JP5191274B2 - Water supply system in steam power generation facilities - Google Patents

Water supply system in steam power generation facilities Download PDF

Info

Publication number
JP5191274B2
JP5191274B2 JP2008131486A JP2008131486A JP5191274B2 JP 5191274 B2 JP5191274 B2 JP 5191274B2 JP 2008131486 A JP2008131486 A JP 2008131486A JP 2008131486 A JP2008131486 A JP 2008131486A JP 5191274 B2 JP5191274 B2 JP 5191274B2
Authority
JP
Japan
Prior art keywords
water
pump
steam
power generation
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008131486A
Other languages
Japanese (ja)
Other versions
JP2009281597A (en
Inventor
倫広 松井
孝明 佐藤
泰之 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008131486A priority Critical patent/JP5191274B2/en
Publication of JP2009281597A publication Critical patent/JP2009281597A/en
Application granted granted Critical
Publication of JP5191274B2 publication Critical patent/JP5191274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、熱エネルギーを利用してタービンで発電する汽力発電設備に係り、特に貫流形ボイラにおけるタービン蒸気や冷却水として利用する水を供給する汽力発電設備における給水系統に関する。 The present invention utilizes the thermal energy relates to steam power generation facility that generates power by the turbine, relates to a water-based integrated in steam power generation facility for supplying water to particularly use as a turbine steam and cooling water in once-through boiler.

汽力発電設備は、ボイラで燃料を燃焼し、その熱で高圧高温の蒸気を発生し、蒸気タービン、発電機を回転させて電力を発生する設備である。このボイラで燃料を燃やして得た高温高圧の蒸気でタービンを回転させる汽力発電設備が火力発電の中では発電能力・発電量ともに圧倒的に高い比率を占めている。   Steam power generation equipment is equipment that burns fuel in a boiler, generates high-pressure and high-temperature steam with its heat, and generates electricity by rotating a steam turbine and a generator. Steam power generation facilities that rotate turbines with high-temperature and high-pressure steam obtained by burning fuel in this boiler account for an overwhelmingly high proportion of both power generation capacity and power generation in thermal power generation.

汽力発電設備は、ボイラ、タービン、発電機などの主要機器の他に、種々の付属設備から構成される。これらの設備を機能別に分類すると、燃料受入・貯蔵設備、ボイラ設備、蒸気タービン設備、復水・給水系統設備、発電機および電気設備、及び計測制御装置及び諸設備から成る。ここで、燃料受入・貯蔵設備は、取引用計量装置、重原油、LNG、LPG等の燃料タンク、燃料油ポンプ、LNGポンプ、気化器などである。ボイラ設備はボイラ本体、重原油ポンプ、バーナ、通風機、空気予熱器、集じん器、灰処理装置、煙突などである。蒸気タービン設備はタービン本体、潤滑油装置、調速装置などである。復水・給水系統設備は復水器、循環水ポンプ、復水ポンプ、給水加熱器、給水ポンプ、給水処理装置などである。発電機及び電気設備は発電機、励磁機、変圧器、開閉装置、ケーブルなどである。計測制御装置は各種計測装置、監視装置、プラント総括制御装置、自動バーナ装置、計算機制御装置などである。諸設備には所内冷却水設備、所内空気設備、排水処理設備、保安防災設備などがある。   Steam power generation equipment is composed of various auxiliary equipment in addition to main equipment such as boilers, turbines, and generators. When these facilities are classified by function, they are composed of fuel receiving / storage facilities, boiler facilities, steam turbine facilities, condensate / water supply system facilities, generators and electrical facilities, and measurement control devices and facilities. Here, the fuel receiving / storage facility is a trading metering device, a fuel tank such as heavy crude oil, LNG, or LPG, a fuel oil pump, an LNG pump, a vaporizer, or the like. The boiler equipment includes a boiler body, heavy crude oil pump, burner, ventilator, air preheater, dust collector, ash treatment device, and chimney. The steam turbine equipment includes a turbine body, a lubricating oil device, a speed governor, and the like. Condensate / water supply system facilities include condensers, circulating water pumps, condensate pumps, feed water heaters, feed water pumps, and feed water treatment equipment. Generators and electrical equipment are generators, exciters, transformers, switchgears, cables, and the like. The measurement control device includes various measurement devices, a monitoring device, a plant general control device, an automatic burner device, and a computer control device. The facilities include on-site cooling water equipment, on-site air equipment, wastewater treatment equipment, and safety and disaster prevention equipment.

発電設備で使用する水は、良質であることが望ましい。普通、工業用水や河川水等を使用する。この水は、原水タンクにいったん貯蔵する。原水は水処理装置によって、除濁・ろ過され、発電設備用水として使用される。ボイラ用水は、良質の水が要求され、純水装置によって処理される。純水装置は水の中に存在するカルシウム、マグネシウム、シリカその他の塩類を除去するものである。処理の悪い水を使用すると、ボイラ・チューブ等に汚れが付き、熱伝導を妨げ、腐食の原因となって事故を引き起こすからである。   It is desirable that the water used in the power generation equipment is of good quality. Usually, industrial water or river water is used. This water is temporarily stored in the raw water tank. The raw water is turbidized and filtered by a water treatment device and used as water for power generation facilities. Boiler water requires high-quality water and is processed by a pure water device. The pure water device removes calcium, magnesium, silica and other salts present in the water. If poorly treated water is used, the boiler and tube will become dirty, impeding heat conduction, causing corrosion and causing an accident.

次に、処理された水はいったん純水タンクに貯蔵され、そこから復水器へ補給される。復水器の底部にあるホットウエルにたまった復水は、復水ポンプによってくみ上げられ、低圧給水加熱器で加熱され、脱気器に入る。脱気器は復水中の溶存酸素を除去する装置で脱気された水は、ボイラ給水ポンプにより所要の圧力に加圧され、高圧給水加熱器を通ってボイラに入る。   Next, the treated water is once stored in a pure water tank, and is then replenished to the condenser. Condensate accumulated in the hot well at the bottom of the condenser is pumped up by the condensate pump, heated by the low-pressure feed water heater, and enters the deaerator. The deaerator is degassed by a device that removes dissolved oxygen in the condensate, pressurized to a required pressure by a boiler feed pump, and enters the boiler through a high-pressure feed water heater.

このような汽力発電設備の給水系統の運転操作は、非常に煩雑なものである。そこで、自動制御装置を用いて、これまで人の勘に頼ってやってきた運転操作を、機械がすべて行う自動制御方法が提案されている。例えば、特許文献1の特開平11−237004号の特開公報「給水ポンプの系統制御装置」に示すように、それぞれ給水ブースタポンプから吐出される給水を主給水系統から独立した単一の給水ポンプバイパス系統に供給する第1および第2給水ポンプバイパス弁と、前記第1および第2給水ポンプバイパス弁の下流側の該給水ポンプバイパス系統を流れる給水を給水ポンプの下流側の前記主給水系統に供給する給水循環弁とを備えてなる給水ポンプ系統において、前記第1および第2給水ポンプバイパス弁を開閉する制御信号をつくる制御装置を設け、前記制御装置が前記第1および第2給水ポンプバイパス弁のうち、クリーンアップ運転と関係しない前記給水ポンプバイパス弁で検出される全閉位置信号が入力されたとき、クリーンアップ運転で用いる前記給水ポンプバイパス弁を開動作させる信号を出力する回路を具備することを特徴とする給水ポンプ系統制御装置が提案されている。
特開平11−237004号
The operation of the water supply system of such a steam power generation facility is very complicated. In view of this, an automatic control method has been proposed in which an automatic control device is used to perform all the driving operations that have been relied on human intuition so far. For example, as shown in Japanese Patent Application Laid-Open No. 11-237004 (Patent Document 1) of Japanese Patent Application Laid-Open No. 11-237004, a single water supply pump in which the water discharged from each water supply booster pump is independent from the main water supply system. First and second feed water pump bypass valves for supplying to the bypass system, and feed water flowing through the feed water pump bypass system on the downstream side of the first and second feed water pump bypass valves to the main feed water system on the downstream side of the feed water pump In a feed water pump system comprising a feed water circulation valve to be supplied, a control device for generating a control signal for opening and closing the first and second feed water pump bypass valves is provided, and the control device provides the first and second feed water pump bypasses. When a fully closed position signal detected by the feedwater pump bypass valve that is not related to cleanup operation is input, Feed water pump system control apparatus characterized by comprising a circuit for outputting a signal to the water supply pump bypass valve is opening operation used in the up operation has been proposed.
JP-A-11-237004

このように、汽力発電設備では、ボイラに点火することによって、ただちに電気を発生出来るものではなく、水力発電設備あるいは内燃力発電設備に比較して、その所要時間は停止している汽機の状態によって異なるが、所定の負荷をとるまでに十数時間も要するという問題があった。   Thus, in steam power generation equipment, electricity cannot be generated immediately by igniting the boiler, and the time required for the steam power generation equipment depends on the state of the stopped motor compared to hydroelectric power generation equipment or internal combustion power generation equipment. Although different, there was a problem that it took more than ten hours to take a predetermined load.

特許文献1には、給水ポンプの自動制御に関する装置だけで、給水系統全体を安全かつ正確に運転制御するものではなかった。例えば、各機器にウオーミングアップなしで給水ポンプを駆動するとき、即ちそのポンプの周囲を加温しないで給水すると各機器に故障又は亀裂が入りやすいという問題を有していた。   Patent Document 1 does not control operation of the entire water supply system safely and accurately using only an apparatus related to automatic control of the water supply pump. For example, when a water supply pump is driven without warming up to each device, that is, when water is supplied without heating around the pump, there is a problem that each device is likely to break down or crack.

また、給水系統において、処理が不十分の用水を使用すると、ボイラ・配管等に汚れが付着し、熱伝導を妨げ、腐食の原因となって発電設備の事故を引き起こしやすいという問題を有していた。   In addition, in the water supply system, if water that has not been treated sufficiently is used, dirt will adhere to the boilers and piping, etc., hindering heat conduction and causing corrosion of the power generation equipment. It was.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、ボイラ等の機器に供給する給水の水温等を微調整することで、発電設備の起動時、停止の際に安全かつ正確に運転することができると共に、異常時にも適切に対応することができる汽力発電設備における給水系統を提供することにある。 The present invention has been developed to solve such problems. In other words, the object of the present invention is to finely adjust the temperature of water supplied to equipment such as a boiler so that it can be operated safely and accurately at the time of starting and stopping of the power generation equipment, and also in the event of an abnormality. to provide a water supply system integrated in the steam power generation facility that can respond appropriately.

本発明の給水系統は、汽力発電設備においてタービン蒸気や冷却水として利用する水を供給する汽力発電設備における給水系統であって、発電設備用水として使用可能に処理した水を、復水器(4)へ補給し、復水ポンプ(5)でくみ上げ、低圧給水ヒータ(6)で加熱し、溶存酸素を除去すると共に、蒸気タービン(7)から抽気された蒸気を用いて復水を加熱する脱気器(1)と、前記脱気器(1)で脱気された水を、通常運転中の圧力に加圧すると共に、ボイラ(8)へ給水する蒸気タービン駆動ポンプ(9)と、 起動時又は非常時には所要の圧力に加圧すると共に、ボイラ(8)へ給水するモータ駆動ポンプ(10)と、前記モータ駆動ポンプ(10)とその下流の前記蒸気タービン駆動ポンプ(9)の間に設けられ、その前後における水の差圧を調整する給水流量調整弁(13)と、前記蒸気タービン駆動ポンプ(9)とモータ駆動ポンプ(10)で加圧処理した水を、加熱してボイラ(8)に供給する高圧給水ヒータ(3)と、 前記蒸気タービン駆動ポンプ(9)と前記モータ駆動ポンプ(10)の間から高圧給水ヒータ(3)へ給水するトッピングアップ弁(14)と、を備えた、ことを特徴とする。   The water supply system of the present invention is a water supply system in a steam power generation facility that supplies water used as turbine steam or cooling water in a steam power generation facility, and water that has been treated so that it can be used as water for power generation facilities. ), Pumped by the condensate pump (5), heated by the low-pressure water heater (6) to remove dissolved oxygen, and heat the condensate using steam extracted from the steam turbine (7). A steam turbine drive pump (9) for pressurizing the water deaerated by the air vent (1) and the deaerator (1) to a pressure during normal operation and supplying water to the boiler (8); Or, in an emergency, it is provided between a motor-driven pump (10) that pressurizes to a required pressure and supplies water to the boiler (8), and the motor-driven pump (10) and the steam turbine-driven pump (9) downstream thereof. Before and after The water pressure adjusting valve (13) for adjusting the pressure difference of water to be heated, and the water pressurized by the steam turbine drive pump (9) and the motor drive pump (10) are heated and supplied to the boiler (8). A high pressure feed water heater (3), and a top-up valve (14) for feeding water to the high pressure feed water heater (3) from between the steam turbine drive pump (9) and the motor drive pump (10). Features.

前記高圧給水ヒータ(3)に、ボイラ(8)の排熱を利用して給水を予熱するエコノマイザー(節炭器)(12)を付設することが好ましい。   The high-pressure feed water heater (3) is preferably provided with an economizer (12) that preheats feed water using the exhaust heat of the boiler (8).

上記構成の発明では、給水ポンプ(2)は、脱気された水について、通常運転中の所要の圧力に加圧すると共に、ボイラ(8)へ給水を供給する蒸気タービン駆動ポンプ(9)と、起動時又は非常時に所要の圧力に加圧すると共に、ボイラ(8)へ給水を供給するモータ駆動ポンプ(10)と、から成るので、発電設備の起動時、停止の際に安全かつ正確に運転することができると共に、異常時にも給水流量調整弁(13)あるいはトッピングアップ弁(14)を操作することで適切に対応することができる。   In the invention of the above configuration, the feed water pump (2) pressurizes the degassed water to a required pressure during normal operation, and supplies a feed water to the boiler (8), and a steam turbine drive pump (9), It consists of a motor-driven pump (10) that pressurizes to a required pressure during start-up or emergency, and supplies water to the boiler (8), so that it operates safely and accurately when the power generation equipment is started and stopped. In addition, it is possible to appropriately cope with the abnormal operation by operating the feed water flow rate adjusting valve (13) or the topping up valve (14).

高圧給水ヒータ(3)に、ボイラ(8)の排熱を利用して給水を予熱するエコノマイザー(節炭器)(12)を付設したので、効率よく加熱することができる。   Since the economizer (carbon-saving device) (12) which preheats feed water using the exhaust heat of a boiler (8) was attached to the high pressure feed water heater (3), it can heat efficiently.

本発明の汽力発電設備における給水系統は、原水を処理した水を復水器へ補給し、復水ポンプでくみ上げ、低圧給水ヒータで加熱し、溶存酸素を除去すると共に、タービンから抽気された蒸気を用いて復水を加熱する脱気器と、この脱気器で脱気された水を加圧する給水ポンプと、この給水ポンプで加圧処理した水を加熱してボイラに供給する高圧給水ヒータと、を備えた給水系統である。
水系統の運転方法は、汽力発電設備においてタービン蒸気や冷却水として利用するために、水中の溶存酸素を脱気器で除去した水が、給水流量調整弁の前後における差圧が低いときは、そのまま高圧給水ヒータに供給し、逆に、給水流量調整弁の前後の差圧が高いときは、トッピングアップ弁を用いて徐々に高圧給水ヒータに給水する給水系統の運転方法である。
The water supply system in the steam power generation facility of the present invention supplies the water treated with raw water to the condenser, pumps it with a condensate pump, heats it with a low-pressure water heater, removes dissolved oxygen, and extracts steam extracted from the turbine. A deaerator that heats the condensate using water, a water supply pump that pressurizes the water deaerated by the deaerator, and a high-pressure water heater that heats the water pressurized by the water pump and supplies it to the boiler And a water supply system.
The method of operating the water supply system, to use as a turbine steam and cooling water in the steam power generation facility, the water of dissolved oxygen water removed by the deaerator, when the differential pressure is low before and after the feed water flow regulating valve This is a method of operating a water supply system in which the high pressure water heater is supplied as it is, and conversely, when the differential pressure before and after the water supply flow rate adjustment valve is high, water is gradually supplied to the high pressure water heater using a topping up valve.

以下、本発明の好ましい実施の形態を図面を参照して説明する。
図1は本発明の汽力発電設備における給水系統を示す概略系統図である。
本発明の燃料系統は、汽力発電設備においてタービン蒸気や冷却水として利用する水を供給する系統であり、主に脱気器1、給水ポンプ(BFP)2及び高圧給水ヒータ3とを備えた発電設備である。原水タンクに貯蔵している工業用水や河川水等の原水は、発電設備用水として使用可能にするために水処理装置(図示していない)で除濁・ろ過処理する。処理の悪い水を使用すると、ボイラ8や配管等に汚れが付着し、熱伝導を妨げ、腐食の原因となって発電設備の事故を引き起こすおそれがあるからである。
更に、除濁・ろ過処理した後、その処理水の中に存在するカルシウム、マグネシウム、シリカその他の塩類及び溶存イオン類を純水装置(図示していない)で除去することが望ましい。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic system diagram showing a water supply system in the steam power generation facility of the present invention.
The fuel system of the present invention is a system that supplies water used as turbine steam or cooling water in a steam power generation facility, and mainly includes a deaerator 1, a feed water pump (BFP) 2, and a high-pressure feed water heater 3. Equipment. Raw water such as industrial water and river water stored in the raw water tank is turbidized and filtered by a water treatment device (not shown) so that it can be used as water for power generation facilities. This is because if poorly treated water is used, dirt will adhere to the boiler 8 and piping, etc., hindering heat conduction, causing corrosion and causing an accident in the power generation facility.
Furthermore, after turbidity and filtration treatment, it is desirable to remove calcium, magnesium, silica and other salts and dissolved ions present in the treated water with a pure water device (not shown).

脱気器1は、処理した水を復水器4へ補給し、復水ポンプ5でくみ上げ、低圧給水ヒータ6で120℃から150℃程度に加熱し、溶存酸素を除去すると共に、蒸気タービン7から抽気された蒸気を用いて復水を加熱する装置である。この脱気器1では蒸気タービン7の抽気等を噴射して給水を直接加熱し、給水中の溶存ガスを物理的に除去する。   The deaerator 1 supplies treated water to the condenser 4, pumps it up with the condensate pump 5, heats it from about 120 ° C. to about 150 ° C. with the low-pressure feed water heater 6, removes dissolved oxygen, and removes the steam turbine 7. It is an apparatus that heats the condensate using steam extracted from. In this deaerator 1, the extracted water of the steam turbine 7 is injected to directly heat the feed water, and the dissolved gas in the feed water is physically removed.

給水ポンプ2は、脱気器1で脱気された水を、所要の圧力に加圧する装置である。この給水ポンプ2は、脱気された水について、通常運転中の所要の圧力に加圧すると共に、ボイラ8へ給水を供給する蒸気タービン駆動ポンプ(T−BFP)9と、起動時又は非常時に所要の圧力に加圧すると共に、ボイラ8へ給水を供給するモータ駆動ポンプ(M−BFP)10とから成るものである。   The feed water pump 2 is a device that pressurizes water deaerated by the deaerator 1 to a required pressure. The feed water pump 2 pressurizes the deaerated water to a required pressure during normal operation, and supplies a steam turbine drive pump (T-BFP) 9 for supplying feed water to the boiler 8 and is required at the time of start-up or emergency. And a motor drive pump (M-BFP) 10 for supplying water to the boiler 8.

この給水ポンプ2の起動前に、脱気器循環ポンプ(DCP)11を用いてモータ駆動ポンプ(M−BFP)10のみ予熱する。蒸気タービン駆動ポンプ9は、モータ駆動用ポンプ10の起動後に、例えばBFPウォーミング弁が開いた後にウォーミングされる。このウォーミング弁は、M−BFPウォーミング弁とBFPウォーミング弁の2種類がある。モータ駆動ポンプ(M−BFP)10へは、90℃程度の温水を還流して予熱することが望ましい。DSS(日間起動停止)起動時、WSS(週末起動停止)起動などでは停止時間が長いため90℃程度から温度は低下する。   Before the feed water pump 2 is started, only the motor-driven pump (M-BFP) 10 is preheated using a deaerator circulation pump (DCP) 11. The steam turbine drive pump 9 is warmed after the motor drive pump 10 is started, for example, after a BFP warming valve is opened. There are two types of warming valves, an M-BFP warming valve and a BFP warming valve. It is desirable that the motor-driven pump (M-BFP) 10 is preheated by refluxing hot water of about 90 ° C. At DSS (daily start / stop) start-up, WSS (weekend start-up stop) start-up and the like have a long stop time, so the temperature drops from about 90 ° C.

高圧給水ヒータ3は、給水ポンプ2で加圧処理した水を、所定の温度に加熱してボイラ8に供給する装置である。高圧給水ヒータ3は、タービン抽気又はその他の蒸気で給水を加熱するものである。この高圧給水ヒータ3には、効率よく加熱するために、ボイラ8の排熱を利用して給水を予熱するエコノマイザー(節炭器)12を付設することが望ましい。   The high-pressure feed water heater 3 is a device that heats the water pressurized by the feed water pump 2 to a predetermined temperature and supplies it to the boiler 8. The high-pressure feed water heater 3 heats feed water with turbine bleed air or other steam. In order to efficiently heat the high-pressure feed water heater 3, it is desirable to attach an economizer (a economizer) 12 that preheats the feed water using the exhaust heat of the boiler 8.

図2は実施例2の汽力発電設備における給水系統の運転方法を示すフロー図である。
実施例2に係る給水系統の運転方法は、先ず、発電設備用水として使用可能にするために水処理装置で除濁・ろ過処理した処理水を復水器4へ補給し、復水ポンプ5でくみ上げ、低圧給水ヒータ6で50℃から120℃程度に加熱し、脱気器1に入れ、この脱気器1で復水中の溶存酸素を除去する、このとき給水の水温は120℃から150℃程度になる。脱気された水をボイラ給水ポンプ2により所要の圧力に加圧して、高圧給水ヒータ3を通してボイラ8に供給する。
FIG. 2 is a flowchart showing the operation method of the water supply system in the steam power generation facility of the second embodiment.
The operation method of the water supply system according to the second embodiment is as follows. First, treated water that has been turbidized and filtered by a water treatment device is supplied to the condenser 4 so that it can be used as power generation facility water. Pump up and heat from 50 ° C. to 120 ° C. with the low pressure water heater 6, put into the deaerator 1, and remove the dissolved oxygen in the condensate with this deaerator 1, at this time the water temperature of the feed water is 120 ° C. to 150 ° C. It will be about. The deaerated water is pressurized to a required pressure by the boiler feed pump 2 and supplied to the boiler 8 through the high-pressure feed water heater 3.

次に、水中の溶存酸素を脱気器1で除去した水が、給水流量調整弁13の前後における差圧が無いときは、そのまま高圧給水ヒータ3に供給し、150℃から240℃程度に加熱する。また、トリップした場合、ボイラ8に残圧があるときは、トッピングアップ弁14を操作せず、いきなり給水流量調整弁13で水張りする。給水流量調整弁13が9.8MPaを超える差圧に耐えられるように制御できるときは、差圧があってもトッピングアップ弁を備える必要はない。   Next, when there is no differential pressure before and after the feed water flow rate adjustment valve 13, the water from which dissolved oxygen in the water is removed by the deaerator 1 is supplied to the high pressure feed water heater 3 as it is and heated to about 150 ° C to 240 ° C. To do. If the boiler 8 has a residual pressure when it trips, the topping up valve 14 is not operated, and the water supply flow rate adjusting valve 13 is suddenly filled. When the feed water flow rate adjustment valve 13 can be controlled to withstand a differential pressure exceeding 9.8 MPa, it is not necessary to provide a topping up valve even if there is a differential pressure.

なお、給水流量調整弁13が9.8MPaを超える差圧に耐えられるように制御できない場合は、トッピングアップ弁14を用いて徐々に高圧給水ヒータ3に給水することが好ましい。例えば、トッピングアップ弁14について、「開」操作するときは、一次ボイラ8の出口圧力が9.8MPa以下であり、モータ駆動ポンプ10を起動させる。
モータ駆動ポンプ10の出口弁を「開」するときは、一次ボイラ8の出口圧力が9.8MPa以上(一次ボイラ8の出口圧力設定が15.5MPaのとき)であり、出口弁が全開すると給水流量調整弁13が自動となり開き始めるようになっている。
In addition, when the feed water flow rate adjustment valve 13 cannot be controlled to withstand a differential pressure exceeding 9.8 MPa, it is preferable to gradually supply water to the high pressure water heater 3 using the topping up valve 14. For example, when performing an “open” operation on the topping up valve 14, the outlet pressure of the primary boiler 8 is 9.8 MPa or less, and the motor-driven pump 10 is started.
When the outlet valve of the motor-driven pump 10 is “opened”, when the outlet pressure of the primary boiler 8 is 9.8 MPa or more (when the outlet pressure setting of the primary boiler 8 is 15.5 MPa) and the outlet valve is fully opened, The flow rate adjusting valve 13 becomes automatic and starts to open.

給水ポンプ2の起動前に、脱気器循環ポンプ11を用いて、モータ駆動ポンプ10に90℃のDSS(日間起動停止)起動時程度の温水を還流して予熱することにより、各機器を安全に運転することができる。即ち、脱気器循環ポンプ11は、運転時における温度差を無くすために、この脱気器循環ポンプ11を起動する時には給水温度は90℃前後に下がった状態で起動する。   Before starting the feed water pump 2, the deaerator circulation pump 11 is used to recirculate and preheat hot water at the time of starting the DSC (daily start / stop) of 90 ° C. to the motor-driven pump 10 to make each device safe. Can drive to. That is, the deaerator circulation pump 11 is started in a state where the feed water temperature is lowered to about 90 ° C. when the deaerator circulation pump 11 is started in order to eliminate a temperature difference during operation.

また、封水等により給水ポンプ2のケーシング温度が給水温度より40〜50℃に冷却されているときには、給水ポンプ2について脱気器循環ポンプ11を起動して予熱する。即ち、脱気器循環ポンプ11は、脱気器1の出口温度差がプラス・マイナス40度以上で起動させ、その出口温度差がこの温度範囲内になれば停止させる。これは給水ポンプ2の起動条件について、給水と給水ポンプ2のケーシングが40℃以内という温度差制限があるので、脱気器循環ポンプ11を起動し予熱して、その温度差をなくすためである。   Further, when the casing temperature of the feed water pump 2 is cooled to 40 to 50 ° C. from the feed water temperature by sealing water or the like, the deaerator circulation pump 11 is activated and preheated for the feed water pump 2. That is, the deaerator circulation pump 11 is activated when the outlet temperature difference of the deaerator 1 is plus or minus 40 degrees or more, and is stopped when the outlet temperature difference falls within this temperature range. This is because there is a temperature difference limitation that the casing of the feed water and the feed water pump 2 is within 40 ° C. with respect to the start condition of the feed water pump 2, so that the temperature difference is eliminated by starting and preheating the deaerator circulation pump 11. .

なお、本発明は、ボイラ8等の機器に供給する給水の水温等を微調整することで、発電設備の起動時、停止の際に安全かつ正確に運転することができると共に、異常時にも適切に対応できれば、上述した発明の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   In the present invention, the temperature of water supplied to equipment such as the boiler 8 is finely adjusted, so that the power generation equipment can be operated safely and accurately at the time of starting and stopping, and is also appropriate in the event of an abnormality. Of course, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

本発明の汽力発電設備における給水系統は、汽力発電設備の他にコンバインサイクル発電設備などに利用することができる。 Water-based integrated in steam power generation equipment of the present invention can be utilized such as the addition to the combined cycle power plant of steam power generation equipment.

本発明の汽力発電設備における給水系統を示す概略系統図である。It is a schematic system diagram which shows the water supply system in the steam power generation equipment of this invention. 汽力発電設備における給水系統の運転方法を説明するフロー図である。It is a flowchart explaining the operation method of the water supply system in a steam power generation equipment.

1 脱気器
2 給水ポンプ
3 高圧給水ヒータ
4 復水器
5 復水ポンプ
6 低圧給水ヒータ
7 タービン
8 ボイラ
9 蒸気タービン駆動ポンプ
10 モータ駆動ポンプ
11 脱気器循環ポンプ
12 エコノマイザー(節炭器)
13 給水流量調整弁
14 トッピングアップ弁
DESCRIPTION OF SYMBOLS 1 Deaerator 2 Water supply pump 3 High pressure feed water heater 4 Condenser 5 Condensate pump 6 Low pressure feed water heater 7 Turbine 8 Boiler 9 Steam turbine drive pump 10 Motor drive pump 11 Deaerator circulation pump 12 Economizer
13 Water supply flow adjustment valve 14 Topping up valve

Claims (2)

汽力発電設備においてタービン蒸気や冷却水として利用する水を供給する汽力発電設備における給水系統であって、
発電設備用水として使用可能に処理した水を、復水器(4)へ補給し、復水ポンプ(5)でくみ上げ、低圧給水ヒータ(6)で加熱し、溶存酸素を除去すると共に、蒸気タービン(7)から抽気された蒸気を用いて復水を加熱する脱気器(1)と、
前記脱気器(1)で脱気された水を、通常運転中の圧力に加圧すると共に、ボイラ(8)へ給水する蒸気タービン駆動ポンプ(9)と、 起動時又は非常時には所要の圧力に加圧すると共に、ボイラ(8)へ給水するモータ駆動ポンプ(10)と、
前記モータ駆動ポンプ(10)とその下流の前記蒸気タービン駆動ポンプ(9)の間に設けられ、その前後における水の差圧を調整する給水流量調整弁(13)と、
前記蒸気タービン駆動ポンプ(9)とモータ駆動ポンプ(10)で加圧処理した水を、加熱してボイラ(8)に供給する高圧給水ヒータ(3)と、
前記蒸気タービン駆動ポンプ(9)と前記モータ駆動ポンプ(10)の間から高圧給水ヒータ(3)へ給水するトッピングアップ弁(14)と、を備えた、ことを特徴とする汽力発電設備における給水系統。
A water supply system in a steam power generation facility that supplies water used as turbine steam or cooling water in a steam power generation facility,
Water that has been treated for use as power generation facility water is supplied to the condenser (4), pumped by the condensate pump (5), heated by the low-pressure feed water heater (6) to remove dissolved oxygen, and steam turbine A deaerator (1) for heating the condensate using the steam extracted from (7);
The water deaerated by the deaerator (1) is pressurized to the pressure during normal operation, and the steam turbine drive pump (9) for supplying water to the boiler (8), and at the required pressure during startup or emergency A motor-driven pump (10) that pressurizes and feeds water to the boiler (8);
A water supply flow rate adjusting valve (13) provided between the motor-driven pump (10) and the steam turbine-driven pump (9) downstream of the motor-driven pump (10) for adjusting the differential pressure of water before and after the pump;
A high-pressure feed water heater (3) for heating and supplying water pressurized to the steam turbine drive pump (9) and the motor drive pump (10) to the boiler (8);
A water supply in a steam power generation facility comprising a top-up valve (14) for supplying water to the high-pressure water heater (3) from between the steam turbine drive pump (9) and the motor drive pump (10) system.
前記高圧給水ヒータ(3)に、ボイラ(8)の排熱を利用して給水を予熱するエコノマイザー(節炭器)(12)を付設した、ことを特徴とする請求項1の汽力発電設備における給水系統。   The steam generator system according to claim 1, wherein an economizer (12) for preheating water supply using exhaust heat of the boiler (8) is attached to the high-pressure water heater (3). Water supply system.
JP2008131486A 2008-05-20 2008-05-20 Water supply system in steam power generation facilities Active JP5191274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131486A JP5191274B2 (en) 2008-05-20 2008-05-20 Water supply system in steam power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131486A JP5191274B2 (en) 2008-05-20 2008-05-20 Water supply system in steam power generation facilities

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012259505A Division JP5497139B2 (en) 2012-11-28 2012-11-28 Operation method of water supply system in steam power plant

Publications (2)

Publication Number Publication Date
JP2009281597A JP2009281597A (en) 2009-12-03
JP5191274B2 true JP5191274B2 (en) 2013-05-08

Family

ID=41452240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131486A Active JP5191274B2 (en) 2008-05-20 2008-05-20 Water supply system in steam power generation facilities

Country Status (1)

Country Link
JP (1) JP5191274B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285406A (en) * 2019-07-19 2019-09-27 西安交通大学 A kind of Power Plant Feedwater pump hierarchical arrangement system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388884B2 (en) * 2010-01-29 2014-01-15 中国電力株式会社 Heat recovery apparatus and heat recovery method for turbine in power generation equipment
CN113932213B (en) * 2020-07-14 2024-04-05 国家能源投资集团有限责任公司 Steam-water system of power generation turbine unit and coal-fired power generation unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128791A (en) * 1984-07-19 1986-02-08 Toshiba Corp Control device for water supply pump
JP4969117B2 (en) * 2006-03-06 2012-07-04 中国電力株式会社 High pressure feed water heater feed pump isolation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285406A (en) * 2019-07-19 2019-09-27 西安交通大学 A kind of Power Plant Feedwater pump hierarchical arrangement system

Also Published As

Publication number Publication date
JP2009281597A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP2010190218A (en) Waste heat utilization for pre-heating fuel
JP2010216477A (en) System and method for prewarming heat recovery steam generator and associated steam line
CN105386803B (en) Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
JP5183305B2 (en) Startup bypass system in steam power plant
JP5191274B2 (en) Water supply system in steam power generation facilities
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP5497139B2 (en) Operation method of water supply system in steam power plant
JP5442474B2 (en) Power generation facility and operation method of power generation facility
JP5142817B2 (en) Operation method of condensate system in steam power plant
JP4895835B2 (en) Steam recovery equipment
KR101734326B1 (en) Pre-heating apparatus and method of a integral reactor
JP2012189008A (en) Thermal power generating plant
JP5164580B2 (en) Control method of power generator when power generation is stopped
JP4969117B2 (en) High pressure feed water heater feed pump isolation method
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP5656754B2 (en) Power generation facility for waste incinerator and control method thereof
JP3604886B2 (en) Pressurized fluidized bed combined cycle power plant and power plant
JP5409882B2 (en) Operation method of start-up bypass system in steam power plant
JP2004190989A (en) Start control device and method for variable pressure once-through boiler
JP4371959B2 (en) Heating deaerator for boiler
JP5656753B2 (en) Power generation facility for waste incinerator and control method thereof
RU2238414C1 (en) Method for regulating electric power of combined-cycle heating unit incorporating exhaust-heat boiler
CN102942228A (en) Polishing system and control method for secondary circuit condensate of inland nuclear power station
JP4031872B2 (en) Water supply control method in a power plant using a drum boiler
JP5137694B2 (en) Flash tank apparatus and steam control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5191274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250