JP5184249B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP5184249B2
JP5184249B2 JP2008199669A JP2008199669A JP5184249B2 JP 5184249 B2 JP5184249 B2 JP 5184249B2 JP 2008199669 A JP2008199669 A JP 2008199669A JP 2008199669 A JP2008199669 A JP 2008199669A JP 5184249 B2 JP5184249 B2 JP 5184249B2
Authority
JP
Japan
Prior art keywords
sludge
treatment
treated
tank
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008199669A
Other languages
Japanese (ja)
Other versions
JP2010036074A (en
Inventor
さゆり 豊田
吉博 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Eco Tech Corp filed Critical Nippon Steel and Sumikin Eco Tech Corp
Priority to JP2008199669A priority Critical patent/JP5184249B2/en
Publication of JP2010036074A publication Critical patent/JP2010036074A/en
Application granted granted Critical
Publication of JP5184249B2 publication Critical patent/JP5184249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、余剰汚泥の一部を可溶化処理する活性汚泥法を利用した有機性廃水の処理方法に関し、さらに詳しくは、汚泥の可溶化処理工程の条件を最適化することで高い減容率を実現した有機性廃水の処理方法に関する。より好ましい形態では、最適化した条件で可溶化処理した汚泥を細菌槽で処理した後、該処理物を曝気槽で処理することで、より高い減容率を実現した有機性廃水の処理方法に関する。   The present invention relates to a method for treating organic wastewater using an activated sludge method for solubilizing a portion of excess sludge, and more specifically, by reducing the conditions of the sludge solubilization treatment step, the volume reduction rate is high. The present invention relates to a method for treating organic wastewater. In a more preferred form, the present invention relates to a method for treating organic wastewater that achieves a higher volume reduction rate by treating sludge solubilized under optimized conditions in a bacterial tank and then treating the treated product in an aeration tank. .

従来より、BODで示される廃水中の有機性汚濁成分を含んだ有機性廃水は、エアレーションタンク(曝気槽)内で、好気性微生物を含んだ活性汚泥により処理することが行われている。該方法は、浄化能力が高く、処理経費が比較的少なくて済む等の利点があるため、これを利用した種々の方法が提案されており、下水処理や産業廃水処理等において広く一般に使用されている。   Conventionally, organic wastewater containing organic pollutant components in wastewater indicated by BOD is treated with activated sludge containing aerobic microorganisms in an aeration tank (aeration tank). Since this method has advantages such as high purification capacity and relatively low processing costs, various methods using this method have been proposed and widely used in sewage treatment and industrial wastewater treatment. Yes.

上記曝気槽内で分解されるBODのうちの50〜70%は微生物の維持エネルギーとして消費されるが、残りの30〜50%は菌体の増殖に使用されるので、処理系において活性汚泥の量は次第に増加していく。このため、活性汚泥法では、曝気槽で処理した廃水を沈殿槽へと導き固液分離し、沈殿した活性汚泥の中から有機性廃水の浄化処理に必要な量だけ返送汚泥として曝気槽内へと戻し、それ以外の活性汚泥を余剰汚泥として取り除くことで浄化処理を行っている。このように、活性汚泥を利用した有機性廃水の浄化処理では多量の余剰汚泥が発生するが、この余剰汚泥の処理には多大な費用がかかることから、余剰汚泥の減容化が大きな問題となっている。   Of the BOD decomposed in the aeration tank, 50 to 70% is consumed as maintenance energy for microorganisms, but the remaining 30 to 50% is used for the growth of bacterial cells. The amount gradually increases. For this reason, in the activated sludge method, the wastewater treated in the aeration tank is guided to the sedimentation tank and separated into solid and liquid. And the purification treatment is performed by removing the remaining activated sludge as excess sludge. In this way, a large amount of excess sludge is generated in the purification treatment of organic wastewater using activated sludge, but since the treatment of this excess sludge is very expensive, volume reduction of excess sludge is a major problem. It has become.

上記の問題に対し、余剰汚泥の一部をオゾンや酸やアルカリ等で可溶化し、再度曝気槽へと戻すことで余剰汚泥を減容化することが行われている(例えば、特許文献1参照)。   In order to solve the above problem, a part of excess sludge is solubilized with ozone, acid, alkali, or the like, and returned to the aeration tank to reduce the volume of excess sludge (for example, Patent Document 1). reference).

特許第3167021号公報Japanese Patent No. 3167021

上記した余剰汚泥の一部を可溶化し、これを曝気槽へと戻す方法によれば、従来の可溶化処理をしない方法の場合と比べて格段に余剰汚泥の量を減らすことができる。しかしながら、これらの方法によっても充分であるとは言えず、余剰汚泥の減容化については、さらなる検討が望まれている。
従って、本発明の目的は、活性汚泥を利用した有機性廃水の処理方法において、最終段階で放流される処理水の水質を悪化させることなく、余剰汚泥の発生量を従来の方法に増して減らすことを実現し、これによって余剰汚泥処理にかかるコストの削減を図ることができる、簡易かつ経済的な有機性廃水の処理方法を提供することにある。
According to the method of solubilizing a part of the above-described excess sludge and returning it to the aeration tank, the amount of excess sludge can be significantly reduced as compared with the conventional method without solubilization. However, these methods cannot be said to be sufficient, and further studies are desired for reducing the volume of excess sludge.
Accordingly, an object of the present invention is to reduce the amount of excess sludge generated in the method for treating organic wastewater using activated sludge, compared with the conventional method, without deteriorating the quality of the treated water discharged at the final stage. It is intended to provide a simple and economical method for treating organic waste water that can achieve this and thereby reduce the cost of surplus sludge treatment.

上記の目的は、下記の本発明によって達成される。即ち、本発明の第1の形態は、活性汚泥を利用して有機性廃水を浄化処理する曝気槽内から沈殿槽内へと導入され該沈殿槽で固液分離された汚泥の一部を取り出して可溶化し、可溶化した汚泥を再度曝気槽内に戻して浄化処理を行う汚泥の可溶化処理工程を有する有機性廃水の処理方法において、汚泥の可溶化処理工程で、沈殿槽内から、曝気槽内での有機物処理によって増殖する汚泥量の1.5倍量を取り出し、取り出した汚泥のうちの一部を酸処理槽内で酸処理し、該酸処理と並列に、取り出した汚泥のうちの別の一部をアルカリ処理槽内でアルカリ処理し、その後に、酸処理及びアルカリ処理したそれぞれの汚泥を併合して曝気槽内へと返送する場合に、或いは、取り出した汚泥のうちの一部を可溶化処理槽内で酸処理し、処理物を曝気槽内へと返送するとともに、該酸処理を行った可溶化処理槽内で別に取り出した汚泥の一部を可溶化処理槽内でアルカリ処理し、処理物を曝気槽へと返送する場合に、酸処理がされる汚泥量とアルカリ処理がされる汚泥量との容積比率が、1:〜1:となるようにすることを特徴とする有機性廃水の処理方法である。
The above object is achieved by the present invention described below. That is, in the first embodiment of the present invention, a part of the sludge introduced into the settling tank and solid-liquid separated in the settling tank is taken out from the aeration tank that purifies the organic wastewater using activated sludge. In the method for treating organic wastewater having a sludge solubilization treatment process in which the solubilized sludge is returned to the aeration tank again for purification treatment, in the sludge solubilization treatment process, from the settling tank, 1. The amount of sludge proliferated by organic matter treatment in the aeration tank . 5 to 2 times the amount is taken out, part of the taken out sludge is acid-treated in an acid treatment tank, and another part of the taken out sludge is alkalinized in the alkali treatment tank in parallel with the acid treatment Treatment, and then when the acid-treated and alkali-treated sludges are combined and returned to the aeration tank, or some of the extracted sludge is acid-treated in the solubilization tank, The treated product is returned to the aeration tank, and a part of sludge taken out separately in the solubilization treatment tank that has been subjected to the acid treatment is alkali-treated in the solubilization treatment tank, and the treated product is returned to the aeration tank. In this case, the volume ratio of the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated is 1: 2 to 1: 5. .

また、本発明の第2の形態は、上記の構成に加えて、さらに、可溶化処理工程で処理した汚泥の処理物を曝気槽へと返送する前に、原生動物の実質的不存在下、非凝集性細菌で処理を行う細菌槽に導入して細菌処理し、その後、該細菌槽で処理した処理物を曝気槽に導入し、該曝気槽内で非固着性原生動物の実質的不存在下、固着性原生動物処理する有機性廃水の処理方法である。   In addition to the above-described configuration, the second form of the present invention, in addition, before returning the treated sludge treated in the solubilization treatment step to the aeration tank, in the substantial absence of protozoa, Bacteria are treated by introducing them into a bacterial tank that is treated with non-aggregating bacteria, and then the treated product is introduced into the aeration tank, and the non-adherent protozoa is substantially absent in the aeration tank. Below is a method for treating organic wastewater to be treated with sticky protozoa.

本発明によれば、活性汚泥を利用した有機性廃水の処理方法において、最終段階で放流される処理水の水質を悪化させることなく、余剰汚泥の発生量を従来の方法に増して減らすことが実現され、これによって余剰汚泥処理にかかるコストの削減が可能となる、簡易且つ経済的な有機性廃水の処理方法の提供が可能となる。   According to the present invention, in an organic wastewater treatment method using activated sludge, the amount of excess sludge generated can be reduced more than the conventional method without deteriorating the quality of the treated water discharged in the final stage. It is realized, and thus it is possible to provide a simple and economical method for treating organic wastewater that can reduce the cost of surplus sludge treatment.

本発明の好ましい実施の形態を挙げて更に詳細に説明する。本発明者らは、上記従来技術の問題点を解決すべく鋭意研究の結果、余剰汚泥の可溶化処理に、酸処理とアルカリ処理とを併用し、かつ、それぞれで処理された処理物の量が特定の比率となるようにして、これらの処理物を再度曝気槽に返送することが有効であることを見出して本発明に至った。余剰汚泥の減容化を目的として、余剰汚泥の可溶化処理を酸処理又はアルカリ処理のいずれかで行い、その後、必要に応じてpH調整し、処理した汚泥を曝気槽に返送して処理することが従来より行われている。しかし、従来の方法では、曝気槽中のBODで示される廃水中の有機性汚濁量が増加するので、余剰汚泥の可溶化処理を行わない方法に比べて、曝気槽は高負荷運転になるため、処理不足によって放流される処理水の水質が低下することが懸念され、処理水の水質維持と、余剰汚泥の減容化率の向上とを両立させることが問題となっている。   A preferred embodiment of the present invention will be described in further detail. As a result of diligent research to solve the problems of the prior art, the present inventors have used acid treatment and alkali treatment in combination with solubilization treatment of excess sludge, and the amount of the treated material treated in each. As a result, it was found that it is effective to return these processed products to the aeration tank again so that the ratio becomes a specific ratio. For the purpose of volume reduction of excess sludge, solubilization treatment of excess sludge is performed by either acid treatment or alkali treatment, then pH adjustment is performed as necessary, and the treated sludge is returned to the aeration tank for treatment. This has been done conventionally. However, in the conventional method, since the amount of organic pollution in the wastewater indicated by BOD in the aeration tank increases, the aeration tank becomes a high-load operation compared to the method that does not perform solubilization treatment of excess sludge. There is a concern that the quality of treated water discharged due to insufficient treatment will be lowered, and it is a problem to maintain both the quality of treated water and the improvement in volume reduction rate of excess sludge.

本発明者らの検討によれば、酸処理或いはアルカリ処理の際の処理温度等の条件を変えたとしても、処理水を水質維持した状態で行える余剰汚泥の減容化には限度があり、改良の余地があった。これに対して、余剰汚泥の一部に行う可溶化処理に、酸処理とアルカリ処理とを併用し、かつ、それぞれの方法によって処理した処理汚泥の割合を特定のものとし、酸処理とアルカリ処理とで処理した処理汚泥を再度曝気槽に返送することで、処理水の水質を維持した状態で、余剰汚泥の減容化をより高いレベルで行うことができることがわかった。さらに、可溶化処理した汚泥を曝気槽に返送する前に、原生動物の実質的不存在下、非凝集性細菌で処理を行う細菌槽に導入して細菌処理する構成とすれば、より高い効果が得られることがわかった。   According to the study by the present inventors, even if the conditions such as the treatment temperature at the time of acid treatment or alkali treatment are changed, there is a limit to the volume reduction of excess sludge that can be performed while maintaining the water quality of the treated water, There was room for improvement. On the other hand, acid treatment and alkali treatment are used in combination with solubilization treatment performed on a part of excess sludge, and the ratio of treated sludge treated by each method is specified, and acid treatment and alkali treatment are performed. It was found that the volume of excess sludge can be reduced at a higher level while the quality of the treated water is maintained by returning the treated sludge treated in step 2 to the aeration tank again. Furthermore, before the solubilized sludge is returned to the aeration tank, it is more effective if it is introduced into a bacteria tank that is treated with non-aggregating bacteria in the substantial absence of protozoa. Was found to be obtained.

本発明者らの検討によれば、酸処理とアルカリ処理とを併用し、それぞれの処理物を曝気槽に返送する構成とすればよく、酸処理とアルカリ処理の方法としては、並列に行ってもよく、順次行ってもよいことがわかった。具体的には、取り出した汚泥のうちの一部を酸処理槽内で酸処理するとともに、該酸処理と並列に取り出した汚泥のうちの別の一部をアルカリ処理槽内でアルカリ処理し、その後に、酸処理及びアルカリ処理したそれぞれの汚泥を併合して曝気槽内へと返送する並列処理してもよい。また、取り出した汚泥のうちの一部を可溶化処理槽内で酸処理し、処理物を曝気槽内へと返送した後、該酸処理を行った可溶化処理槽内で別に取り出した汚泥の一部を可溶化処理槽内でアルカリ処理し、処理物を曝気槽へと返送するようにして順次行ってもよい。さらに、本発明者らの検討の結果、処理水の水質を維持した状態で、余剰汚泥の減容化がより高いレベルで達成されるようにするためには、酸処理とアルカリ処理とを併用することに加え、可溶化処理を行う汚泥の量を、曝気槽内での有機物処理によって増殖する汚泥量の1〜3倍量とし、かつ、酸処理する汚泥量とアルカリ処理する汚泥量との容積比率を1:1〜1:6とすることが有効であることがわかった。また、酸処理及びアルカリ処理の処理時間を3〜6時間程度とし、さらに酸処理及びアルカリ処理する温度を40〜80℃とすることが、より好ましいことを見出した。   According to the study by the present inventors, the acid treatment and the alkali treatment may be used in combination, and each treatment product may be returned to the aeration tank. The acid treatment and the alkali treatment may be performed in parallel. It was also possible to go sequentially. Specifically, a part of the sludge taken out is acid-treated in an acid treatment tank, and another part of the sludge taken out in parallel with the acid treatment is alkali-treated in an alkali treatment tank, Thereafter, the sludge treated with acid and alkali may be combined and returned to the aeration tank. In addition, a part of the sludge taken out is acid-treated in a solubilization treatment tank, and after the treated product is returned to the aeration tank, the sludge taken out separately in the solubilization treatment tank in which the acid treatment is performed. A part may be subjected to alkali treatment in a solubilization treatment tank, and the treatment product may be sequentially returned to the aeration tank. Furthermore, as a result of the study by the present inventors, in order to achieve a higher level of excess sludge volume reduction while maintaining the quality of the treated water, acid treatment and alkali treatment are used in combination. In addition, the amount of sludge to be solubilized is 1 to 3 times the amount of sludge proliferated by organic substance treatment in the aeration tank, and the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated It was found that it is effective to set the volume ratio to 1: 1 to 1: 6. Further, it has been found that the treatment time for acid treatment and alkali treatment is about 3 to 6 hours, and the temperature for acid treatment and alkali treatment is preferably 40 to 80 ° C.

上記のことから、本発明の方法は、余剰汚泥の可溶化処理に、酸処理とアルカリ処理とを併用し、かつ、これらの処理を施す汚泥の容積比率、可溶化処理を施す総汚泥量を最適な条件に規定したことを特徴とする。より好ましい形態では、さらに、可溶化処理した汚泥を曝気槽に返送する前に、原生動物の実質的不存在下、非凝集性細菌で処理を行う細菌槽に導入して細菌処理する構成とする。また、酸処理とアルカリ処理とを行う場合に、処理時間及び処理温度を最適な条件とすることで、より高い効果が得られる。   From the above, the method of the present invention uses the acid treatment and the alkali treatment in combination for the solubilization treatment of excess sludge, and the volume ratio of the sludge to be subjected to these treatments and the total amount of sludge to be subjected to the solubilization treatment. It is characterized in that it is defined in the optimum condition. In a more preferred form, the solubilized sludge is further introduced into a bacteria tank for treatment with non-aggregating bacteria in the substantial absence of protozoa before returning to the aeration tank for bacterial treatment. . Moreover, when performing an acid treatment and an alkali treatment, a higher effect can be obtained by setting the treatment time and the treatment temperature to optimum conditions.

余剰汚泥の可溶化処理に、酸処理とアルカリ処理とを併用し、これらの処理物を特定比率となるようにして曝気槽に返送することで余剰汚泥の減容化率が向上できる理由は定かではないが、本発明者らは、以下のように考えている。活性汚泥法で使用される微生物等を形成成分でみると、一般に、乾燥微生物細胞の化学組成で40〜70%をタンパク質が占めている。ここで、タンパク質の一般式はR−CH(NH2)COOHで表され、Rは側鎖と呼ばれている。そして、側鎖に−COOH基を持つものを酸性タンパク質、−NH2をもつものを塩基性タンパク質と呼んでいる。微生物を形成しているのは高次構造であるタンパク質であるため一概には言えないが、下記のことが知られている。酸性タンパク質が強酸性に曝されると高次構造は変化するが、中性に戻すと構造が戻る。しかし、強塩基性にすると高次構造が変わり、中性に戻しても構造は復元しない。また、塩基性タンパク質が強アルカリに曝された場合の逆パターンもある。 Why is it possible to improve the volume reduction rate of surplus sludge by combining acid treatment and alkali treatment in the solubilization treatment of surplus sludge and returning these treated products to the aeration tank at a specific ratio? However, the present inventors consider as follows. When the microorganisms and the like used in the activated sludge method are viewed as constituents, proteins generally account for 40 to 70% of the chemical composition of the dried microbial cells. Here, the general formula of protein is represented by R—CH (NH 2 ) COOH, and R is called a side chain. Those having —COOH groups in the side chains are called acidic proteins, and those having —NH 2 are called basic proteins. It is not possible to say unconditionally because it is a protein having a higher-order structure that forms a microorganism, but the following are known. When acidic proteins are exposed to strong acidity, the higher-order structure changes, but returning to neutrality restores the structure. However, when it is made strongly basic, the higher order structure changes, and even if it is returned to neutrality, the structure is not restored. There is also a reverse pattern when a basic protein is exposed to a strong alkali.

以上のことから、本発明者らは、酸のみ或いはアルカリのみによって汚泥を可溶化処理した場合よりも、酸処理とアルカリ処理とを併用して可溶化処理した場合の方が、微生物の多くの部位が加水分解されて低分子化するため、結果として、余剰汚泥の高い減容率を達成できたものと考えている。このことは、可溶化処理した汚泥を曝気槽に返送した場合に、曝気槽内の汚泥濃度(MLSS[mg/L])の上昇が、酸のみ或いはアルカリのみによって汚泥を可溶化処理した場合よりも、これらを併用した場合の方が低減されることからも推論できる。また、本発明者らのさらなる検討の結果、可溶化処理する総汚泥容積量のうち、酸処理とアルカリ処理を施す汚泥量の比率によっても、減容化に影響があることがわかった。具体的には、酸処理する汚泥量とアルカリ処理する汚泥量との容積比率が1:1〜1:6の範囲内となるように制御することで、処理水の安定した水質と、高い減容化率の実現とを両立できることを確認した。すなわち、酸処理する汚泥量と、アルカリ処理する汚泥量との割合を容積比率で考えた場合に、アルカリ処理する汚泥量を、酸処理する汚泥量と少なくとも同等以上6倍以下とすることが有効であることを見出した。より好ましくは、酸処理する汚泥量とアルカリ処理する汚泥量との容積比率を1:1〜1:5の範囲内、さらには、酸処理する汚泥量とアルカリ処理する汚泥量との容積比率を1:1〜1:2の範囲内とすると、得られる効果の程度はより高くなることがわかった。特に、酸処理とアルカリ処理する汚泥量の比率がほぼ1:2になる程度とすることで、より高い効果が得られることがわかった。さらに、これらの可溶化処理する余剰汚泥の総量としては、曝気槽内での有機物処理によって増殖する汚泥量の1〜3倍量とするが、より好ましくは、1.5〜2倍量程度とするとよい。   From the above, the present inventors have more microorganisms in the case of solubilization treatment in combination with acid treatment and alkali treatment than in the case of solubilization treatment of sludge only with acid or alkali. Since the site is hydrolyzed to lower the molecular weight, it is considered that as a result, a high volume reduction rate of excess sludge has been achieved. This is because when the sludge solubilized is returned to the aeration tank, the increase in the sludge concentration (MLSS [mg / L]) in the aeration tank is higher than that in the case where the sludge is solubilized only with acid or alkali. It can also be inferred from the fact that the combination of these is reduced. Further, as a result of further studies by the present inventors, it has been found that volume reduction is also affected by the ratio of the amount of sludge subjected to acid treatment and alkali treatment among the total volume of sludge to be solubilized. Specifically, by controlling so that the volume ratio between the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated is within a range of 1: 1 to 1: 6, the treated water has a stable quality and a high reduction. It was confirmed that the realization rate can be achieved at the same time. In other words, when the ratio of the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated is considered as a volume ratio, it is effective that the amount of sludge to be alkali-treated is at least equivalent to 6 times or less the amount of sludge to be acid-treated. I found out. More preferably, the volume ratio of the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated is in the range of 1: 1 to 1: 5, and further the volume ratio of the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated is It was found that when the ratio was in the range of 1: 1 to 1: 2, the degree of effect obtained was higher. In particular, it was found that a higher effect can be obtained when the ratio of the amount of sludge to be acid-treated and alkali-treated is about 1: 2. Furthermore, the total amount of surplus sludge to be solubilized is 1 to 3 times the amount of sludge proliferated by the organic matter treatment in the aeration tank, more preferably about 1.5 to 2 times the amount. Good.

以下、本発明で行う余剰汚泥の可溶化処理について説明する。酸処理に使用する酸剤としては、硝酸或いは硫酸等の酸或いは廃酸を使用すればよく、より好ましくは廃硝酸を使用すればよい。酸処理をする場合のpH値としては、2.5〜3.5程度となるようにすればよい。また、アルカリ処理に使用するアルカリ剤としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の溶液を使用することができる。アルカリ処理をする場合のpH値としては、10〜11程度で行えばよい。前記したように、本発明において重要なことは酸処理とアルカリ処理とを併用することであり、酸処理とアルカリ処理とは、処理を並列に行っても両者を繰り返して順次行うように構成してもよい。図1に示した例では、沈殿槽から取り出した汚泥の一定量を本発明で規定する特定の比率となるように、それぞれ酸処理槽とアルカリ処理槽へと導入し、それぞれの処理を並行して行った後、得られた処理物を併合して曝気槽内へと返送する。また、図2に示した例では、沈殿槽から取り出した汚泥の一定量を可溶化処理槽に導入し、先ず、酸剤を加えて酸処理を行い、得られた処理物を曝気槽内に返送した後、次に、沈殿槽から取り出して可溶化処理槽に導入した別の一定量の汚泥にアルカリ剤を加えてアルカリ処理し、処理物を曝気槽内に返送する。本発明においては、この場合に、沈殿槽から取り出して可溶化処理する汚泥の量、及び、酸処理する汚泥量とアルカリ処理する汚泥量との比が、本発明で規定する特定の範囲内になるようにすることを要する。前記したように、上記した酸処理及びアルカリ処理は、それぞれ処理温度を40〜80℃の範囲とし、かつ、酸処理及びアルカリ処理の処理時間は、処理槽の大きさにもよるが、それぞれ3〜6時間程度とすることが好ましい。本発明においては、基本的には、上記した余剰汚泥の可溶化工程以外は、従来公知の通常の活性汚泥法による処理方法を用いることができる。   Hereafter, the solubilization process of the excess sludge performed by this invention is demonstrated. As the acid agent used for the acid treatment, an acid such as nitric acid or sulfuric acid or a waste acid may be used, and waste nitric acid is more preferably used. What is necessary is just to make it become about 2.5-3.5 as pH value in the case of acid-treating. Moreover, as an alkali agent used for an alkali treatment, solutions, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, can be used. What is necessary is just to perform about 10-11 as pH value in the case of performing an alkali treatment. As described above, what is important in the present invention is the combined use of acid treatment and alkali treatment, and the acid treatment and alkali treatment are configured so that both treatments are repeated in sequence even if treatments are performed in parallel. May be. In the example shown in FIG. 1, a certain amount of sludge taken out from the sedimentation tank is introduced into the acid treatment tank and the alkali treatment tank, respectively, so as to have a specific ratio defined in the present invention. After that, the processed products obtained are combined and returned to the aeration tank. In addition, in the example shown in FIG. 2, a certain amount of sludge taken out from the sedimentation tank is introduced into the solubilization treatment tank. First, acid treatment is performed by adding an acid agent, and the obtained processed product is placed in the aeration tank. After returning, an alkali agent is added to another fixed amount of sludge taken out from the settling tank and introduced into the solubilization processing tank to perform an alkali treatment, and the processed product is returned to the aeration tank. In the present invention, in this case, the amount of sludge taken out from the sedimentation tank and solubilized, and the ratio of the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated are within the specific range defined in the present invention. It needs to be. As described above, in the acid treatment and the alkali treatment described above, the treatment temperature is set in the range of 40 to 80 ° C., and the treatment time of the acid treatment and the alkali treatment is 3 depending on the size of the treatment tank. It is preferable to set it to about 6 hours. In the present invention, basically, a treatment method by a conventionally known normal activated sludge method can be used except for the solubilization step of the excess sludge described above.

本発明の好ましい形態では、上記した可溶化処理工程において可溶化した処理汚泥を曝気槽に戻す前に、原生動物の実質的不存在下、非凝集性細菌で処理を行う細菌槽に導入して細菌処理し、その後、該細菌槽で処理した処理物を曝気槽に導入し、該曝気槽内で非固着性原生動物の実質的不存在下、固着性原生動物処理する。このようにすれば、可溶化処理した汚泥を曝気槽へと返送することによって曝気槽に生じていた負荷変動を抑制することが可能となる。このため、曝気槽において十分な処理を安定して行うことが可能となり、処理水質をより安定したものとすることができる。同時に、細菌槽で、可溶化した汚泥を原生動物の実質的不存在下、非凝集性細菌での処理が行われ、可溶化した汚泥は低分子化されてBODで示される溶解性の有機物となり、該有機物は、細菌によって効率よく生物分解され、その後に、細菌処理した処理物を曝気槽に導入する構成とすることで、BOD汚泥転換率を低下させることができる。すなわち、細菌槽で処理された処理物は、非凝集性細菌が増殖するとともにBODが低下したものとなるので、これを処理する次の曝気槽におけるBOD汚泥転換率は低下するため、汚泥の発生量は格段に低減されることとなる。同時に、この場合の曝気槽内における処理は、主に、増殖した細菌を原生動物が捕捉することによって行われるが、曝気槽に導入する前に、上記したような細菌による処理を行う構成とすれば、増殖した非凝集性細菌は、非固着性原生動物の実質的不存在下、固着性原生動物によって極めて効率よく捕捉される。以上の結果、上記した本発明の好ましい形態によれば、曝気槽の負荷変動を伴う汚泥の可溶化処理を組み入れているにもかかわらず、より安定した処理が可能で、最終段階で放流される処理水の水質を悪化させることなく、余剰汚泥の発生量を従来の方法に比して、さらに減らすことを実現することが可能となる。なお、細菌槽は、特公昭56−48235号公報を参照することで容易に得られる。   In a preferred embodiment of the present invention, before the treated sludge solubilized in the above-described solubilization treatment step is returned to the aeration tank, it is introduced into a bacteria tank for treatment with non-aggregating bacteria in the substantial absence of protozoa. After treatment with bacteria, the treated product in the bacteria tank is introduced into the aeration tank, and the fixed protozoa is treated in the aeration tank in the substantial absence of non-adherent protozoa. If it does in this way, it will become possible to suppress the load fluctuation which had arisen in the aeration tank by returning the sludge solubilized to the aeration tank. For this reason, sufficient treatment can be stably performed in the aeration tank, and the quality of the treated water can be further stabilized. At the same time, the solubilized sludge is treated with non-aggregating bacteria in the bacterial tank in the substantial absence of protozoa, and the solubilized sludge is reduced in molecular weight to become soluble organic matter indicated by BOD. The organic matter is efficiently biodegraded by bacteria, and then the treated product treated with bacteria is introduced into the aeration tank, whereby the BOD sludge conversion rate can be reduced. That is, the treated product treated in the bacterial tank is a non-aggregating bacterium that proliferates and the BOD is lowered. Therefore, the conversion rate of BOD sludge in the next aeration tank for treating this is lowered, so that sludge is generated. The amount will be greatly reduced. At the same time, the treatment in the aeration tank in this case is mainly carried out by capturing the proliferated bacteria by the protozoa. However, before the introduction into the aeration tank, the treatment with the bacteria as described above is performed. For example, grown non-aggregating bacteria are captured very efficiently by the adherent protozoa in the substantial absence of non-adherent protozoa. As a result, according to the preferred embodiment of the present invention described above, despite the incorporation of the sludge solubilization process that accompanies the load fluctuation of the aeration tank, a more stable process is possible and the product is discharged at the final stage. Without deteriorating the quality of the treated water, it is possible to further reduce the amount of excess sludge generated as compared with the conventional method. In addition, a bacteria tank is easily obtained by referring to Japanese Patent Publication No. 56-48235.

次に、実施例、参考例及び比較系を挙げて本発明をさらに具体的に説明する。
[実施例、参考例、比較系]
図1(a)又は図2(a)に示した試験プラントを用いて模擬試験を行った。豆乳を水で薄めてBOD濃度が1,000mg/Lの模擬廃水を作製し、これを原水として使用した。この原水を流量2.7L/日で、4.5Lの曝気槽内に通水し、活性汚泥処理を行った。表1に活性汚泥の曝気槽運転条件を示し、表2に汚泥の可溶化処理条件及び汚泥処理量を示した。酸処理には、廃硝酸を用い、アルカリには、25%の水酸化ナトリウムを用いた。表2中の処理倍率とは、曝気槽内での有機物処理によって増殖する汚泥量に対しての、可溶化処理した汚泥量の比率を示している。即ち、表中の倍率1.5とは、曝気槽内での有機物処理によって増殖する汚泥量の容積の1.5倍量の汚泥を可溶化処理したことを意味している。また、表1中のSRT(日)とは、活性汚泥設備内からの汚泥の排出により、曝気槽内の汚泥が新しい汚泥に入れ換わる日数を意味する。
Next, the present invention will be described more specifically with reference to examples, reference examples and comparative systems.
[Examples, reference examples, comparative systems]
A simulation test was performed using the test plant shown in FIG. 1 (a) or FIG. 2 (a). Soy milk was diluted with water to prepare simulated wastewater having a BOD concentration of 1,000 mg / L, and this was used as raw water. This raw water was passed through a 4.5 L aeration tank at a flow rate of 2.7 L / day to perform activated sludge treatment. Table 1 shows the operating conditions of the activated sludge aeration tank, and Table 2 shows the sludge solubilization conditions and sludge treatment amount. Waste acid nitric acid was used for the acid treatment, and 25% sodium hydroxide was used for the alkali. The treatment magnification in Table 2 indicates the ratio of the amount of sludge that has been solubilized with respect to the amount of sludge that is propagated by the organic matter treatment in the aeration tank. That is, a magnification of 1.5 in the table means that the sludge of 1.5 times the volume of the sludge volume proliferated by the organic matter treatment in the aeration tank was solubilized. Moreover, SRT (days) in Table 1 means the number of days that sludge in the aeration tank is replaced with new sludge due to the discharge of sludge from the activated sludge facility.

Figure 0005184249
Figure 0005184249

Figure 0005184249
Figure 0005184249

[評価]
上記の実施例、参考例及び比較系でそれぞれ処理した結果、処理水のCODMnで表される水質は、比較系で約7mg/L、参考例及び実施例で5〜10mg/Lであった。さらに処理水のBODは、全ての系で5mg/L以下であり、いずれの方法によっても良好な処理が行われたことを確認した。
[Evaluation]
As a result of treatment in the above Examples, Reference Examples and Comparative System, the water quality represented by COD Mn of the treated water was about 7 mg / L in the comparative system and 5 to 10 mg / L in the Reference Examples and Examples. . Furthermore, the BOD of treated water was 5 mg / L or less in all systems, and it was confirmed that good treatment was performed by any method.

図3に処理の経過日数と、曝気槽中における汚泥濃度(MLSS[mg/L])の変化を記載した。その結果、アルカリ処理した汚泥量を酸処理した汚泥量と同等以上とした各実施例では、酸処理或いはアルカリ処理だけで可溶化処理を行った参考例1及び2、酸処理した汚泥量をアルカリ処理した汚泥量よりも多くした参考例3と比較して、曝気槽中における汚泥濃度の上昇を低く抑えることができることを確認した。酸処理した汚泥量を1とした場合に、アルカリ処理した汚泥量を1以上6以下となるように制御すれば、曝気槽中における汚泥濃度の増加を十分に抑制できることがわかった。より好ましくは、酸処理した汚泥量とアルカリ処理した汚泥量との比率が1以上6以下となるようにして処理すれば、曝気槽中における汚泥濃度の上昇の抑制効果が、より十分に得られることがわかった。特に、酸処理した汚泥量とアルカリ処理した汚泥量との比率が1:2となるようにした実施例1及び3の処理では、曝気槽中における汚泥濃度が、可溶化処理を行わない比較系の処理の場合と同程度に保たれることを確認した。また、図4に、処理したBODの積算量と、汚泥発生量との関係を示した。図4に示した通り、可溶化処理を行わない比較系による処理に比べて、可溶化処理を行う実施例及び参考例での処理の場合は、汚泥発生量を格段に低減できることを確認した。さらに、酸処理とアルカリ処理を併用し、かつ、本発明で規定する特定の比率で処理する実施例の場合は、酸処理或いはアルカリ処理を単独で行った参考例1及び2の場合は勿論、本発明で規定する比率以外の比率で処理した参考例3の場合に比べても、汚泥発生量が低減することについて、有為な差があることを確認した。   FIG. 3 shows the elapsed days of treatment and changes in the sludge concentration (MLSS [mg / L]) in the aeration tank. As a result, in each Example in which the amount of sludge treated with alkali was equal to or greater than the amount of sludge treated with acid, Reference Examples 1 and 2 in which solubilization treatment was performed only by acid treatment or alkali treatment, It was confirmed that the increase in the sludge concentration in the aeration tank can be kept low compared to Reference Example 3 in which the amount of treated sludge was increased. It was found that when the acid-treated sludge amount is 1, the increase in sludge concentration in the aeration tank can be sufficiently suppressed by controlling the alkali-treated sludge amount to be 1 or more and 6 or less. More preferably, if the treatment is carried out so that the ratio of the acid-treated sludge amount to the alkali-treated sludge amount is 1 or more and 6 or less, the effect of suppressing the increase in the sludge concentration in the aeration tank can be more sufficiently obtained. I understood it. In particular, in the treatment of Examples 1 and 3 in which the ratio of the amount of sludge treated with acid and the amount of sludge treated with alkali is 1: 2, the sludge concentration in the aeration tank is a comparative system in which solubilization is not performed. It was confirmed that it was maintained at the same level as in the case of the process. FIG. 4 shows the relationship between the accumulated amount of the processed BOD and the amount of sludge generated. As shown in FIG. 4, it was confirmed that the amount of sludge generation can be remarkably reduced in the case of the treatment in the example and the reference example in which the solubilization treatment is performed as compared with the treatment by the comparative system in which the solubilization treatment is not performed. Furthermore, in the case of Examples in which acid treatment and alkali treatment are used in combination and treatment is carried out at a specific ratio defined in the present invention, of course, in Reference Examples 1 and 2 in which acid treatment or alkali treatment is carried out alone, It was confirmed that there was a significant difference in reducing the amount of sludge generated as compared with the case of Reference Example 3 processed at a ratio other than the ratio specified in the present invention.

表3及び図5に、実施例、参考例及び比較系でのそれぞれの処理においてのBOD汚泥転換率及び汚泥の減容率をまとめて示した。図5に示した通り、可溶化処理を行わない比較系による処理に比べて、可溶化処理を行う実施例及び参考例での処理の場合は、BOD汚泥転換率を半分以下に低減できることを確認した。さらに、酸処理とアルカリ処理を併用し、かつ、特定の比率での処理を行う実施例の場合は、酸処理或いはアルカリ処理を単独で行う参考例の場合に比べて、BOD汚泥転換率を低減することについて、有為な差があることを確認した。参考例3は、酸処理とアルカリ処理を併用し、かつ、酸処理する汚泥量とアルカリ処理する汚泥量との容積比率を2:1とした例であるが、表3及び図5に示した通り、併用することによる効果は顕著なものではなかった。   Table 3 and FIG. 5 collectively show the BOD sludge conversion rate and sludge volume reduction rate in the respective treatments in Examples, Reference Examples and Comparative Systems. As shown in FIG. 5, it was confirmed that the conversion rate of BOD sludge can be reduced to less than half in the case of the treatment in the example and the reference example in which the solubilization treatment is performed as compared with the treatment by the comparative system in which the solubilization treatment is not performed. did. Furthermore, in the case of an embodiment in which acid treatment and alkali treatment are used in combination and treatment is performed at a specific ratio, the BOD sludge conversion rate is reduced compared to the reference example in which acid treatment or alkali treatment is carried out alone. It was confirmed that there was a significant difference in what to do. Reference Example 3 is an example in which acid treatment and alkali treatment are used in combination, and the volume ratio of the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated is 2: 1, as shown in Table 3 and FIG. As you can see, the effect of the combined use was not remarkable.

Figure 0005184249
なお、上記において、汚泥の減容率は、比較系におけるBOD汚泥転換率に比べてBOD汚泥転換率が減じている割合を算出して求めた値である。
Figure 0005184249
In the above, the volume reduction rate of sludge is a value obtained by calculating the ratio that the BOD sludge conversion rate is reduced compared to the BOD sludge conversion rate in the comparative system.

[実施例6]
実施例1で行った処理において、酸及びアルカリで可溶化処理した処理物を、それぞれ非凝集性細菌によって処理する細菌槽に導入して処理し、その後に曝気槽で処理する構成とした以外は、実施例1と同様の条件で処理を行った(図1(b)参照)。細菌槽には、BOD容積負荷が10kg/m3/日であり、容積が63mlのものを使用した。
この結果、汚泥の転換率では、実施例1と比べて、曝気槽における汚泥への転換率が0.7倍程度に低減され、これにより、減容率をさらに高めることができることを確認した。さらに、細菌槽を設けない場合に比べて、処理水の水質は、変動のないより安定した良好なものとなることを確認した。
[Example 6]
In the treatment carried out in Example 1, the treatment product solubilized with acid and alkali was introduced into a treatment tank treated with non-aggregating bacteria and treated, and then treated in an aeration tank. The treatment was performed under the same conditions as in Example 1 (see FIG. 1B). A bacterial tank having a BOD volumetric load of 10 kg / m 3 / day and a volume of 63 ml was used.
As a result, in the sludge conversion rate, it was confirmed that the conversion rate to sludge in the aeration tank was reduced by about 0.7 times as compared with Example 1, thereby further increasing the volume reduction rate. Furthermore, it was confirmed that the quality of the treated water was more stable and better than the case where no bacteria tank was provided.

本発明の一態様の処理フローを模式的に示した図である。It is the figure which showed typically the processing flow of 1 aspect of this invention. 本発明の別の態様の処理フローを模式的に示した図である。It is the figure which showed typically the processing flow of another aspect of this invention. 本発明の実施例及び参考例と、通常の処理方法である比較系で処理した場合における、処理日数と曝気槽中のMLSSとの関係を示した図である。It is the figure which showed the relationship between the process days and MLSS in an aeration tank at the time of processing by the Example and reference example of this invention, and the comparison system which is a normal processing method. 本発明の実施例及び参考例と、通常の処理方法である比較系で処理した場合における、積算BOD量と汚泥発生量との関係を示した図である。It is the figure which showed the relationship between the Example BOF of this invention, a reference example, and the amount of integrated BOD and sludge generation | occurrence | production in the case of processing by the comparison system which is a normal processing method. 本発明の実施例及び参考例と、通常の処理方法である比較系で処理した場合における、BOD汚泥転換率と汚泥の減容率との関係を示した図である。It is the figure which showed the relationship between the Example of this invention, a reference example, and the BOD sludge conversion rate and the volume reduction rate of sludge at the time of processing by the comparison system which is a normal processing method.

Claims (3)

活性汚泥を利用して有機性廃水を浄化処理する曝気槽内から沈殿槽内へと導入され該沈殿槽で固液分離された汚泥の一部を取り出して可溶化し、可溶化した汚泥を再度曝気槽内に戻して浄化処理を行う汚泥の可溶化処理工程を有する有機性廃水の処理方法において、
汚泥の可溶化処理工程で、沈殿槽内から、曝気槽内での有機物処理によって増殖する汚泥量の1.5倍量を取り出し、
取り出した汚泥のうちの一部を酸処理槽内で酸処理し、該酸処理と並列に、取り出した汚泥のうちの別の一部をアルカリ処理槽内でアルカリ処理し、その後に、酸処理及びアルカリ処理したそれぞれの汚泥を併合して曝気槽内へと返送する場合に、或いは、
取り出した汚泥のうちの一部を可溶化処理槽内で酸処理し、処理物を曝気槽内へと返送するとともに、該酸処理を行った可溶化処理槽内で別に取り出した汚泥の一部を可溶化処理槽内でアルカリ処理し、処理物を曝気槽へと返送する場合に、酸処理がされる汚泥量とアルカリ処理がされる汚泥量との容積比率が、1:〜1:となるようにすることを特徴とする有機性廃水の処理方法。
Part of the sludge that has been introduced from the aeration tank that purifies organic wastewater using activated sludge into the sedimentation tank and separated into solid and liquid in the sedimentation tank is solubilized, and the solubilized sludge is removed again. In the treatment method of organic wastewater having a sludge solubilization treatment step of performing purification treatment by returning to the inside of the aeration tank,
In the sludge solubilization process, the amount of sludge proliferated from the settling tank by the organic matter treatment in the aeration tank is as follows . Take 5 to 2 times the amount,
A part of the extracted sludge is acid-treated in an acid treatment tank, and in parallel with the acid treatment, another part of the removed sludge is alkali-treated in an alkali treatment tank, and then acid-treated. And when each sludge treated with alkali is combined and returned to the aeration tank, or
Part of the sludge taken out is acid-treated in the solubilization tank, and the treated product is returned to the aeration tank, and part of the sludge taken out separately in the solubilization tank that has been subjected to the acid treatment. In the solubilization tank, the volume ratio of the amount of sludge to be acid-treated and the amount of sludge to be alkali-treated is 1: 2 to 1: 5. A method for treating organic wastewater, wherein
さらに、可溶化処理工程で処理した汚泥の処理物を曝気槽へと返送する前に、原生動物の実質的不存在下、非凝集性細菌で処理を行う細菌槽に導入して細菌処理し、その後、該細菌槽で処理した処理物を曝気槽に導入し、該曝気槽内で非固着性原生動物の実質的不存在下、固着性原生動物処理する請求項1に記載の有機性廃水の処理方法。 Furthermore, before returning the treated sludge treated in the solubilization treatment process to the aeration tank, in the substantial absence of protozoa, it is introduced into a bacterial tank that performs treatment with non-aggregating bacteria, and is treated with bacteria. Thereafter, the treated material treated in the bacterial tank is introduced into the aeration tank, and the organic wastewater is treated in the aeration tank in the substantial absence of the non-adherent protozoa. Processing method. 酸処理及びアルカリ処理の処理時間を3〜6時間とし、かつ、酸処理及びアルカリ処理の処理温度を40〜80℃とする請求項1又は2に記載の有機性廃水の処理方法。 The processing method of the organic waste water of Claim 1 or 2 which sets the processing time of acid treatment and alkali treatment to 3 to 6 hours, and sets the treatment temperature of acid treatment and alkali treatment to 40 to 80 degreeC.
JP2008199669A 2008-08-01 2008-08-01 Organic wastewater treatment method Active JP5184249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199669A JP5184249B2 (en) 2008-08-01 2008-08-01 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199669A JP5184249B2 (en) 2008-08-01 2008-08-01 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2010036074A JP2010036074A (en) 2010-02-18
JP5184249B2 true JP5184249B2 (en) 2013-04-17

Family

ID=42009169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199669A Active JP5184249B2 (en) 2008-08-01 2008-08-01 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5184249B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768609B2 (en) 2010-02-01 2014-07-01 Trimble Navigation Limited Sensor unit system
US8682541B2 (en) 2010-02-01 2014-03-25 Trimble Navigation Limited Sensor unit system
US9269255B2 (en) 2010-02-01 2016-02-23 Trimble Navigation Limited Worksite proximity warning
CN103304036A (en) * 2012-03-15 2013-09-18 北京晓清环保工程有限公司 Method for reducing sludge in sewage treatment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293095A (en) * 1989-05-02 1990-12-04 Ebara Infilco Co Ltd Treatment of organic sewage
JP3565304B2 (en) * 1996-07-09 2004-09-15 株式会社荏原製作所 Organic wastewater treatment method and equipment
JP3360076B2 (en) * 1997-08-07 2002-12-24 独立行政法人産業技術総合研究所 Organic wastewater treatment method
JP4406749B2 (en) * 1998-03-27 2010-02-03 独立行政法人産業技術総合研究所 Organic wastewater treatment method and organic wastewater treatment apparatus
JP2001025789A (en) * 1999-07-14 2001-01-30 Kurita Water Ind Ltd Treatment of organic waste liquid and device therefor
JP2004267844A (en) * 2003-03-06 2004-09-30 Fuji Electric Holdings Co Ltd Treatment method and device for organic sewage

Also Published As

Publication number Publication date
JP2010036074A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5951986B2 (en) Biological treatment method of organic wastewater
JP4474930B2 (en) Biological treatment method for organic wastewater
MOHSENI et al. Biological treatment of dairy wastewater by sequencing batch reactor
JP5184249B2 (en) Organic wastewater treatment method
CN105036471A (en) Method for removing sewage pollutants containing lead
JP6059443B2 (en) Biological treatment method of organic wastewater
JP4572587B2 (en) Biological treatment method for organic wastewater
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP5948651B2 (en) Surplus sludge generation suppression method and organic wastewater treatment method
CN105130100A (en) Method of removing pollutant from cadmium-containing sewage
JP4406749B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
CN114133097A (en) Treatment process of pharmaceutical intermediate production wastewater
JP3301800B2 (en) Sludge reducing agent for treating organic wastewater and its treatment method
JP4769483B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP4687338B2 (en) Biological treatment method and biological treatment apparatus for organic wastewater
JP5951984B2 (en) Biological treatment method of organic wastewater
CN106007237A (en) Method for removing chromium-containing pollutants in sewage
JP2007209889A (en) Surplus sludge treatment method
JP2004188356A (en) Treatment method of organic waste water
KR102607197B1 (en) High-concentration landfill leachate, livestock wastewater, manure, food wastewater, industrial wastewater and low-concentration wastewater treatment system using an upflow complex bioreactor
JP5438883B2 (en) Method for treating organic wastewater and chemicals used in the method
CN105130101A (en) Method of removing pollutant from mercury-containing sewage
JP2013202579A (en) Biological treatment method for organic wastewater
CN108640439A (en) A kind of wastewater treatment method of butyronitrile medical glove production plant
JP2009247987A (en) Treatment method of oil-and-fat containing drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250