0:30)となり、列車Bの踏切通過予定時刻Tcbが17:01:40(=17:01:00+0:0:40)となり、遅延時間Tdが−70秒(=17:00:30−17:01:40)となり、有効性判別の結果が有効と出るので、列車Aの出発制御タイミング(信号反位時刻)が70秒遅れの17:01:10に変更される。 As a numerical example, the effective determination threshold γ is 80 seconds, the departure control timing of the train A (standard signal inversion time) is 17:00, the estimated arrival time Ta is 30 seconds, and the train B When the departure control timing (standard signal inversion time) is 17:01 and the estimated arrival time Tb is 40 seconds, the scheduled crossing time Tca of the train A is 17:00:30 (= 17: 00: 00 + 0) : 0:30), the scheduled crossing time Tcb of train B is 17:01:40 (= 17: 01: 00 + 0: 0: 40), and the delay time Td is −70 seconds (= 17: 00: 30−). 17:01:40), and the validity determination result is valid, so the departure control timing (signal inversion time) of train A is changed to 17:01:10 with a delay of 70 seconds.
これに対し、列車Aの出発制御タイミング(標準設定された信号反位時刻)が17:00で推定到達時間Taが100秒であり、列車Bの出発制御タイミング(標準設定された信号反位時刻)が17:01で推定到達時間Tbが30秒である場合、列車Aの踏切通過予定時刻Tcaが17:01:40(=17:00:00+0:1:40)となり、列車Bの踏切通過予定時刻Tcbが17:01:30(=17:01:00+0:0:30)となり、遅延時間Tdが+10秒(=17:00:40−17:01:30)となり、有効性判別の結果が無効と出るので、列車Aの出発は標準設定時刻のままとされる。 On the other hand, the departure control timing of train A (standard signal inversion time) is 17:00, the estimated arrival time Ta is 100 seconds, and the departure control timing of train B (standard signal inversion time) ) Is 17:01 and the estimated arrival time Tb is 30 seconds, the scheduled crossing time Tca of the train A is 17:01:40 (= 17: 00: 0 + 0: 1: 40), and the train B passes the crossing. The scheduled time Tcb is 17:01:30 (= 17: 01: 00 + 0: 0: 30) and the delay time Td is +10 seconds (= 17: 00: 40-17: 30: 1: 30). Is invalid, the departure of train A is left at the standard set time.
そして、時間が経過して現在時刻が列車Aに係る信号反位時刻になると、信号反位制御が開始されて、甲駅の出発信号機15が進行指示信号に制御され(ステップS21)、その現示が停止指示信号から進行指示信号に切り替わるとともに、必要であれば列車Aに係る遅延処理未済フラグが「済」から「未」に戻される(ステップS22)。
こうして、列車Aは遅延設定済み信号反位時刻以降に甲駅を出発し、列車Bは標準設定済み信号反位時刻以降に乙駅を出発し、列車A,Bはほぼ同時に踏切Xを通過する。そのため、踏切Xにおいて道路通行・道路交通の遮断される時間が短縮されることとなる。その代償は甲駅で列車Aの出発を遅らせることであるが、それは大抵許容範囲に収まる。
And when time passes and the present time turns into the signal inversion time concerning the train A, signal inversion control is started, the
Thus, train A departs from station A after the delayed signal inversion time, train B departs from station B after the standard inversion signal inversion time, and trains A and B pass railroad crossing X almost simultaneously. . Therefore, the time during which road traffic and road traffic are blocked at the crossing X is shortened. The price is to delay the departure of train A at the station A, which is usually acceptable.
本発明のPRC装置の実施例2について、その具体的な構成を、図面を引用して説明する。図4は、列車運行管理システム及びそれに含まれているPRC装置40の構造を示し、(a)が列車運行管理システムのブロック図、(b)がPRC装置40の実行ダイヤ41のデータ構造、(c)が拡張データ42の一形態、(d)が拡張データ42の別形態である。また、図5は、PRC装置40の進路制御プログラム13及び拡張プログラム44の信号反位時刻設定処理のフローチャートである。
A specific configuration of the PRC apparatus according to the second embodiment of the present invention will be described with reference to the drawings. 4A and 4B show the structure of the train operation management system and the
このPRC装置40が上述した実施例1のPRC装置10と相違するのは、実行ダイヤ11が拡張されて実行ダイヤ41になっている点と、拡張データ12が更に拡張されて拡張データ42になっている点と、拡張プログラム14が更に拡張されて拡張プログラム44になっている点である。また、管理対象線区内の閉そく信号機45は、閉そく装置の一部として従来通り局所的に閉そく動作を行うのに加えて、PRC装置40からCTC装置を介して信号現示の指令を受けたときには、安全が確保されるという条件下に限られるが、PRC装置40の指令に従って信号現示を切り替えるようにもなっている。
The
実行ダイヤ41は、停車駅に関連する実行ダイヤ11の全データを引き継いだうえで、通過駅と閉そく区間とに関連するダイヤ準拠データを追加したものである(図4(b)参照)。停車駅に関連する実行ダイヤ11のデータには、上述したように予定の停車駅と出発時刻と進路情報との組データが含まれているところ、通過駅に関連するダイヤ準拠データには、予定されている通過駅の識別データと通過時刻(望ましくは通過駅への予定進入時刻)と進路情報との組データが含まれており、閉そく区間に関連するダイヤ準拠データには、予定されている閉そく区間の閉そく信号機45の直前区間の識別データと該区間の通過時刻(望ましくは直前区間への予定進入時刻)と進路情報との組データが含まれている。なお、予定進入時刻は信号反位時刻のように進路情報に含ませておいても良い。
The execution diagram 41 is obtained by taking over all the data of the execution diagram 11 related to the stop station and adding diamond-compliant data related to the passing station and the block section (see FIG. 4B). As described above, the data of the execution diagram 11 related to the stop station includes the set data of the planned stop station, the departure time, and the route information. As shown in FIG. It includes the identification data of the passing station, the passing data (preferably the scheduled approach time to the passing station), and the route information, and the diagram-compliant data related to the block section is scheduled. The set data includes the identification data of the immediately preceding section of the
これは、駅では該当区間の進行方向先端部に出発信号機15が設置されているのに対し、閉そく区間ではそれとその直前区間との間に閉そく信号機45が設置されており、信号機手前での列車停止を可能にするためである。
また、停車駅に関連する信号反位時刻は、停車駅に停車した列車の出発を規制する出発信号機15を進行指示信号に制御する予定時刻を示すものであるのに対し、通過駅に関連する信号反位時刻は、通過駅に進入した列車の通過を規制する出発信号機15を進行指示信号に制御する予定時刻を示すものであり、閉そく区間に関連する信号反位時刻は、直前区間に進入した列車の通過を規制する閉そく信号機45を進行指示信号に制御する予定時刻を示すものとなっている。
This is because the
Further, the signal inversion time related to the stop station indicates the scheduled time for controlling the
拡張データ42は、停車駅と踏切との対応付けに関連する拡張データ12の全データを引き継いだうえで、通過駅と踏切との対応付けに関連する拡張データ12同様のデータや、閉そく区間と踏切との対応付けに関連する拡張データ12同様のデータを追加したものである(図4(c)〜(d)参照)。なお、この拡張データ42では、駅番号で指定できない閉そく区間に関連する区間は、上り区間番号や,下り区間番号,直前区間番号,先方区間番号といった区間番号で指定されている。
The
拡張プログラム44は、拡張プログラム14の信号反位時刻設定処理と信号反位制御処理を停車駅(出発信号機15)だけでなく通過駅(出発信号機15)と閉そく区間の直前区間(閉そく信号機45)までも処理できるようにしたものである。具体的には(図5参照)、信号反位時刻設定処理が停車駅のホームに進入したときに加え通過駅の最初の区間や閉そく信号機45の直前区間に進入したときも実行される。そして、列車進入先が停車駅の場合は拡張プログラム14と同じく停車時の標準設定が行われるが(ステップS50,S11)、列車進入先が通過予定の区間である場合は直前区間や通過駅に進入した列車の信号反位時刻が通過時の標準設定として例えば現在の時刻に設定されるようになっている(ステップS50,S51)。現在の時刻に設定するのは、遅延設定が加わらない限りダイヤ通りに該当区間を通過させるためなので、通過に影響が無ければ停車時の標準設定をそのまま又は多少変形させて流用しても良い。
The
また、擦れ違い列車の有無判定は(ステップS52)、閉時間短縮処理対象の踏切を現停車駅と共に挟む次駅を拡張データ42に基づき検索してこの次駅に停車中であって擦れ違う予定の列車の有無を列車運行状況情報に基づいて調べることに加え、閉時間短縮処理対象の通過駅への拡大に対応して、閉時間短縮処理対象の踏切を現通過駅と共に挟む次駅を拡張データ42に基づき検索して両駅の間で擦れ違う予定の列車の有無を列車運行状況情報に基づいて調べることと、閉時間短縮処理対象の閉そく区間への拡大に対応して、閉時間短縮処理対象の踏切を直前区間と共に挟む次駅または先方区間を拡張データ42に基づき検索して両区間の間で擦れ違う予定の列車の有無を列車運行状況情報に基づいて調べることも、行うようになっている。
In addition, the presence / absence determination of the crossing train is determined (step S52), the next station sandwiching the crossing subject to be shortened with the current stop station is searched based on the
さらに、遅延時間Tdの算出については(ステップS55)、拡張データ42を参照して現停車駅と次駅とから踏切までの推定到達時間Ta,Tbを求め更に両列車の踏切通過予定時刻Tca,Tcbを求めその差から遅延時間Tdを得るとともに遅延の有効性を判定することに加え、閉時間短縮処理対象の通過駅への拡大に対応して、拡張データ42を参照して現通過駅と次駅とから踏切までの推定到達時間Ta,Tbを求め更に両列車の踏切通過予定時刻Tca,Tcbを求めその差から遅延時間Tdを得るとともに遅延の有効性を判定することと、閉時間短縮処理対象の閉そく区間への拡大に対応して、拡張データ42を参照して現直前区間と次駅または先方区間とから踏切までの推定到達時間Ta,Tbを求め更に両列車の踏切通過予定時刻Tca,Tcbを求めその差から遅延時間Tdを得るとともに遅延の有効性を判定することも、行うようになっている。
Further, regarding the calculation of the delay time Td (step S55), the estimated arrival times Ta and Tb from the current stop station and the next station to the railroad crossing are obtained with reference to the
推定到達時間Ta,Tbや,踏切通過予定時刻Tca,Tcb,遅延時間Tdの算出は、有効判定が出るまで踏切毎に行われるが、各踏切についてみると、擦れ違い列車の現在位置が停車駅なのか通過駅なのか他の区間なのかに応じて拡張データ42の参照等が使い分けられて、一組の時間が求められる。
また、推定到達時間Ta,Tbの具体的な算出方法は、何れか上述した実施例の手法を単に援用するのでも良く、停発車に要する時間が反映されるよう改造しても良い。
有効判定閾値γも、唯一の値を共用するのでも良く、停車と通過とで別でも良く、停車駅と通過駅と閉そく区間とで別でも良い。
The estimated arrival times Ta, Tb, estimated crossing time Tca, Tcb, and delay time Td are calculated for each level crossing until a valid determination is made. Depending on whether the station is a passing station or another section, the reference of the
In addition, as a specific method of calculating the estimated arrival times Ta and Tb, any of the above-described methods of the embodiments may be simply used, or may be modified to reflect the time required for stopping.
The valid determination threshold γ may also share a single value, may be different for stopping and passing, or may be different for a stop station, a passing station, and a closed section.
この実施例2のPRC装置40について、その使用態様及び動作を、図面を引用して説明する。図6(a)〜(b)は、何れも、列車運行状況例の記号図である。
The use mode and operation of the
繰り返しとなる詳細な説明は割愛するが、この場合、停車駅を出発してから踏切に到達するまで列車が走行するであろう推定到達時間に加えて、通過駅に進入してから踏切に到達するまで列車が走行するであろう推定到達時間と、閉そく信号機の直前区間に進入してから踏切に到達するまで列車が走行するであろう推定到達時間も、拡張データ42に基づいて算出することが可能であり、拡張プログラム44によって信号反位時刻設定処理時に算出されるので、列車Aが停車駅の甲駅に着いたとき擦れ違い列車Bが停車駅の乙駅に停車していた場合に加えて(図3(d)参照)、次のような場合にも、遅延設定に向けた適切な判定と有効な遅延設定がなされる。
A detailed explanation that is repeated is omitted, but in this case, in addition to the estimated arrival time that the train will travel from the stop station to the railroad crossing, the railroad crossing is reached after entering the passing station. The estimated arrival time that the train will travel until it is completed and the estimated arrival time that the train will travel until it reaches the railroad crossing after entering the immediately preceding section of the traffic signal are calculated based on the
すなわち、列車Aが停車駅の甲駅に着いたとき擦れ違い列車Bが通過駅の乙駅の出発信号機15の直前区間や閉そく区間の閉そく信号機45の直前区間に入っていた場合や(図示せず)、列車Aが通過駅の甲駅に進入したとき擦れ違い列車Bが乙駅の出発信号機15の直前区間や閉そく区間の閉そく信号機45の直前区間に入っていた場合(図6(a)参照)、列車Aが閉そく区間Tnの直前区間Tmに進入したとき擦れ違い列車Bが乙駅の出発信号機15の直前区間や閉そく区間の閉そく信号機45の直前区間に入っていた場合(図6(b)参照)も、推定到達時間Tax,Tay,Tbx,Tbyひいては踏切通過予定時刻Tca,Tcbや遅延時間Tdの算出が適切になされるので、踏切における道路通行・道路交通の遮断時間が更に短縮される。
That is, when the train A arrives at the stop station A, the train B has entered the section immediately before the
なお、信号反位時刻設定処理や信号反位制御処理において、その主たる対象は踏切の手前側で信号機の設置されている停車駅や通過駅あるいは閉そく区間の直前区間とされるが、主対象の設定処理時に参照されるにすぎない先方区間にも信号機が設置されていることまで必須とされる訳ではないので、例えば、区間番号で指定する形態の拡張データ42(図4(d)参照)において先方区間番号と該区間から踏切までの距離との組データを一の直前区間番号について複数設定しておくことにより、簡便に更なる拡張がなされる。
In the signal inversion time setting processing and signal inversion control processing, the main target is the stop station where the traffic signal is installed on the front side of the railroad crossing, the passing station or the section immediately before the closing section, but the main target Since it is not indispensable until the traffic signal is also installed in the earlier section that is only referred to during the setting process, for example, the
本発明のPRC装置の実施例3について、その具体的な構成を、図面を引用して説明する。図7は、(a)が列車運行状況例の記号図、(b)が拡張データの一形態、(c)が信号反位制御のフローチャート、(d)が列車運行状況例の記号図である。 A specific configuration of the PRC apparatus according to the third embodiment of the present invention will be described with reference to the drawings. 7A is a symbol diagram of an example of train operation status, FIG. 7B is a form of extended data, FIG. 7C is a flowchart of signal inversion control, and FIG. 7D is a symbol diagram of an example of train operation status. .
このPRC装置も、従来装置や上記装置と同様、CTC装置等を具備した列車運行管理システムに組み込まれて、収集した列車運行状況情報と保持している実行ダイヤとに基づいて列車の進路制御を行うものである。この実施例3のPRC装置が従来装置や上記装置と相違するのは、実行ダイヤに加えて拡張データも保持するようになった点と、進路制御プログラムの信号反位制御処理が機能拡張された点である。 This PRC device is also incorporated into a train operation management system equipped with a CTC device, etc., as in the conventional device and the above-mentioned device, and controls the course of the train based on the collected train operation status information and the execution schedule held. Is what you do. The difference between the PRC apparatus of the third embodiment and the conventional apparatus and the above-mentioned apparatus is that the extension data is held in addition to the execution diagram, and the signal inversion control process of the course control program has been expanded. Is a point.
拡張データは、例えば上り線においては手前側の停車駅である甲駅と先方側駅である乙駅との間に踏切Xが設けられており而も先方側駅の乙駅の場内信号機75の停止指示信号に応じて乙駅の直前に列車Aが停止するとそれによって踏切Xが閉まり列車Aが更に前進しない限り踏切Xが閉まり続けて開かないような場合に(図7(a)参照)、踏切Xを挟む手前側駅「甲駅」と先方側駅「乙駅」とを閉時間短縮処理対象として対応付けておくものである(図7(b)参照)。 For example, on the up line, the extended data has a railroad crossing X between the former station that is the stop station on the front side and the second station that is the front station. When the train A stops immediately before the station B in response to the stop instruction signal, the railroad crossing X is closed and the railroad crossing X is not closed and opened unless the train A further moves forward (see FIG. 7A). The near station “Kou Station” and the destination station “Otsu Station” across the railroad crossing X are associated with each other as a closing time reduction process target (see FIG. 7B).
また、進路制御プログラムの信号反位制御処理では(図7(c)参照)、拡張データにて閉時間短縮処理対象の手前側駅とされている停車駅「甲駅」の出発信号機15の現示を停止指示信号から進行指示信号に切り替える(ステップS73)に先だって、拡張データにて当該停車駅「甲駅」と対応付けられている先方側駅「乙駅」の場内信号機75の現示が停止指示信号であれば(ステップS71)、乙駅の場内信号機75の現示が進行指示信号に変わるまで待ち(ステップS72)、乙駅の場内信号機75の現示が進行指示信号に変わってから甲駅の出発信号機15の現示を進行指示信号に切り替えるようになっている。
Further, in the signal inversion control process of the route control program (see FIG. 7C), the current signal of the
この場合、踏切Xの手前の甲駅に列車Aが到着してから甲駅の出発信号機15に進行指示信号を現示させるに際して、踏切Xの先方の乙駅の場内信号機75が進行指示信号を現示していれば、遅滞なく、手前側駅「甲駅」の出発信号機15の現示が進行指示信号に変更される。
これに対し、手前側駅「甲駅」に列車Aが到着してから甲駅の出発信号機15に進行指示信号を現示させるに際して、先方側駅「乙駅」の場内信号機75が停止指示信号を現示している間は手前側駅「甲駅」の出発信号機15の現示変更が待たされ(図7(d)参照)、先方側駅「乙駅」の場内信号機75の現示が進行指示信号になってから手前側駅「甲駅」の出発信号機15の現示が進行指示信号に変更される。
これにより、列車Aが踏切Xに止まりそうなときには列車Aが手前の甲駅に留め置かれるため、踏切Xの閉時間が短縮されることとなる。
In this case, when the train A arrives at the former station in front of the crossing X and the
On the other hand, when the train A arrives at the front station “A station” and the
As a result, when the train A is likely to stop at the railroad crossing X, the train A is retained at the former A station, so that the closing time of the railroad crossing X is shortened.
[その他]
上記の実施例では、有効判定閾値γが予め一定時間に決められた単一の固定値であったが、有効判定閾値γは、それに限られる訳でなく、状況に応じて変化したり使い分けられるようになっていても良い。例えば、手動で随時調整される可変設定値であっても良く、列車の長さや速度種別に応じて自動調整される算出値であっても良く、踏切毎に異ならせることも可能な多数の設定値からなるものであっても良く、それらの結合でも良い。
また、実行ダイヤに各駅や各区間での遅れ許容時間を持たせたうえで、遅延時間Tdが遅れ許容時間を超えたときには、遅延時間Tdを遅れ許容時間以内に制限するようにしても良く、信号反位時刻の遅延設定を回避するようにしても良い。
[Others]
In the above-described embodiment, the effective determination threshold γ is a single fixed value determined in advance for a fixed time. However, the effective determination threshold γ is not limited thereto, and can be changed or used depending on the situation. It may be like this. For example, it may be a variable set value that is manually adjusted as needed, or may be a calculated value that is automatically adjusted according to the train length and speed type, and a number of settings that can be varied at each level crossing. It may consist of values or a combination thereof.
In addition, the delay time Td may be limited within the allowable delay time when the delay time Td exceeds the allowable delay time after the execution diagram has an allowable delay time at each station or each section. You may make it avoid the delay setting of signal inversion time.
さらに、上記実施例では、推定到達時間を取得する具体的手段として、実行ダイヤ11の列車種別から速度を定めこれと拡張データ12の距離とから推定到達時間を算出する手法を述べたが、推定到達時間の取得手法は、これに限られる訳でなく、別態様の算出手段や、読出手段、検索手段など、他の手法で具体化しても良い。例えば、別態様の算出手段としては、停車駅・通過駅・直前区間から次駅・先方区間までの予定時間を実行ダイヤ11から求めてそれを拡張データ12の両距離の比で按分する遣り方が挙げられる。また、拡張データ12に対し距離の代わりに計算済み時間や実測時間を設定しておけば読み出すことで推定到達時間が求まる。さらに、計算済み時間や実測時間を列車種別毎に或いは列車毎に設定したい場合、それを別途設定したデータへのポインタや検索キー等にて拡張データ12の距離のところに設定しておけば、推定到達時間を検索で得ることができる。
Furthermore, in the above embodiment, as a specific means for obtaining the estimated arrival time, a method is described in which the speed is determined from the train type of the execution diagram 11 and the estimated arrival time is calculated from the distance of this and the
10…PRC装置(自動進路制御装置)、
11…実行ダイヤ、12…拡張データ、13…進路制御プログラム、
14…拡張プログラム、15…出発信号機、
40…PRC装置(自動進路制御装置)、
41…実行ダイヤ、42…拡張データ、44…拡張プログラム、
45…閉そく信号機、75…場内信号機
10: PRC device (automatic route control device),
11 ... Execution diagram, 12 ... Extension data, 13 ... Course control program,
14 ... Extended program, 15 ... Departure signal,
40 ... PRC device (automatic route control device),
41 ... Execution diagram 42 ...
45 ... Close signal, 75 ... In-ground signal
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009023895A JP5202369B2 (en) | 2009-02-04 | 2009-02-04 | PRC equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009023895A JP5202369B2 (en) | 2009-02-04 | 2009-02-04 | PRC equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010179739A JP2010179739A (en) | 2010-08-19 |
JP5202369B2 true JP5202369B2 (en) | 2013-06-05 |
Family
ID=42761615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009023895A Active JP5202369B2 (en) | 2009-02-04 | 2009-02-04 | PRC equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5202369B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111762230A (en) * | 2019-04-02 | 2020-10-13 | 株洲中车时代电气股份有限公司 | Locomotive signal processing system and railway locomotive |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7100440B2 (en) * | 2017-11-08 | 2022-07-13 | 株式会社日立製作所 | Train control system and train control method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58167252A (en) * | 1982-03-26 | 1983-10-03 | 株式会社東芝 | Method of controlling crossing gate of railroad crossing |
JP2572252B2 (en) * | 1988-02-18 | 1997-01-16 | 日本信号株式会社 | Railroad crossing control method |
JP3167426B2 (en) * | 1992-06-23 | 2001-05-21 | 株式会社東芝 | Train route control device |
JP4587833B2 (en) * | 2005-02-14 | 2010-11-24 | 日本信号株式会社 | Train operation simulation method and train operation management device |
-
2009
- 2009-02-04 JP JP2009023895A patent/JP5202369B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111762230A (en) * | 2019-04-02 | 2020-10-13 | 株洲中车时代电气股份有限公司 | Locomotive signal processing system and railway locomotive |
CN111762230B (en) * | 2019-04-02 | 2022-01-21 | 株洲中车时代电气股份有限公司 | Locomotive signal processing system and railway locomotive |
Also Published As
Publication number | Publication date |
---|---|
JP2010179739A (en) | 2010-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8967553B2 (en) | Train operation control system | |
JP4294251B2 (en) | System for managing the route of railway vehicles | |
JP6355753B2 (en) | Train operation interval control system and train operation interval control device | |
JP6572215B2 (en) | Interlocking device | |
JP5171712B2 (en) | Railroad crossing control device | |
CN106997674A (en) | A kind of special duty's circuit traffic control method and device | |
JP5202369B2 (en) | PRC equipment | |
WO2016017739A1 (en) | Interlocking device | |
JP2010221839A (en) | Train operation prediction device | |
KR101634430B1 (en) | Method for tram priority operation base on the wireless network | |
JP2017132327A (en) | Route control method and ground device | |
JP2009078714A (en) | Shunting plan preparation device for train station and train base yard | |
JP2012202920A (en) | Parking lot guide system | |
JP2011246015A (en) | Radio railroad crossing control system | |
CN110901701B (en) | Rail train route handling method and system | |
JP3829031B2 (en) | Train control system, train operation support system | |
JP6298515B2 (en) | Course control device and course control method | |
KR101016363B1 (en) | signal processing method of crossroad for Bimodal Tram operation | |
JP2018047814A (en) | Route control method and ground device | |
JP4768983B2 (en) | Operation organizing result analysis support device and program | |
KR101449740B1 (en) | Designated as the train oriented control system of on-board driving, lineside devices associated with the way | |
WO2023248734A1 (en) | Train control system and train control method | |
JP3559489B2 (en) | Automatic course control device | |
JP2003276609A (en) | Train passenger guidance information device | |
JP2002240720A (en) | Railway crossing control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120126 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5202369 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160222 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |