JP5201670B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP5201670B2
JP5201670B2 JP2008213829A JP2008213829A JP5201670B2 JP 5201670 B2 JP5201670 B2 JP 5201670B2 JP 2008213829 A JP2008213829 A JP 2008213829A JP 2008213829 A JP2008213829 A JP 2008213829A JP 5201670 B2 JP5201670 B2 JP 5201670B2
Authority
JP
Japan
Prior art keywords
capacitor element
cathode
solid electrolytic
capacitor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008213829A
Other languages
Japanese (ja)
Other versions
JP2010050322A (en
Inventor
大輔 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008213829A priority Critical patent/JP5201670B2/en
Publication of JP2010050322A publication Critical patent/JP2010050322A/en
Application granted granted Critical
Publication of JP5201670B2 publication Critical patent/JP5201670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、固体電解コンデンサに係り、特に下面電極型の固体電解コンデンサに関する。   The present invention relates to a solid electrolytic capacitor, and more particularly to a bottom electrode type solid electrolytic capacitor.

従来から弁作用金属として、タンタル、ニオブ、アルミニウムなどを用いた固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れ、CPUのデカップリング回路あるいは電源回路などに広く使用されている。また、携帯型電子機器の発展に伴い、特に下面電極型の固体電解コンデンサの製品化が進んでいる。   Conventionally, solid electrolytic capacitors using tantalum, niobium, aluminum or the like as a valve action metal are small, have a large capacitance, have excellent frequency characteristics, and are widely used in CPU decoupling circuits or power supply circuits. In addition, with the development of portable electronic devices, in particular, the production of bottom electrode type solid electrolytic capacitors is progressing.

このような下面電極型の固体電解コンデンサとして、大容量化を目的として上面にコンデンサ素子接続面を、下面に前記コンデンサ素子接続面のパターンと異なるパターンを有するコンデンサ実装電極面を備え、上面と下面が電気的に接続された平板状の変換基板の上面に、陽極リードを導出したコンデンサ素子が接続され、前記コンデンサ素子が外装樹脂で被覆されたことを特徴とする固体電解コンデンサがある(例えば特許文献1参照)。   As such a bottom electrode type solid electrolytic capacitor, a capacitor element connection surface is provided on the upper surface for the purpose of increasing capacity, and a capacitor mounting electrode surface having a pattern different from the pattern of the capacitor element connection surface is provided on the lower surface. There is a solid electrolytic capacitor characterized in that a capacitor element from which an anode lead is led is connected to the upper surface of a flat plate-like conversion substrate electrically connected to the capacitor element, and the capacitor element is covered with an exterior resin (for example, a patent) Reference 1).

従来の固体電解コンデンサの構成について図面を参照して説明する。図4は従来の固体電解コンデンサを示す断面図である。   A configuration of a conventional solid electrolytic capacitor will be described with reference to the drawings. FIG. 4 is a cross-sectional view showing a conventional solid electrolytic capacitor.

先ず、コンデンサ素子1の陽極導出部となるタンタル線からなる陽極リード6が導出されたタンタル金属粉末からなる多孔質のプレス体を高真空、高温で加熱処理し、多孔質性を維持したまま焼結体とする。その後、電解液に焼結体を浸漬して既定の化成電圧で陽極酸化処理によってタンタル金属表面に誘電体層となる酸化被膜であるTa25を形成する。次いで誘電体酸化被膜の上に固体電解質層を形成する。固体電解質はチオフェンモノマーもしくはピロールモノマーもしくはこれらの誘導体モノマーを重合して導電性高分子により形成してもよいし硝酸マンガンの熱分解によって二酸化マンガンを形成しても良い。この上にグラファイトペースト、銀ペーストによる陰極層を順次形成してコンデンサ素子1とする。 First, a porous press body made of a tantalum metal powder from which an anode lead 6 made of a tantalum wire serving as an anode lead-out portion of the capacitor element 1 is led is heat-treated at a high vacuum and at a high temperature to be baked while maintaining the porosity. Assume a body. Thereafter, the sintered body is immersed in the electrolytic solution, and Ta 2 O 5 that is an oxide film serving as a dielectric layer is formed on the tantalum metal surface by anodizing treatment at a predetermined formation voltage. Next, a solid electrolyte layer is formed on the dielectric oxide film. The solid electrolyte may be formed of a conductive polymer by polymerizing thiophene monomer, pyrrole monomer, or a derivative monomer thereof, or may form manganese dioxide by thermal decomposition of manganese nitrate. A capacitor layer 1 is formed by sequentially forming a cathode layer of graphite paste and silver paste thereon.

次に、陽極リード6と金属片7を抵抗溶接によって接続する。金属片7の材料としては42合金や銅などがあげられる。銀ペーストを形成したコンデンサ素子1を陰極、金属片7を陽極となるように変換基板2のコンデンサ素子接続面の陰極部4、陽極部5とを導電性接着剤8を用いて電気的に接続するとともに固定する。その後、外装樹脂3としてガラス含有エポキシ樹脂、または液晶ポリマー、またはトランスファーモールド樹脂、または液状エポキシ樹脂を用いて外装を行う。全体の外観形状は薄型の直方体状である。   Next, the anode lead 6 and the metal piece 7 are connected by resistance welding. Examples of the material of the metal piece 7 include 42 alloy and copper. A conductive adhesive 8 is used to electrically connect the cathode part 4 and the anode part 5 on the capacitor element connecting surface of the conversion substrate 2 so that the capacitor element 1 formed with the silver paste serves as a cathode and the metal piece 7 serves as an anode. And fix. Thereafter, the exterior resin 3 is packaged using a glass-containing epoxy resin, a liquid crystal polymer, a transfer mold resin, or a liquid epoxy resin. The overall appearance is a thin rectangular parallelepiped.

しかしながら、コンデンサ素子1を変換基板の上面に形成したコンデンサ素子接続面の陰極部4に接続する際、導電性接着剤8の塗布量が多い場合、図4に示すように、コンデンサ素子1に陽極部5側に押し出された導電性接着剤8が変換基板の上面に形成したコンデンサ素子接続面の陽極部5と導通してしまうことがあり、このような状態になると、陽陰極の接触による短絡不良となる。また、陽極部と反対側に押し出された導電性接着剤がコンデンサ素子接続面の陰極部より外側に広がった場合、外装樹脂3からの露出を発生させる。即ち、コンデンサ素子1を変換基板2の陰極部4に接続する導電性接着剤8については精密な塗布量の制御が必要となり、生産性に問題があった。   However, when the capacitor element 1 is connected to the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate, when the amount of the conductive adhesive 8 applied is large, as shown in FIG. The conductive adhesive 8 extruded to the portion 5 side may be electrically connected to the anode portion 5 of the capacitor element connection surface formed on the upper surface of the conversion substrate. In such a state, a short circuit occurs due to contact with the positive and negative electrodes. It becomes defective. Further, when the conductive adhesive extruded to the side opposite to the anode part spreads outside the cathode part on the capacitor element connection surface, exposure from the exterior resin 3 occurs. That is, the conductive adhesive 8 that connects the capacitor element 1 to the cathode portion 4 of the conversion substrate 2 requires precise control of the coating amount, which has a problem in productivity.

特開2008−98394号公報JP 2008-98394 A

上記の状況にあって、本発明の技術的課題は、コンデンサ素子の陰極部と変換基板上面の陰極部とを導電性接着剤で接続する際に、導電性接着剤の塗布量の精密な制御をすることなく歩留、生産性が向上した固体電解コンデンサを提供することにある。   In the above situation, the technical problem of the present invention is to precisely control the coating amount of the conductive adhesive when connecting the cathode portion of the capacitor element and the cathode portion on the upper surface of the conversion substrate with the conductive adhesive. An object of the present invention is to provide a solid electrolytic capacitor with improved yield and productivity.

本発明の固体電解コンデンサは上面にコンデンサ素子接続面を、下面に前記コンデンサ素子接続面のパターンと異なるパターンを有するコンデンサ実装電極面を備え、前記上面と前記下面が電気的に接続された平板状の変換基板を有し、前記上面に、陽極リードを導出したコンデンサ素子が導電性接着剤で接続され、前記コンデンサ素子が外装樹脂で被覆された固体電解コンデンサにおいて、前記コンデンサ素子接続面の陰極部の、前記コンデンサ素子の陰極部における長手方向の端部に対応する箇所のみに凹部または凸部を有することを特徴とする。 The solid electrolytic capacitor of the present invention has a capacitor element connection surface on the upper surface, a capacitor mounting electrode surface having a pattern different from the pattern of the capacitor element connection surface on the lower surface, and a flat plate shape in which the upper surface and the lower surface are electrically connected A solid electrolytic capacitor in which a capacitor element from which an anode lead is led is connected to the upper surface with a conductive adhesive, and the capacitor element is covered with an exterior resin, the cathode portion of the capacitor element connection surface The capacitor element has a concave portion or a convex portion only at a portion corresponding to the end portion in the longitudinal direction of the cathode portion of the capacitor element.

本発明においては、変換基板のコンデンサ素子接続面の陰極部の外周部に溝加工、あるいは、突起加工、あるいは、この両方の加工を施すことにより、凹部または凸部を形成し、導電性接着剤の塗布量が多い場合にも、塗布面積の広がりを制限し、コンデンサ素子の陰極部と変換基板の陰極部とを接続する導電性接着剤が陽極部側へ広がり、陽極部と導通することを防止することができる。また、導電性接着剤の外側への広がりを抑制させることにより、樹脂外装の際に導電性接着剤の露出を防止することができる。   In the present invention, recesses or projections are formed by subjecting the outer peripheral portion of the cathode portion of the capacitor element connection surface of the conversion substrate to groove processing, protrusion processing, or both, thereby forming a conductive adhesive. Even when the amount of coating is large, the spread of the coating area is limited, and the conductive adhesive that connects the cathode part of the capacitor element and the cathode part of the conversion substrate spreads to the anode part side and is connected to the anode part. Can be prevented. Further, by suppressing the outward spreading of the conductive adhesive, it is possible to prevent the conductive adhesive from being exposed during the resin sheathing.

本発明によれば、変換基板の上面に形成したコンデンサ素子接続面の陰極部の周辺部の表面に凹部または凸部を施すことにより、短絡の無い、及び導電性接着剤の外装樹脂からの露出の無い歩留の向上した固体電解コンデンサが得られる。また、導電性接着剤の塗布量におけるバラツキの許容範囲が大きくなるため、塗布量調整時間の短縮が図れ、生産性の向上した固体電解コンデンサが得られる。   According to the present invention, there is no short circuit and the exposure of the conductive adhesive from the exterior resin by providing a concave portion or a convex portion on the surface of the peripheral portion of the cathode portion of the capacitor element connection surface formed on the upper surface of the conversion substrate. Thus, a solid electrolytic capacitor having an improved yield can be obtained. Moreover, since the tolerance of variation in the application amount of the conductive adhesive is increased, the application amount adjustment time can be shortened, and a solid electrolytic capacitor with improved productivity can be obtained.

次に本発明の実施の形態について図面に基づいて説明する。    Next, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1の固体電解コンデンサを説明する断面図である。本発明の固体電解コンデンサの陽極材料は、弁作用金属で陽極酸化処理によって誘電体層となる陽極酸化被膜を形成するものであれば良いが、多孔質粉末によって表面積を大きくすることによって大容量化が容易なタンタル金属を用いたタンタル固体電解コンデンサを例に説明する。また、コンデンサ素子の製造方法は公知の技術によるものとして簡略に以下説明する。コンデンサ素子の形状、陽極リードの形状、導出位置等は特に限定されないものとする。
(Embodiment 1)
FIG. 1 is a cross-sectional view illustrating a solid electrolytic capacitor according to Embodiment 1 of the present invention. The anode material of the solid electrolytic capacitor of the present invention may be any material that forms a anodic oxide film that becomes a dielectric layer by anodizing treatment with a valve metal, but the capacity is increased by increasing the surface area with porous powder. An example of a tantalum solid electrolytic capacitor using tantalum metal that is easy to handle will be described. In addition, a method for manufacturing a capacitor element will be briefly described below based on a known technique. The shape of the capacitor element, the shape of the anode lead, the lead-out position, etc. are not particularly limited.

公知の技術によってコンデンサ素子1の陽極導出部となるタンタル線からなる陽極リード6が導出されたタンタル金属粉末からなる多孔質のプレス体を高真空、高温で加熱処理し、多孔質性を維持したまま焼結体とする。その後、電解液に焼結体を浸漬して任意の化成電圧で陽極酸化処理によってタンタル金属表面に誘電体層となる酸化被膜であるTa25を形成する。次いで誘電体酸化被膜の上に固体電解質層を形成する。固体電解質はチオフェンモノマーもしくはピロールモノマーもしくはこれらの誘導体モノマーを重合して導電性高分子により形成してもよいし硝酸マンガンの熱分解によって二酸化マンガンを形成しても良い。この上にグラファイトペースト、銀ペーストによる陰極層を順次形成してコンデンサ素子1とする。 A porous press body made of tantalum metal powder from which an anode lead 6 made of a tantalum wire serving as an anode lead-out portion of the capacitor element 1 was derived by a known technique was heat-treated at high vacuum and high temperature to maintain the porous property. A sintered body is used as it is. After that, the sintered body is immersed in the electrolytic solution, and Ta 2 O 5 that is an oxide film serving as a dielectric layer is formed on the tantalum metal surface by anodizing treatment with an arbitrary chemical voltage. Next, a solid electrolyte layer is formed on the dielectric oxide film. The solid electrolyte may be formed of a conductive polymer by polymerizing thiophene monomer, pyrrole monomer, or a derivative monomer thereof, or may form manganese dioxide by thermal decomposition of manganese nitrate. A capacitor layer 1 is formed by sequentially forming a cathode layer of graphite paste and silver paste thereon.

前述のコンデンサ素子から導出された陽極リード6と金属片7を抵抗溶接等によって接続する。金属片の材料としては42合金や銅などがあげられる。銀ペーストを形成したコンデンサ素子1を陰極、金属片7を陽極となるように変換基板2のコンデンサ素子接続面の陰極部4、陽極部5とを導電性接着剤8を用いて電気的に接続するとともに固定する。   The anode lead 6 led out from the capacitor element and the metal piece 7 are connected by resistance welding or the like. Examples of the metal piece material include 42 alloy and copper. A conductive adhesive 8 is used to electrically connect the cathode part 4 and the anode part 5 on the capacitor element connecting surface of the conversion substrate 2 so that the capacitor element 1 formed with the silver paste serves as a cathode and the metal piece 7 serves as an anode. And fix.

ここで、変換基板2は上面のコンデンサ素子接続面にはコンデンサ素子との接続用に陽極部5及び陰極部4を備える。下面のコンデンサ実装電極面には、コンデンサ素子接続面のパターンとは異なる陽極端子15と陰極端子14を備える。絶縁性のガラス含有エポキシ樹脂、或いは、液晶ポリマー等の基板内にスルーホールおよびビアホール等の導電体を形成してコンデンサ素子接続面の陽極部5とコンデンサ実装電極面の陽極端子5、コンデンサ素子接続面の陰極部4とコンデンサ実装電極面の陰極端子14をそれぞれ導通化するようにする。陽極部5、陰極部4、陽極端子15、陰極端子14は銅箔等の金属箔からなる。   Here, the conversion substrate 2 includes an anode portion 5 and a cathode portion 4 on the capacitor element connection surface on the upper surface for connection with the capacitor element. The capacitor mounting electrode surface on the lower surface includes an anode terminal 15 and a cathode terminal 14 different from the pattern of the capacitor element connection surface. Conductor such as through hole and via hole is formed in an insulating glass-containing epoxy resin or liquid crystal polymer substrate, and the anode portion 5 on the capacitor element connection surface, the anode terminal 5 on the capacitor mounting electrode surface, and the capacitor element connection The cathode portion 4 on the surface and the cathode terminal 14 on the capacitor mounting electrode surface are made conductive. The anode part 5, the cathode part 4, the anode terminal 15, and the cathode terminal 14 are made of a metal foil such as a copper foil.

変換基板2の上面に形成したコンデンサ素子接続面の陰極部4の周辺部の表面には、0.05〜0.10mm程度の深さで、溝加工が施されて凹部9が形成されている。溝加工はプレス、切削、レーザ等の加工方法が使用でき、断面形状は、V字形、多角形、半円形、U字形、などとすることができる。また、陰極部4には、溝加工を複数施してもよく、間欠状であってもよい。   On the surface of the peripheral portion of the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate 2, a recess 9 is formed by a groove processing at a depth of about 0.05 to 0.10 mm. . For grooving, a processing method such as pressing, cutting, or laser can be used, and the cross-sectional shape can be V-shaped, polygonal, semi-circular, U-shaped, or the like. Further, the cathode portion 4 may be subjected to a plurality of groove processing or may be intermittent.

その後、外装樹脂3としてガラス含有エポキシ樹脂、または液晶ポリマー、またはトランスファーモールド樹脂、または液状エポキシ樹脂を用いて外装を行う。このとき外装樹脂3によって個々に成型をした後、電圧印加を行ってエージングを実施し、特性不良品を検査選別した後、変換基板2を切断して個々のコンデンサにしてもよい。または、変換基板を連ねた量産用基板上に平板状に外装材を熱成型した後に電圧印加を行ってエージングを実施し、特性不良品を検査選別した後、外装樹脂2および変換基板2を設計寸法どおりに切断して個々のコンデンサにしてもよい。以上の製造方法によって固体電解コンデンサを作製することができる。   Thereafter, the exterior resin 3 is packaged using a glass-containing epoxy resin, a liquid crystal polymer, a transfer mold resin, or a liquid epoxy resin. At this time, after individually molding with the exterior resin 3, aging is performed by applying a voltage to inspect and select a defective product, and then the conversion substrate 2 may be cut into individual capacitors. Alternatively, after the exterior material is thermoformed into a flat plate shape on the mass production substrate with the conversion substrates connected, voltage is applied and aging is performed, and defective products are inspected and selected, and then the exterior resin 2 and the conversion substrate 2 are designed. Individual capacitors may be cut by dimensions. A solid electrolytic capacitor can be manufactured by the above manufacturing method.

前述の加工を施した変換基板2を使用すると、コンデンサ素子1の陰極部と変換基板2の上面に形成したコンデンサ素子接続面の陰極部4とを導電性接着剤8で接続する際、導電性接着剤8の塗布量過多の場合でも、図1に示すように、陰極部4の周囲に形成した凹部9で導電性接着剤8の流出が止まり、変換基板2の上面に形成したコンデンサ素子接続面の陰極部4と陽極部5の導通には至らない。   When the conversion substrate 2 subjected to the above-described processing is used, when the cathode portion of the capacitor element 1 and the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate 2 are connected with the conductive adhesive 8, the conductivity is increased. Even when the application amount of the adhesive 8 is excessive, as shown in FIG. 1, the outflow of the conductive adhesive 8 stops at the concave portion 9 formed around the cathode portion 4, and the capacitor element connection formed on the upper surface of the conversion substrate 2. The cathode portion 4 and the anode portion 5 on the surface do not conduct.

従って、従来技術のような導通による陽陰極の接触が抑えられるため、短絡の無い固体電解コンデンサを得ることができる。また、導電性接着剤8の外側への広がりを抑制できるため、導電性接着剤の外装樹脂からの露出の無い固体電解コンデンサを得ることができる。また、導電性接着剤8の塗布量のバラツキの許容範囲が大きくなるため、塗布量調整時間の短縮が図れ、生産効率が向上する。   Therefore, since the contact of the positive and negative electrodes due to conduction as in the prior art is suppressed, a solid electrolytic capacitor without a short circuit can be obtained. Moreover, since the spreading of the conductive adhesive 8 to the outside can be suppressed, a solid electrolytic capacitor in which the conductive adhesive is not exposed from the exterior resin can be obtained. In addition, since the allowable range of variation in the coating amount of the conductive adhesive 8 is increased, the coating amount adjustment time can be shortened and the production efficiency is improved.

(実施の形態2)
図2は本発明の実施の形態2の固体電解コンデンサを示す断面図である。実施の形態1における変換基板2の上面に形成したコンデンサ素子接続面の陰極部4の周辺部に施された溝加工等からなる凹部を突起加工等による凸部に変更したものであり、この突起加工等による凸部10が導電性接着剤8の広がりを制限するので、実施の形態1と同様の効果を得ることができる。
(Embodiment 2)
FIG. 2 is a cross-sectional view showing a solid electrolytic capacitor according to Embodiment 2 of the present invention. The concave portion formed by groove processing or the like applied to the peripheral portion of the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate 2 in Embodiment 1 is changed to a convex portion by projection processing or the like. Since the convex part 10 by processing etc. restrict | limits the breadth of the conductive adhesive 8, the effect similar to Embodiment 1 can be acquired.

変換基板2の上面に形成したコンデンサ素子接続面の陰極部4の周辺部の表面には、0.05〜0.10mm程度の高さで、突起加工が施されて凸部10が形成されている。突起加工はプレス、樹脂塗布による形成等の加工方法が使用でき、断面形状は、V字形、多角形、半円形、U字形、などとすることができる。また、陰極部4には、突起加工を複数施してもよく、間欠状であってもよい。   On the surface of the periphery of the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate 2, protrusions are formed at a height of about 0.05 to 0.10 mm to form a convex portion 10. Yes. For the projection processing, a processing method such as press or resin coating can be used, and the cross-sectional shape can be V-shaped, polygonal, semicircular, U-shaped, or the like. Further, the cathode portion 4 may be processed with a plurality of protrusions or may be intermittent.

その後、外装樹脂3としてガラス含有エポキシ樹脂、または液晶ポリマー、またはトランスファーモールド樹脂、または液状エポキシ樹脂を用いて外装を行う。このとき外装樹脂3によって個々に成型をした後、電圧印加を行ってエージングを実施し、特性不良品を検査選別した後、変換基板2を切断して個々のコンデンサにしてもよい。または、変換基板を連ねた量産用基板上に平板状に外装材を熱成型した後に電圧印加を行ってエージングを実施し、特性不良品を検査選別した後、外装樹脂3および変換基板2を設計寸法どおりに切断して個々のコンデンサにしてもよい。以上の製造方法によって固体電解コンデンサを作製することができる。   Thereafter, the exterior resin 3 is packaged using a glass-containing epoxy resin, a liquid crystal polymer, a transfer mold resin, or a liquid epoxy resin. At this time, after individually molding with the exterior resin 3, aging is performed by applying a voltage to inspect and select a defective product, and then the conversion substrate 2 may be cut into individual capacitors. Alternatively, after the exterior material is thermoformed into a flat plate shape on a mass production substrate with a series of conversion substrates, voltage is applied to perform aging and inspection and selection of defective products, and then the exterior resin 3 and the conversion substrate 2 are designed. Individual capacitors may be cut by dimensions. A solid electrolytic capacitor can be manufactured by the above manufacturing method.

前述の加工を施した変換基板2を使用すると、コンデンサ素子1の陰極部と変換基板2の上面に形成したコンデンサ素子接続面の陰極部4とを導電性接着剤8で接続する際、導電性接着剤8の塗布量過多の場合でも、図1に示すように、陰極部4の周囲に形成した凸部10で導電性接着剤8の流出が止まり、変換基板2の上面に形成したコンデンサ素子接続面の陰極部4と陽極部5の導通には至らない。   When the conversion substrate 2 subjected to the above-described processing is used, when the cathode portion of the capacitor element 1 and the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate 2 are connected with the conductive adhesive 8, the conductivity is increased. Even when the amount of the adhesive 8 applied is excessive, as shown in FIG. 1, the flow of the conductive adhesive 8 stops at the convex portion 10 formed around the cathode portion 4, and the capacitor element formed on the upper surface of the conversion substrate 2. It does not lead to conduction between the cathode portion 4 and the anode portion 5 on the connection surface.

従って、従来技術のような導通による陽陰極の接触が抑えられるため、短絡の無い固体電解コンデンサを得ることができる。また、導電性接着剤8の外側への広がりを抑制できるため、導電性接着剤の外装樹脂からの露出の無い固体電解コンデンサを得ることができる。また、導電性接着剤8の塗布量のバラツキの許容範囲が大きくなるため、塗布量調整時間の短縮が図れ、生産効率が向上する。   Therefore, since the contact of the positive and negative electrodes due to conduction as in the prior art is suppressed, a solid electrolytic capacitor without a short circuit can be obtained. Moreover, since the spreading of the conductive adhesive 8 to the outside can be suppressed, a solid electrolytic capacitor in which the conductive adhesive is not exposed from the exterior resin can be obtained. In addition, since the allowable range of variation in the coating amount of the conductive adhesive 8 is increased, the coating amount adjustment time can be shortened and the production efficiency is improved.

(実施の形態3)
図3は本発明の実施の形態3の固体電解コンデンサを示す断面図である。実施の形態1における変換基板2の上面に形成したコンデンサ素子接続面の陰極部4に施された溝加工等からなる凹部にさらに突起加工等による凸部を追加したものであり、本実施の形態では、凹部9と凸部10の両方を形成することで、実施の形態1または実施の形態2で得られる以上の効果を得ることができる。
(Embodiment 3)
FIG. 3 is a sectional view showing a solid electrolytic capacitor according to Embodiment 3 of the present invention. In this embodiment, a convex portion by projection processing or the like is further added to the concave portion formed by groove processing or the like provided on the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate 2 in the first embodiment. Then, by forming both the concave portion 9 and the convex portion 10, it is possible to obtain an effect more than that obtained in the first embodiment or the second embodiment.

変換基板2の上面に形成したコンデンサ素子接続面の陰極部4の周辺部の表面には、0.05〜0.10mm程度の深さで、溝加工が施されて凹部9が形成されている。また凹部の外周には0.05〜0.10mm程度の高さで、突起加工が施されて凸部10が形成されている。溝加工はプレス、切削、レーザ等の加工方法が使用でき、また突起加工はプレス、樹脂塗布による形成等の加工方法が使用でき、断面形状は、V字形、多角形、半円形、U字形、などとすることができる。また、陰極部4には、溝加工、若しくは突起加工を複数施してもよく、間欠状であってもよい。溝加工、突起加工の順番はどちらが先でもよい。   On the surface of the peripheral portion of the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate 2, a recess 9 is formed by a groove processing at a depth of about 0.05 to 0.10 mm. . Further, a protrusion 10 is formed on the outer periphery of the concave portion by a protrusion process at a height of about 0.05 to 0.10 mm. For grooving, processing methods such as press, cutting, and laser can be used. For projection processing, processing methods such as press and resin coating can be used. The cross-sectional shape is V-shaped, polygonal, semicircular, U-shaped, And so on. Further, the cathode portion 4 may be subjected to a plurality of groove processing or projection processing, or may be intermittent. Either the groove processing or the projection processing may be performed first.

その後、外装樹脂3としてガラス含有エポキシ樹脂、または液晶ポリマー、またはトランスファーモールド樹脂、または液状エポキシ樹脂を用いて外装を行う。このとき外装樹脂3によって個々に成型をした後、電圧印加を行ってエージングを実施し、特性不良品を検査選別した後、変換基板2を切断して個々のコンデンサにしてもよい。または、変換基板を連ねた量産用基板上に平板状に外装材を熱成型した後に電圧印加を行ってエージングを実施し、特性不良品を検査選別した後、外装樹脂3および変換基板2を設計寸法どおりに切断して個々のコンデンサにしてもよい。以上の製造方法によって固体電解コンデンサを作製することができる。   Thereafter, the exterior resin 3 is packaged using a glass-containing epoxy resin, a liquid crystal polymer, a transfer mold resin, or a liquid epoxy resin. At this time, after individually molding with the exterior resin 3, aging is performed by applying a voltage to inspect and select a defective product, and then the conversion substrate 2 may be cut into individual capacitors. Alternatively, after the exterior material is thermoformed into a flat plate shape on a mass production substrate with a series of conversion substrates, voltage is applied to perform aging and inspection and selection of defective products, and then the exterior resin 3 and the conversion substrate 2 are designed. Individual capacitors may be cut by dimensions. A solid electrolytic capacitor can be manufactured by the above manufacturing method.

前述の加工を施した変換基板2を使用すると、コンデンサ素子1の陰極部と変換基板2の上面に形成したコンデンサ素子接続面の陰極部4とを導電性接着剤8で接続する際、導電性接着剤8の塗布量過多の場合でも、図1に示すように、陰極部4の周囲に形成した凹部9、および凸部10で導電性接着剤8の流出が止まり、変換基板2の上面に形成したコンデンサ素子接続面の陰極部4と陽極部5の導通には至らない。   When the conversion substrate 2 subjected to the above-described processing is used, when the cathode portion of the capacitor element 1 and the cathode portion 4 of the capacitor element connection surface formed on the upper surface of the conversion substrate 2 are connected with the conductive adhesive 8, the conductivity is increased. Even when the application amount of the adhesive 8 is excessive, as shown in FIG. 1, the flow of the conductive adhesive 8 stops at the concave portion 9 and the convex portion 10 formed around the cathode portion 4, and the upper surface of the conversion substrate 2 is The cathode part 4 and anode part 5 on the formed capacitor element connection surface do not conduct.

従って、従来技術のような導通による陽陰極の接触が抑えられるため、短絡の無い固体電解コンデンサを得ることができる。また、導電性接着剤8の外側への広がりを抑制できるため、導電性接着剤の外装樹脂からの露出の無い固体電解コンデンサを得ることができる。また、導電性接着剤8の塗布量のバラツキの許容範囲が大きくなるため、塗布量調整時間の短縮が図れ、生産効率が向上する。   Therefore, since the contact of the positive and negative electrodes due to conduction as in the prior art is suppressed, a solid electrolytic capacitor without a short circuit can be obtained. Moreover, since the spreading of the conductive adhesive 8 to the outside can be suppressed, a solid electrolytic capacitor in which the conductive adhesive is not exposed from the exterior resin can be obtained. In addition, since the allowable range of variation in the coating amount of the conductive adhesive 8 is increased, the coating amount adjustment time can be shortened and the production efficiency is improved.

次に本発明の実施例について説明する。   Next, examples of the present invention will be described.

(実施例1)
実施例1については、実施の形態1で用いた図1を参照して説明する。変換基板2としては、厚さ0.2mm、長さ3.2mm、幅1.6mmのガラス含有エポキシ樹脂からなる基体の上面のコンデンサ素子接続面に一端に厚さ70μm、長さ1.0mm、幅1.6mmの陽極部5が、他端に厚さ70μm、長さ1.5mm、幅1.6mmの陰極部4が銅箔により形成されている。下面のコンデンサ実装電極面には四隅に厚さ70μm、長さ1.0mm、幅0.5mmの陽極端子15及び陰極端子14が銅箔により形成され陽極部5と陽極端子15、陰極部4と陰極端子14はスルーホール及びビアホールにより接続されている。陰極部4の周囲には外周から0.1mm内側に幅0.1mm深さ0.1mmのU字形の凹部9をプレスにより形成した。
(Example 1)
Example 1 will be described with reference to FIG. 1 used in the first embodiment. The conversion substrate 2 has a thickness of 70 μm and a length of 1.0 mm at one end on the capacitor element connection surface on the upper surface of the base made of a glass-containing epoxy resin having a thickness of 0.2 mm, a length of 3.2 mm, and a width of 1.6 mm. The anode portion 5 having a width of 1.6 mm is formed with a copper foil at the other end, and the cathode portion 4 having a thickness of 70 μm, a length of 1.5 mm, and a width of 1.6 mm is formed. On the capacitor mounting electrode surface on the lower surface, anode terminal 15 and cathode terminal 14 having a thickness of 70 μm, a length of 1.0 mm, and a width of 0.5 mm are formed of copper foil at the four corners, and anode portion 5, anode terminal 15, cathode portion 4, The cathode terminal 14 is connected by a through hole and a via hole. A U-shaped recess 9 having a width of 0.1 mm and a depth of 0.1 mm was formed by pressing around the cathode portion 4 0.1 mm inside from the outer periphery.

コンデンサ素子1は、直径0.2mm、長さ0.6mmのタンタルからなる陽極リード6が導出した長さ1.4mm、幅0.9mm、厚さ0.6mmであり、陽極リード6に42合金からなる金属片7を抵抗溶接した。   The capacitor element 1 has a length of 1.4 mm, a width of 0.9 mm, and a thickness of 0.6 mm derived from an anode lead 6 made of tantalum having a diameter of 0.2 mm and a length of 0.6 mm. The metal piece 7 made of was resistance welded.

変換基板の陰極部に銀とエポキシ樹脂からなる導電性接着剤を、通常より多目に塗布量を設定して0.05±0.01g/1pを用いて塗布し、コンデンサ素子を載せ、乾燥して接続した後、液状エポキシ樹脂を用いて外装し固体電解コンデンサを作製した。   A conductive adhesive composed of silver and epoxy resin is applied to the cathode part of the conversion substrate by using 0.05 ± 0.01 g / 1p, setting the coating amount more than usual, placing the capacitor element, and drying After connecting, a liquid electrolytic resin was used for exterior packaging to produce a solid electrolytic capacitor.

(実施例2)
実施例2については、実施の形態2で用いた図2を参照して説明する。変換基板2としては、厚さ0.2mm、長さ3.2mm、幅1.6mmのガラス含有エポキシ樹脂からなる基体の上面のコンデンサ素子接続面に一端に厚さ70μm、長さ1.0mm、幅1.6mmの陽極部5が、他端に厚さ70μm、長さ1.5mm、幅1.6mmの陰極部4が銅箔により形成されている。下面のコンデンサ実装電極面には四隅に厚さ70μm、長さ1.0mm、幅0.5mmの陽極端子15及び陰極端子14が銅箔により形成され陽極部5と陽極端子15、陰極部4と陰極端子14はスルーホール及びビアホールにより接続されている。陰極部4の周囲には外周から0.1mm内側に幅0.1mm、高さ0.1mmの凸部10をエポキシ樹脂を塗布して形成した。
(Example 2)
Example 2 will be described with reference to FIG. 2 used in the second embodiment. The conversion substrate 2 has a thickness of 70 μm and a length of 1.0 mm at one end on the capacitor element connection surface on the upper surface of the base made of a glass-containing epoxy resin having a thickness of 0.2 mm, a length of 3.2 mm, and a width of 1.6 mm. The anode portion 5 having a width of 1.6 mm is formed with a copper foil at the other end, and the cathode portion 4 having a thickness of 70 μm, a length of 1.5 mm, and a width of 1.6 mm is formed. On the capacitor mounting electrode surface on the lower surface, anode terminal 15 and cathode terminal 14 having a thickness of 70 μm, a length of 1.0 mm, and a width of 0.5 mm are formed of copper foil at the four corners, and anode portion 5, anode terminal 15, cathode portion 4, The cathode terminal 14 is connected by a through hole and a via hole. Around the cathode part 4, a convex part 10 having a width of 0.1 mm and a height of 0.1 mm was formed 0.1 mm inside from the outer periphery by applying an epoxy resin.

コンデンサ素子1は、直径0.2mm、長さ0.6mmのタンタルからなる陽極リード6が導出した長さ1.4mm、幅0.9mm、厚さ0.6mmであり、陽極リード6に42合金からなる金属片7を抵抗溶接した。   The capacitor element 1 has a length of 1.4 mm, a width of 0.9 mm, and a thickness of 0.6 mm derived from an anode lead 6 made of tantalum having a diameter of 0.2 mm and a length of 0.6 mm. The metal piece 7 made of was resistance welded.

変換基板の陰極部に銀とエポキシ樹脂からなる導電性接着剤を、通常より多目に塗布量を設定して0.05±0.01g/1pを用いて塗布し、コンデンサ素子を載せ、乾燥して接続した後、モールド材を用いて外装し固体電解コンデンサを作製した。   A conductive adhesive composed of silver and epoxy resin is applied to the cathode part of the conversion substrate by using 0.05 ± 0.01 g / 1p, setting the coating amount more than usual, placing the capacitor element, and drying Then, the solid electrolytic capacitor was manufactured by using a molding material.

(実施例3)
実施例3については、実施の形態3で用いた図3を参照して説明する。変換基板2としては、厚さ0.2mm、長さ3.2mm、幅1.6mmのガラス含有エポキシ樹脂からなる基体の上面のコンデンサ素子接続面に一端に厚さ70μm、長さ1.0mm、幅1.6mmの陽極部5が、他端に厚さ70μm、長さ1.5mm、幅1.6mmの陰極部4が銅箔により形成されている。下面のコンデンサ実装電極面には四隅に厚さ70μm、長さ1.0mm、幅0.5mmの陽極端子15及び陰極端子14が銅箔により形成され陽極部5と陽極端子15、陰極部4と陰極端子14はスルーホール及びビアホールにより接続されている。陰極部4の周囲には外周から0.1mm内側に幅0.1mm、高さ0.1mmの凸部10をエポキシ樹脂を塗布して形成し、凸部から0.1mm内側に幅0.1mm深さ0.1mmのU字形の凹部9をプレスにより形成した。
Example 3
Example 3 will be described with reference to FIG. 3 used in the third embodiment. The conversion substrate 2 has a thickness of 70 μm and a length of 1.0 mm at one end on the capacitor element connection surface on the upper surface of the base made of a glass-containing epoxy resin having a thickness of 0.2 mm, a length of 3.2 mm, and a width of 1.6 mm. The anode portion 5 having a width of 1.6 mm is formed with a copper foil at the other end, and the cathode portion 4 having a thickness of 70 μm, a length of 1.5 mm, and a width of 1.6 mm is formed. On the capacitor mounting electrode surface on the lower surface, anode terminal 15 and cathode terminal 14 having a thickness of 70 μm, a length of 1.0 mm, and a width of 0.5 mm are formed of copper foil at the four corners, and anode portion 5, anode terminal 15, cathode portion 4, The cathode terminal 14 is connected by a through hole and a via hole. Around the cathode part 4, a convex part 10 having a width of 0.1 mm and a height of 0.1 mm is formed by applying an epoxy resin 0.1 mm inside from the outer periphery, and 0.1 mm wide from the convex part by 0.1 mm. A U-shaped recess 9 having a depth of 0.1 mm was formed by pressing.

コンデンサ素子1は、直径0.2mm、長さ0.6mmのタンタルからなる陽極リード6が導出した長さ1.4mm、幅0.9mm、厚さ0.6mmであり、陽極リード6に42合金からなる金属片7を抵抗溶接した。   The capacitor element 1 has a length of 1.4 mm, a width of 0.9 mm, and a thickness of 0.6 mm derived from an anode lead 6 made of tantalum having a diameter of 0.2 mm and a length of 0.6 mm. The metal piece 7 made of was resistance welded.

変換基板の陰極部に銀とエポキシ樹脂からなる導電性接着剤を、通常より多目に塗布量を設定して0.05±0.01g/1pを用いて塗布し、コンデンサ素子を載せ、乾燥して接続した後、モールド材を用いて外装し固体電解コンデンサを作製した。   A conductive adhesive composed of silver and epoxy resin is applied to the cathode part of the conversion substrate by using 0.05 ± 0.01 g / 1p, setting the coating amount more than usual, placing the capacitor element, and drying Then, the solid electrolytic capacitor was manufactured by using a molding material.

(比較例)
比較例については、従来の固体電解コンデンサで用いた図4を参照して説明する。変換基板2としては、厚さ0.2mm、長さ3.2mm、幅1.6mmのガラス含有エポキシ樹脂からなる基体の上面のコンデンサ素子接続面に一端に厚さ70μm、長さ1.0mm、幅1.6mmの陽極部5が、他端に厚さ70μm、長さ1.5mm、幅1.6mmの陰極部4が銅箔により形成されている。下面のコンデンサ実装電極面には四隅に厚さ70μm、長さ1.0mm、幅0.5mmの陽極端子15及び陰極端子14が銅箔により形成され陽極部5と陽極端子15、陰極部4と陰極端子14はスルーホール及びビアホールにより接続されている。
(Comparative example)
A comparative example will be described with reference to FIG. 4 used in a conventional solid electrolytic capacitor. The conversion substrate 2 has a thickness of 70 μm and a length of 1.0 mm at one end on the capacitor element connection surface on the upper surface of the base made of a glass-containing epoxy resin having a thickness of 0.2 mm, a length of 3.2 mm, and a width of 1.6 mm. The anode portion 5 having a width of 1.6 mm is formed with a copper foil at the other end, and the cathode portion 4 having a thickness of 70 μm, a length of 1.5 mm, and a width of 1.6 mm is formed. On the capacitor mounting electrode surface on the lower surface, anode terminal 15 and cathode terminal 14 having a thickness of 70 μm, a length of 1.0 mm, and a width of 0.5 mm are formed of copper foil at the four corners, and anode portion 5, anode terminal 15, cathode portion 4, The cathode terminal 14 is connected by a through hole and a via hole.

コンデンサ素子1は、直径0.2mm、長さ0.6mmのタンタルからなる陽極リード6が導出した長さ1.4mm、幅0.9mm、厚さ0.6mmであり、陽極リード6に42合金からなる金属片7を抵抗溶接した。   The capacitor element 1 has a length of 1.4 mm, a width of 0.9 mm, and a thickness of 0.6 mm derived from an anode lead 6 made of tantalum having a diameter of 0.2 mm and a length of 0.6 mm. The metal piece 7 made of was resistance welded.

変換基板の陰極部に銀とエポキシ樹脂からなる導電性接着剤を、通常より多目に塗布量を設定して0.05±0.01g/1pを用いて塗布し、コンデンサ素子を載せ、乾燥して接続した後、モールド材を用いて外装し固体電解コンデンサを作製した。   A conductive adhesive composed of silver and epoxy resin is applied to the cathode part of the conversion substrate by using 0.05 ± 0.01 g / 1p, setting the coating amount more than usual, placing the capacitor element, and drying Then, the solid electrolytic capacitor was manufactured by using a molding material.

実施例1〜3及び比較例で作製した固体電解コンデンサそれぞれ10000個について短絡不良数および導電性接着剤の露出不良数を表1に示す。   Table 1 shows the number of short-circuit defects and the number of defective exposures of the conductive adhesive for 10,000 solid electrolytic capacitors prepared in Examples 1 to 3 and Comparative Example.

Figure 0005201670
Figure 0005201670

以上、この発明の実施の形態を説明したが、この発明は、この実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であればなしえるであろう各種変更、修正を含むことは勿論である。   The embodiment of the present invention has been described above. However, the present invention is not limited to this embodiment, and any design changes that do not depart from the gist of the present invention are included in the present invention. That is, it goes without saying that various changes and modifications that can be made by those skilled in the art are included.

本発明の実施の形態1の固体電解コンデンサを説明する断面図。Sectional drawing explaining the solid electrolytic capacitor of Embodiment 1 of this invention. 本発明の実施の形態2の固体電解コンデンサを説明する断面図。Sectional drawing explaining the solid electrolytic capacitor of Embodiment 2 of this invention. 本発明の実施の形態3の固体電解コンデンサを説明する断面図。Sectional drawing explaining the solid electrolytic capacitor of Embodiment 3 of this invention. 従来の固体電解コンデンサを説明する断面図。Sectional drawing explaining the conventional solid electrolytic capacitor.

符号の説明Explanation of symbols

1 コンデンサ素子
2 変換基板
3 外装樹脂
4 陰極部
5 陽極部
6 陽極リード
7 金属片
8 導電性接着剤
9 凹部
10 凸部
14 陰極端子
15 陽極端子
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Conversion board 3 Exterior resin 4 Cathode part 5 Anode part 6 Anode lead 7 Metal piece 8 Conductive adhesive 9 Concave part 10 Convex part 14 Cathode terminal 15 Anode terminal

Claims (1)

上面にコンデンサ素子接続面を、下面に前記コンデンサ素子接続面のパターンと異なるパターンを有するコンデンサ実装電極面を備え、前記上面と前記下面が電気的に接続された平板状の変換基板を有し、前記上面に、陽極リードを導出したコンデンサ素子が導電性接着剤で接続され、前記コンデンサ素子が外装樹脂で被覆された固体電解コンデンサにおいて、前記コンデンサ素子接続面の陰極部の、前記コンデンサ素子の陰極部における長手方向の端部に対応する箇所のみに凹部または凸部を有することを特徴とする固体電解コンデンサ。 A capacitor element connection surface on the upper surface, a capacitor mounting electrode surface having a pattern different from the pattern of the capacitor element connection surface on the lower surface, and a flat conversion substrate in which the upper surface and the lower surface are electrically connected, In a solid electrolytic capacitor in which a capacitor element from which an anode lead is led is connected to the upper surface with a conductive adhesive, and the capacitor element is covered with an exterior resin, in the cathode portion of the capacitor element connection surface, the cathode of the capacitor element A solid electrolytic capacitor characterized in that a concave portion or a convex portion is provided only at a portion corresponding to an end portion in the longitudinal direction of the portion.
JP2008213829A 2008-08-22 2008-08-22 Solid electrolytic capacitor Active JP5201670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213829A JP5201670B2 (en) 2008-08-22 2008-08-22 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213829A JP5201670B2 (en) 2008-08-22 2008-08-22 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010050322A JP2010050322A (en) 2010-03-04
JP5201670B2 true JP5201670B2 (en) 2013-06-05

Family

ID=42067167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213829A Active JP5201670B2 (en) 2008-08-22 2008-08-22 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5201670B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2919178B2 (en) * 1992-06-04 1999-07-12 富山日本電気株式会社 Molded chip type solid electrolytic capacitor
JP2004104048A (en) * 2002-09-13 2004-04-02 Nec Tokin Corp Chip type solid electrolytic capacitor
JP2006041447A (en) * 2004-07-30 2006-02-09 Tdk Corp Manufacturing method of electrolytic capacitor, and electrolytic capacitor
JP2007013043A (en) * 2005-07-04 2007-01-18 Nichicon Corp Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP4636613B2 (en) * 2005-12-22 2011-02-23 ニチコン株式会社 Chip-shaped solid electrolytic capacitor
JP2007273502A (en) * 2006-03-30 2007-10-18 Tdk Corp Solid electrolytic capacitor
JP2008098394A (en) * 2006-10-12 2008-04-24 Nec Tokin Corp Solid-state electrolytic capacitor
JP4880433B2 (en) * 2006-12-01 2012-02-22 ニチコン株式会社 Chip-shaped solid electrolytic capacitor
JP2009224688A (en) * 2008-03-18 2009-10-01 Nec Tokin Corp Solid electrolytic capacitor
JP2010056118A (en) * 2008-08-26 2010-03-11 Sanyo Electric Co Ltd Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2010050322A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US11875950B2 (en) Electrolytic capacitor
JP2008098394A (en) Solid-state electrolytic capacitor
US20060256506A1 (en) Solid electrolyte capacitor and process for producing same
EP3226270B1 (en) Solid electrolytic capacitor
JP2005260227A (en) Surface mount chip capacitor
JP2005252262A5 (en)
US8014127B2 (en) Solid electrolytic capacitor
JP2006190965A (en) Solid electrolytic capacitor with bottom-surface terminals, manufacturing method therefor, and lead frame for use therein
JP2010287588A (en) Solid electrolytic capacitor
JP6705641B2 (en) Solid electrolytic capacitor
KR20110132199A (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
US7508652B2 (en) Solid electrolytic capacitor and method of making same
JP5131852B2 (en) Solid electrolytic capacitor
JP2006310365A (en) Solid electrolytic capacitor and manufacturing method thereof
JP5201670B2 (en) Solid electrolytic capacitor
JP2015220247A (en) Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor
JPH11251189A (en) Manufacture of capacitor element in solid-state electrolytic capacitor
JP6647124B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP5009122B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP2009194200A (en) Solid electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP5898927B2 (en) Chip type solid electrolytic capacitor
JP4735251B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009253020A (en) Solid electrolytic capacitor
JP4520374B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

R150 Certificate of patent or registration of utility model

Ref document number: 5201670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250