JP2006035028A - Bio-deodorization method, bio-deodorization system - Google Patents

Bio-deodorization method, bio-deodorization system Download PDF

Info

Publication number
JP2006035028A
JP2006035028A JP2004215622A JP2004215622A JP2006035028A JP 2006035028 A JP2006035028 A JP 2006035028A JP 2004215622 A JP2004215622 A JP 2004215622A JP 2004215622 A JP2004215622 A JP 2004215622A JP 2006035028 A JP2006035028 A JP 2006035028A
Authority
JP
Japan
Prior art keywords
denitrification
organic matter
biological
ppm
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215622A
Other languages
Japanese (ja)
Inventor
Masateru Aoki
正輝 青木
Toshihiro Hattori
敏裕 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2004215622A priority Critical patent/JP2006035028A/en
Publication of JP2006035028A publication Critical patent/JP2006035028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bio-deodorization system capable of preventing leak of malodor and lowering of deodorization performance with time, with superior cost performance. <P>SOLUTION: This bio-deodorization system 10 is provided with a bio-deodorization apparatus 11 of a circulating water spray type, a denitrification apparatus 12, an organic matter supply apparatus 13, and a control device 14. The control device 14 controls a pump 49 to adjust an amount of the organic matter O supplied from the organic matter supply apparatus 13, and to keep concentration of nitrate nitrogen and nitrite nitrogen contained in circulation water W2 less than 2,500 ppm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、硝化作用を有する微生物によりアンモニアを硝酸等に変えて脱臭する生物脱臭方法、生物脱臭システムに関するものである。   The present invention relates to a biological deodorizing method and a biological deodorizing system in which ammonia is converted into nitric acid or the like by a microorganism having a nitrifying action and deodorized.

従来、有機性廃棄物の堆肥化プラント、下水処理場、畜舎、食品加工工場等において発生する悪臭ガス(例えば、アンモニアガス)を、微生物を利用して生物学的に脱臭する生物脱臭装置を備えた生物脱臭システムがよく知られている。一般的にこの種の生物脱臭システムにおける生物脱臭装置は、アンモニアガスが導入される容器を備えており、その容器内には脱臭用微生物を担持させた充填担体が充填されている。容器内に導入されたアンモニアガスは、充填担体を通過する際に脱臭用微生物の作用(硝化作用)により脱臭された後、排気ダクトを介して容器外に排出されるようになっている。また、充填担体の上部には散水器が配設されており、その散水器から充填担体に対して水を散水することで、脱臭用微生物の活性が維持されるようになっている。   Conventionally, equipped with a biological deodorizing device that biologically deodorizes malodorous gases (eg, ammonia gas) generated in composting plants for organic waste, sewage treatment plants, barns, food processing plants, etc. using microorganisms. Biological deodorization systems are well known. In general, a biological deodorization apparatus in this type of biological deodorization system includes a container into which ammonia gas is introduced, and the container is filled with a filling carrier carrying deodorizing microorganisms. The ammonia gas introduced into the container is deodorized by the action of deodorizing microorganisms (nitrification action) when passing through the packed carrier, and is then discharged out of the container through the exhaust duct. In addition, a sprinkler is disposed on the top of the filling carrier, and the activity of the deodorizing microorganisms is maintained by sprinkling water from the sprinkler to the filling carrier.

このような生物脱臭装置には、水を掛け捨てにする非循環散水方式と、容器内に溜まった水を捨てずに回収して散水用水として再利用する循環散水方式とがある。しかしながら、前者の非循環散水方式はコスト性や環境性の点で難点があるため、現在では後者の循環散水方式のほうが望ましいと考えられている。ただし、循環散水方式を採用した場合、微生物の硝化作用によりアンモニアから生成された硝酸や亜硝酸が散水用水に蓄積するため、そのまま使用していると次第にその濃度を増していく。そして、このような高濃度の硝酸、亜硝酸を含む散水用水が散水されると、脱臭用微生物の活性が低下し、長期にわたって脱臭性能が維持されなくなる。   Such a biological deodorization apparatus includes a non-circulating watering method in which water is thrown away and a circulating watering method in which water collected in the container is collected without being discarded and reused as water for watering. However, since the former non-circulating watering method has disadvantages in terms of cost and environment, the latter circulation watering method is currently considered to be preferable. However, when the circulating watering method is adopted, nitric acid and nitrous acid generated from ammonia by the nitrification action of microorganisms accumulate in the water for watering, so that the concentration gradually increases when used as it is. And when the water for spraying containing such high concentration nitric acid and nitrous acid is sprinkled, the activity of the deodorizing microorganisms decreases, and the deodorizing performance cannot be maintained over a long period of time.

そこで、上記の欠点を解消しうる循環散水方式の生物脱臭装置として、例えば、散水用水のイオン濃度に従って新水を補給して希釈し、散水用水のイオン濃度を適正濃度まで下げて散水を行う技術が従来提案されている(例えば、特許文献1参照)。
特開2000−42353号公報(図1等)
Therefore, as a circulating watering-type biological deodorization device that can eliminate the above drawbacks, for example, a technique of replenishing and diluting fresh water according to the ion concentration of watering water, and performing watering by lowering the ion concentration of watering water to an appropriate concentration Has been proposed (see, for example, Patent Document 1).
JP 2000-42353 A (FIG. 1 etc.)

ところが、上記従来技術の場合、散水用水のイオン濃度を適正濃度まで下げるためには大量の新水を補給する必要があり、それに伴って生物脱臭装置の運転中に大量の廃水が生じてしまう。ゆえに、廃水処理費と水代とがかかり、ランニングコストが高くなるという問題がある。また、大掛かりな廃水処理設備などが別途必要になり、設備コストも高くなるという問題もある。   However, in the case of the above prior art, it is necessary to replenish a large amount of new water in order to reduce the ion concentration of water for spraying to an appropriate concentration, and accordingly, a large amount of waste water is generated during operation of the biological deodorization apparatus. Therefore, there is a problem that the wastewater treatment cost and the water cost are increased, and the running cost becomes high. In addition, a large-scale waste water treatment facility is required separately, and there is a problem that the facility cost increases.

本発明は上記の課題に鑑みてなされたものであり、その目的は、悪臭漏れ及び脱臭性能の経時的な低下を防止することができ、しかもコスト性にも優れた生物脱臭方法、生物脱臭システムを提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is a biological deodorization method and a biological deodorization system that can prevent malodor leakage and deodorization performance over time, and are excellent in cost. Is to provide.

上記課題を解決するために、請求項1に記載の発明は、硝化作用を有する微生物によりアンモニアを硝酸及び/または亜硝酸に変えて脱臭する循環散水運転方式の生物脱臭装置と、前記生物脱臭装置とは別体で設けられ、脱窒作用を有する微生物により硝酸及び/または亜硝酸を窒素に変える脱窒装置と、前記脱窒作用を有する微生物の養分となる有機物を前記脱窒装置に供給する有機物供給装置とを備え、前記生物脱臭装置と前記脱窒装置との間を循環水が循環するように構成された生物脱臭システムを用いた生物脱臭方法において、前記循環水に含まれる硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下の値に維持する制御を行うことを特徴とする生物脱臭方法をその要旨とする。   In order to solve the above-mentioned problems, the invention described in claim 1 is directed to a biological deodorizing apparatus of a circulating sprinkling operation system in which ammonia is converted into nitric acid and / or nitrous acid by a microorganism having a nitrification action, and the biological deodorizing apparatus. And a denitrification device that converts nitric acid and / or nitrous acid to nitrogen by a microorganism having a denitrification action, and supplies organic substances that serve as nutrients for the microorganism having the denitrification action. In a biological deodorization method using a biological deodorization system comprising an organic substance supply device and configured to circulate circulating water between the biological deodorization device and the denitrification device, nitrate nitrogen contained in the circulating water And a biological deodorizing method characterized in that control is performed to maintain the concentration of nitrous nitrogen at a value of 2500 ppm or less.

請求項1に記載の発明によれば、脱窒装置において脱窒作用を有する微生物により、硝酸及び/または亜硝酸を窒素に変えるとともに、制御を行うことにより、循環水に含まれる硝酸性窒素及び亜硝酸性窒素の濃度が2500ppm以下の値に維持される。その結果、生物脱臭装置における微生物の活性が維持され、脱臭性能の経時的な低下が防止される。また、本発明によれば、循環水を廃出する必要がないクローズ系のシステムを実現することが可能となり、従来技術の場合のような大量の新水の補給が不要となる。そのため、従来技術に比較して水代がかからなくなることに加え、廃水処理費もかからなくなることから、ランニングコストを低く抑えることができる。しかも、大掛かりな廃水処理設備などが別途必要にならないので、設備コストを低く抑えることができる。
ここで「循環水に含まれる硝酸性窒素及び亜硝酸性窒素」とは、通常は循環水にてイオンとして含まれる硝酸性窒素及び亜硝酸性窒素(即ち硝酸イオン及び亜硝酸イオン)のことを意味する。本発明において硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下の値に維持する理由は、生物脱臭装置における微生物の活性を維持するためである。前記濃度は、好ましくは0ppm以上1500ppm以下の値、より好ましくは100ppm以上1000ppm以下の値、最も好ましくは300ppm以上700ppm以下の値に維持されることがよい。
According to the invention described in claim 1, nitrate nitrogen and / or nitrous acid is changed to nitrogen by a microorganism having a denitrification action in the denitrification apparatus, and by controlling the nitrate nitrogen contained in the circulating water and The concentration of nitrite nitrogen is maintained at a value of 2500 ppm or less. As a result, the activity of the microorganisms in the biological deodorization device is maintained, and the deterioration of the deodorization performance with time is prevented. In addition, according to the present invention, it is possible to realize a closed system that does not require the circulation water to be discarded, and it is not necessary to supply a large amount of new water as in the prior art. Therefore, compared to the prior art, water costs are not required, and waste water treatment costs are not required. Therefore, running costs can be kept low. In addition, since a large wastewater treatment facility is not required separately, the facility cost can be kept low.
Here, “nitrate nitrogen and nitrite nitrogen contained in circulating water” means nitrate nitrogen and nitrite nitrogen (that is, nitrate ion and nitrite ion) normally contained as ions in the circulating water. means. The reason why the concentration of nitrate nitrogen and nitrite nitrogen is maintained at a value of 2500 ppm or less in the present invention is to maintain the activity of microorganisms in the biological deodorization apparatus. The concentration is preferably maintained at a value of 0 ppm to 1500 ppm, more preferably a value of 100 ppm to 1000 ppm, and most preferably a value of 300 ppm to 700 ppm.

本発明において硝化作用を有する微生物としては、例えば、Nitrosomonas、Nitrosococcus等の硝化細菌が用いられ、脱窒作用を有する微生物としては、Alcaligenes、denitrificans等の脱窒細菌が用いられる。   In the present invention, for example, nitrifying bacteria such as Nitrosomonas and Nitrosococcus are used as microorganisms having a nitrifying action, and denitrifying bacteria such as Alcaligenes and denitrificans are used as microorganisms having a denitrifying action.

請求項2に記載の発明は、請求項1において、前記有機物供給装置から供給される有機物の量を調整することにより、前記循環水に含まれる硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下の値に維持する制御を行うことをその要旨とする。   The invention according to claim 2 is the invention according to claim 1, wherein the concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water is 2500 ppm or less by adjusting the amount of organic matter supplied from the organic matter supply device. The main point is to perform control to maintain the value of.

請求項2に記載の発明によると、硝酸性窒素及び亜硝酸性窒素の濃度制御を、有機物供給装置から供給される有機物量の調整といった比較的簡単な手法により行うことができる。ここで用いる有機物としては、脱窒作用を有する微生物の養分となりうるものであれば特に限定されず、例えば、エタノールやメタノール等のアルコール類、グルコース等の糖類、クエン酸等の有機酸などが使用可能である。   According to the second aspect of the present invention, the concentration control of nitrate nitrogen and nitrite nitrogen can be performed by a relatively simple method such as adjustment of the amount of organic matter supplied from the organic matter supply device. The organic substance used here is not particularly limited as long as it can serve as a nutrient for microorganisms having a denitrifying action. For example, alcohols such as ethanol and methanol, sugars such as glucose, and organic acids such as citric acid are used. Is possible.

請求項3に記載の発明は、請求項1または2において、前記有機物供給装置から供給される有機物の量を調整することにより、前記脱窒装置から排出される前記循環水の生物化学的酸素要求量を100ppm以下の値に維持する制御を行うことをその要旨とする。   The invention according to claim 3 is the biochemical oxygen demand of the circulating water discharged from the denitrification device by adjusting the amount of organic matter supplied from the organic matter supply device in claim 1 or 2. The gist is to perform control to maintain the amount at a value of 100 ppm or less.

請求項3に記載の発明によると、循環水の生物化学的酸素要求量の制御を、有機物供給装置から供給される有機物量の調整といった比較的簡単な手法により行うことができる。また、このような制御を行うことで、脱窒装置に有機物が過剰に供給されることが防止される。その結果、脱窒装置から生物脱臭装置に有機物が流入しにくくなり、生物脱臭装置における微生物に悪影響を及ぼして硝化作用が低減するといった問題も回避される。また、有機物を必要な量だけ供給できることから、有機物の消費量を低減することができ、システムのランニングコストを抑えることができる。   According to the invention described in claim 3, the biochemical oxygen demand of the circulating water can be controlled by a relatively simple method such as adjustment of the amount of organic matter supplied from the organic matter supply device. Moreover, by performing such control, it is possible to prevent excessive supply of organic matter to the denitrification apparatus. As a result, it is difficult for organic substances to flow from the denitrification device to the biological deodorization device, and the problem that the nitrification action is reduced by adversely affecting microorganisms in the biological deodorization device is also avoided. In addition, since a necessary amount of organic matter can be supplied, consumption of the organic matter can be reduced, and the running cost of the system can be suppressed.

請求項4に記載の発明は、請求項1乃至3のいずれか1項において、前記脱窒装置は、前記脱窒作用を有する微生物を担持するための担体を含んで構成されるとともに、前記担体は、セラミック多孔質体に骨成分またはリン酸カルシウムを含ませた粒状物質であることをその要旨とする。   According to a fourth aspect of the present invention, the denitrification apparatus according to any one of the first to third aspects includes a carrier for supporting the microorganism having the denitrification action, and the carrier. The gist of the present invention is that it is a particulate material in which a bone component or calcium phosphate is contained in a ceramic porous body.

請求項4に記載の発明によれば、担体に含まれる骨成分またはリン酸カルシウムは、脱窒作用を有する微生物との親和性が高いため、微生物を活性化させる能力に優れており、硝酸性窒素及び亜硝酸性窒素の低減に貢献できる。また、脱窒装置において微生物を活性化させる能力が高いため、微生物を担持するための担体の充填量を少なくすることが可能となり、脱窒装置の小型化を実現することができる。本発明で用いるセラミック多孔質体は、シリカ及びアルミナのうちの少なくとも一方を主要成分とすると、脱窒作用の向上に有効である。また、骨成分としては、牛、馬、羊、鶏などの獣類、魚類等の骨成分や骨リン酸を使用することができる。なお、骨リン酸は、牛の骨を酸で溶かし、水酸化カルシウムで中和した後にろ過することにより得られるものであり、肥料としても用いられる。   According to the invention described in claim 4, the bone component or calcium phosphate contained in the carrier has a high affinity with microorganisms having a denitrifying action, and therefore has an excellent ability to activate the microorganisms. Contributes to the reduction of nitrite nitrogen. Further, since the ability of activating microorganisms is high in the denitrification apparatus, it is possible to reduce the filling amount of the carrier for supporting the microorganisms, and downsizing of the denitrification apparatus can be realized. The ceramic porous body used in the present invention is effective in improving the denitrification effect when at least one of silica and alumina is used as a main component. Further, as bone components, bone components such as cattle, horses, sheep, chickens, and fish, and bone phosphates and bone phosphate can be used. Bone phosphate is obtained by dissolving bovine bone with an acid, neutralizing with calcium hydroxide, and filtering, and is also used as a fertilizer.

請求項5に記載の発明は、硝化作用を有する微生物によりアンモニアを硝酸及び/または亜硝酸に変えて脱臭する循環散水運転方式の生物脱臭装置と、前記生物脱臭装置とは別体で設けられ、脱窒作用を有する微生物により硝酸及び/または亜硝酸を窒素に変える脱窒装置と、前記脱窒作用を有する微生物の養分となる有機物を前記脱窒装置に供給する有機物供給装置とを備え、前記生物脱臭装置と前記脱窒装置との間を循環水が循環するように構成された生物脱臭システムにおいて、前記有機物供給装置から供給される有機物の量を調整する供給量調整手段と、前記循環水に含まれる硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下の値に維持し、かつ、前記脱窒装置から排出される前記循環水の生物化学的酸素要求量を100ppm以下の値に維持すべく、前記供給量調整手段を制御する制御手段とを備えたことを特徴とする生物脱臭システムをその要旨とする。   The invention according to claim 5 is provided separately from the biological deodorization apparatus of the circulating sprinkling operation method in which ammonia is converted to nitric acid and / or nitrous acid by a microorganism having a nitrification action and deodorized, and the biological deodorization apparatus, A denitrification device that converts nitric acid and / or nitrous acid into nitrogen by a microorganism having a denitrification effect, and an organic substance supply device that supplies organic matter as nutrients for the microorganism having the denitrification effect to the denitrification device, In a biological deodorization system configured so that circulating water circulates between a biological deodorization device and the denitrification device, supply amount adjusting means for adjusting the amount of organic matter supplied from the organic matter supply device, and the circulating water The concentration of nitrate nitrogen and nitrite nitrogen contained in the water is maintained at a value of 2500 ppm or less, and the biochemical oxygen demand of the circulating water discharged from the denitrification apparatus is 100 p. m to maintain the following values, the biological deodorization system characterized in that a control means for controlling the supply amount adjusting means and the gist thereof.

請求項5に記載の発明によれば、制御手段が供給量調整手段を制御することにより、有機物供給装置から供給される有機物の量が人手によらず自動的に調整される。この有機物の供給量を調整することにより、循環水に含まれる硝酸性窒素及び亜硝酸性窒素の濃度が2500ppm以下の値に維持されるとともに、循環水の生物化学的酸素要求量が100ppm以下の値に維持される。その結果、生物脱臭装置における微生物の活性が維持され、脱臭性能の経時的な低下が防止される。また、本発明によれば、循環水を廃出する必要がないクローズ系のシステムを実現することが可能となり、従来技術の場合のような大量の新水の補給が不要となる。そのため、従来技術に比べて水代がかからなくなることに加え、廃水処理費もかからなくなる。以上の結果、ランニングコストを低く抑えることができる。しかも、大掛かりな廃水処理設備などが別途必要にならないので、設備コストを低く抑えることができる。   According to the fifth aspect of the present invention, the amount of the organic substance supplied from the organic substance supply device is automatically adjusted without manual operation by the control means controlling the supply amount adjusting means. By adjusting the supply amount of this organic matter, the concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water is maintained at a value of 2500 ppm or less, and the biochemical oxygen demand of the circulating water is 100 ppm or less. Maintained at the value. As a result, the activity of the microorganisms in the biological deodorization device is maintained, and the deterioration of the deodorization performance with time is prevented. In addition, according to the present invention, it is possible to realize a closed system that does not require the circulation water to be discarded, and it is not necessary to supply a large amount of new water as in the prior art. Therefore, in addition to not costing water as compared with the prior art, wastewater treatment costs are also reduced. As a result, the running cost can be kept low. In addition, since a large wastewater treatment facility is not required separately, the facility cost can be kept low.

以上詳述したように請求項1〜4に記載の発明によれば、悪臭漏れ及び脱臭性能の経時的な低下を防止することができ、しかもコスト性にも優れた生物脱臭方法を提供することができる。また、請求項5に記載の発明によれば、悪臭漏れ及び脱臭性能の経時的な低下を防止することができ、しかもコスト性にも優れた生物脱臭システムを提供することができる。   As described above in detail, according to the inventions described in claims 1 to 4, it is possible to prevent a malodorous leak and a degrading performance over time, and to provide a biological deodorizing method excellent in cost. Can do. In addition, according to the invention described in claim 5, it is possible to provide a biological deodorization system that can prevent a foul odor leakage and a decrease in the deodorization performance with time, and is excellent in cost.

以下、本発明を具体化した一実施形態を図1〜図5に基づき詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment embodying the present invention will be described in detail with reference to FIGS.

図1に示されるように、本実施形態の生物脱臭システム10は、有機性廃棄物の堆肥化プラントが排出する悪臭ガス、つまりアンモニアガスを多く含む悪臭ガスを脱臭処理するためのシステムであり、循環散水運転方式の生物脱臭装置11と脱窒装置12と有機物供給装置13と制御装置14とを備える。   As shown in FIG. 1, the biological deodorization system 10 of the present embodiment is a system for deodorizing odorous gas discharged from an organic waste composting plant, that is, odorous gas containing a lot of ammonia gas, A biological deodorization device 11, a denitrification device 12, an organic substance supply device 13, and a control device 14 are provided.

生物脱臭装置11は、硝化作用を有する微生物によりアンモニアを硝酸及び/または亜硝酸に変えて脱臭する装置であり、脱窒装置12は、脱窒作用を有する微生物により硝酸及び/または亜硝酸を窒素に変える装置である。また、有機物供給装置13は、脱窒作用を有する微生物の養分となる有機物を脱窒装置12に供給する装置であり、制御装置14は、有機物供給装置13から脱窒装置12に供給する有機物の量を調整するための装置である。   The biological deodorization device 11 is a device that deodorizes by converting ammonia into nitric acid and / or nitrous acid by microorganisms having a nitrifying action, and the denitrification apparatus 12 converts nitric acid and / or nitrous acid to nitrogen by microorganisms having a denitrifying action. It is a device to change to. Moreover, the organic substance supply device 13 is an apparatus that supplies the organic matter that serves as nutrients for microorganisms having a denitrifying action to the denitrification device 12, and the control device 14 is configured to supply organic matter that is supplied from the organic matter supply device 13 to the denitrification device 12. It is a device for adjusting the amount.

生物脱臭装置11は縦長円筒形状をした脱臭槽15を備えており、その脱臭槽15内の略中央部には担体保持部17が形成されている。この担体保持部17には、脱臭用微生物である硝化細菌を担持させた充填担体18が充填されている。本実施形態では、多数の細孔を有するセラミック多孔質体の粒子の集合体を充填担体18として用いている。このセラミック多孔質体の粒子の平均粒径は1mm〜100mm程度に設定可能であり、ここでは1mm〜5mm程度とされている。セラミック多孔質体は表面積が大きいため、アンモニアの吸着や微生物の繁殖、活性化に貢献する。   The biological deodorization apparatus 11 includes a deodorizing tank 15 having a vertically long cylindrical shape, and a carrier holding part 17 is formed at a substantially central portion in the deodorizing tank 15. The carrier holding part 17 is filled with a filling carrier 18 carrying nitrifying bacteria which are deodorizing microorganisms. In this embodiment, an aggregate of ceramic porous body particles having a large number of pores is used as the filling carrier 18. The average particle size of the particles of the ceramic porous body can be set to about 1 mm to 100 mm, and is set to about 1 mm to 5 mm here. Since the ceramic porous body has a large surface area, it contributes to the adsorption of ammonia and the propagation and activation of microorganisms.

また、生物脱臭装置11における担体保持部17のすぐ下方はガス導入室19となっていて、そのガス導入室19には、図示しない堆肥化プラントに通じるガス導入ダクト20が連結されている。ガス導入ダクト20の途上には、堆肥化プラントが発生するアンモニアガスG1を脱臭槽15のガス導入室19に圧送するためのファン21が配設されている。ガス導入室19の下方には、散水された水が貯留される貯水槽22が設けられている。一方、担体保持部17の上側の領域は散水室23となっていて、その散水室23の内部には充填担体18に水を撒くための複数の散水ノズル(図示略)が設置されている。散水室23には排気ダクト25が接続されており、その排気ダクト25を介して脱臭処理済みガスG2が外部に放出されるようになっている。   In addition, a gas introduction chamber 19 is provided immediately below the carrier holding portion 17 in the biological deodorization apparatus 11, and a gas introduction duct 20 leading to a composting plant (not shown) is connected to the gas introduction chamber 19. A fan 21 for pressure-feeding ammonia gas G1 generated by the composting plant to the gas introduction chamber 19 of the deodorization tank 15 is disposed in the middle of the gas introduction duct 20. Below the gas introduction chamber 19, a water storage tank 22 is provided in which the sprinkled water is stored. On the other hand, an upper region of the carrier holding portion 17 is a watering chamber 23, and a plurality of watering nozzles (not shown) for watering the filling carrier 18 are installed in the watering chamber 23. An exhaust duct 25 is connected to the watering chamber 23, and the deodorized gas G <b> 2 is discharged to the outside through the exhaust duct 25.

この生物脱臭装置11は脱臭槽15の外部に散水配管31を備えている。散水配管31の始端(下端)は貯水槽22に接続される一方、散水配管31の終端(上端)は脱臭槽15の散水室23に接続されている。このような散水配管31の終端に複数の散水ノズルが取り付けられている。散水配管31の途上には、散水配管31内の散水用水W1をその始端側から終端側へと圧送するためのポンプ32が設けられている。従って、ポンプ32を作動させると、貯水槽22の水Wが散水用水W1として回収されるとともに、各々の散水ノズルから充填担体18へ向けて散水用水W1が散水されるようになっている。即ち、本実施形態の生物脱臭装置11は、脱臭槽15内に溜まった水Wを捨てずに回収し、散水配管31を経て循環供給させることで、散水用水W1として再利用する循環散水運転方式を採用している。   The biological deodorization apparatus 11 includes a sprinkling pipe 31 outside the deodorization tank 15. The start end (lower end) of the water sprinkling pipe 31 is connected to the water storage tank 22, while the terminal end (upper end) of the water sprinkling pipe 31 is connected to the water spray chamber 23 of the deodorizing tank 15. A plurality of watering nozzles are attached to the end of such watering pipe 31. In the middle of the sprinkling pipe 31, a pump 32 is provided for pumping the sprinkling water W <b> 1 in the sprinkling pipe 31 from the start end side to the end side. Therefore, when the pump 32 is operated, the water W in the water storage tank 22 is collected as the water sprinkling water W1, and the water sprinkling water W1 is sprinkled from each watering nozzle toward the filling carrier 18. That is, the biological deodorization apparatus 11 of the present embodiment collects the water W accumulated in the deodorization tank 15 without discarding it, and circulates and supplies it through the sprinkling pipe 31, thereby reusing it as the sprinkling water W1. Is adopted.

このように構成された循環散水運転方式の生物脱臭装置11の基本的動作について説明する。   The basic operation of the biological deodorization apparatus 11 of the circulating sprinkling operation system configured as described above will be described.

ガス導入ダクト20を経てガス導入室19に導入された悪臭ガスG1は、脱臭槽15内を上方に向けて進行する。充填担体18においては硝化細菌が繁殖しているため、悪臭ガスG1が充填担体18を通過する際には、臭気成分であるアンモニアが酸化分解されて無臭化される。無臭化された脱臭処理済みガスG2は、散水室23を通り抜けて排気ダクト25から外部に放出される。つまり、この生物脱臭装置11において、悪臭ガスG1に含まれる臭気成分であるアンモニアは、硝化細菌により硝酸イオン(NO3−)または亜硝酸イオン(NO2−)となって散水された水の中に存在したり、散水された水の中に溶解したりする。このように硝酸イオンや亜硝酸イオン等を含有する水は、充填担体18から落下して貯水槽22にて貯留される。よって、貯水槽22の水Wは硝酸イオン等を含んだものとなっている。なお、貯水槽22の水Wは、硝酸イオン及び亜硝酸イオンのほかに例えばアンモニウムイオン(NH4+)やアンモニアなどを含有する。 The malodorous gas G1 introduced into the gas introduction chamber 19 through the gas introduction duct 20 advances in the deodorizing tank 15 upward. Since the nitrifying bacteria are propagated on the packed carrier 18, when the malodorous gas G1 passes through the packed carrier 18, the odorous component ammonia is oxidized and decomposed and is not brominated. The deodorized gas G2 that has not been brominated is passed through the water sprinkling chamber 23 and discharged to the outside from the exhaust duct 25. That is, in this biological deodorization apparatus 11, ammonia which is an odor component contained in the malodorous gas G1 is in the water sprinkled as nitrate ions (NO 3− ) or nitrite ions (NO 2− ) by nitrifying bacteria. Or dissolved in sprinkled water. Thus, the water containing nitrate ions, nitrite ions, etc. falls from the filling carrier 18 and is stored in the water storage tank 22. Therefore, the water W in the water storage tank 22 contains nitrate ions and the like. The water W in the water storage tank 22 contains, for example, ammonium ions (NH 4+ ) and ammonia in addition to nitrate ions and nitrite ions.

ポンプ32が作動されると、貯水槽22の水Wが散水用水W1として回収されるとともに、散水配管31を経て各々の散水ノズルに到る。そして、各々の散水ノズルから散水された散水用水W1は、落下して充填担体18に降り掛かる。その結果、硝化細菌の活性が維持される。充填担体18への散水は所定間隔ごと、例えば1時間〜5時間ごとに行われる。   When the pump 32 is operated, the water W in the water storage tank 22 is collected as the water for spraying W1 and reaches the watering nozzles through the watering pipes 31. And the water W1 for watering sprinkled from each watering nozzle falls and falls on the filling carrier 18. As a result, the activity of nitrifying bacteria is maintained. Watering to the filling carrier 18 is performed at predetermined intervals, for example, every 1 to 5 hours.

ところで、高濃度の硝酸イオン等を含む水W1が充填担体18に散水されると、充填担体18の脱臭用微生物の活性が低下し、脱臭能力が維持されなくなる。そのため、脱窒装置12を使用して脱窒(硝酸や亜硝酸を窒素ガスに還元)することを行い、散水用水W1に含まれる硝酸イオン及び亜硝酸イオン(即ち硝酸性窒素及び亜硝酸性窒素)の濃度の上昇を抑えるようにしている。   By the way, when the water W1 containing high-concentration nitrate ions or the like is sprinkled on the filling carrier 18, the activity of the deodorizing microorganisms on the filling carrier 18 is lowered, and the deodorizing ability is not maintained. Therefore, denitrification (reduction of nitric acid or nitrous acid to nitrogen gas) is performed using the denitrification apparatus 12, and nitrate ions and nitrite ions (that is, nitrate nitrogen and nitrite nitrogen) contained in the water W1 for watering. ) Is suppressed.

次に、生物脱臭装置11に別体で設けられた付帯設備である脱窒装置12の構成を説明する。   Next, the structure of the denitrification apparatus 12 which is incidental equipment provided separately from the biological deodorization apparatus 11 will be described.

脱窒装置12は縦長円筒形状をした脱窒槽41を備えており、その脱窒槽41の略中央には担体保持部42が形成されている。この担体保持部42には、微生物である脱窒細菌を担持させた充填担体43が充填されている。本実施形態では、多数の細孔を有するセラミック多孔質体に骨成分またはリン酸カルシウムを含ませた粒状物質の集合体を充填担体として用いている。   The denitrification apparatus 12 includes a denitrification tank 41 having a vertically long cylindrical shape, and a carrier holding portion 42 is formed at the approximate center of the denitrification tank 41. The carrier holding part 42 is filled with a filling carrier 43 that carries denitrifying bacteria as microorganisms. In the present embodiment, an aggregate of a granular material in which a bone component or calcium phosphate is contained in a ceramic porous body having a large number of pores is used as a filling carrier.

具体的には、鋳物工場から排出された廃鋳物砂と骨リン酸の粉末と水とを適宜配合し、それらを混合した混合材料を加圧して成形体を成形する。そして、その成形体を焼成することで多孔質化した多孔質焼結体の粒子の集合体を充填担体43として用いている。多孔質焼結体の粒子の平均粒径は、0.5mm〜30mm程度に設定可能であり、ここでは、より好ましい範囲である1mm〜10mmに設定されている。なお、この原料となる廃鋳物砂は、シリカ及びアルミナを主要成分として含み、マグネシア、酸化鉄や炭素質粉末粒子などの物質も含む。熱処理を行うと、廃鋳物砂に含まれる有機物質が消失し、その消失跡が細孔となる。このように細孔が形成されると、多孔質体となることで表面積が増加し、微生物の繁殖、活性化に貢献する。また、骨リン酸は、リン酸カルシウムを主要成分とし、微生物との親和性が高いため、その微生物を活性化でき、微生物を利用した硝酸性窒素及び亜硝酸性窒素の低減に貢献する。   Specifically, waste molding sand discharged from a foundry, bone phosphate powder, and water are appropriately blended, and a molded material is molded by pressurizing a mixed material obtained by mixing them. And the aggregate | assembly of the particle | grains of the porous sintered compact made porous by baking the molded object is used as the filling support | carrier 43. FIG. The average particle size of the particles of the porous sintered body can be set to about 0.5 mm to 30 mm, and is set to 1 mm to 10 mm which is a more preferable range here. The waste foundry sand as a raw material contains silica and alumina as main components, and also includes substances such as magnesia, iron oxide and carbonaceous powder particles. When heat treatment is performed, organic substances contained in the waste casting sand disappear, and the disappearance traces become pores. When pores are formed in this way, the surface area is increased by becoming a porous body, contributing to the propagation and activation of microorganisms. Bone phosphate has calcium phosphate as a main component and has high affinity with microorganisms, so that the microorganisms can be activated and contribute to the reduction of nitrate nitrogen and nitrite nitrogen using the microorganisms.

脱窒装置12の脱窒槽41は、生物脱臭装置11の貯水槽22に配管45,46を介して接続されており、貯水槽22に貯留された水Wが循環水W2として脱窒槽41と貯水槽22との間を循環するように構成されている。詳しくは、配管45の始端(下端)は貯水槽22に接続される一方、配管45の終端(上端)は脱窒槽41の上部に接続されている。この配管45の途上には、配管45内の水をその始端側から終端側へと圧送するためのポンプ47が設けられている。従って、ポンプ47を作動させると、貯水槽22の水Wが吸い上げられて脱窒槽41に供給される。そして、その循環水W2は充填担体43を通ってろ過され、その際に循環水W2に含まれる硝酸性窒素及び亜硝酸性窒素が充填担体43の微生物の作用により脱窒されて窒素ガスに還元される。   The denitrification tank 41 of the denitrification apparatus 12 is connected to the water storage tank 22 of the biological deodorization apparatus 11 via pipes 45 and 46, and the water W stored in the water storage tank 22 is used as the circulating water W2 and the water storage tank. It is comprised so that it may circulate between tanks 22. Specifically, the starting end (lower end) of the pipe 45 is connected to the water storage tank 22, while the terminal end (upper end) of the pipe 45 is connected to the upper part of the denitrification tank 41. A pump 47 is provided in the middle of the pipe 45 to pump the water in the pipe 45 from the start end side to the end side. Therefore, when the pump 47 is operated, the water W in the water storage tank 22 is sucked up and supplied to the denitrification tank 41. The circulating water W2 is filtered through the packed carrier 43. At that time, nitrate nitrogen and nitrite nitrogen contained in the circulating water W2 are denitrified by the action of microorganisms in the packed carrier 43 and reduced to nitrogen gas. Is done.

また、配管46の始端は脱窒槽41の下部に接続され、配管46の終端は貯水槽22に接続されており、脱窒槽41で脱窒処理が施された循環水W2が配管46を介して貯水槽22に戻されるようになっている。   The starting end of the pipe 46 is connected to the lower part of the denitrification tank 41, and the end of the pipe 46 is connected to the water storage tank 22, and the circulating water W <b> 2 denitrified in the denitrification tank 41 is passed through the pipe 46. The water tank 22 is returned.

さらに、脱窒装置12には、有機物供給用配管48を介して有機物供給装置13が接続されている。この配管48の途上にはポンプ49が設けられており、該ポンプ49を作動することで、有機物供給装置13から脱窒装置12に有機物Oが供給される。脱窒装置12において、脱窒細菌の栄養となる有機物Oが供給されると、脱窒細菌が活性化されて脱窒能力が維持される。本実施形態では、有機物供給装置13が供給する有機物Oとしてメタノールを用いている。   Furthermore, the organic matter supply device 13 is connected to the denitrification device 12 via an organic matter supply pipe 48. A pump 49 is provided in the middle of the pipe 48, and the organic substance O is supplied from the organic substance supply apparatus 13 to the denitrification apparatus 12 by operating the pump 49. In the denitrification apparatus 12, when the organic substance O that serves as nutrients for the denitrifying bacteria is supplied, the denitrifying bacteria are activated and the denitrifying ability is maintained. In the present embodiment, methanol is used as the organic substance O supplied by the organic substance supply device 13.

制御装置14は、CPU、ROM、RAM、入出力ポート等からなる周知のコンピュータを中心に構成されている。この制御装置14は、循環水W2に含まれる硝酸性窒素及び亜硝酸性窒素の濃度と生物化学的酸素要求量(BOD)とに基づいてポンプ49を制御することで、有機物供給装置13から脱窒装置12に供給する有機物の量を調整する。   The control device 14 is configured around a known computer including a CPU, a ROM, a RAM, an input / output port, and the like. The control device 14 controls the pump 49 based on the concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water W2 and the biochemical oxygen demand (BOD), thereby removing the organic substance supply device 13. The amount of organic matter supplied to the nitrogenation device 12 is adjusted.

貯水槽22には、循環水W2に含まれる硝酸イオン及び亜硝酸イオンの濃度を測定するためのセンサ(具体的には、電気伝導度を計測する周知のセンサ)50が設けられている。制御装置14はそのセンサ50の検出信号を取り込み、該検出信号に基づいて硝酸性窒素及び亜硝酸性窒素の濃度を算出する。また、脱窒装置12の出口付近、すなわち配管46の始端付近には、化学的酸素要求量(COD)を測定するための周知のセンサ51が設けられている。制御装置14は、そのセンサ51の検出信号を取り込み、該検出信号に基づいてCODを求める。また、制御装置14にはCODからBODの値に換算するためのテーブルデータが予め記憶されており、制御装置14は、そのテーブルデータを用いてBODの値を算出する。   The water storage tank 22 is provided with a sensor (specifically, a known sensor for measuring electrical conductivity) 50 for measuring the concentrations of nitrate ions and nitrite ions contained in the circulating water W2. The control device 14 takes in the detection signal of the sensor 50 and calculates the concentrations of nitrate nitrogen and nitrite nitrogen based on the detection signal. Further, a known sensor 51 for measuring a chemical oxygen demand (COD) is provided in the vicinity of the outlet of the denitrification apparatus 12, that is, in the vicinity of the start end of the pipe 46. The control device 14 takes in the detection signal of the sensor 51 and obtains the COD based on the detection signal. The control device 14 stores in advance table data for conversion from COD to BOD value, and the control device 14 calculates the BOD value using the table data.

制御装置14は、循環水W2に含まれる硝酸性窒素及び亜硝酸性窒素の濃度が2500ppm以下の値となるようポンプ49の駆動を制御し、供給する有機物の量を調整する。また、制御装置14は、循環水W2のBODが100ppm以下の値となるようポンプ49の駆動を制御し、供給する有機物の量を調整する。なお、ポンプ49の駆動を制御する具体的態様としては、ポンプ49を駆動する時間を増減させる制御などを例示することができる。
[実施例1]
The control device 14 controls the drive of the pump 49 so that the concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water W2 is 2500 ppm or less, and adjusts the amount of organic matter to be supplied. Moreover, the control apparatus 14 controls the drive of the pump 49 so that BOD of the circulating water W2 becomes a value of 100 ppm or less, and adjusts the quantity of the organic substance to supply. In addition, as a specific mode for controlling the driving of the pump 49, a control for increasing or decreasing the time for driving the pump 49 can be exemplified.
[Example 1]

次に、上記実施形態をさらに具体化した実施例1について説明する。   Next, Example 1 that further embodies the above embodiment will be described.

生物脱臭装置11において、セラミック多孔質体の粒子を脱臭槽15の担体保持部17に12リットル充填した。そして、ガス導入ダクト20におけるアンモニアガス濃度(即ち入口アンモニア濃度)を40ppmに設定し、生物脱臭装置11の運転を行った。この場合において、LV値(空塔線速度)を0.06m/s、SV値(空間速度)を600h−1にそれぞれ設定した。 In the biological deodorization apparatus 11, 12 liters of ceramic porous body particles were filled in the carrier holding unit 17 of the deodorization tank 15. And the ammonia gas concentration (namely, inlet ammonia concentration) in the gas introduction duct 20 was set to 40 ppm, and the biological deodorizing apparatus 11 was operated. In this case, the LV value (empty linear velocity) was set to 0.06 m / s, and the SV value (space velocity) was set to 600 h −1 .

一方、脱窒装置12において、鋳物工場から排出された廃鋳物砂(80体積%)と骨リン酸(20体積%)の粉末との混合材料を焼成して多孔質化したセラミック多孔質体の粒子を脱窒槽41の担体保持部42に1リットル充填した。また、充填担体43に土壌から抽出したAlcaligens族の脱窒細菌を担持させた。具体的には、脱窒細菌を液体培地を用い、25℃で一晩振とう培養した液中に担体を投入し、2時間放置後に取り出して使用するといった担持法を用いた。そして、ろ過速度を5m/dに設定し脱窒装置12の運転を行った。また、有機物供給装置13には、有機物Oとしてメタノール10%溶液を充填し、所定量の有機物Oを脱窒装置12に1日毎供給した。   On the other hand, in the denitrification apparatus 12, the ceramic porous body is made porous by firing a mixed material of waste foundry sand (80% by volume) and bone phosphoric acid (20% by volume) discharged from the foundry. One liter of the particles was filled in the carrier holding part 42 of the denitrification tank 41. In addition, Alcaligens family denitrifying bacteria extracted from the soil were supported on the packing carrier 43. Specifically, a loading method was used in which a carrier was introduced into a liquid obtained by shaking and denitrifying bacteria at 25 ° C. overnight using a liquid medium, and left for 2 hours before being used. And the filtration speed | rate was set to 5 m / d and the denitrification apparatus 12 was drive | operated. The organic substance supply device 13 was filled with a 10% methanol solution as the organic substance O, and a predetermined amount of the organic substance O was supplied to the denitrification apparatus 12 every day.

そして、所定の日数が経過した後に貯水槽22中の硝酸性窒素及び亜硝酸性窒素の濃度と、排気ダクト25を通過する脱臭処理済みガスG2に含まれるアンモニアガス濃度(即ち出口アンモニア濃度)と、脱窒装置12から排出される循環水W2に含まれる生物化学的酸素要求量(即ち出口BOD濃度)とを測定した。   Then, after a predetermined number of days have passed, the concentration of nitrate nitrogen and nitrite nitrogen in the water tank 22 and the concentration of ammonia gas contained in the deodorized gas G2 passing through the exhaust duct 25 (ie, the outlet ammonia concentration) The biochemical oxygen demand (that is, outlet BOD concentration) contained in the circulating water W2 discharged from the denitrification apparatus 12 was measured.

その結果を図2の表、及び図3〜図5のグラフに示す。図2及び図3に示されるように、本実施例1では、貯水槽22中の硝酸性窒素及び亜硝酸性窒素の濃度を500ppmを中心としたほぼ一定の値(340ppm〜680ppm)に維持することができた。また、図2及び図4に示されるように、出口アンモニア濃度も1ppm以下となり、安定した脱臭能力を得ることができた。つまり、硝酸性窒素及び亜硝酸性窒素の濃度の増加を抑えることで、アンモニアの揮発が防止されるとともに、硝化細菌が活性化されて、アンモニアガスの漏れを防ぐことができた。さらに、図2及び図5に示されるように、脱窒装置12出口のBOD濃度も100ppm以下の値に維持されており、有機物が生物脱臭装置11内に流入しないよう必要量だけ供給されていることが確認された。
[比較例1]
The results are shown in the table of FIG. 2 and the graphs of FIGS. As shown in FIGS. 2 and 3, in the first embodiment, the concentration of nitrate nitrogen and nitrite nitrogen in the water tank 22 is maintained at a substantially constant value (340 ppm to 680 ppm) centering on 500 ppm. I was able to. Further, as shown in FIGS. 2 and 4, the outlet ammonia concentration was 1 ppm or less, and a stable deodorizing ability could be obtained. That is, by suppressing the increase in the concentration of nitrate nitrogen and nitrite nitrogen, volatilization of ammonia was prevented and nitrifying bacteria were activated, thereby preventing leakage of ammonia gas. Further, as shown in FIG. 2 and FIG. 5, the BOD concentration at the outlet of the denitrification device 12 is also maintained at a value of 100 ppm or less, and an organic substance is supplied in a necessary amount so as not to flow into the biological deodorization device 11. It was confirmed.
[Comparative Example 1]

比較例1では、脱窒装置12への有機物の供給量を調整せずに(つまり制御装置14による制御を全く行うことなく)、有機物を一定量供給(過剰供給)し続けた。それ以外の条件は実施例1と同じとした。この比較例1では、脱窒装置12に大量の有機物が供給されることから、BOD濃度が急激に上昇した(図4参照)。つまり、脱窒装置12内で有機物が分解されずに生物脱臭装置11側に流入してしまうため、硝化細菌に悪影響を及ぼし、脱臭能力が低下した。また、脱窒装置12における脱窒が急激に起こったことで、貯水槽22中のpHが高くなり、アンモニアが急激に揮発して出口アンモニア濃度が高くなった(図5参照)。このことから、脱窒装置12出口のBOD濃度を100ppm以下の値に維持する必要があることが確認された。なお、比較例1の測定は、生物脱臭装置11内にて脱臭ができなくなったので、途中(25日目)でシステムの運転を中止した。
[比較例2]
In Comparative Example 1, the organic substance was continuously supplied (excess supply) without adjusting the supply amount of the organic substance to the denitrification apparatus 12 (that is, without performing any control by the control apparatus 14). The other conditions were the same as in Example 1. In Comparative Example 1, since a large amount of organic matter was supplied to the denitrification apparatus 12, the BOD concentration increased rapidly (see FIG. 4). In other words, the organic matter is not decomposed in the denitrification apparatus 12 and flows into the biological deodorization apparatus 11 side, which adversely affects nitrifying bacteria and the deodorization ability is reduced. Moreover, the denitrification in the denitrification apparatus 12 abruptly occurred, the pH in the water storage tank 22 was increased, the ammonia was volatilized rapidly, and the outlet ammonia concentration was increased (see FIG. 5). From this, it was confirmed that it was necessary to maintain the BOD concentration at the outlet of the denitrification apparatus 12 at a value of 100 ppm or less. In the measurement of Comparative Example 1, since the deodorization could not be performed in the biological deodorization apparatus 11, the system operation was stopped halfway (25th day).
[Comparative Example 2]

比較例2では、脱窒装置12において充填担体43を充填せずに、脱窒を行わない状態にした。また、生物脱臭装置11の運転状態は実施例1と同じとした。図3及び図4に示されるように、この比較例2では、測定を開始して所定期間(この例では開始から60日の期間)においては、硝酸性窒素及び亜硝酸性窒素の濃度が2500ppmよりも低く、出口アンモニア濃度が1ppm以下となり、生物脱臭装置11の脱臭能力が安定していた。しかし、所定期間が経過すると、硝酸性窒素及び亜硝酸性窒素の濃度が上昇して2500ppmを超えることがわかり、それゆえ生物脱臭装置11の脱臭能力低下によって出口アンモニア濃度が1ppmを超えてしまうこともわかった。このことから、生物脱臭装置11の脱臭能力を保つためには、貯水槽22の水Wに含まれる硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下に維持する必要があることが確認された。   In Comparative Example 2, the denitrification apparatus 12 was not filled with the filling carrier 43, and denitrification was not performed. The operating state of the biological deodorizing apparatus 11 was the same as that in Example 1. As shown in FIGS. 3 and 4, in Comparative Example 2, the concentration of nitrate nitrogen and nitrite nitrogen is 2500 ppm in a predetermined period (in this example, a period of 60 days from the start) after the start of measurement. The deodorizing ability of the biological deodorizing apparatus 11 was stable because the outlet ammonia concentration was 1 ppm or less. However, it can be seen that the concentration of nitrate nitrogen and nitrite nitrogen increases and exceeds 2500 ppm after a predetermined period of time, and therefore the outlet ammonia concentration exceeds 1 ppm due to a decrease in the deodorizing ability of the biological deodorization apparatus 11. I understand. From this, in order to maintain the deodorizing ability of the biological deodorizing apparatus 11, it was confirmed that the concentration of nitrate nitrogen and nitrite nitrogen contained in the water W of the water storage tank 22 must be maintained at 2500 ppm or less. .

さて、以上詳述した本実施形態によれば以下の効果を得ることができる。   Now, according to the embodiment described in detail above, the following effects can be obtained.

(1)脱窒装置12において循環水W2の脱窒が行われることで、循環水W2に含まれる硝酸性窒素及び亜硝酸性窒素の濃度が2500ppm以下の値に維持される。その結果、生物脱臭装置11における硝化細菌の活性が維持されることで脱臭性能の経時的な低下が防止されるとともに、散水時のアンモニアの揮発量が減ることで脱臭槽15外への悪臭漏れが防止される。   (1) Since the denitrification of the circulating water W2 is performed in the denitrification apparatus 12, the concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water W2 is maintained at a value of 2500 ppm or less. As a result, the activity of the nitrifying bacteria in the biological deodorizing device 11 is maintained, so that the deodorizing performance is prevented from decreasing over time, and the amount of ammonia volatilized during watering is reduced, so that bad odor leaks outside the deodorizing tank 15. Is prevented.

(2)本実施形態の生物脱臭システム10は、循環水W2を廃出する必要がないクローズ系の構成となり、従来技術の場合のような大量の新水の補給が不要となる。そのため、従来技術に比較して水代がかからなくなることに加え、廃水処理費もかからなくなることから、ランニングコストを低く抑えることができる。しかも、大掛かりな廃水処理設備などが別途必要にならないので、設備コストを低く抑えることができる。また、廃水処理設備を設けなくてよいため、生物脱臭システム10を設置する際の自由度が増す。   (2) The biological deodorization system 10 of the present embodiment has a closed system configuration that does not require the circulating water W2 to be discarded, and a large amount of new water as in the case of the prior art is not required. Therefore, compared to the prior art, water costs are not required, and waste water treatment costs are not required. Therefore, running costs can be kept low. In addition, since a large wastewater treatment facility is not required separately, the facility cost can be kept low. Moreover, since it is not necessary to provide a wastewater treatment facility, the degree of freedom when installing the biological deodorizing system 10 is increased.

(3)制御装置14がポンプ49の駆動を制御することで、有機物供給装置13から供給される有機物Oの量が人手によらず自動的に調整され、脱窒装置12に有機物Oが過剰に供給されることが防止される。このため、循環水W2に含まれる生物化学的酸素要求量(BOD)が100ppm以下の値に維持される。その結果、生物脱臭装置11に有機物Oが流入し、生物脱臭装置11における微生物に悪影響を及ぼし、微生物による硝化作用が低減するといった問題を回避することができる。また、有機物Oを必要な量だけ供給できることから、有機物Oの消費量が低減され、ランニングコストを抑えることができる。   (3) When the control device 14 controls the driving of the pump 49, the amount of the organic matter O supplied from the organic matter supply device 13 is automatically adjusted without manual operation, and the organic matter O is excessive in the denitrification device 12. It is prevented from being supplied. For this reason, the biochemical oxygen demand (BOD) contained in the circulating water W2 is maintained at a value of 100 ppm or less. As a result, it is possible to avoid the problem that the organic substance O flows into the biological deodorization apparatus 11, adversely affects the microorganisms in the biological deodorization apparatus 11, and the nitrification action by the microorganisms is reduced. Further, since the organic substance O can be supplied in a necessary amount, the consumption amount of the organic substance O is reduced, and the running cost can be suppressed.

(4)脱窒装置12の充填担体43に含まれる骨リン酸は、脱窒作用を有する微生物との親和性が高いため、微生物を活性化させることができ、硝酸性窒素及び亜硝酸性窒素の低減に貢献できる。また、脱窒装置12において微生物を活性化させる能力が高いため、充填担体43を小さくすることが可能となり、付帯設備である脱窒装置12の小型化を実現することができ、システム全体の大型化を回避することができる。   (4) Since bone phosphate contained in the filling carrier 43 of the denitrification apparatus 12 has high affinity with microorganisms having a denitrification action, the microorganisms can be activated, and nitrate nitrogen and nitrite nitrogen Can contribute to the reduction of Moreover, since the denitrification apparatus 12 has a high ability to activate microorganisms, the packed carrier 43 can be made small, and the denitrification apparatus 12 as ancillary equipment can be downsized, and the entire system can be made large. Can be avoided.

(5)鋳物工場から廃棄される廃鋳物砂を充填担体43の原料として有効利用しているので、充填担体43の低コスト化を図ることができる。   (5) Since the waste foundry sand discarded from the foundry is effectively used as the raw material for the filling carrier 43, the cost of the filling carrier 43 can be reduced.

なお、本発明の実施形態等は以下のように変更してもよい。   The embodiment of the present invention may be modified as follows.

・上記実施形態では、供給量調整手段としてポンプ49を用いるものであったが、これに限定されるものではない。例えば、配管48の途中に電磁弁を設け、電磁弁の開閉動作により有機物Oの供給量を調整してもよい。   In the above embodiment, the pump 49 is used as the supply amount adjusting means, but the present invention is not limited to this. For example, an electromagnetic valve may be provided in the middle of the pipe 48 and the supply amount of the organic substance O may be adjusted by opening / closing the electromagnetic valve.

・上記実施形態では、有機物供給装置13から供給される有機物Oの量を調整することによりBODの値を100ppmに維持するものであったが、これに限定されるものではない。例えば、配管46の途中にBODの低減装置(具体的には、循環水W2に酸素を送り込みバブリングすることでBODの値を下げる低減装置)を設けてもよい。但し、この構成では、過剰な有機物Oが脱窒装置12に供給されることになるため、上記実施形態のように、有機物Oの供給量を調整する構成の方が、有機物Oの消費コストを抑えることができ、実用上好ましいものとなる。   In the above embodiment, the BOD value is maintained at 100 ppm by adjusting the amount of the organic substance O supplied from the organic substance supply device 13, but the present invention is not limited to this. For example, a BOD reduction device (specifically, a reduction device that lowers the BOD value by sending oxygen into the circulating water W2 and bubbling) may be provided in the middle of the pipe 46. However, in this configuration, excess organic matter O is supplied to the denitrification apparatus 12, and therefore, the configuration in which the supply amount of the organic matter O is adjusted as in the above embodiment reduces the consumption cost of the organic matter O. It can be suppressed and is preferable in practical use.

・上記実施例1のように、貯水槽22中の硝酸性窒素及び亜硝酸性窒素の濃度を500ppmを中心としたほぼ一定の値に維持することができれば、BODの値は必ず100ppm以下の値となる。この場合、BODの値を監視する必要はなく、センサ51を省略することが可能となる。   -As in Example 1 above, if the concentration of nitrate nitrogen and nitrite nitrogen in the water storage tank 22 can be maintained at a substantially constant value centered on 500 ppm, the value of BOD must be 100 ppm or less. It becomes. In this case, it is not necessary to monitor the BOD value, and the sensor 51 can be omitted.

・上記実施形態では、循環水W2に含まれる硝酸性窒素及び亜硝酸性窒素の濃度を検出するためのセンサ50は貯水槽22に設けるものであったが、これに限定されるものではなく、例えば配管45の途上に設けてもよい。   In the above embodiment, the sensor 50 for detecting the concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water W2 is provided in the water tank 22, but is not limited to this. For example, it may be provided in the middle of the pipe 45.

・制御装置14は、ポンプ49の駆動を制御して有機物Oの供給量を調整するものであったが、ポンプ49以外に、ポンプ32,47やファンの駆動21など、システム全体を統括的に制御するよう構成してもよい。   The control device 14 controls the drive of the pump 49 and adjusts the supply amount of the organic substance O. In addition to the pump 49, the entire system such as the pumps 32 and 47 and the fan drive 21 is integrated. You may comprise so that it may control.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態等によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the above-described embodiments are listed below.

(1)前記循環水の電気伝導度をセンサで検出し、その電気伝導度に基づいて算出した硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下の値に維持することを特徴とする請求項2に記載の生物脱臭方法。   (1) The electrical conductivity of the circulating water is detected by a sensor, and the concentration of nitrate nitrogen and nitrite nitrogen calculated based on the electrical conductivity is maintained at a value of 2500 ppm or less. The biological deodorization method according to 2.

(2)前記脱窒装置から排出される循環水の化学的酸素要求量をセンサで検出し、その化学的酸素要求量に基づいて算出した生物化学的酸素要求量を100ppm以下の値に維持することを特徴とする請求項3に記載の生物脱臭方法。   (2) The chemical oxygen demand of circulating water discharged from the denitrification device is detected by a sensor, and the biochemical oxygen demand calculated based on the chemical oxygen demand is maintained at a value of 100 ppm or less. The biological deodorizing method according to claim 3.

(3)前記セラミック多孔質体は、シリカ及びアルミナのうちの少なくとも一方を主要成分として含むことを特徴とする請求項4に記載の生物脱臭方法。   (3) The biological deodorization method according to claim 4, wherein the ceramic porous body contains at least one of silica and alumina as a main component.

本発明を具体化した実施形態の生物脱臭システムを示す概略図。Schematic which shows the biological deodorizing system of embodiment which actualized this invention. 実施例1及び比較例1,2における測定結果を示す表。The table | surface which shows the measurement result in Example 1 and Comparative Examples 1 and 2. FIG. 実施例1及び比較例1,2における硝酸性窒素及び亜硝酸性窒素濃度の変化を示すグラフ。The graph which shows the change of nitrate nitrogen and nitrite nitrogen concentration in Example 1 and Comparative Examples 1 and 2. 実施例1及び比較例1,2におけるアンモニア濃度の変化を示すグラフ。The graph which shows the change of the ammonia concentration in Example 1 and Comparative Examples 1 and 2. FIG. 実施例1及び比較例1,2におけるBOD濃度の変化を示すグラフ。The graph which shows the change of the BOD density | concentration in Example 1 and Comparative Examples 1 and 2. FIG.

符号の説明Explanation of symbols

10…生物脱臭システム
11…生物脱臭装置
12…脱窒装置
13…有機物供給装置
14…制御手段としての制御装置
43…充填担体
49…供給量調整手段としてのポンプ
O…有機物
W2…循環水
DESCRIPTION OF SYMBOLS 10 ... Biological deodorizing system 11 ... Biological deodorizing apparatus 12 ... Denitrification apparatus 13 ... Organic substance supply apparatus 14 ... Control apparatus as control means 43 ... Filling carrier 49 ... Pump as supply amount adjustment means O ... Organic substance W2 ... Circulating water

Claims (5)

硝化作用を有する微生物によりアンモニアを硝酸及び/または亜硝酸に変えて脱臭する循環散水運転方式の生物脱臭装置と、前記生物脱臭装置とは別体で設けられ、脱窒作用を有する微生物により硝酸及び/または亜硝酸を窒素に変える脱窒装置と、前記脱窒作用を有する微生物の養分となる有機物を前記脱窒装置に供給する有機物供給装置とを備え、前記生物脱臭装置と前記脱窒装置との間を循環水が循環するように構成された生物脱臭システムを用いた生物脱臭方法において、
前記循環水に含まれる硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下の値に維持する制御を行うことを特徴とする生物脱臭方法。
A biological deodorizing apparatus of a circulating sprinkling operation system that deodorizes by converting ammonia into nitric acid and / or nitrous acid by microorganisms having a nitrifying action, and the biological deodorizing apparatus are provided separately from each other. And / or a denitrification device that converts nitrous acid into nitrogen, and an organic substance supply device that supplies the organic matter serving as nutrients for the microorganisms having the denitrification action to the denitrification device, the biological deodorization device and the denitrification device, In a biological deodorization method using a biological deodorization system configured to circulate circulating water between
A biological deodorization method comprising controlling the concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water to a value of 2500 ppm or less.
前記有機物供給装置から供給される有機物の量を調整することにより、前記循環水に含まれる硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下の値に維持する制御を行うことを特徴とする請求項1に記載の生物脱臭方法。   The control of maintaining the concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water at a value of 2500 ppm or less by adjusting the amount of organic matter supplied from the organic matter supply device. Item 2. The biological deodorization method according to Item 1. 前記有機物供給装置から供給される有機物の量を調整することにより、前記脱窒装置から排出される前記循環水の生物化学的酸素要求量を100ppm以下の値に維持する制御を行うことを特徴とする請求項1または2に記載の生物脱臭方法。   By controlling the amount of organic matter supplied from the organic matter supply device, control is performed to maintain the biochemical oxygen demand of the circulating water discharged from the denitrification device at a value of 100 ppm or less. The biological deodorizing method according to claim 1 or 2. 前記脱窒装置は、前記脱窒作用を有する微生物を担持するための担体を含んで構成されるとともに、前記担体は、セラミック多孔質体に骨成分またはリン酸カルシウムを含ませた粒状物質であることを特徴とする請求項1乃至3のいずれか1項に記載の生物脱臭方法。   The denitrification apparatus includes a carrier for supporting the microorganism having the denitrification action, and the carrier is a particulate material in which a ceramic porous body contains bone components or calcium phosphate. The biological deodorization method according to any one of claims 1 to 3, wherein the biological deodorization method is provided. 硝化作用を有する微生物によりアンモニアを硝酸及び/または亜硝酸に変えて脱臭する循環散水運転方式の生物脱臭装置と、前記生物脱臭装置とは別体で設けられ、脱窒作用を有する微生物により硝酸及び/または亜硝酸を窒素に変える脱窒装置と、前記脱窒作用を有する微生物の養分となる有機物を前記脱窒装置に供給する有機物供給装置とを備え、前記生物脱臭装置と前記脱窒装置との間を循環水が循環するように構成された生物脱臭システムにおいて、
前記有機物供給装置から供給される有機物の量を調整する供給量調整手段と、
前記循環水に含まれる硝酸性窒素及び亜硝酸性窒素の濃度を2500ppm以下の値に維持し、かつ、前記脱窒装置から排出される前記循環水の生物化学的酸素要求量を100ppm以下の値に維持すべく、前記供給量調整手段を制御する制御手段と
を備えたことを特徴とする生物脱臭システム。
A biological deodorizing apparatus of a circulating sprinkling operation system that deodorizes by converting ammonia into nitric acid and / or nitrous acid by microorganisms having a nitrifying action, and the biological deodorizing apparatus are provided separately from each other. And / or a denitrification device that converts nitrous acid into nitrogen, and an organic substance supply device that supplies the organic matter serving as nutrients for the microorganisms having the denitrification action to the denitrification device, the biological deodorization device and the denitrification device, In the biological deodorization system configured to circulate the circulating water between
A supply amount adjusting means for adjusting the amount of organic matter supplied from the organic matter supply device;
The concentration of nitrate nitrogen and nitrite nitrogen contained in the circulating water is maintained at a value of 2500 ppm or less, and the biochemical oxygen demand of the circulating water discharged from the denitrification device is a value of 100 ppm or less. A biological deodorizing system comprising control means for controlling the supply amount adjusting means.
JP2004215622A 2004-07-23 2004-07-23 Bio-deodorization method, bio-deodorization system Pending JP2006035028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215622A JP2006035028A (en) 2004-07-23 2004-07-23 Bio-deodorization method, bio-deodorization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215622A JP2006035028A (en) 2004-07-23 2004-07-23 Bio-deodorization method, bio-deodorization system

Publications (1)

Publication Number Publication Date
JP2006035028A true JP2006035028A (en) 2006-02-09

Family

ID=35900591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215622A Pending JP2006035028A (en) 2004-07-23 2004-07-23 Bio-deodorization method, bio-deodorization system

Country Status (1)

Country Link
JP (1) JP2006035028A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240327A (en) * 2010-04-20 2011-12-01 Kojima Kagaku Yakuhin Kk Treatment method for wastewater containing nitrate nitrogen
JP2012024762A (en) * 2011-09-22 2012-02-09 Chugoku Electric Power Co Inc:The Microorganism-immobilized carrier, dhs reactor, biological nitrification and denitrification apparatus, and method for using the apparatus
ITVR20110056A1 (en) * 2011-03-23 2012-09-24 Savino Sartori PROCEDURE AND MEANS FOR THE REMOVAL OF THE AMMONIA IN THE EVAPORATION PROCESSES OF SCULPTED AND DIGESTATED BY BIOGAS
JP6445663B1 (en) * 2017-11-30 2018-12-26 新和産業株式会社 Biological deodorization equipment
JP6445665B1 (en) * 2017-11-30 2018-12-26 新和産業株式会社 Biological deodorization method
JP6445664B1 (en) * 2017-11-30 2018-12-26 新和産業株式会社 Biological deodorization equipment
CN112028389A (en) * 2020-08-20 2020-12-04 重庆大学 Distributed rural domestic sewage landscape water treatment system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240327A (en) * 2010-04-20 2011-12-01 Kojima Kagaku Yakuhin Kk Treatment method for wastewater containing nitrate nitrogen
ITVR20110056A1 (en) * 2011-03-23 2012-09-24 Savino Sartori PROCEDURE AND MEANS FOR THE REMOVAL OF THE AMMONIA IN THE EVAPORATION PROCESSES OF SCULPTED AND DIGESTATED BY BIOGAS
JP2012024762A (en) * 2011-09-22 2012-02-09 Chugoku Electric Power Co Inc:The Microorganism-immobilized carrier, dhs reactor, biological nitrification and denitrification apparatus, and method for using the apparatus
JP6445663B1 (en) * 2017-11-30 2018-12-26 新和産業株式会社 Biological deodorization equipment
JP6445665B1 (en) * 2017-11-30 2018-12-26 新和産業株式会社 Biological deodorization method
JP6445664B1 (en) * 2017-11-30 2018-12-26 新和産業株式会社 Biological deodorization equipment
CN112028389A (en) * 2020-08-20 2020-12-04 重庆大学 Distributed rural domestic sewage landscape water treatment system

Similar Documents

Publication Publication Date Title
JP5326187B2 (en) Gas processing apparatus provided with gas pretreatment apparatus and cleaning method
JP4578278B2 (en) Sewage treatment apparatus and treatment method
KR100781777B1 (en) Biotrickling filter system for removing odor and volatile organic compoundsVOCs
CN201249097Y (en) Multistage and multi-section composite deodorizing device
JP2006035028A (en) Bio-deodorization method, bio-deodorization system
WO2020184159A1 (en) Microorganism deodorizing device and deodorization treatment system
CA2601444A1 (en) Polypeptides having antimicrobial activity and polynucleotides encoding same
JP6534245B2 (en) Breeding water circulation system for closed circulation type breeding
CN110102157A (en) Ozone combines the device of biofilter processing organic exhaust gas
JP4015285B2 (en) Biological treatment method and apparatus for exhaust gas
JP2004275949A (en) Excreta decomposing treating agent and decomposing treating method for excreta by activation of microorganism
JP3926105B2 (en) Membrane biological deodorization tower
TW202202454A (en) Aerobic biological processing method and device
JP3714496B2 (en) Method and apparatus for treating exhaust gas containing volatile organic substances
JP2009072741A (en) Organism deodorization system
JP2005246106A (en) Bio-deodorization apparatus and bio-deodorization method
JP2001190929A (en) Exhaust gas treatment method
JP2001070747A (en) Method and apparatus for treating nitrogen compound- containing waste gas
JP2000233114A (en) Biological deodorization apparatus, biological deodorization method, and culture method of biological deodorization apparatus
JP6550212B2 (en) Waste water treatment apparatus and waste water treatment method
JP3178979B2 (en) Biological deodorizer
CN215539805U (en) High-concentration waste gas biological treatment device
JP2004195440A (en) Microbial deodorization apparatus
JP2008284511A (en) Voc gas treatment apparatus
JP2002263439A (en) Deodorizing method and deodorizing apparatus