JP5196609B2 - Microorganism immobilization carrier, DHS reactor, biological nitrification denitrification apparatus and method of use thereof - Google Patents

Microorganism immobilization carrier, DHS reactor, biological nitrification denitrification apparatus and method of use thereof Download PDF

Info

Publication number
JP5196609B2
JP5196609B2 JP2011208213A JP2011208213A JP5196609B2 JP 5196609 B2 JP5196609 B2 JP 5196609B2 JP 2011208213 A JP2011208213 A JP 2011208213A JP 2011208213 A JP2011208213 A JP 2011208213A JP 5196609 B2 JP5196609 B2 JP 5196609B2
Authority
JP
Japan
Prior art keywords
microorganism
reactor
immobilized
tower
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011208213A
Other languages
Japanese (ja)
Other versions
JP2012024762A (en
Inventor
毅 山本
洋祐 岡
潤一 石原
隆司 山口
克治 西川
賢治 徳政
明代 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2011208213A priority Critical patent/JP5196609B2/en
Publication of JP2012024762A publication Critical patent/JP2012024762A/en
Application granted granted Critical
Publication of JP5196609B2 publication Critical patent/JP5196609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Treating Waste Gases (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、生物処理法を用いた排水処理リアクタに充填し使用する微生物を固定化するための微生物固定化担体、該微生物固定化担体を充填したDHSリアクタ、及び該DHSリアクタを用いた生物学的硝化脱窒装置及びその使用方法に関する。   The present invention relates to a microorganism-immobilized carrier for immobilizing microorganisms to be used by filling a wastewater treatment reactor using a biological treatment method, a DHS reactor filled with the microorganism-immobilized carrier, and a biology using the DHS reactor TECHNICAL FIELD The present invention relates to a general nitrification denitrification apparatus and a method of using the same.

排水中に含まれる窒素は、富栄養化現象の原因とされ、排水中の窒素を除去する技術が多く開発されている。この一つである微生物を利用して排水中の窒素を除去する生物学的窒素除去方法も、従来からよく使用されており、順送法、AO(Anaerobic−Oxic)法、A2O(Anaerobic−Anoxic−Oxic)及びUASB(Upflow Anaerobic Sludge Blanket)−DHS(Downflow Hanging Sponge Cube)法などの循環法を含め多くのプロセスが提案されている。生物学的窒素除去方法は、好気性細菌である硝化菌により排水中のアンモニア体窒素を、亜硝酸体又は硝酸体窒素にまで酸化する硝化工程と、嫌気性細菌である脱窒菌を用いて硝酸体、亜硝酸体窒素を窒素に還元する脱窒工程とからなり、ここで使用するリアクタも種々の形態のものが開発されている。   Nitrogen contained in wastewater is a cause of eutrophication, and many techniques for removing nitrogen in wastewater have been developed. Biological nitrogen removal methods for removing nitrogen in wastewater using microorganisms, which are one of these, have also been widely used in the past. Progressive feeding method, AO (Anaerobic-Oxic) method, A2O (Anaerobic-Anogic) Many processes have been proposed, including cyclic methods such as -Oxic) and UASB (Upflow Analytic Sliding Blanket) -DHS (Downflow Hanging Sponge Cube) method. The biological nitrogen removal method consists of a nitrification process that oxidizes ammonia nitrogen in wastewater to nitrite or nitrate nitrogen by nitrifying bacteria that are aerobic bacteria, and nitrate using denitrifying bacteria that are anaerobic bacteria. And denitrification step of reducing nitrite nitrogen to nitrogen, and various reactors have been developed.

循環法の一つであるUASB−DHS法は、前段のUASBリアクタで脱窒反応、後段のDHSリアクタで硝化反応を行い、後段の硝化反応の進んだ処理水の一部を前段の脱窒塔であるUASBリアクタへ循環させ、処理水中の有機物を脱窒反応の水素供与体として利用する(例えば特許文献1参照)。この他、UASBリアクタ及びDHSリアクタを用いた排水処理方法としては、前段に脱窒素槽とUASB槽、後段にDHS槽、さらに砂ろ過槽を設け下水処理を行う、UASBリアクタとDHSリアクタとを組み合わせた新しい下水処理方法も提案されている(例えば非特許文献1参照)。   In the UASB-DHS method, which is one of the circulation methods, a denitrification reaction is performed in the preceding UASB reactor, a nitrification reaction is performed in the subsequent DHS reactor, and a part of the treated water that has advanced the subsequent nitrification reaction is removed in the preceding denitrification tower. The organic matter in the treated water is used as a hydrogen donor for the denitrification reaction (see, for example, Patent Document 1). In addition, as a wastewater treatment method using a UASB reactor and a DHS reactor, a combination of a UASB reactor and a DHS reactor that performs sewage treatment by providing a denitrification tank and a UASB tank in the front stage, a DHS tank in the rear stage, and a sand filtration tank. A new sewage treatment method has also been proposed (see Non-Patent Document 1, for example).

特開平11−285696号公報JP-A-11-285696

加藤ら,「UASBとスポンジ担体槽を組み合わせた新しい下水処理方法」,衛生工学シンポジウム論文集,北海道大学衛生工学会,2005年11月,13巻,P239Kato et al., “New Sewage Treatment Method Combining UASB and Sponge Carrier Tank”, Sanitary Engineering Symposium Proceedings, Hokkaido University Institute of Sanitation Engineering, November 2005, Vol. 13, P239

従来のDHSリアクタを使用する硝化塔は、リアクタ内に微生物を固定化させるための微生物固定化担体(以下、固定化担体、又は担体と記す場合もある)としてスポンジを懸垂させるか、又はリアクタ内にスポンジをランダムに充填し、リアクタの上部から散水すると共に、下方から上方に向かって空気を送り使用される。このためリアクタ内の空隙率を小さくすることができず、空隙率を下げて、逆に言えば固定化担体の充填率を高めて微生物の濃度を高めることが困難であった。また、汚泥が流入した際に流路が閉塞しないようにするためには、リアクタ内入口部の空隙率を上げることが望ましいけれども、リアクタ内の空隙率が一定であり、空隙率を上げることができなかった。さらにスポンジをランダムに充填する充填式のDHSリアクタの場合、水を含んだ固定化担体自身の自重により、DHSリアクタ内の下部では固定化担体が変形し、空隙率が低下してしまう。このためリアクタ内をいくつかの領域に区画し、一区画の固定化担体の高さが一定以上の高さにならないようにする必要があった。このため構造が複雑となり、DHSリアクタのコストアップの要因の一つとなっていた。   A nitrification tower using a conventional DHS reactor has a sponge suspended as a microorganism immobilization support (hereinafter also referred to as an immobilization support or a support) for immobilizing microorganisms in the reactor, or in the reactor. Sponges are randomly filled, and water is sprinkled from the top of the reactor, and air is sent from below to above for use. For this reason, it was difficult to reduce the porosity in the reactor, and to lower the porosity, in other words, to increase the filling rate of the immobilization carrier and increase the concentration of microorganisms. In order to prevent the flow path from being blocked when sludge flows in, it is desirable to increase the porosity of the inlet in the reactor. However, the porosity in the reactor is constant and the porosity can be increased. could not. Further, in the case of a filling type DHS reactor in which a sponge is randomly filled, the immobilization carrier is deformed in the lower part of the DHS reactor due to the weight of the immobilization carrier itself containing water, and the porosity is lowered. For this reason, it is necessary to partition the inside of the reactor into several regions so that the height of the immobilization support in one section does not exceed a certain level. For this reason, the structure becomes complicated, which is one of the causes of the cost increase of the DHS reactor.

本発明の目的は、高充填も可能で、かつ充填率を自由に設定することが可能な微生物固定化担体、この微生物固定化担体を用いたDHSリアクタ、及び該DHSリアクタを用いた安価で窒素除去性能に優れた生物学的硝化脱窒装置、さらに幅広い窒素含有排水に適用することが可能な生物学的硝化脱窒装置の使用方法を提供することである。   An object of the present invention is to provide a microorganism-immobilized support capable of high filling and freely setting the filling rate, a DHS reactor using the microorganism-immobilized support, and an inexpensive nitrogen using the DHS reactor. A biological nitrification denitrification apparatus having excellent removal performance and a method of using the biological nitrification denitrification apparatus that can be applied to a wide range of nitrogen-containing wastewater.

請求項1に記載の微生物固定化担体は、生物処理法を用いた排水処理リアクタに充填し使用する微生物を固定化するための微生物固定化担体であって、前記排水処理リアクタが、DHSリアクタ、散水ろ床型リアクタ、又は好気ろ床型リアクタであり、ゼオライトで形成された板状体であり、該板状体の外周部が前記排水処理リアクタの横断面と同一の大きさを有し、前記排水処理リアクタ内に隙間なく嵌り込み、複数積み重ねても変形しない強度を有し、前記板状体に貫通孔を穿設することで空隙率を調整可能なことを特徴とする。   The microorganism-immobilized carrier according to claim 1 is a microorganism-immobilized carrier for immobilizing microorganisms to be filled and used in a wastewater treatment reactor using a biological treatment method, wherein the wastewater treatment reactor is a DHS reactor, A trickling filter type reactor or an aerobic filter type reactor, which is a plate formed of zeolite, and the outer periphery of the plate has the same size as the cross section of the waste water treatment reactor. It is characterized in that it fits in the waste water treatment reactor without any gap, has a strength that does not deform even if a plurality of layers are stacked, and the porosity can be adjusted by making a through hole in the plate-like body.

請求項2に記載の微生物固定化担体は、請求項1に記載の微生物固定化担体において、前記板状体の底面部に局所的に突起を有することを特徴とする。   The microorganism-immobilized carrier according to claim 2 is characterized in that, in the microorganism-immobilized carrier according to claim 1, there is a protrusion locally on the bottom surface of the plate-like body.

請求項3に記載のDHSリアクタは、請求項1又は請求項2に記載の微生物固定化担体を複数充填したDHSリアクタであり、1の微生物固定化担体と隣りあう微生物固定化担体との間に空気層を備えることを特徴とする。   A DHS reactor according to claim 3 is a DHS reactor in which a plurality of the microorganism-immobilized carriers according to claim 1 or claim 2 are filled, and between one microorganism-immobilized carrier and a neighboring microorganism-immobilized carrier. An air layer is provided.

請求項4に記載の生物学的硝化脱窒装置は、請求項3に記載のDHSリアクタからなり、硝化菌により排水中のアンモニア体窒素を亜硝酸体窒素又は硝酸体窒素にまで酸化する硝化搭と、脱窒菌を用いて硝酸体窒素、亜硝酸体窒素を窒素に還元するUASB脱窒搭と、を備えることを特徴とする。   The biological nitrification denitrification apparatus according to claim 4 comprises the DHS reactor according to claim 3, and nitrification tower that oxidizes ammonia nitrogen in waste water to nitrite nitrogen or nitrate nitrogen by nitrifying bacteria. And UASB denitrification tower for reducing nitrate nitrogen and nitrite nitrogen to nitrogen using denitrifying bacteria.

請求項5に記載の生物学的硝化脱窒装置の使用方法は、請求項4に記載の生物学的硝化脱窒装置の使用方法であって、有臭ガス又はアンモニア含有排水を前記硝化搭に供給し、有臭ガス又はアンモニアをゼオライトからなる微生物固定化担体に吸着させる第一工程と、第一工程の後、前記硝化搭に空気を送り、前記微生物固定化担体に付着する硝化菌で有臭ガス又はアンモニアを亜硝酸体窒素又は硝酸体窒素にまで酸化する第二工程と、第二工程後の硝化搭に水を供給し、前記微生物固定化担体を水洗する第三工程と、第三工程で得られた洗浄水中の硝酸体窒素、亜硝酸体窒素を、前記UASB脱窒搭において脱窒菌を用いて窒素に還元する第四工程と、を含むことを特徴とする。   The method for using the biological nitrification denitrification apparatus according to claim 5 is the method for using the biological nitrification denitrification apparatus according to claim 4, wherein odorous gas or ammonia-containing waste water is fed to the nitrification tower. The first step of supplying odorous gas or ammonia to the microorganism-immobilized support made of zeolite, and after the first step, air is sent to the nitrification tower and the nitrifying bacteria adhering to the microorganism-immobilized support are present. A second step of oxidizing odorous gas or ammonia to nitrite nitrogen or nitrate nitrogen, a third step of supplying water to the nitrification tower after the second step, and washing the microorganism-immobilized support with water; A fourth step of reducing nitrate nitrogen and nitrite nitrogen in the wash water obtained in the step into nitrogen using denitrifying bacteria in the UASB denitrification tower.

請求項1に記載の本発明によれば、微生物固定化担体は、ゼオライトで形成されているので、排水処理リアクタの形状に合わせて加工することが容易である。排水処理リアクタ全体に微生物固定化担体を充填することが可能なことはもちろん、微生物固定化担体は、板状体であるので、ここに貫通孔を設けることで充填率を任意に調整することができる。これにより汚泥が流入するような場合であっても空隙率を上げることで流路の閉塞を防止することができる。また、微生物固定化担体は、外周部が排水処理リアクタの横断面と同一の大きさを有し、排水処理リアクタ内に隙間なく嵌り込み、複数積み重ねても変形しない強度を有するので排水処理リアクタへの充填が容易である。このような微生物固定化担体を使用することで排水処理リアクタの構造が簡単となると共に、小型化も可能となり安価に製造することができる。   According to the first aspect of the present invention, since the microorganism-immobilized carrier is formed of zeolite, it can be easily processed according to the shape of the wastewater treatment reactor. Of course, it is possible to fill the entire wastewater treatment reactor with the microorganism-immobilized carrier, and the microorganism-immobilized carrier is a plate-like body, so that the filling rate can be arbitrarily adjusted by providing a through hole here. it can. Thereby, even if sludge flows in, the blockage of the flow path can be prevented by increasing the porosity. In addition, the microorganism-immobilized carrier has the same outer circumference as the cross section of the wastewater treatment reactor, fits in the wastewater treatment reactor without any gap, and has a strength that does not deform even when stacked multiple times. Is easy to fill. By using such a microorganism-immobilized carrier, the structure of the wastewater treatment reactor can be simplified, and the size can be reduced, so that it can be manufactured at low cost.

請求項2に記載の本発明によれば、前記微生物固定化担体は、底面部に局所的に突起を有するので、DHSリアクタなどにこの微生物固定化担体を複数充填すると、突起が微生物固定化担体間のスペーサの役目を果たす。これによりDHSリアクタなどに微生物固定化担体を複数充填するときであっても、微生物固定化担体間に空気層を設けるためのスペーサが不要であり、排水処理リアクタの構造が簡単となり、安価に製造することができる。   According to the second aspect of the present invention, since the microorganism-immobilized carrier has protrusions locally on the bottom surface portion, when the DHS reactor or the like is filled with a plurality of microorganism-immobilized carriers, the protrusions become microorganism-immobilized carriers. Serves as a spacer between. This eliminates the need for a spacer for providing an air layer between the microorganism-immobilized carriers even when a plurality of microorganism-immobilized carriers are packed in a DHS reactor or the like, and the structure of the wastewater treatment reactor is simplified and manufactured at low cost. can do.

請求項3に記載の本発明によれば、DHSリアクタは、前記微生物固定化担体が複数充填され、1の微生物固定化担体と隣りあう微生物固定化担体との間に空気層を備えるので、充填率の高い又は所望の充填率を有するDHSリアクタを安価に製造することができる。   According to the third aspect of the present invention, the DHS reactor is filled with a plurality of the microorganism-immobilized carriers, and includes an air layer between one microorganism-immobilized carrier and a neighboring microorganism-immobilized carrier. A DHS reactor having a high rate or a desired filling rate can be manufactured at low cost.

請求項4に記載の本発明によれば、生物学的硝化脱窒装置は、前記DHSリアクタからなる硝化搭と、UASB脱窒搭とを備えるので、窒素除去性能に優れた生物学的硝化脱窒装置を安価に製造することができる。また、DHSリアクタにおいて微生物を固定化する微生物固定化担体の充填率を高くすることが可能なため、生物学的硝化脱窒装置の小型化が可能となる。   According to the present invention as set forth in claim 4, since the biological nitrification denitrification apparatus comprises the nitrification tower comprising the DHS reactor and the UASB denitrification tower, the biological nitrification denitrification having excellent nitrogen removal performance. Nitrogen equipment can be manufactured at low cost. In addition, since the filling rate of the microorganism-immobilized carrier for immobilizing microorganisms in the DHS reactor can be increased, the biological nitrification denitrification apparatus can be downsized.

請求項5に記載の本発明によれば、ゼオライトで形成された微生物固定化担体を充填したDHSリアクタを硝化塔とする生物学的硝化脱窒装置を使用し、有臭ガス又はアンモニア含有排水を硝化搭に供給し、有臭ガス又はアンモニアをゼオライトからなる微生物固定化担体に吸着させる第一工程と、第一工程の後、硝化搭に空気を送り、微生物固定化担体に付着する硝化菌で有臭ガス又はアンモニアを亜硝酸体窒素又は硝酸体窒素にまで酸化する第二工程と、第二工程後の硝化搭に水を供給し、微生物固定化担体を水洗する第三工程と、第三工程で得られた洗浄水中の硝酸体窒素、亜硝酸体窒素を、UASB脱窒搭において脱窒菌を用いて窒素に還元する第四工程と、を備えるので、アンモニア濃度の低い排水であっても、一度アンモニアを微生物固定化担体に吸着させた後、硝化反応、脱窒反応により無害化させることができるなど、本発明を幅広い窒素含有排水に適用することができる。   According to the fifth aspect of the present invention, a biological nitrification denitrification apparatus using a DHS reactor filled with a microorganism-immobilized support formed of zeolite as a nitrification tower is used, and odorous gas or ammonia-containing wastewater is discharged. The nitrifying bacteria that are supplied to the nitrification tower and adsorb odorous gas or ammonia to the microorganism-immobilized carrier made of zeolite, and after the first process, air is sent to the nitrification tower and adheres to the microorganism-immobilized carrier. A second step of oxidizing odorous gas or ammonia to nitrite nitrogen or nitrate nitrogen, a third step of supplying water to the nitrification tower after the second step, and washing the microorganism-immobilized carrier with water; A fourth step of reducing nitrate nitrogen and nitrite nitrogen in the wash water obtained in the process to nitrogen using denitrifying bacteria in the UASB denitrification tower, so even if the wastewater has a low ammonia concentration Once ammonia After adsorption to the biological immobilized nitrifying reaction, etc. can be rendered harmless by denitrification, it is possible to apply the present invention to a wide range of nitrogen-containing wastewater.

本発明の第一実施形態としての微生物固定化担体10の斜視図である。It is a perspective view of microorganisms immobilization carrier 10 as a first embodiment of the present invention. 図1中のA部の拡大図である。It is an enlarged view of the A section in FIG. 図1の微生物固定化担体10を充填したDHSリアクタを備える生物学的硝化脱窒装置20のプロセスフロー図である。It is a process flow figure of biological nitrification denitrification apparatus 20 provided with a DHS reactor filled with microorganisms immobilization career 10 of Drawing 1. 本発明の第2実施形態としての微生物固定化担体50を構成するフレーム52の平面図である。It is a top view of the flame | frame 52 which comprises the microorganisms fixed support | carrier 50 as 2nd Embodiment of this invention. 本発明の第3実施形態としての微生物固定化担体60を構成するフレーム62の斜視図である。It is a perspective view of the flame | frame 62 which comprises the microorganisms fixed support | carrier 60 as 3rd Embodiment of this invention. 本発明の第4実施形態としての微生物固定化担体70を構成するフレーム72であって図6(a)が平面図、図6(b)が正面図である。FIG. 6A is a plan view and FIG. 6B is a front view of a frame 72 constituting a microorganism-immobilized carrier 70 according to a fourth embodiment of the present invention. 本発明の第5実施形態としての微生物固定化担体80を示す斜視図である。It is a perspective view which shows the microorganisms immobilization support | carrier 80 as 5th Embodiment of this invention. 微生物固定化担体に図7のゼオライトを使用した微生物固定化担体80を充填した図3の生物学的硝化脱窒装置の使用方法の一例を説明するための図である。It is a figure for demonstrating an example of the usage method of the biological nitrification denitrification apparatus of FIG. 3 which filled the microorganisms immobilization support | carrier with the microorganisms immobilization support | carrier 80 which uses the zeolite of FIG.

図1は、本発明の第一実施形態としての微生物固定化担体10の斜視図、図2は図1中のA部の拡大図である。図3は、図1の微生物固定化担体10を充填したDHSリアクタを備える生物学的窒素除去装置20のプロセスフロー図である。微生物固定化担体10は、硝化菌などの微生物を固定化ための担体であって、図3に示すように微生物を利用し排水を処理する排水処理リアクタに充填し使用する。微生物固定化担体10は、多孔体を保持するフレーム12と、フレーム12に充填された微生物を固定化する多数の多孔体14とからなる。   FIG. 1 is a perspective view of a microorganism-immobilized carrier 10 as a first embodiment of the present invention, and FIG. 2 is an enlarged view of a portion A in FIG. FIG. 3 is a process flow diagram of the biological nitrogen removal apparatus 20 including the DHS reactor filled with the microorganism-immobilized carrier 10 of FIG. The microorganism immobilization carrier 10 is a carrier for immobilizing microorganisms such as nitrifying bacteria, and is used by being filled in a wastewater treatment reactor that treats wastewater using microorganisms as shown in FIG. The microorganism immobilization carrier 10 includes a frame 12 that holds a porous body and a number of porous bodies 14 that immobilize microorganisms filled in the frame 12.

フレーム12は、微生物を固定化させる多孔体14を保持するためのものであって、網目状の円柱体16が複数規則正しく配置固定され、全体では排水処理リアクタの横断面と同じ大きさである。微生物固定化担体10が排水処理リアクタの横断面と同じ大きさとは、微生物固定化担体10を排水処理リアクタに充填したとき、フレーム12の外周部と排水処理リアクタの内壁とに隙間を有さない大きさの他、フレーム12の外周部と排水処理リアクタの内壁とに大きな隙間を有さず実質的に同一とみなせる大きさを意味する。大きな隙間とは、排水処理リアクタ内に空気を流通させたとき、大半の空気が、フレーム12の外周部と排水処理リアクタとの内壁との隙間を流通する大きさを言う。フレーム12の外周部の大きさは、排水処理リアクタ内に隙間なく又は殆ど隙間なく充填可能な大きさが好ましい。   The frame 12 is for holding a porous body 14 for immobilizing microorganisms, and a plurality of mesh-like cylindrical bodies 16 are regularly arranged and fixed, and as a whole, has the same size as the cross section of the waste water treatment reactor. The microorganism immobilization carrier 10 has the same size as the cross section of the wastewater treatment reactor. When the microorganism immobilization carrier 10 is filled in the wastewater treatment reactor, there is no gap between the outer periphery of the frame 12 and the inner wall of the wastewater treatment reactor. In addition to the size, it means a size that can be regarded as substantially the same without having a large gap between the outer peripheral portion of the frame 12 and the inner wall of the wastewater treatment reactor. The large gap means a size in which most of the air flows through the gap between the outer peripheral portion of the frame 12 and the inner wall of the wastewater treatment reactor when air is circulated in the wastewater treatment reactor. The size of the outer peripheral portion of the frame 12 is preferably a size that can be filled in the waste water treatment reactor without a gap or almost without a gap.

円柱体16の網目15の大きさは、特に限定されないけれども、排水、空気の拡散、隣同士の多孔体14の接触を考えれば大きい方が好ましい。但し、フレーム12を複数積み重ねても変形しない強度が必要である。円柱体16は、安価で、排水で腐食されないポリエチレン、ポリプロピレンなどの汎用プラスチックで製造すればよく、底には、円柱体16内にスポンジゴムなどの多孔体14を充填したとき、多孔体14が抜け落ちないようにストッパ、又は網目状の底板を設けることが好ましい。これら円柱体16が複数規則正しく並べられ、1の円柱体16と接する隣りの円柱体16とは結合され、これにより一つのフレーム12が形作られている。1の円柱体16の大きさは特に限定されないけれども、直径は、30〜50mm程度、高さは20〜40mm程度の大きさが好ましい。排水処理リアクタの大きさが小さい場合は、フレーム12の外周部と排水処理リアクタの内壁とに大きな隙間ができないように、円柱体16の直径、高さを小さくしてもよいことは言うまでもない。   The size of the mesh 15 of the cylindrical body 16 is not particularly limited, but is preferably larger in consideration of drainage, air diffusion, and contact between adjacent porous bodies 14. However, the strength which does not deform | transform even if a plurality of frames 12 are stacked is required. The cylindrical body 16 may be made of a general-purpose plastic such as polyethylene and polypropylene which is inexpensive and is not corroded by drainage. When the porous body 14 such as sponge rubber is filled in the bottom of the cylindrical body 16, the porous body 14 is It is preferable to provide a stopper or a net-like bottom plate so as not to come off. A plurality of these cylinders 16 are regularly arranged, and the adjacent cylinders 16 that are in contact with one cylinder 16 are joined together to form one frame 12. Although the size of one cylindrical body 16 is not particularly limited, the diameter is preferably about 30 to 50 mm, and the height is preferably about 20 to 40 mm. When the size of the waste water treatment reactor is small, it goes without saying that the diameter and height of the cylindrical body 16 may be made small so that there is no large gap between the outer periphery of the frame 12 and the inner wall of the waste water treatment reactor.

フレーム12は、底面に局所的に突起部17(17a、17b、17c)を設けてもよい。微生物固定化担体10は図3に示すように排水処理リアクタ内に多数充填して使用するものであり、このとき空気の拡散をよくするため1の微生物固定化担体10と隣りあう微生物固定化担体10との間に空間部が設けられる。フレーム12の底面に局所的に突起部17を設けることで、微生物固定化担体10を充填するだけで、微生物固定化担体間に空間部を設けることができる。フレーム12の底面の局所的な突起部17は、フレーム12を積み重ねたとき、下のフレーム12の空間部又は多孔体14に入り込まない位置、大きさとする。ただし、微生物固定化担体間に形成する空間部は、別途スペーサを使用することでも確保することができるため、フレーム12の底面の突起部17は必ず必要なものではない。微生物固定化担体10は、排水処理リアクタ内に複数積み重ねるように充填して使用するものであるから、フレーム12は、複数積み重ねても変形しない強度が必要である。本実施形態に示すフレーム12は、複数の円柱体16が結合され形成されており、複数積み重ねても変形しない十分な強度を有する。フレーム12の底面に局所的に突起部17を設ける場合も、突起部17はフレーム12を複数積み重ねても変形しない強度、数が必要である。   The frame 12 may be provided with the protrusions 17 (17a, 17b, 17c) locally on the bottom surface. As shown in FIG. 3, the microbial immobilization carrier 10 is used by being filled in a waste water treatment reactor. At this time, in order to improve air diffusion, the microbial immobilization carrier 10 adjacent to one microbial immobilization carrier 10 is used. A space portion is provided between the two. By providing the protrusion 17 locally on the bottom surface of the frame 12, it is possible to provide a space between the microorganism-immobilized carriers simply by filling the microorganism-immobilized carrier 10. The local protrusions 17 on the bottom surface of the frame 12 have positions and sizes that do not enter the space of the lower frame 12 or the porous body 14 when the frames 12 are stacked. However, since the space formed between the microorganism-immobilized carriers can be secured by using a separate spacer, the protrusion 17 on the bottom surface of the frame 12 is not necessarily required. Since the microorganism-immobilized carrier 10 is used by being filled so as to be stacked in the waste water treatment reactor, the frame 12 needs to be strong enough not to be deformed even when stacked. The frame 12 shown in the present embodiment is formed by joining a plurality of cylindrical bodies 16, and has a sufficient strength that does not deform even when a plurality of stacks are stacked. Even when the protrusions 17 are locally provided on the bottom surface of the frame 12, the protrusions 17 need to have strength and number that do not deform even when a plurality of the frames 12 are stacked.

多孔体14は、微生物を付着固定化させるものであるから微細な孔を有し比表面積の大きい多孔体が好ましい。また多孔体14は、フレーム12に充填し使用するものであるから、弾力性を備え、軽いものが好ましい。これらに該当する多孔体14としては、従来から一般的に使用されているウレタン、セルロースなどのスポンジゴムを使用することができる。多孔体14の大きさは、フレーム12を構成する1の円柱体16の大きさとほぼ同じか、若干大きい方が好ましい。スポンジゴムなど弾力性を有する多孔体14の大きさを1の円柱体16の大きさに比べ若干大きくし、これを円柱体16に押入れると、円柱体16の網目15から多孔体14が一部外にはみ出す。これにより隣り同士のはみ出し多孔体14が接触することで、排水が幅広く拡散する。   Since the porous body 14 adheres and immobilizes microorganisms, a porous body having fine pores and a large specific surface area is preferable. Further, since the porous body 14 is used by filling the frame 12, it is preferable that the porous body 14 has elasticity and is light. As the porous body 14 corresponding to these, sponge rubber such as urethane and cellulose generally used conventionally can be used. The size of the porous body 14 is preferably substantially the same as or slightly larger than the size of one cylindrical body 16 constituting the frame 12. When the size of the porous body 14 having elasticity such as sponge rubber is made slightly larger than the size of the one cylindrical body 16 and is pushed into the cylindrical body 16, the porous body 14 is removed from the mesh 15 of the cylindrical body 16. Protrude outside. As a result, the protruding porous bodies 14 adjacent to each other come into contact with each other, so that the waste water diffuses widely.

多孔体14の大きさは、フレーム12と同じ高さであり、具体的には20〜40mm程度の厚さ(高さ)が好ましい。この微生物固定化担体10を硝化槽に使用する場合、微生物固定化担体10に付着する硝化菌は、好気性細菌であるため硝化槽内を好気状態に保持することが重要である。空気との接触で酸素が拡散し、好気状態が保たれる範囲は、経験上、空気接触面から40mm程度であり、硝化槽の微生物固定化担体1枚の厚さが40mmを超えると中心部が嫌気状態となり好ましくない。微生物固定化担体1枚当りの厚さを薄くすることは、性能上問題はないけれども、微生物固定化担体に効率的に空気を接触させるために1の微生物固定化担体と隣りあう微生物固定化担体との間には、空気層が必要なことから、微生物固定化担体1枚当りの厚さを薄くしすぎると硝化槽の空隙率が大きくなりすぎ、硝化槽が大型化してしまう。   The size of the porous body 14 is the same height as the frame 12, and specifically, a thickness (height) of about 20 to 40 mm is preferable. When this microorganism-immobilized carrier 10 is used in a nitrification tank, it is important to keep the inside of the nitrification tank in an aerobic state because nitrifying bacteria attached to the microorganism-immobilized carrier 10 are aerobic bacteria. The range where oxygen is diffused by contact with air and the aerobic state is maintained is about 40 mm from the air contact surface, and is centered when the thickness of one microbial immobilization support in the nitrification tank exceeds 40 mm. The part becomes anaerobic and is not preferable. Although there is no problem in performance to reduce the thickness per one microorganism-immobilized carrier, the microorganism-immobilized carrier adjacent to one microorganism-immobilized carrier in order to efficiently contact air with the microorganism-immobilized carrier. Since an air layer is required between the two, the nitrification tank becomes too large and the nitrification tank becomes large if the thickness per one microorganism-immobilized carrier is too thin.

以上のように微生物固定化担体10は、多孔体14を保持するフレーム12と、フレーム12に充填された微生物を固定化する多数の多孔体14とからなるので、多孔体14の充填率を高めることができる。従来の円柱状のスポンジ担体を複数ランダムに充填する方法、スポンジを懸垂させるカーテン方式では、担体の充填率を50%以上とすることが困難であったが、本実施形態に示す微生物固定化担体10を使用すれば、多孔体14が規則正しく配置されるので、多孔体14の充填率を簡単に50%以上とすることができる。また、本実施形態に示す微生物固定化担体10は、図1に示すように多孔体14を充填しない箇所18を設けることで充填率(空隙率)を簡単に変更することができる。また、微生物固定化担体10は、隣合う円柱体16との間に空間部19を有するので、空気拡散性能に優れる。また、微生物固定化担体10は、充填して使用する排水処理リアクタの横断面積と同一の大きさを有し、さらに複数積み重ねても変形しない強度を備えることから、簡単に使用することができる。   As described above, since the microorganism-immobilized carrier 10 includes the frame 12 that holds the porous body 14 and the numerous porous bodies 14 that immobilize the microorganisms filled in the frame 12, the filling rate of the porous body 14 is increased. be able to. In the conventional method of randomly packing a plurality of cylindrical sponge carriers and the curtain system in which sponges are suspended, it has been difficult to achieve a carrier filling rate of 50% or more, but the microorganism-immobilized carrier shown in this embodiment If 10 is used, the porous body 14 is regularly arranged, so that the filling rate of the porous body 14 can be easily set to 50% or more. In addition, the microorganism-immobilized carrier 10 shown in the present embodiment can easily change the filling rate (porosity) by providing a portion 18 where the porous body 14 is not filled as shown in FIG. In addition, since the microorganism-immobilized carrier 10 has the space 19 between the adjacent cylindrical bodies 16, the microorganism-immobilized carrier 10 is excellent in air diffusion performance. Further, the microorganism-immobilized carrier 10 has the same size as the cross-sectional area of the wastewater treatment reactor to be filled and used, and further has a strength that does not deform even when a plurality of stacks are stacked, so that it can be used easily.

図3に示す生物学的硝化脱窒装置20は、DHSリアクタからなるDHS硝化塔22とUASB脱窒塔24とを備える生物学的硝化脱窒装置である。排水貯槽26内の窒素含有排水(以下排水と省略)は、排水ポンプ28を介して混合槽30へ送られる。混合槽30へ送られた排水は、ここで循環ポンプ32から送られる処理水と混合され、アンモニア体窒素濃度が500mg/L以下に調整される。さらにpH調整ポンプ34を介してpH調整薬品貯槽36内に貯留されているpH調整薬品、及び栄養塩ポンプ38を介して栄養塩貯槽40内に貯留されている栄養塩が混合槽30に送られ撹拌機42により混合される。混合槽30で調整された排水は、DHS硝化塔22へ送られる。DHS硝化塔22内には、複数の微生物固定化担体10が充填され、排水は、DHS硝化塔22の上部から散水され、微生物固定化担体10を通過するとき、微生物固定化担体10に付着する硝化菌の作用により空気中の酸素で酸化され、硝酸イオンとなる。   A biological nitrification / denitrification apparatus 20 shown in FIG. 3 is a biological nitrification / denitrification apparatus including a DHS nitrification tower 22 and a UASB denitrification tower 24 each composed of a DHS reactor. The nitrogen-containing wastewater (hereinafter abbreviated as wastewater) in the wastewater storage tank 26 is sent to the mixing tank 30 via the drainage pump 28. The waste water sent to the mixing tank 30 is mixed with the treated water sent from the circulation pump 32 here, and the ammonia body nitrogen concentration is adjusted to 500 mg / L or less. Further, the pH adjusting chemical stored in the pH adjusting chemical storage tank 36 via the pH adjusting pump 34 and the nutrient salt stored in the nutrient salt storing tank 40 via the nutrient salt pump 38 are sent to the mixing tank 30. Mixing is performed by the agitator 42. The waste water adjusted in the mixing tank 30 is sent to the DHS nitrification tower 22. The DHS nitrification tower 22 is filled with a plurality of microorganism immobilization carriers 10, and the waste water is sprinkled from the upper part of the DHS nitrification tower 22 and adheres to the microorganism immobilization carriers 10 when passing through the microorganism immobilization carrier 10. Oxidized with oxygen in the air by the action of nitrifying bacteria, it becomes nitrate ion.

硝化された排水は、硝化塔出口ポンプ44を介してUASB脱窒塔24へ送られる。途中、排水中に含まれる硝酸イオンに対応するメタノールがメタノール貯槽46に連結するメタノールポンプ48を通じて供給され、排水はメタノールと混合した状態でUASB脱窒塔24へ送水される。UASB脱窒塔24は、内部にグラニュールを保持し、UASB脱窒塔24に送られた排水は、グラニュール中の脱窒菌の作用により、硝酸イオンとメタノールとが反応し窒素ガスと炭酸ガスに分解される。これらの工程により排水中のアンモニア体窒素が窒素ガスに分解される。このとき副産物とし発生する炭酸ガスは、DHS硝化塔22に必要な栄養塩として循環することで、栄養塩の添加を削減することができる。窒素が除去された処理水は、処理水貯槽49に集められ、一部は循環ポンプ32を介して混合槽30に送られる。   The nitrified waste water is sent to the UASB denitrification tower 24 via the nitrification tower outlet pump 44. In the middle, methanol corresponding to nitrate ions contained in the wastewater is supplied through a methanol pump 48 connected to the methanol storage tank 46, and the wastewater is mixed with methanol and sent to the UASB denitrification tower 24. The UASB denitrification tower 24 holds granules therein, and the waste water sent to the UASB denitrification tower 24 reacts with nitrate ions and methanol due to the action of denitrifying bacteria in the granules, so that nitrogen gas and carbon dioxide gas Is broken down into Through these steps, ammonia nitrogen in the waste water is decomposed into nitrogen gas. At this time, carbon dioxide gas generated as a by-product is circulated as a nutrient salt necessary for the DHS nitrification tower 22, so that the addition of nutrient salt can be reduced. The treated water from which nitrogen has been removed is collected in the treated water storage tank 49, and a part thereof is sent to the mixing tank 30 via the circulation pump 32.

本実施形態に示す生物学的硝化脱窒装置20の基本的な構成は、従来から使用されている生物学的硝化脱窒装置と類似の構成であり、本実施形態に示す生物学的硝化脱窒装置20は、DHS硝化塔22が従来の硝化塔にない特徴を有する。DHS硝化塔22は、横断面形状が円の円筒形状の塔本体23を有し、塔本体23の内部には、図1、図2に示す多孔体14がスポンジである微生物固定化担体10が充填され、5段の充填層が形成されている。大きさを例示すれば、1段の充填層の高さは800mmであり、高さ10mmの突起部17を底面に備える微生物固定化担体10が1段に20枚充填されている。これによりスポンジ間に10mmの空気層が形成される。各段の間には微生物固定化担体10を保持するための網状の受け25が挿入され、各段間には約200mmの空間部が設けられている。微生物固定化担体10の外周部の大きさは、塔本体23内に殆ど隙間なく入る大きさである。また塔本体23の上部には空気の排気口27が、底部には空気の取入口29が設けられている。空気の排気口27に誘引通風機(図示を省略)を設けてもよい。さらに塔本体23の上部には、混合槽30から送水される排水を充填層に均一に分散させるための回転式の散水装置31を備える。ただし、多孔体14がスポンジである微生物固定化担体10が充填され排水が均一化されるので、散水装置31は精密な散水装置でなくてもよい。さらにDHS硝化塔22が小型の場合は、散水装置31がなくてもよい。   The basic configuration of the biological nitrification denitrification apparatus 20 shown in the present embodiment is similar to that of a biological nitrification denitrification apparatus conventionally used, and the biological nitrification denitrification apparatus shown in the present embodiment. The nitrogenation apparatus 20 has a feature that the DHS nitrification tower 22 is not present in the conventional nitrification tower. The DHS nitrification tower 22 has a cylindrical tower main body 23 having a circular cross-sectional shape. Inside the tower main body 23, a microorganism-immobilized support 10 in which the porous body 14 shown in FIGS. Filled to form a five-stage packed bed. For example, the height of one packed bed is 800 mm, and 20 microbial immobilization carriers 10 each having a protrusion 17 having a height of 10 mm on the bottom are packed in one row. As a result, an air layer of 10 mm is formed between the sponges. A net-like receiver 25 for holding the microorganism-immobilized carrier 10 is inserted between the stages, and a space of about 200 mm is provided between the stages. The size of the outer peripheral portion of the microorganism-immobilized carrier 10 is a size that enters the tower body 23 with almost no gap. An air exhaust port 27 is provided at the top of the tower body 23, and an air intake port 29 is provided at the bottom. An induction ventilator (not shown) may be provided at the air exhaust port 27. Furthermore, a rotary watering device 31 for uniformly dispersing the wastewater sent from the mixing tank 30 in the packed bed is provided at the upper part of the tower body 23. However, since the microbial immobilization support 10 in which the porous body 14 is a sponge is filled and the drainage is made uniform, the watering device 31 may not be a precise watering device. Furthermore, when the DHS nitrification tower 22 is small, the watering device 31 may not be provided.

このように構成されたDHS硝化塔22は、従来のスポンジ担体をランダムに充填したDHS硝化塔に比較し、以下のような利点を有する。多孔体14であるスポンジが規則正しく配置されているので、スポンジの充填率を高めることができる。これにより従来のDHS硝化塔に比較し小型化することができる。またフレーム12は、自立可能でかつ複数のフレームを積み重ねても変形しない強度を有するので、多孔体14を保持したフレーム12を塔本体23内に複数充填しても、スポンジが変形することがない。このためスポンジ担体をランダムに充填する場合に、必要としていたスポンジ担体の変形を防止するための手段が必要なく、安価にDHS硝化塔を製造することができる。さらに微生物固定化担体10の充填が簡単であり、底面に突起部を設ければ微生物固定化担体10間に空気層を設けるためのスペーサも必要ない。また排水中に含まれる有機物濃度、SS濃度が高く、塔入口部で汚泥が閉塞しないようにスポンジの充填率を下げたい場合にも、充填率の調整を簡単に行うことができる。さらに塔本体23の高さ方向のスポンジの充填率の調整を簡単に行うことができる。なお、生物学的硝化脱窒装置は、本実施形態に示す生物学的硝化脱窒装置20に限定されるものではなく、本発明の要旨を変更しない範囲で他の形態の生物学的硝化脱窒装置にも使用可能なことは言うまでもない。   The DHS nitrification tower 22 configured as described above has the following advantages compared to the DHS nitrification tower filled with a conventional sponge carrier at random. Since the sponge which is the porous body 14 is regularly arranged, the filling rate of the sponge can be increased. Thereby, it can reduce in size compared with the conventional DHS nitrification tower. The frame 12 is self-supporting and has a strength that does not deform even when a plurality of frames are stacked. Therefore, even if a plurality of frames 12 holding the porous body 14 are filled in the tower body 23, the sponge does not deform. . For this reason, when the sponge carrier is randomly packed, the necessary means for preventing the deformation of the sponge carrier is not necessary, and the DHS nitrification tower can be manufactured at low cost. Furthermore, the filling of the microorganism-immobilized carrier 10 is simple, and if a protrusion is provided on the bottom surface, a spacer for providing an air layer between the microorganism-immobilized carriers 10 is not necessary. In addition, when the organic matter concentration and SS concentration contained in the waste water are high and it is desired to reduce the filling rate of the sponge so that the sludge is not blocked at the inlet of the tower, the filling rate can be easily adjusted. Furthermore, the filling rate of the sponge in the height direction of the tower body 23 can be easily adjusted. The biological nitrification denitrification apparatus is not limited to the biological nitrification denitrification apparatus 20 shown in the present embodiment, and other forms of biological nitrification denitrification are within the scope of the present invention. Needless to say, it can also be used in a nitrogen system.

図4は、本発明の第2実施形態としての微生物固定化担体50を構成するフレーム52の平面図である。微生物固定化担体50は、第1実施形態に示す微生物固定化担体10と同様、多孔体を保持するフレーム52と、フレーム52に充填された微生物を固定化する多数の多孔体(図示を省略)とからなる。第2実施形態に示すフレーム52は、1の空間部形状が平面視で六角形を有するハニカム構造である。フレームの材質、大きさ等は本発明の第1実施形態に示すフレーム12と同じである。フレーム52に充填する多孔体(図示を省略)も断面形状が異なる以外、第1実施形態に示す多孔体14と同じである。   FIG. 4 is a plan view of a frame 52 that constitutes the microorganism-immobilized carrier 50 according to the second embodiment of the present invention. Similar to the microorganism-immobilized carrier 10 shown in the first embodiment, the microorganism-immobilized carrier 50 includes a frame 52 that holds a porous body, and a number of porous bodies that immobilize microorganisms filled in the frame 52 (not shown). It consists of. The frame 52 shown in the second embodiment has a honeycomb structure in which one space portion has a hexagonal shape in plan view. The material and size of the frame are the same as those of the frame 12 shown in the first embodiment of the present invention. The porous body (not shown) filled in the frame 52 is the same as the porous body 14 shown in the first embodiment except that the cross-sectional shape is different.

図5は、本発明の第3実施形態としての微生物固定化担体60を構成するフレーム62の斜視図である。微生物固定化担体60は、第1、第2実施形態に示す微生物固定化担体10、50と同様、多孔体を保持するフレーム62と、フレーム62に充填された微生物を固定化する多数の多孔体(図示を省略)とからなる。第3実施形態に示すフレーム62は、波板の一方に平板を有する部材を螺旋状に巻き付けた、断面がハニカム構造の微生物固定化担体60である。また、底部に局所的に突起部64(64a、64b、64c)を有する。フレーム62の材質、大きさ等は、第1、第2実施形態に示すにフレーム12、52同じである。フレームに充填する多孔体(図示を省略)も断面形状が異なる以外、第1実施形態に示す多孔体14と同じである。第3実施形態に示す微生物固定化担体60は、排水処理リアクタ内に殆ど隙間なく充填することができる。以上にようにフレームの1の空間部の形状は、円以外に六角形、波型でもよく、これらハニカム構造のフレームを備える微生物固定化担体50、60は、第1実施形態の微生物固定化担体10と同等の作用、効果を有すると共に、第1実施形態の微生物固定化担体10よりも多孔体の充填率を容易に高めることができる。さらにこれらハニカム構造のフレーム52、62は製造が容易であることから、微生物固定化担体50、60を安価に製造することができる。   FIG. 5 is a perspective view of a frame 62 constituting a microorganism-immobilized carrier 60 as a third embodiment of the present invention. Similar to the microorganism immobilization carriers 10 and 50 shown in the first and second embodiments, the microorganism immobilization carrier 60 includes a frame 62 that holds a porous body and a large number of porous bodies that immobilize microorganisms filled in the frame 62. (Not shown). A frame 62 shown in the third embodiment is a microorganism-immobilized support 60 having a honeycomb structure in a cross section in which a member having a flat plate is spirally wound around one of corrugated plates. Moreover, it has the protrusion part 64 (64a, 64b, 64c) locally in the bottom part. The material and size of the frame 62 are the same as those of the frames 12 and 52 as shown in the first and second embodiments. The porous body (not shown) filled in the frame is the same as the porous body 14 shown in the first embodiment except that the cross-sectional shape is different. The microorganism-immobilized carrier 60 shown in the third embodiment can be filled in the waste water treatment reactor with almost no gap. As described above, the shape of the space portion of the frame 1 may be hexagonal or corrugated in addition to the circle, and the microorganism-immobilized carriers 50 and 60 including these honeycomb-structured frames are the microorganism-immobilized carriers of the first embodiment. 10 has the same functions and effects as those of the microbial immobilization carrier 10 of the first embodiment, and can easily increase the filling rate of the porous body. Furthermore, since the honeycomb structured frames 52 and 62 are easy to manufacture, the microorganism-immobilized carriers 50 and 60 can be manufactured at low cost.

図6は、本発明の第4実施形態としての微生物固定化担体70を構成するフレーム72であって図6(a)が平面図、図6(b)が正面図である。微生物固定化担体70は、第1から第3実施形態に示す微生物固定化担体10、50、60と同様、多孔体を保持するフレーム72と、フレームに充填された微生物を固定化する多数の多孔体(図示を省略)とからなる。第4実施形態に示す微生物固定化担体70のフレーム72は、平面視において正方形の形状を有する。図3に示したDHS硝化塔22は横断面形状が丸であったけれども、方形でもよいため、第4実施形態に示す微生物固定化担体70は、横断面形状が正方形の排水処理リアクタに好適に使用することができる。このとき微生物固定化担体70を、排水処理リアクタ内に殆ど隙間なく充填することができる。第4実施形態に示す微生物固定化担体70のフレーム72は、4つの大きなフレーム72a、72b、72c、72dから構成されており、各フレーム72a、72b、72c、72dは分離することができる。また各フレーム72a、72b、72c、72dは、各々底部に局所的に突起部74(74c、74d、74aは図示省略、74bは図示省略)を有し、自立可能である。   FIG. 6 shows a frame 72 constituting a microorganism-immobilized carrier 70 according to a fourth embodiment of the present invention, in which FIG. 6 (a) is a plan view and FIG. 6 (b) is a front view. Similar to the microorganism immobilization carriers 10, 50, and 60 shown in the first to third embodiments, the microorganism immobilization carrier 70 has a frame 72 that holds a porous body and a number of porous holes that immobilize microorganisms filled in the frame. A body (not shown). The frame 72 of the microorganism immobilization carrier 70 shown in the fourth embodiment has a square shape in plan view. Although the DHS nitrification tower 22 shown in FIG. 3 has a round cross-sectional shape, the DHS nitrification tower 22 may be square. Therefore, the microorganism-immobilized support 70 shown in the fourth embodiment is suitable for a wastewater treatment reactor having a square cross-sectional shape. Can be used. At this time, the microorganism-immobilized carrier 70 can be filled in the waste water treatment reactor with almost no gap. The frame 72 of the microorganism immobilization carrier 70 shown in the fourth embodiment is composed of four large frames 72a, 72b, 72c, 72d, and the respective frames 72a, 72b, 72c, 72d can be separated. Each frame 72a, 72b, 72c, 72d has a protrusion 74 (74c, 74d, 74a is not shown, 74b is not shown) locally at the bottom, and can be self-supporting.

排水処理リアクタの横断面の長さが数メートルにも及ぶような大きなリアクタの場合、微生物固定化担体を一体的に形成すると、運搬、リアクタへの充填などをスムーズに行うことができない場合もあるが、このように分割することで、これらの問題を解決することができる。分割数は、4つに限定されるものではないので、微生物固定化担体の大きさと取扱い易さを考慮して分割数を決定すればよい。必要以上に分割数を多くすると、排水処理リアクタへの充填に手間がかかるので、この点も考慮すべきである。分割可能なことに関しては、第1から第3実施形態に示す微生物固定化担体10、50、60についても同様である。フレーム72の材質、網目構造、突起物74の構造、フレーム72に充填する多孔体も断面形状が異なる以外、第1から第3実施形態に示す微生物固定化担体10、50、60と同じである。以上からなる第4実施形態に示す微生物固定化担体70は、第1から第3実施形態の微生物固定化担体10、50、60と同等の作用、効果を有する。   In the case of a large reactor having a cross section of a wastewater treatment reactor with a length of several meters, if the microorganism-immobilized support is integrally formed, transportation, filling into the reactor, etc. may not be performed smoothly. However, these problems can be solved by dividing in this way. Since the number of divisions is not limited to four, the number of divisions may be determined in consideration of the size and ease of handling of the microorganism-immobilized carrier. If the number of divisions is increased more than necessary, it takes time to fill the wastewater treatment reactor, and this point should be taken into consideration. The same applies to the microorganism-immobilized carriers 10, 50, 60 shown in the first to third embodiments. The material of the frame 72, the mesh structure, the structure of the protrusions 74, and the porous body filled in the frame 72 are the same as the microorganism-immobilized carriers 10, 50, 60 shown in the first to third embodiments except for the cross-sectional shape. . The microorganism immobilization carrier 70 according to the fourth embodiment configured as described above has functions and effects equivalent to those of the microorganism immobilization carriers 10, 50, 60 of the first to third embodiments.

図7は、本発明の第5実施形態としての微生物固定化担体80を示す斜視図である。第5実施形態としての微生物固定化担体80は、第1から第4実施形態に示す微生物固定化担体10、50、60、70と異なり、フレームと多孔体との区別がなく一体的に形成されている。第5実施形態としての微生物固定化担体80は、ゼオライトを円板状に形成することで微生物固定化担体としている。微生物固定化担体80の厚さは特に限定されないけれども、第1実施形態の微生物固定化担体10と同様20〜40mm程度の厚さ(高さ)が好ましい。ゼオライトは、周知のように多数の微細な細孔を有すると共に、比表面積が大きく担体として適している。ゼオライオを所定の形状に加工し微生物固定化担体とするには、従来から用いられている合成ゼオライトの合成方法を用い、ゼオライトを合成するとき原料を円盤状の型にして入れて合成すればよい。または、ゼオライトのパウダーを製造し、これをバインダを用いて形成した後に焼結させてもよい。   FIG. 7 is a perspective view showing a microorganism-immobilized carrier 80 as a fifth embodiment of the present invention. Unlike the microorganism immobilization carriers 10, 50, 60, and 70 shown in the first to fourth embodiments, the microorganism immobilization carrier 80 as the fifth embodiment is integrally formed without distinction between the frame and the porous body. ing. The microorganism-immobilized carrier 80 according to the fifth embodiment is a microorganism-immobilized carrier by forming zeolite in a disc shape. Although the thickness of the microorganism immobilization carrier 80 is not particularly limited, a thickness (height) of about 20 to 40 mm is preferable like the microorganism immobilization carrier 10 of the first embodiment. As is well known, zeolite has a large number of fine pores and has a large specific surface area and is suitable as a support. In order to process Zeolio into a predetermined shape and use it as a microorganism-immobilized support, a synthetic zeolite synthesis method that has been used in the past can be used. . Alternatively, zeolite powder may be manufactured and formed using a binder, and then sintered.

合成ゼオライトの製造方法の一例を示せば、酸化ケイ素と酸化アルミニウムを含んだ多孔質セラミックを4Nの水酸化ナトリウム溶液中で100℃、24時間加熱処理することで製造することができる。多孔質セラミックは、重量比でパーライト100、石炭灰フライアッシュ100〜200、珪酸ナトリウム10〜20を混合し、850〜1200℃で焼結させることで得ることができる。なお、合成ゼオライト及び多孔質セラミックの製造方法は、他にも多くの方法が開示されており、上記製造方法に限定されるものではない。ゼオライトの合成には、石炭灰フライアッシュを利用することができるので、発電所から発生する廃棄物を有効に利用することができる。   If an example of the manufacturing method of a synthetic zeolite is shown, it can manufacture by heat-processing the porous ceramic containing silicon oxide and aluminum oxide for 24 hours at 100 degreeC in 4N sodium hydroxide solution. The porous ceramic can be obtained by mixing pearlite 100, coal ash fly ash 100 to 200, and sodium silicate 10 to 20 by weight ratio and sintering at 850 to 1200 ° C. In addition, many other methods are disclosed about the manufacturing method of a synthetic zeolite and porous ceramic, It is not limited to the said manufacturing method. Since the coal ash fly ash can be used for the synthesis of zeolite, the waste generated from the power plant can be used effectively.

上記のようなゼオライトからなる微生物固定化担体80は、強度が強くフレームがなくても自立すること可能であり、これらを複数段積み重ねても破損することはない。このような合成ゼオライトを使用する微生物固定化担体80は、フレームが不要となるため、安価に製造することができる。またゼオライトは、ドリルなどで簡単に貫通孔82(82a、82b、82c、82d、82e)を開けることができるので、空隙率の調整を簡単に行うことができる。さらに貫通しない凹部をドリルで加工し、ここにプラスチック製の棒84(84a、84b、84c、84d)を嵌め込むことで、微生物固定化担体80を複数段充填するときのスペーサの代わりとすることができる。   The microorganism-immobilized carrier 80 made of zeolite as described above has high strength and can be self-supported even without a frame, and even if they are stacked in a plurality of stages, they are not damaged. The microorganism-immobilized carrier 80 using such a synthetic zeolite does not require a frame, and can be manufactured at a low cost. Moreover, since the zeolite can open the through-hole 82 (82a, 82b, 82c, 82d, 82e) easily with a drill etc., the porosity can be adjusted easily. Further, a recess that does not penetrate is processed with a drill, and a plastic rod 84 (84a, 84b, 84c, 84d) is fitted therein, thereby replacing the spacer when filling the microorganism-immobilized carrier 80 in a plurality of stages. Can do.

図8は、微生物固定化担体に図7のゼオライトを使用した微生物固定化担体80を充填した図3の生物学的硝化脱窒装置の使用方法の一例を説明するための図である。ここでは生物学的硝化脱窒装置20をセミバッチ的に使用する。例えばアンモニア濃度が低く、排水量が多い排水を処理する場合、この排水を連続的に処理することはもちろん可能であるが、微生物固定化担体80であるゼオライトのアンモニアを吸着する能力を利用することで効率的に排水を処理することができる。第一工程として、排水をDHS硝化塔22に供給し、微生物固定化担体80にアンモニアを吸着させる(図8中(A))。このとき、吸着させたアンモニアを直ちに硝化させる必要はなく、アンモニアの吸着を優先させる。よって多量の排水を短時間にDHS硝化塔22に供給することができる。この工程では、微生物固定化担体80が主に濃縮器として機能する。第二工程として、DHS硝化塔22に空気を送り、微生物固定化担体80に付着する硝化菌を利用してアンモニアを亜硝酸、硝酸に酸化する(図8中(B))。その後、第三工程として、DHS硝化塔22の上部から洗浄用の水を送り、微生物固定化担体80を洗浄すると共に、第四工程として洗浄水をUASB脱窒塔24へ送り、亜硝酸、硝酸を窒素ガスにする(図8中(C))。これによりアンモニア濃度が低く、量が多い排水であっても効率的に排水を処理することができる。   FIG. 8 is a view for explaining an example of a method of using the biological nitrification denitrification apparatus of FIG. 3 in which the microorganism-immobilized support is filled with the microorganism-immobilized support 80 using the zeolite of FIG. Here, the biological nitrification denitrification apparatus 20 is used semi-batch. For example, when wastewater with a low ammonia concentration and a large amount of wastewater is treated, it is of course possible to treat this wastewater continuously. However, by utilizing the ability of adsorbing the ammonia of zeolite, which is the microorganism-immobilized support 80, Effluent can be treated efficiently. As a first step, waste water is supplied to the DHS nitrification tower 22 and ammonia is adsorbed on the microorganism-immobilized carrier 80 ((A) in FIG. 8). At this time, it is not necessary to immediately nitrify the adsorbed ammonia, and priority is given to adsorption of ammonia. Therefore, a large amount of waste water can be supplied to the DHS nitrification tower 22 in a short time. In this step, the microorganism-immobilized carrier 80 mainly functions as a concentrator. As a second step, air is sent to the DHS nitrification tower 22 and ammonia is oxidized to nitrous acid and nitric acid using nitrifying bacteria adhering to the microorganism-immobilized carrier 80 ((B) in FIG. 8). Thereafter, as a third step, washing water is sent from the upper part of the DHS nitrification tower 22 to wash the microorganism-immobilized support 80, and as the fourth step, washing water is sent to the UASB denitrification tower 24, and nitrous acid, nitric acid Is converted to nitrogen gas ((C) in FIG. 8). Thereby, even if it is a waste water with a low ammonia concentration and a large amount, the waste water can be treated efficiently.

上記の通り、本発明の微生物固定化担体を使用することで、生物学的硝化脱窒装置の性能を高めることができる。同時に装置を小型化することが可能となり装置を安価に製造することができる。また、本発明の微生物固定化担体は、既存の生物学的硝化脱窒装置への適用も容易である。以上、本発明の微生物固定化担体を使用した排水処理リアクタとして、DHS硝化塔を示したけれども、微生物固定化担体を使用した排水リアクタは、DHS硝化塔に限定されるものではない。この他、下水、し尿、産業排水などの排水処理装置などで使用される散水ろ床型リアクタ、又は好気ろ床型リアクタなどに本発明の微生物固定化担体を好適に使用することができる。   As described above, the performance of the biological nitrification denitrification apparatus can be enhanced by using the microorganism-immobilized carrier of the present invention. At the same time, the apparatus can be miniaturized and the apparatus can be manufactured at low cost. Further, the microorganism-immobilized carrier of the present invention can be easily applied to an existing biological nitrification denitrification apparatus. As mentioned above, although the DHS nitrification tower was shown as a waste water treatment reactor using the microorganism fixed carrier of the present invention, the waste water reactor using the microorganism fixed carrier is not limited to the DHS nitrification tower. In addition, the microorganism-immobilized carrier of the present invention can be suitably used in a sprinkling filter bed reactor or an aerobic filter bed reactor used in wastewater treatment equipment such as sewage, human waste, and industrial wastewater.

10 微生物固定化担体
12 フレーム
14 多孔体
20 生物学的硝化脱窒素装置
22 DHS硝化塔
50 微生物固定化担体
52 フレーム
60 微生物固定化担体
62 フレーム
64 突起部
70 微生物固定化担体
72 フレーム
74 突起部
80 微生物固定化担体
84 棒
DESCRIPTION OF SYMBOLS 10 Microbe immobilization support 12 Frame 14 Porous body 20 Biological nitrification denitrification apparatus 22 DHS nitrification tower 50 Microorganism immobilization support 52 Frame 60 Microorganism immobilization support 62 Frame 64 Protrusion 70 Microorganism immobilization support 72 Frame 74 Protrusion 80 Microorganism immobilization carrier 84 stick

Claims (5)

生物処理法を用いた排水処理リアクタに充填し使用する微生物を固定化するための微生物固定化担体であって、
前記排水処理リアクタが、DHSリアクタ、散水ろ床型リアクタ、又は好気ろ床型リアクタであり、
ゼオライトで形成された板状体であり、該板状体の外周部が前記排水処理リアクタの横断面と同一の大きさを有し、前記排水処理リアクタ内に隙間なく嵌り込み、複数積み重ねても変形しない強度を有し、前記板状体に貫通孔を穿設することで空隙率を調整可能なことを特徴とする微生物固定化担体。
A microorganism immobilization carrier for immobilizing microorganisms to be filled and used in a wastewater treatment reactor using a biological treatment method,
The waste water treatment reactor is a DHS reactor, a trickling filter reactor, or an aerobic filter reactor;
It is a plate-like body formed of zeolite, and the outer peripheral portion of the plate-like body has the same size as the cross section of the waste water treatment reactor, and fits into the waste water treatment reactor without any gap, A microorganism-immobilized carrier having strength not to be deformed and capable of adjusting a porosity by forming a through-hole in the plate-like body.
前記板状体の底面部に局所的に突起を有することを特徴とする請求項1に記載の微生物固定化担体。   2. The microorganism-immobilized carrier according to claim 1, further comprising a protrusion locally on the bottom surface of the plate-like body. 請求項1又は請求項2に記載の微生物固定化担体を複数充填したDHSリアクタであり、
1の微生物固定化担体と隣りあう微生物固定化担体との間に空気層を備えることを特徴とするDHSリアクタ。
A DHS reactor filled with a plurality of the microorganism-immobilized carriers according to claim 1 or 2,
A DHS reactor comprising an air layer between one microbial immobilization carrier and an adjacent microbial immobilization carrier.
請求項3に記載のDHSリアクタからなり、硝化菌により排水中のアンモニア体窒素を亜硝酸体窒素又は硝酸体窒素にまで酸化する硝化搭と、
脱窒菌を用いて硝酸体窒素、亜硝酸体窒素を窒素に還元するUASB脱窒搭と、
を備えることを特徴とする生物学的硝化脱窒装置。
A nitrifying tower comprising the DHS reactor according to claim 3, which oxidizes ammonia nitrogen in waste water to nitrite nitrogen or nitrate nitrogen by nitrifying bacteria,
UASB denitrification tower for reducing nitrate nitrogen and nitrite nitrogen to nitrogen using denitrifying bacteria,
A biological nitrification denitrification apparatus comprising:
請求項4に記載の生物学的硝化脱窒装置の使用方法であって、
有臭ガス又はアンモニア含有排水を前記硝化搭に供給し、有臭ガス又はアンモニアをゼオライトからなる微生物固定化担体に吸着させる第一工程と、
第一工程の後、前記硝化搭に空気を送り、前記微生物固定化担体に付着する硝化菌で有臭ガス又はアンモニアを亜硝酸体窒素又は硝酸体窒素にまで酸化する第二工程と、
第二工程後の硝化搭に水を供給し、前記微生物固定化担体を水洗する第三工程と、
第三工程で得られた洗浄水中の硝酸体窒素、亜硝酸体窒素を、前記UASB脱窒搭において脱窒菌を用いて窒素に還元する第四工程と、
を含むことを特徴とする生物学的硝化脱窒装置の使用方法。
A method of using the biological nitrification denitrification device according to claim 4,
A first step of supplying odorous gas or ammonia-containing wastewater to the nitrification tower, and adsorbing the odorous gas or ammonia to a microorganism-immobilized support made of zeolite;
After the first step, air is sent to the nitrification tower, a second step of oxidizing odorous gas or ammonia to nitrite nitrogen or nitrate nitrogen with nitrifying bacteria adhering to the microorganism-immobilized support;
A third step of supplying water to the nitrification tower after the second step and washing the microorganism-immobilized carrier;
A fourth step of reducing nitrate nitrogen and nitrite nitrogen in the wash water obtained in the third step to nitrogen using denitrifying bacteria in the UASB denitrification tower;
A method of using a biological nitrification denitrification apparatus characterized by comprising:
JP2011208213A 2011-09-22 2011-09-22 Microorganism immobilization carrier, DHS reactor, biological nitrification denitrification apparatus and method of use thereof Expired - Fee Related JP5196609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208213A JP5196609B2 (en) 2011-09-22 2011-09-22 Microorganism immobilization carrier, DHS reactor, biological nitrification denitrification apparatus and method of use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011208213A JP5196609B2 (en) 2011-09-22 2011-09-22 Microorganism immobilization carrier, DHS reactor, biological nitrification denitrification apparatus and method of use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008070020A Division JP4849481B2 (en) 2008-03-18 2008-03-18 Microorganism immobilization support, DHS reactor, and biological nitrification denitrification apparatus

Publications (2)

Publication Number Publication Date
JP2012024762A JP2012024762A (en) 2012-02-09
JP5196609B2 true JP5196609B2 (en) 2013-05-15

Family

ID=45778362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208213A Expired - Fee Related JP5196609B2 (en) 2011-09-22 2011-09-22 Microorganism immobilization carrier, DHS reactor, biological nitrification denitrification apparatus and method of use thereof

Country Status (1)

Country Link
JP (1) JP5196609B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173887B2 (en) * 2013-11-19 2017-08-02 住友理工株式会社 Glycols-containing wastewater treatment method, glycols-containing wastewater treatment device, and sludge used in these
CN104098186B (en) * 2014-08-01 2015-12-30 徐凯 A kind of immobilized microorganism sewage treatment process
CN104085992B (en) * 2014-08-01 2015-12-02 新昌县镜岭镇柳良轴承厂 A kind of sewage treatment process with warming solar energy effect
CN104085993B (en) * 2014-08-01 2015-12-09 新昌县澄潭镇澄设机械厂 A kind of constructed wetland device
CN110440018A (en) * 2019-08-15 2019-11-12 杭州昕华信息科技有限公司 A kind of adjustable waste water proportional controller
CN110440019A (en) * 2019-08-15 2019-11-12 杭州昕华信息科技有限公司 Multistage adjustable waste water proportioner
CN111875032A (en) * 2020-07-23 2020-11-03 重庆市科学技术研究院 Biological rotating cage reactor for water treatment and phosphorus-containing low-ammonia-nitrogen wastewater treatment method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139263A (en) * 1978-03-01 1979-10-29 Mitsubishi Plastics Ind Ltd Method of treating drainge
JPS58141792U (en) * 1982-03-15 1983-09-24 三ツ川工業株式会社 Contact aeration device
JPS62258795A (en) * 1986-04-09 1987-11-11 Denka Consult & Eng Co Ltd Denitrifying treatment for waste water containing ammonium ion and its device
JP2583495B2 (en) * 1987-01-26 1997-02-19 哲 追田 Circulating purification system for fish tanks
JP2576908B2 (en) * 1990-03-12 1997-01-29 三山産業 株式会社 Water purification device
JPH0498498U (en) * 1991-01-24 1992-08-26
JPH07100479A (en) * 1993-09-30 1995-04-18 Arita Bussan Kk Carrier for microorganism for waste water treatment in biological film method
JP3827100B2 (en) * 1994-12-30 2006-09-27 コーア株式会社 Water circulating filtration method and apparatus
CA2171279C (en) * 1996-03-07 2007-09-18 Richard Auger Reactor for treating a liquid
JP3555812B2 (en) * 1996-09-06 2004-08-18 株式会社荏原製作所 Advanced treatment method for organic wastewater
JP3619950B2 (en) * 1998-04-01 2005-02-16 東急建設株式会社 Sewage treatment apparatus and sewage treatment method
JPH11319866A (en) * 1998-05-21 1999-11-24 Sony Corp Water purification apparatus
JP2006035028A (en) * 2004-07-23 2006-02-09 Aisin Takaoka Ltd Bio-deodorization method, bio-deodorization system
JP4769591B2 (en) * 2006-02-07 2011-09-07 国立大学法人東京海洋大学 Microbe-supported single body and sewage purification device for sewage purification
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen

Also Published As

Publication number Publication date
JP2012024762A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP4849481B2 (en) Microorganism immobilization support, DHS reactor, and biological nitrification denitrification apparatus
JP5196609B2 (en) Microorganism immobilization carrier, DHS reactor, biological nitrification denitrification apparatus and method of use thereof
DK2735608T3 (en) Core-shell composite of alginate and polyvinyl alcohol, and process for producing same
EP1607374B1 (en) Method for operating anaerobic ammonium oxidation vessel and anaerobic ammonium oxidation equipment
US7556961B2 (en) Method for collecting and acclimatizing anaerobic ammonuim oxidizing bacteria, and denitrifing water
US8524076B2 (en) Fluid purification unit and fluid purification assembly including the same
CN108658226B (en) Composite carrier capable of promoting short-cut nitrification starting and stable operation and preparation method thereof
CN102936083A (en) Device and method for removing refractory organics and total nitrogen in waste water simultaneously
CN109502750B (en) Functional green top type sewage regeneration ultra-clean treatment process
CN102115296A (en) Novel multi-cell denitrifying membrane bioreactor
CN105217785A (en) Multimedium baffled biological aerated filter and application thereof
KR102170601B1 (en) Advanced sewage and wastewater separation membrane device using low temperature plasma
CN103395942A (en) Method and device for realizing lasting and stable accumulation of nitrite nitrogen under low-temperature condition
RU2714817C1 (en) Method and reactor for biological removal of nitrogen by autotrophic ammonium oxidation and subsequent denitrification
AU2018263286A1 (en) Water treatment method
CN103641241A (en) Preposed denitrification aeration biofilter and method for treating sewage
CN205035139U (en) Multimedium baffled biological aerated filter
Xiang et al. Effect of biofilm density on nitrous oxide emissions and treatment efficiency on sequencing batch biofilm reactor
JP4788645B2 (en) Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus
CN100567174C (en) The removal method of benzene series thing in the trade effluent
CN106277312A (en) A kind of municipal sewage nitrogen rejection facility and application thereof
KR19990046394A (en) Aaaaa
CN209412025U (en) A kind of EM bacterium biofilm sewage-treatment plant
Chen et al. A pilot study on suspended activated sludge process augmented with immobilized biomass for simultaneous nitrification and denitrification
CN213924186U (en) Efficient denitrification biological filler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees