JP5177293B2 - 睡眠時無呼吸症候群の検査装置及びプログラム - Google Patents

睡眠時無呼吸症候群の検査装置及びプログラム Download PDF

Info

Publication number
JP5177293B2
JP5177293B2 JP2011523522A JP2011523522A JP5177293B2 JP 5177293 B2 JP5177293 B2 JP 5177293B2 JP 2011523522 A JP2011523522 A JP 2011523522A JP 2011523522 A JP2011523522 A JP 2011523522A JP 5177293 B2 JP5177293 B2 JP 5177293B2
Authority
JP
Japan
Prior art keywords
sound
state
acoustic
unit
acoustic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011523522A
Other languages
English (en)
Other versions
JPWO2011010384A1 (ja
Inventor
正清 田中
政直 鈴木
恭士 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2011010384A1 publication Critical patent/JPWO2011010384A1/ja
Application granted granted Critical
Publication of JP5177293B2 publication Critical patent/JP5177293B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pulmonology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、睡眠時の無呼吸状態を検出する睡眠時無呼吸症候群の検査装置に関する。
睡眠時無呼吸症候群は、10秒以上呼吸が停止する状態である無呼吸状態が、7時間の睡眠中に30回以上認められるもの、または、睡眠1時間当りに5回以上認められるものと定義される。睡眠時無呼吸症候群は、昼間の耐えがたい眠気,抑うつ,集中力の低下,いびき等の症状を引き起こす。また、睡眠時無呼吸症候群の患者自身は睡眠中であるため、家族等の同居者がいない場合などは、睡眠時無呼吸症候群の発見が遅れることが多い。
睡眠時無呼吸症候群の精密検査では、検査用のデータ取得装置の備えつけてある病室を有する病院への入院,及び専門医によるデータの解析が必要となる。すなわち、患者に費用及び時間の負担がかかる上、体にセンサを取りつける等が必要であることが多く、患者の肉体的負担となる。また、このような睡眠時無呼吸症候群の精密検査は、一度に検査できる人数が限られてしまい、病院側としても効率が悪い。
かかる観点から、睡眠時無呼吸症候群の精密検査が必要であるか否かを、事前に自宅等で検査できる簡易検査方法が望まれている。
特開2001−29328号公報
本発明の一態様は、睡眠時の無呼吸状態を検出可能な睡眠時無呼吸症候群の検査装置を提供することを目的とする。
本発明の態様の一つは、睡眠時無呼吸症候群の検査装置である。この睡眠時無呼吸症候群の検査装置は、収音装置で収音された被験者の睡眠時に生じる音響信号を分析する分析部と、
前記分析部の分析結果において、前記音響信号に睡眠状態が無呼吸状態から呼吸状態へ回復する際に生じる特徴音が含まれているか否かを判定する判定部と、を含む。
本発明の他の態様の一つは、上述した睡眠時無呼吸症候群の検査方法である。また、本発明の他の態様は、情報処理装置を睡眠時無呼吸症候群の検査装置として機能させるプログラム、及び当該プログラムを記録したコンピュータ読み取り可能な記録媒体を含むことができる。
開示の睡眠時無呼吸症候群の検査装置によれば、睡眠時無呼吸状態を検出することができる。
特徴音を含む音響信号の周波数スペクトルの一例を示すグラフである。 特徴音を含む音響信号の周波数スペクトルの一例を示すグラフである。 睡眠時無呼吸症候群の検査システムの構成例を示す図である。 音響分析部の構成例を示す図である。 睡眠状態決定部の構成例を示す図である。 呼吸音の周波数特性の例を示す図である。 特徴音Bの周波数特性の例を示す図である。 特徴音Cの周波数特性の例を示す図である。 呼吸音,特徴音A,特徴音B,および特徴音Cの周波数特性の例を示す図である。 信号持続時間算出部における音響信号の持続時間算出処理のフローの例を示す図である。 音響信号の持続算出処理を説明する図である。 周波数特性比較部における睡眠状態決定処理のフローの例を示す図である。 無呼吸判定部の構成例を示す図である。 睡眠時無呼吸症候群の患者の睡眠時の呼吸の例を示すグラフである。 状態推移調査部の無呼吸状態判定処理のフローの例を示す図である。 睡眠時無呼吸症候群の検査装置の動作例のフローを示す図である。 睡眠状態決定部の構成例を示す図である。 信号持続時間算出部における音響信号の持続時間算出処理のフローの例を示す図である。 音響信号が音響フレームFと音響フレームFの直前の音響フレームF−1とにまたがる場合の例を示す図である。 睡眠時無呼吸症候群の検査システムの構成例を示す図である。 睡眠時無呼吸症候群の検査システムの構成例を示す図である。
以下、図面を参照して、本発明の実施をするための形態(以下、実施形態という)について説明する。以下の実施形態の構成は例示であり、本発明は実施形態の構成に限定されない。
<第1実施形態>
第1実施形態における睡眠時無呼吸症候群の検査装置について説明する。被験者の就寝場所付近の適宜の位置に収音装置としてのマイクロフォンが設置され、被験者及び被験者の周囲の音響信号が収集される。すなわち、被験者は体にセンサが付けられるなどの拘束をされることなく、普段の睡眠時の状態で検査を受ける。第1実施形態における睡眠時無呼吸症候群の検査装置は、マイクロフォンが収集する、睡眠時の被験者によって生じる音響信号を分析し、周波数特性を求めることによって、被験者の睡眠時の無呼吸状態を検出する。
発明者らが実施した睡眠時の音響信号の調査によって、無呼吸状態の被験者が無呼吸状態から回復する、すなわち、無呼吸状態から呼吸状態に遷移する直前又は直後に以下で述べるような特徴的な音が生じることが分かった。以降、無呼吸状態の患者が、無呼吸状態から呼吸状態に遷移する直前又は直後に生じる特徴的な音は「特徴音」と呼ばれる。第1実施形態における睡眠時無呼吸症候群の検査装置は、睡眠時無呼吸症候群の患者が無呼吸状態から回復するときに生じやすい特徴音を、睡眠時無呼吸状態の検出に利用する。
調査によって得られた特徴音には、以下に示されるものがあった。
(特徴音A)息を呑むような、又は、驚いたときに発せられるような、0.2秒から0.3秒程度の短い呼吸音。
(特徴音B)短いうなり声。
(特徴音C)患者の体の動きにより生じる音。例えば、患者が体を動かすことで生じる患者と布団との摩擦音である。
これらの特徴音はいずれも、無呼吸状態の患者が、体内の酸素が不足することによって苦しむときに発生するものと考えられる。
図1Aおよび図1Bは、特徴音A,特徴音B,および特徴音Cを含む音響信号の周波数スペクトルの一例を示すグラフである。図1Aおよび図1Bに示されるグラフは、横軸が時間,縦軸が周波数,色の濃淡が周波数成分の大きさを示す。
図1Aでは、点線で囲まれた箇所が、特徴音A(患者の息を呑むような短い呼吸音)を示す。特徴音Aまでは、患者の呼吸が停止している、すなわち、患者が無呼吸状態であるのに対し、特徴音Aのあとでは患者の息をはく音と息を吸う音が続いており、特徴音A以降では呼吸が回復したことが示される。
図1Bでは、1つめの点線で囲まれた箇所が、特徴音B(短い唸り声)を示す。2つめの点線で囲まれた箇所が、特徴音C(体が動く音や体の動きによって布団がすれる音)を示す。特徴音Bまでは、患者の呼吸が停止している、すなわち、患者が無呼吸状態であることを示す。また、図1Bには示されていないが、特徴音Cのあと、図1Aと同様な、患者の息を吸う音とはく音が続き、呼吸が回復している。
特徴音A,特徴音B,および特徴音Cは、それぞれが単独に発生することもあるし、図1Bに示されるように、組み合わせて発生することもある。
<<睡眠時無呼吸症候群の検査装置の構成例>>
図2は、睡眠時無呼吸症候群の検査システムの構成例を示す図である。睡眠時無呼吸症候群の検査システムは、睡眠時無呼吸症候群の検査装置1(以下、単に検査装置1),及び被験者3によって生じる音響を集音するマイクロフォン2を含む。
検査装置1は、図1Aおよび図1Bに示されるような特徴音A,特徴音B,および特徴音Cを用いて、被験者3の無呼吸状態を検出する装置である。
マイクロフォン2は、被験者3に近く、且つ、被験者3が発する音声や被験者3の体動音を精度よく収音できる位置に、被験者3の方を向いて配置される。例えば、マイクロフォン2は、被験者3の就寝場所の上方に設置される。
マイクロフォン2は、検査装置1と接続される。マイクロフォン2は、被験者3が発する呼吸音や音声、及び被験者3の体動音を含んだ被験者の周囲の音響信号を収集する。マイクロフォン2は、収集された音響の電気信号を検査装置1に出力する。以降、音響の電気信号を「音響信号」と呼ぶ。
検査装置1は、マイクロフォン2と接続されており、マイクロフォン2からの音響信号を入力として得る。検査装置1は、入力された音響信号を分析し、分析結果に基づいて、被験者の無呼吸状態を検出する。検査装置1は、無呼吸状態の検出結果を、検査装置1が接続されているネットワーク5,ディスプレイ6,スピーカ7,二次記憶装置8の少なくとも1つに出力する。
検査装置1は、入力部11,出力部15,CPU(Central Processing Unit)16,アナログ/ディジタル変換器(A/D変換器)17,バッファ18,及び主記憶装置19を備える。検査装置として、情報処置装置を適用することができる。
入力部11は、外部の入力装置とのインタフェースである。入力部11には、マイクロフォン2から音響信号が入力される。入力部11は、入力された音響信号をA/D変換器17に出力する。
A/D変換器17は、音響信号を入力として得る。A/D変換器17は、音響信号をアナログ信号からディジタル信号に変換する。A/D変換器17は、ディジタル信号に変換された音響データをバッファ18に出力する。
バッファ18は、A/D変換器17からディジタル信号に変換された音響データを入力として得る。バッファ18は、入力される音響データをバッファする。
CPU16は、バッファ18から1フレーム分の音響信号を順次取り出して処理を行う。1フレームとは、単位時間長である。1フレームは、例えば、1秒から数秒で規定される。以降、1フレーム分の音響信号は、音響フレームと呼ばれる。
主記憶装置19は、作業領域にロードされた睡眠時無呼吸症候群の検査プログラム19aを保持する。CPU16は、主記憶装置19から睡眠時無呼吸症候群の検査プログラム19aを読み出して、実行することによって、音響分析部12,睡眠状態決定部13,及び無呼吸判定部14として動作する。
音響分析部12は、音響フレームを入力として得る。音響分析部12は、音響フレームを分析し、音響フレームの特徴量を算出する。特徴量には、例えば、音響フレームの周波数スペクトル,周波数スペクトルのパワースペクトル,音量などがある。音響分析部12は、算出された音響フレームの特徴量を睡眠状態決定部13に出力する。音響分析部12の詳細については後述される。
睡眠状態決定部13は、音響分析部12によって算出された音響フレームの特徴量を入力として得る。睡眠状態決定部13は、音響フレームの特徴量に基づいて、音響フレームの睡眠状態の判定材料となるパラメータ(以下、判定用パラメータと称する)を算出する。判定用パラメータには、音響分析部12によって算出された音響フレームの特徴量に基づいて得られる値が採用される。例えば、判定用パラメータは、音響フレームにおける音響信号の持続時間や、ホルマント数及びパワースペクトルの分散などの周波数的特徴を表す物理量である。睡眠状態決定部13は、特徴音A,特徴音B,特徴音C,および呼吸音に対して予め算出された判定用パラメータの値(以降、比較値と称する)を保持する。睡眠状態決定部13は、音響データの判定用パラメータの値と、特徴音A〜Cの比較値および呼吸音の比較値とを比較して、音響フレームの睡眠状態を決定する。睡眠状態には、音響フレームに呼吸音が含まれる、すなわち、被験者が呼吸をしている状態である「呼吸あり状態」が含まれる。また、睡眠状態には、音響フレームに特徴音A〜Cの何れかが含まれる、すなわち、被験者が呼吸停止の状態から呼吸状態に遷移する状態である「無呼吸回復状態」が含まれる。さらに、睡眠状態には、音響フレームに特徴音A〜Cおよび呼吸音のいずれも含まれない、すなわち、被験者の呼吸が停止している「呼吸なし状態」が含まれる。睡眠状態決定部13は、音響フレームの睡眠状態を無呼吸判定部14に出力する。睡眠状態決定部13の詳細については、後述される。
無呼吸判定部14は、睡眠状態決定部13から、音響フレームの睡眠状態を入力として得る。無呼吸判定部14は、音響フレームの睡眠状態の履歴を調査して、被験者の無呼吸状態を検出する。無呼吸判定部14は、被験者の無呼吸状態の検出結果を出力部15に出力する。無呼吸判定部14の詳細については、後述される。
出力部15は、外部の装置とのインタフェースである。出力部15は、被験者の無呼吸状態の検出結果を入力として得る。出力部15は、被験者の無呼吸状態の検出結果を、ネットワーク5,ディスプレイ6,スピーカ7,又は二次記憶装置8の何れか1つ又は2つ以上に出力する。
例えば、被験者の無呼吸状態が検出された場合には、出力部15はスピーカ7から無呼吸状態の検出結果を示す警告音を出力して被験者に報知してもよい。例えば、出力部15から出力される音響フレームの被験者の無呼吸状態の検出結果は、二次記憶装置8に格納されてもよい。例えば、出力部15から出力される無呼吸状態の検出結果は、ディスプレイ6に表示されてもよい。例えば、出力部15から出力される被験者の無呼吸状態の検出結果は、睡眠時無呼吸症候群の検査の専門機関に、ネットワーク5を通じて送信されてもよい。
<<音響分析部の構成例>>
音響分析部12は、音響フレームを分析し、音響フレームの特徴量を算出する。第1実施形態では、音響分析部12は、音響フレームの特徴量として、例えば、周波数のパワースペクトルを算出する。
図3は、音響分析部12の構成例を示す図である。音響分析部12は、サブフレーム分割部121,時間/周波数変換部122,及びパワースペクトル算出部123を含む。
サブフレーム分割部121は、音響フレームを入力として得る。サブフレーム分割部121は、音響フレームを所定の時間長のサブフレームに分割する。音響フレームの時間長が2秒である場合、サブフレーム分割部121は、音響フレームを、例えば、100等分し、所定の時間長として20ミリ秒のサブフレームに分割する。サブフレーム分割部121は、サブフレームに分割された音響フレームを時間/周波数変換部122に出力する。
時間/周波数変換部122は、サブフレームに分割された音響フレームを入力として得る。時間/周波数変換部122は、サブフレーム単位でフーリエ変換を実行し、時間領域の音響信号を周波数領域の信号に変換する。時間/周波数変換部122は、1フレームに含まれる全サブフレームの周波数スペクトルを算出し終えると、算出された1フレームに含まれる全サブフレームの周波数スペクトルを、パワースペクトル算出部123に出力する。
パワースペクトル算出部123は、時間/周波数変換部122によって算出された1フレームに含まれる全サブフレームの周波数スペクトルを入力として得る。パワースペクトル算出部123は、各サブフレームの周波数スペクトルから各サブフレームのパワースペクトルを算出する。パワースペクトル算出部123は、1フレームに含まれる全サブフレームのパワースペクトルを算出し終えると、算出された1フレームに含まれる全サブフレームのパワースペクトルを出力する。
<<睡眠状態決定部の構成例>>
睡眠状態決定部13は、音響フレームの特徴量から音響フレームの判定用パラメータの値を算出し、予め算出されている特徴音A〜Cおよび呼吸音の比較値と比較し、音響フレームの睡眠状態を決定する。第1実施形態では、睡眠状態決定部13は、音響分析部12から入力される、1フレームに含まれる全サブフレームのパワースペクトルから得られる情報に基づいて、判定用パラメータの値を算出する。第1実施形態では、判定用パラメータとして、音響フレームに含まれる音響信号の持続時間,ホルマント数,および微細構造パワースペクトルの分散が用いられる。
図4は、睡眠状態決定部13の構成例を示す図である。睡眠状態決定部13は、信号持続時間算出部131と、周波数特性比較部132と、格納部133とを備える。
格納部133は、主記憶装置19の記憶領域に作成される。格納部133は、特徴音A,特徴音B,特徴音C,および呼吸音の比較値を格納する。呼吸音とは、息を吸う動作および息を吐く動作に伴って発生する一連の音、すなわち、寝息やいびき等の音である。特徴音A,特徴音B,特徴音C,および呼吸音の比較値の種類と、入力される音響フレームから算出される判定用パラメータの値は同じ種類のものが用いられる。第1実施形態では、音響信号の持続時間と音響信号の周波数特性から得られる情報とが判定用パラメータとして用いられる。音響信号の周波数特性から得られる情報には、例えば、ホルマント数および微細構造パワースペクトルの分散値がある。
図5A,図5B,および図5Cは、それぞれ呼吸音,特徴音B,および特徴音Cの周波数特性の一例を示す図である。また、図5A,図5B,および図5Cに示される例では、周波数特性から得られる情報、すなわち、判定用パラメータとして、音響信号の持続時間,ホルマント数,および微細構造パワースペクトルの分散が示される。
図5Aは、呼吸音の周波数特性の一例について示す図である。呼吸音の周波数とパワースペクトルとの関係を示すグラフでは、明確なピークはないが、細かい凹凸が見られる。呼吸音の音響信号の持続時間の範囲は、0.5秒から2.0秒である。呼吸音のホルマント数の範囲は、0個から1個である。図5Aに示されるように、呼吸音の周波数とパワースペクトルとの関係を示すグラフには細かい凹凸があるため、パワースペクトルの平均からのばらつきを示す、呼吸音の微細構造パワースペクトルの分散は、一定の範囲の値をとり得る。
特徴音A、すなわち、短い呼吸音の周波数とパワースペクトルとの関係は、図5Aに示される呼吸音の、周波数とパワースペクトとの関係を示すグラフに類似する。特徴音Aの音響信号の持続時間は0.2秒から0.3秒である。また、特徴音Aの周波数とパワースペクトルとの関係を示すグラフは、図5Aに示される呼吸音の周波数とパワースペクトルとの関係を示すグラフに類似するため、特徴音Aに含まれるホルマント数の範囲は0個から1個である。さらに、特徴音Aの微細構造パワースペクトルの分散も、呼吸音の微細構造のパワースペクトルの分散と近似する値をとり得る。
図5Bは、特徴音B、すなわち、うなり声の周波数特性の一例について示す図である。特徴音Bの音響信号の持続時間の範囲は、0.1秒から0.3秒である。図5Bに示されるように、特徴音Bの周波数とパワースペクトルとの関係を示すグラフは、2個から3個の明確なピークが見られる。特徴音Bに含まれるホルマント数の範囲は、2個から4個である。図5Bに示される、特徴音Bの周波数とパワースペクトルとの関係を示すグラフと、図5Aに示される呼吸音の周波数とパワースペクトルとの関係を示すグラフとを比べると、特徴音Bのグラフの方がパワースペクトルの値の変動が大きい。従って、特徴音Bの微細構造パワースペクトルの分散の値は、呼吸音の微細構造パワースペクトルの分散の値よりも、大きい。
図5Cは、特徴音C、すなわち、被験者の体が動く音の周波数特性の一例について示す図である。特徴音Cの音響信号の持続時間の範囲は、0.5秒から3.0秒である。図5Cに示されるように、特徴音Cの周波数とパワースペクトルとの関係を示すグラフは、明確なピークはなく、平坦である。特徴音Cの周波数とパワースペクトルとの関係を示すグラフには明確なピークはないため、特徴音Cに含まれるホルマント数は、0個である。図5Cに示される、特徴音Cの周波数とパワースペクトルとの関係を示すグラフと、図5Aに示される呼吸音の周波数とパワースペクトルとの関係を示すグラフとを比べると、特徴音Cのグラフの方がパワースペクトルの値の変動が小さい。従って、特徴音Cの微細構造パワースペクトルの分散の値は、呼吸音の微細構造パワースペクトルの分散の値よりも小さい。
図6は、呼吸音,特徴音A,特徴音B,および特徴音Cの周波数特性をまとめた表の例である。図6に示される例では、微細構造パワースペクトルの分散の範囲を予め“大”,“中”,“小”の3つに分類し、呼吸音の微細構造パワースペクトルの分散の取り得る値の範囲を“中”と定めた場合の例を示す。
特徴音Aの周波数とパワースペクトルとの関係を示すグラフ(図示せず)は、呼吸音の周波数とパワースペクトとの関係を示すグラフ(図5A)に類似するため、微細構造パワースペクトルの分散の値も類似する。従って、特徴音Aの微細構造パワースペクトルの分散の値は、呼吸音と同じ"中"である。
特徴音Bの周波数とパワースペクトルとの関係を示すグラフ(図5B)と、呼吸音の周波数とパワースペクトルとの関係を示すグラフ(図5A)とを比べると、特徴音Bのグラフの方がパワースペクトルの値の分散が大きい。従って、特徴音Bの微細構造パワースペクトルの分散の値は、“大”である。
特徴音Cの周波数とパワースペクトルとの関係を示すグラフ(図5C)と、呼吸音の周波数とパワースペクトルとの関係を示すグラフ(図5A)とを比べると、特徴音Cのグラフの方がパワースペクトルの値の分散が小さい。従って、特徴音Cの微細構造パワースペクトルの分散の値は、“小”である。
図4に戻って、信号持続時間算出部131は、1フレームに含まれる全サブフレームのパワースペクトルを入力として得る。信号持続時間算出部131は、1フレームに含まれる全サブフレームのパワースペクトルから、当該音響フレームに含まれる音響信号の持続時間を算出する。
図7は、信号持続時間算出部131による、音響信号の持続時間算出処理のフローの例を示す図である。図7に示される例では、信号持続時間算出部131は、サブフレームTにおける音響信号と、その時間的に前のサブフレームT−tにおける音響信号との相関係数r(t)を求め、音響信号の持続時間を算出する。音響フレームに含まれるサブフレームの数はM(Mは0を含まない自然数)と定められる。
信号持続時間算出部131は、音響フレームに含まれる全サブフレームのパワースペクトルが音響分析部12から入力されると、音響信号の持続時間算出処理を開始する。
信号持続時間算出部131は、サブフレームを示す変数Tの初期値をT=1に設定する(OP1)。サブフレームを示す変数Tの範囲は、1≦T≦M−1である。
次に、信号持続時間算出部131は、サブフレームTから時間的に遡るサブフレームの個数を示す変数tの値の初期値をt=1に設定する(OP2)。サブフレームTより時間的に前のサブフレームの個数を示す変数tの範囲は、1≦t≦Tである。
信号持続時間算出部131は、サブフレームTに含まれる音響信号と、サブフレームT−tに含まれる音響信号との相関係数r(t)を、以下の式1を用いて算出する(OP3)。以降、サブフレームTに含まれる音響信号と、サブフレームT−tに含まれる音響信号との相関係数r(t)は、「サブフレームTとサブフレームT−tとの相関係数r(t)」と呼ばれる。
Figure 0005177293
信号持続時間算出部131は、算出されたサブフレームTとサブフレームT−tとの相関係数r(t)の値が、所定の閾値以上か否かを判定する(OP4)。例えば、所定の閾値は、0.7である。
算出されたサブフレームTとサブフレームT−tとの相関係数r(t)の値が、閾値以上である場合には(OP4:Yes)、サブフレームTに含まれる音響信号と、サブフレームT−tに含まれる音響信号が同じ音響信号であるとみなされる。すなわち、サブフレームTとサブフレームT−tとの相関係数r(t)の値が閾値以上である場合には、音響信号が、サブフレームT−tからサブフレームTまで持続していることが示される。
サブフレームTとサブフレームT−tとの相関係数r(t)の値が閾値以上である場合には(OP4:Yes)、次に、信号持続時間算出部131は、tが変数Tより小さいか否かを判定する(OP5)。すなわち、サブフレームTより時間的に前のサブフレームT−tが存在するか否かを判定する。
変数tが変数Tより小さい場合には(OP5:Yes)、サブフレームTより時間的に前に、サブフレームTとの相関係数r(t)が求められていないサブフレームT−tが存在することが示される。すなわち、サブフレームTについて相関係数r(t)を求める処理が継続していることが示される。
変数tが変数Tより小さい場合には(OP5:Yes)、信号持続時間算出部131は、変数t=t+1とする(OP6)。
変数tが変数T以上の場合には(OP5:No)、サブフレームTより時間的に前の全てのサブフレームについて、サブフレームTとの相関係数r(t)が求められたことが示される。すなわち、サブフレームTについて、相関係数r(t)を求める処理が終了することが示される。このとき、処理はOP9に移り、サブフレームTの次のサブフレームT+1について相関係数r(t)を求める処理に移る。
算出されたサブフレームTとサブフレームT−tとの相関係数r(t)の値が、閾値未満である場合には(OP4:No)、サブフレームTに含まれる音響信号と、サブフレームT−tに含まれる音響信号とが異なる音響信号であるとみなされる。算出されたサブフレームTとサブフレームT−tとの相関係数r(t)の値が、閾値未満である場合には、信号持続時間算出部131は、サブフレームTとサブフレームTより時間的に前のサブフレームとの相関係数r(t)を求める処理を終了する。
信号持続時間算出部131は、サブフレームT−tと、サブフレームT−t+1との境界を音響信号の持続区間の境界に定める(OP7)。以降、音響信号の持続区間は、単に、「区間」とも呼ばれる。
次に、信号持続時間算出部131は、変数TがM−1より小さいか否かを判定する(OP8)。すなわち、信号持続時間算出部131は、音響フレームに含まれるすべてのサブフレームTについて、サブフレームTとサブフレームTの時間的に前のサブフレームT−tとの相関係数r(t)を求める処理が終了したか否かを判定する。
変数TがM−1より小さい場合には(OP8:Yes)、音響フレームに含まれるすべてのサブフレームTについて、サブフレームTとサブフレームTの時間的に前のサブフレームT−tとの相関係数r(t)を求める処理が終了していないことが示される。変数TがM−1より小さい場合には、信号持続時間算出部131は、変数T=T+1とする(OP9)。その後、処理がOP2に移り、次のサブフレームTについて、サブフレームTとサブフレームTの時間的に前のサブフレームとの相関係数r(t)を求める処理が実行される。
変数TがM−1以上の場合には(OP8:No)、音響フレームに含まれるすべてのサブフレームTについて、サブフレームTとサブフレームTの時間的に前のサブフレームT−tとの相関係数r(t)を求める処理が終了したことが示される。信号持続時間算出部131は、OP7において定められた区間の境界に基づいて、音響信号の持続する区間を決定し、各区間に含まれる音響信号の持続時間を算出する(OP10)。信号持続時間算出部131は、各区間に含まれるサブフレームの数を計算し、各区間における音響信号の持続時間を算出する。例えば、音響フレームの時間長が2秒であり、サブフレームの時間長が音響フレームの100分の1の20ミリ秒であるとすると、1つの区間にサブフレームが5つ含まれている場合には、その区間における音響信号の持続時間は0.1秒として算出される。
図8は、図7の音響信号の持続時間算出処理を説明する図である。図8において、音響フレームの先頭のサブフレームはサブフレーム0と示され、時間軸に沿って、サブフレーム1,サブフレーム2,・・・と示される。図8に示される例では、音響フレームのサブフレーム0からサブフレーム17までが示される。
図8に示される例では、サブフレーム8からサブフレーム13にまたがって、特徴音が含まれるものとする。また、図8に示される音響信号について、図7に示される処理を行った結果の一例をテーブルT1で示す。すなわち、グラフG1の音響信号を含む音響フレームに含まれるすべてのサブフレームTについて、サブフレームTとサブフレームTからtだけ時間的に前のサブフレームT−tとの相関係数r(t)を求める処理を行った結果の一部をテーブルT1で示す。テーブルT1では、縦がサブフレームを示す変数Tの値であり、横がサブフレームTからtだけ前のサブフレームT−tの値を示す。テーブルT1の座標(T,T−t)に記載された値が、サブフレームTとサブフレームTからtだけ時間的に前のサブフレームT−tとの相関係数r(t)の値を示す。
例えば、テーブルT1は、図7に示すフローに従って、以下に示すようにして作成される。
信号持続時間算出部131は、まず、T=1、t=1に設定する(図7:OP1,OP2)。信号持続時間算出部131は、サブフレーム1とサブフレーム0との相関係数rT
(t)を求める(図7:OP3)。信号持続時間算出部131は、サブフレーム1とサブフレーム0との相関係数rT(t)の値をテーブルT1の座標(1,0)に記録する。サ
ブフレーム1とサブフレーム0との相関係数rT(t)の値があらかじめ定められた閾値
である0.7以上である場合(図7:OP4、Yes)、信号持続時間算出131は、tはTより小さいか否かを判定する(図7:OP5)。t=1、T=1であるので、すなわち、tはTと等しいので(図7:OP5、No)、信号持続時間算出部131は、T=T+1=1+1=2にする(図7:OP9)。次に、信号持続時間算出部131は、t=1に設定し(図7:OP2)、サブフレーム2とサブフレーム1との相関係数rT(t)
を求める(図7:OP3)。
以降、図7のOP2〜OP9の処理を行って、信号持続時間算出部131は、図8に示されるテーブルT1を得る。
図7のOP10の処理において、音響フレームに含まれる全サブフレームTについて、サブフレームTとサブフレームTより時間的に前のサブフレームT−tとの相関係数r(t)が算出されると、信号持続時間算出部131は、音響信号の持続区間を求める。図8に示される例では、テーブルT1中の「0.7」未満となる座標と、「0.7」以上となる座標との間で音響信号の持続区間の境界が決定される。信号持続時間算出部131は、サブフレーム8からサブフレーム13を含む区間A,サブフレーム16とサブフレーム17とを含む区間Bを検出する。
信号持続時間算出部131は、区間A,および区間Bそれぞれについて、音響信号の持続時間を算出する。図8に示される例では、サブフレームの時間長が0.02秒であるとする。従って、図8に示される例では、区間Aの持続時間は0.12秒(0.02秒×6)である。区間Bの持続時間は0.04秒(0.02秒×2)である。
信号持続時間算出部131は、音響フレームに含まれる各音響信号の持続区間と、音響信号の持続区間における音響信号の持続時間とを、周波数特性比較部132に出力する。
周波数特性比較部132は、1フレームに含まれる全サブフレームのパワースペクトル,該当する音響フレームに含まれる音響信号の持続区間,及びそれぞれの音響信号の持続区間の持続時間を入力として得る。周波数特性比較部132は、音響フレームから、音響信号の持続時間が一定値以上である音響信号の持続区間のみを抽出する。音響信号の持続時間が一定値以上とは、例えば、特徴音Cの音響信号の持続時間の値が0.1秒から0.3秒なので、音響フレームに含まれる音響信号の持続時間が0.1秒以上であることをいう。
周波数特性比較部132は、抽出された区間について、平均パワースペクトルを算出する。抽出された区間の平均パワースペクトルから、周波数特性比較部132は、ケプストラム分析法等公知の方法を用いて、抽出された区間内での音響信号を包絡部分と微細構造部分とに分離する。周波数特性比較部132は、分離された包絡部分のパワースペクトルを算出する。周波数特性比較部132は、包絡部分のパワースペクトルの極大値(ピーク)の数を求め、ホルマント数とする。このとき、微小なピークはホルマント数から除いてもよい。
周波数特性比較部132は、以下の式2を用いて、抽出された区間における音響信号の微細構造のパワースペクトルの分散を算出する。
Figure 0005177293
以上のようにして、周波数特性比較部132は、音響フレームに含まれる音響信号の持続時間が一定値以上の区間それぞれについて、ホルマント数と微細構造パワースペクトルの分散の値とを算出する。
例えば、図8に示される音響信号の場合には、区間Aの持続時間は0.12秒,区間Bの持続時間は0.04秒であるので、区間Aのみ持続時間が一定値(例えば、0.1秒)以上である。従って、周波数特性比較部132は、図8に示される音響信号の場合には、区間Aを抽出する。周波数特性比較部132は、抽出された、区間Aに含まれる音響信号の、ホルマント数と微細構造パワースペクトルの分散の値とを算出する。
周波数特性比較部132は、抽出された各区間における音響信号のホルマント数及び微細構造パワースペクトルの分散の値と、特徴音A〜C及び呼吸音のホルマント数及び微細構造パワースペクトルの分散の比較値の範囲とをそれぞれ比較する。以降、区間に含まれる音響信号のホルマント数及び微細構造パワースペクトルの分散の値は、「睡眠状態判定用パラメータ」と呼ばれる。
周波数特性比較部132は、抽出された区間における睡眠状態判定用パラメータの値が、特徴音A〜Cの睡眠状態判定用パラメータの比較値の範囲に含まれる場合には、当該区間に特徴音が含まれることを検出する。当該区間に特徴音が含まれることは、すなわち、当該区間を有する音響フレームに特徴音が含まれていることを示す。音響フレームに特徴音が含まれる状態は、被験者が呼吸停止状態から呼吸状態に遷移する状態である、「無呼吸回復状態」と呼ばれる。すなわち、周波数特性比較部132は、抽出された区間の内の少なくとも1つの区間が特徴音を含む場合には、音響フレームの睡眠状態を「無呼吸回復状態」であると判定する。
周波数特性比較部132は、抽出された区間の睡眠状態判定用パラメータの値が呼吸音の睡眠状態判定用パラメータの比較値の範囲に含まれる場合には、当該区間に呼吸音が含まれることを検出する。
周波数特性比較部132は、抽出された何れの区間にも特徴音が含まれず、且つ、抽出された区間のうち少なくとも1つの区間に呼吸音が含まれる場合には、音響フレームの睡眠状態を「呼吸あり状態」と判定する。
周波数特性比較部132は、抽出された区間のいずれも、特徴音も呼吸音も含まない場合には、音響フレームに特徴音も呼吸音も含まれていないことを検出する。音響フレームに特徴音も呼吸音も含まれていない場合には、被験者は呼吸停止状態であることが推測される。被験者が呼吸停止状態である推測される状態を、「呼吸なし状態」と定義する。すなわち、抽出された区間のいずれの睡眠状態判定用パラメータの値も、特徴音A〜C及び呼吸音のいずれかの睡眠状態判定用パラメータの比較値の範囲に含まれない場合には、周波数特性比較部132は、音響フレームの睡眠状態を「呼吸なし状態」であると判定する。
例えば、図8に示される例の音響信号の場合には、区間Aに特徴音が含まれることが検出されるので、図8に示される例の音響信号の睡眠状態は「無呼吸回復状態」と判定される。
周波数特性比較部132は、音響フレームの睡眠状態の判定結果として「無呼吸回復状態」,「呼吸あり状態」,及び「呼吸なし状態」のいずれかを無呼吸判定部14に出力する。
図9は、周波数特性比較部132の音響フレームの睡眠状態決定処理のフローの例を示す図である。
周波数特性比較部132は、1フレームに含まれる全サブフレームのパワースペクトル,該当する音響フレームに含まれる音響信号の持続区間,及びそれぞれの音響信号の持続区間の持続時間が入力されると、音響フレームの睡眠状態決定処理を開始する。
周波数特性比較部132は、音響信号の持続時間が一定値以上の区間が、音響フレームに含まれるか否かを判定する(OP12)。例えば、周波数特性比較部132は、音響フレームに含まれる各区間について、音響信号の持続時間が0.1秒以上であるか否かを判定する。
音響信号の持続時間が一定値以上の区間が、音響フレームに含まれる場合には(OP12:Yes)、周波数特性比較部132は、音響信号の持続時間が一定値以上の区間を抽出する。周波数特性比較部132は、抽出された各区間について、持続時間内の音響信号の周波数特性を算出する(OP13)。算出される周波数特性は、ホルマント数や微細構造パワースペクトルの分散等であり、各区間に含まれるサブフレームのパワースペクトルに基づいて算出される。
周波数特性比較部132は、抽出された各区間の音響信号の周波数特性の値と、格納部133に格納される特徴音A〜Cの周波数特性の比較値の範囲とを比較し、抽出された区間の何れかに特徴音が含まれるか否かを判定する(OP14)。
抽出された区間の少なくとも1つに特徴音が含まれる場合には(OP14:Yes)、周波数特性比較部132は、音響フレームの睡眠状態を「無呼吸回復状態」と決定する(OP16)。周波数特性比較部132は、音響フレームの睡眠状態として「無呼吸回復状態」を出力し、音響フレームの睡眠状態決定処理を終了する。
抽出された区間の何れにも特徴音が含まれない場合には(OP14:No)、周波数特性比較部132は、抽出された区間の少なくとも1つに呼吸音が含まれているか否かを判定する(OP15)。
抽出された区間の少なくとも1つに呼吸音が含まれている場合には(OP15;Yes)、周波数特性比較部132は、音響フレームの睡眠状態を「呼吸あり状態」に決定する(OP17)。周波数特性比較部132は、音響フレームの睡眠状態として「呼吸あり状態」を出力し、音響フレームの睡眠状態決定処理を終了する。
音響信号の持続時間が一定値以上の区間が、音響フレームに含まれない場合には(OP12:No)、周波数特性比較部132は、音響フレームの睡眠状態を「呼吸なし状態」に決定する(OP18)。また、抽出された各区間のいずれも特徴音及び呼吸音を含まない場合には(OP15;No)、周波数特性比較部132は、音響フレームの睡眠状態を「呼吸なし状態」に決定する(OP18)。周波数特性比較部132は、音響フレームの睡眠状態として「呼吸なし状態」を出力し、音響フレームの睡眠状態決定処理を終了する。
<<無呼吸判定部の構成例>>
無呼吸判定部14は、音響フレームの睡眠状態である、「呼吸あり状態」,「呼吸なし状態」,および「無呼吸回復状態」の何れか1つを入力として得る。無呼吸判定部14は、音響フレームの睡眠状態の履歴に基づいて、被験者の無呼吸状態を検出する。
図10は、無呼吸判定部14の構成例を示す図である。無呼吸判定部14は、状態推移調査部141,遅延素子142,及び状態メモリ143を含む。
入力された音響フレームの睡眠状態は、状態推移調査部141と、遅延素子142に入力される。遅延素子142は、1フレーム処理分遅延させて、音響フレームの睡眠状態を状態メモリ143に格納する。すなわち、遅延素子142は、音響フレームの睡眠状態が入力されると、一旦保持し、次の音響フレームの睡眠状態が入力されたときに、1つ前の音響フレームの睡眠状態を状態メモリ143に格納する。
状態メモリ143には、音響フレームの睡眠状態が時系列に沿って順番に格納される。状態メモリ143は、現音響フレームから時間的に遡って、例えば、数分間分の音響フレームの睡眠状態の履歴を格納する。
状態推移調査部141は、音響フレームの睡眠状態を入力として得る。音響フレームの睡眠状態が「無呼吸回復状態」である場合には、状態推移調査部141は、状態メモリ143に格納される音響フレームの睡眠状態の履歴を遡って調査する。
図11は、睡眠時無呼吸症候群の患者の睡眠時の呼吸の例を示すグラフである。睡眠時無呼吸症候群の患者は、睡眠中、呼吸状態から、呼吸停止状態に遷移する。呼吸停止状態が一定時間(例えば、10秒から2分程度)経過したのち、特徴音が発生して、睡眠時無呼吸症候群の患者は呼吸を開始する。すなわち、睡眠時無呼吸症候群の患者は、睡眠中、「呼吸あり状態」ののち、「呼吸なし状態」を一定時間継続し、「無呼吸回復状態」へと推移する。
状態推移調査部141は、睡眠時無呼吸症候群の患者の睡眠状態が、「呼吸あり状態」,「呼吸なし状態」を一定時間継続,「無呼吸回復状態」の順に推移することを利用し、被験者の無呼吸状態を検出する。すなわち、状態推移調査部141は、音響フレームの睡眠状態が「無呼吸回復状態」の場合には、状態メモリ143に格納される音響フレームの睡眠状態の履歴を調査する。状態推移調査部141は、現音響フレームの前に、「呼吸なし状態」が一定時間継続し、かつ、「呼吸なし状態」のさらに前に「呼吸あり状態」があるか否かを調査する。状態推移調査部141は、調査の結果、「呼吸あり状態」,「呼吸なし状態」が一定時間継続,その後「無呼吸回復状態」の順に被験者の睡眠状態が推移している場合には、被験者が無呼吸状態であることを検出する。
状態推移調査部141は、音響フレームの睡眠状態が「呼吸あり状態」および「呼吸なし状態」の場合には、処理を終了する。状態推移調査部141は、無呼吸状態の検出結果を出力部15に出力する。
図12は、無呼吸判定部14の状態推移調査部141の無呼吸状態検出処理の例のフローを示す図である。状態推移調査部141は、睡眠状態決定部13から、現音響フレームの睡眠状態が入力されることによって、無呼吸状態判定処理を開始する。
状態推移調査部141は、現音響フレームの睡眠状態が「無呼吸回復状態」であるか否かを判定する(OP21)。
現音響フレームの睡眠状態が「無呼吸回復状態」でない場合には(OP21:No)、すなわち、「呼吸なし状態」または「呼吸あり状態」の場合には、状態推移調査部141は、無呼吸状態判定処理を終了する。
現音響フレームの睡眠状態が「無呼吸回復状態」である場合には(OP21:Yes)、状態推移調査部141は、状態メモリ143に格納されている音響フレームの睡眠状態の履歴を遡って調査する。
状態推移調査部141は、音響フレームの睡眠状態の履歴を遡って調査し、現音響フレームの前に、「呼吸なし状態」が一定時間継続しているか否かを調査する(OP22)。呼吸をしていない状態が10秒以上継続すると、無呼吸状態と判断される。しかし、被験者が呼吸していない状態が数分以上続くような場合は、音響を収録するマイクが被験者とは逆の方向を向いている等の状態が考えられる。したがって、状態推移調査部141は、「呼吸なし状態」が、例えば、10秒以上2分未満継続しているか否かを調査する。なお、「呼吸なし状態」の継続時間は、睡眠状態が「呼吸なし状態」である音響フレームの連続している数によって検出可能である。例えば、1つの音響フレームが2秒である場合には、睡眠状態が「呼吸なし状態」である音響フレームが5つ以上連続している場合に、「呼吸なし状態」が10秒以上継続していることが検出される。
「呼吸なし状態」が一定時間継続していない場合には(OP22:No)、被験者が単に特徴音を発しただけの場合等が考えられ、被験者が無呼吸状態であるとは確定できない。したがって、状態推移調査部141は、無呼吸状態判定処理を終了する。
「呼吸なし状態」が一定時間継続している場合には(OP22:Yes)、状態推移調査部141は、「呼吸なし状態」のさらに前に、「呼吸あり状態」があるか否かを調査する(OP23)。「呼吸なし状態」のさらに前に、「呼吸あり状態」がない場合には(OP23:No)、被験者が無呼吸状態であるとは確定できないため、状態推移調査部141は、無呼吸状態判定処理を終了する。
「呼吸なし状態」のさらに前に、「呼吸あり状態」がある場合には(OP23:Yes)、状態推移調査部141は、被験者が無呼吸状態であることを検出する(OP24)。状態推移調査部141は、無呼吸状態検出結果を出力部15に出力し、無呼吸状態検出処理を終了する。
<<睡眠時無呼吸症候群の検査装置の動作例>>
図13は、検査装置1の睡眠時無呼吸症候群の検査処理の例のフローを示す図である。
被験者3(図2)は、就寝時に、検査装置1を起動することによって、睡眠時無呼吸症候群の検査を開始する。被験者3は、マイクロフォン2(図2)が被験者3の発する呼吸音や音声、および被験者の体動音を精度よく収集可能な向きに向ける。例えば、被験者3の就寝時の位置に対して上方にマイクロフォン2が配置される。被験者3は、その後、就寝する。
検査装置1は、被験者3からの睡眠時無呼吸症候群の検査の開始操作を受け付けると、睡眠時無呼吸症候群の検査処理を開始する。
検査装置1の入力部11は、マイクロフォン2からの音響信号の入力を受け付ける(OP31)。音響信号は、アナログ/ディジタル変換器17(図2),およびバッファ18
(図2)を介して、音響フレームに変換され、音響分析部12のサブフレーム分割121に入力される。
サブフレーム分割部121は音響フレームが入力されると、音響フレームをサブフレームに分割する(OP32)。サブフレーム分割部121は、サブフレームに分割された音響フレームを時間/周波数変換部122に出力する。
サブフレームに分割された音響フレームが入力されると、音響分析部12の時間/周波数変換部122は、音響フレームに含まれる音響信号をフーリエ変換して、周波数領域の音響信号に変換する。時間/周波数変換部122は、周波数領域の音響信号に変換された音響フレームをパワースペクトル算出部123に出力する。パワースペクトル算出部123は、周波数領域の音響信号に変換された音響フレームが入力されると、音響フレームに含まれるサブフレームごとに、特徴量としてパワースペクトルを算出する(OP33)。パワースペクトル算出部123は、算出された音響フレームに含まれる全サブフレームのパワースペクトルを、睡眠状態決定部13に出力する。
音響フレームに含まれる全サブフレームのパワースペクトルが入力されると、睡眠状態決定部13は、例えば、図7に示される音響信号の持続時間算出処理,及び図9に示される睡眠状態決定処理を実行し、音響フレームの睡眠状態を決定する(OP34)。睡眠状態決定部13は、決定された音響フレームの睡眠状態を無呼吸判定部14に出力する。
無呼吸判定部14は、音響フレームの睡眠状態が入力されると、例えば、図12に示される、無呼吸状態検出処理を実行し、音響フレームの睡眠状態の履歴から、被験者の無呼吸状態を検出する(OP35)。無呼吸判定部14は、被験者の無呼吸状態の検出結果を、出力部15(図2)に出力する。
出力部15は、無呼吸状態の検出結果を、ネットワーク5,ディスプレイ6,スピーカ7,二次記憶装置8の少なくとも1つに出力する。
検査装置1は、被験者3によって、睡眠時無呼吸症候群の検査の終了操作が行われたか否かを判定する(OP36)。被験者3によって睡眠時無呼吸症候群の検査の終了操作が行われない場合には(OP36:No)、処理がOP31に戻る。すなわち、被験者3が就寝中はOP31からOP35の処理が繰り返される。
被験者3が起床し、検査装置1を操作し、睡眠時無呼吸症候群の検査終了の操作を行うと、検査装置1が終了操作を検知し(OP36:Yes)、睡眠時無呼吸症候群の検査が終了する。
<<第1実施形態の作用効果>>
第1実施形態の睡眠時無呼吸症候群の検査装置1は、睡眠時無呼吸症候群の患者が無呼吸状態から呼吸状態に遷移する際に生じる特徴的な音を利用して、被験者の無呼吸状態を検出する。すなわち、被験者の睡眠時の音の解析を行い、特徴音が含まれているか否かを以て、被験者が無呼吸状態か否かを判定する。従って、被験者に器具を取り付けることなく、音を用いた簡易的な睡眠時無呼吸症候群の検査を実施することができる。さらに、音の解析によって得られた周波数特性を用いて判定を行うので、音量のみに基づき判定を行う場合に比べて、無呼吸状態の誤検出を防ぐことができ、無呼吸状態の検出の精度が向上する。
また、検査装置1は、音響フレームに含まれる音響信号が特徴音および呼吸音か否かを判定し、音響フレームの睡眠状態を「呼吸あり状態」,「呼吸なし状態」,および「無呼吸回復状態」の何れかに決定する。音響フレームの睡眠状態が「無呼吸回復状態」と判定された場合には、検査装置1は、音響フレームの睡眠状態の履歴を調査し、睡眠状態が「呼吸あり状態」、「呼吸なし」状態が一定時間継続、「無呼吸回復状態」の順に遷移しているか否かを判定する。検査装置1は、音響フレームの睡眠状態が「呼吸あり状態」,「呼吸なし状態」が一定時間以上継続,「無呼吸回復状態」の順に推移する場合に、被験者が無呼吸状態であることを検出する。これによって、特徴音の誤検出等による無呼吸状態の誤検出を防止することができ、無呼吸状態の検出の精度を高めることができる。
被験者にとっては、検査装置1によって、簡易に睡眠時無呼吸症候群の検査を行うことができる。検査装置1の睡眠時無呼吸症候群の検査結果を受けて、被験者は自身の睡眠時無呼吸状態を知ることができ、睡眠時無呼吸症候群の疑いがある場合には、専門の機関に精密な検査を受けるための判断をすることができる。
<<第1実施形態の変形例>>
第1実施形態の検査装置1の睡眠状態決定部13及び無呼吸判定部14は、以下の様に構成されてもよい。睡眠状態決定部13は、音響フレームに特徴音が含まれることを検出した場合に、特徴音が検出された旨の検出結果を無呼吸判定部14に出力する。睡眠状態決定部13から特徴音が検出された旨の検出結果が入力されると、無呼吸判定部14は、被験者の睡眠状態が無呼吸状態であることを検出する。無呼吸判定部14は、無呼吸状態の検出結果を、出力部15(図2)に出力する。
また、第1実施形態の検査装置1の信号持続時間算出部131は、図7及び図8に示される例で説明されたようにして、音響信号の持続区間を求めた。これに代えて、信号持続時間算出部131は、基準のサブフレームTとの相関係数を求める、時間的に前に遡るサブフレームT−tの数を予め決めておいてもよい。基準のサブフレームTを含めて、時間的に前に遡るサブフレームの数wはウィンドウサイズと呼ばれる。信号持続時間算出部131は、ウィンドウに含まれるサブフレームそれぞれと基準のサブフレームとの相関係数を求めると、ウィンドウをずらして、次の基準のサブフレームT−1について、相関係数を求める。例えば、ウィンドウサイズがw=2の場合には、信号持続時間算出部131は、基準のサブフレームTとその直前のサブフレームT−1との相関係数を求めると、ウィンドウをずらして、次に、サブフレームT−1を基準のサブフレームとする。信号持続時間算出部131は、基準のサブフレームT−1とウィンドウに含まれるサブフレームT−2との相関係数を求める。さらに、信号持続時間算出部131は、ウィンドウをずらして、基準をサブフレームT−2とし、サブフレームT−2とウィンドウに含まれるサブフレームT−3との相関係数を求める。このように、信号持続時間算出部131は、ウィンドウを時間的に前に遡るようにしてずらしていき、基準のサブフレームをずらしながら、相関係数を求める。相関係数が閾値未満であるときには、その時の基準のサブフレームTにおける音響信号とサブフレームT−tにおける音響信号とは異なる音響信号であるとみなされる。信号持続時間算出部131は、サブフレームT−tとサブフレームT−t+1との境界を音響信号の持続区間の境界に定める。
<第2実施形態>
第2実施形態の睡眠時無呼吸症候群の検査装置は、第1実施形態の検査装置1の構成と共通する構成を有するため、相違する点についてのみ説明する。第2実施形態の睡眠時無呼吸症候群の検査装置は、第1実施形態の検査装置1と、睡眠状態決定部13の構成が異なる。
図14は、第2実施形態の検査装置の睡眠状態決定部13bの構成例を示す図である。第2実施形態の睡眠状態決定部13bは、信号持続時間算出部131b,周波数特性比較部132b,格納部133,遅延素子134,およびパワースペクトル格納部135を備える。
睡眠状態決定部13bに音響フレームに含まれる全サブフレームのパワースペクトルが入力されると、音響フレームに含まれる全サブフレームのパワースペクトルは、遅延素子134,信号持続時間算出部131b,および周波数特性比較部132bに入力される。遅延素子134は、1つの音響フレームに含まれる全サブフレームのパワースペクトルが入力されると、1フレーム処理分遅延させて、パワースペクトル格納部135に1つの音響フレームに含まれる全サブフレームのパワースペクトルを格納する。
パワースペクトル格納部135は、所定時間分の音響フレームに含まれる全サブフレームのパワースペクトルを格納する。
信号持続時間算出部131bは、1つの音響フレームに含まれる全サブフレームのパワースペクトルを入力として得る。信号持続時間算出部131bは、1つの音響フレームに含まれる全サブフレームのパワースペクトルに基づいて、音響フレームに含まれる音響信号の持続区間と持続時間とを算出する。音響フレームに含まれる音響信号の持続時間算出処理は、第1実施形態の信号持続時間算出部131で説明された処理と同様でよい。
信号持続時間算出部131bは、例えば、式1を用いて、サブフレームTとサブフレームTよりtだけ時間的に前のサブフレームT−tとの相関係数rT(t)を求める。この
とき、第1実施形態の信号持続時間算出部131では、サブフレームの番号を示す変数Tの初期値は1であった。第2実施形態の信号持続時間算出部131は、サブフレームの番号を示す変数Tの初期値を0として扱う。
図15は、信号持続時間算出部131bが実行する音響信号の持続時間算出処理のフローの例を示す図である。図15では、現在処理中の音響フレームF(Fは0を含む自然数)に含まれる先頭サブフレームはサブフレーム(F,0)と表わされる。音響フレームFに含まれる先頭からT+1番目のサブフレームはサブフレーム(F,T)と表わされる。
信号持続時間算出部131bは、音響フレームに含まれる全サブフレームのパワースペクトルを、音響分析部12から入力されると、音響信号の持続時間算出処理を開始する。
信号持続時間算出部131bは、サブフレームを示す変数Tの初期値をT=0に設定する(OP41)。サブフレームを示す変数Tの範囲は、0≦T≦M−1である(Mは1フレームに含まれるサブフレームの個数)。
次に、信号持続時間算出部131bは、サブフレームTから時間的に遡るサブフレームの個数を示す変数tの値の初期値をt=1に設定する(OP42)。変数tの範囲は、1≦tである。
信号持続時間算出部131bは、T−tが0より小さいか否かを判定する(OP43)。
T−tが0より小さい場合には(OP43:Yes)、サブフレーム(F,T)の時間的にt個前のサブフレームが、音響フレームFの直前の音響フレームF−1に含まれるサブフレームであることを示す。従って、T−tが0より小さい場合には(OP43:Yes)、信号持続時間算出部131bは、音響フレームFに含まれるサブフレーム(F,T)と、音響フレームF−1に含まれるサブフレーム(F−1,M+T−t)との相関係数r(t)を求める(OP44)。信号持続時間算出部131bは、音響フレームFの直前の音響フレームF−1に含まれるサブフレーム(F−1,M+T−t)のパワースペクトルの値をパワースペクトル格納部135から読み出して、式1を用いて、相関係数r(t)を求める。
T−tが0以上の場合には(OP43:No)、サブフレーム(F,T)の時間的にt個前のサブフレームが、音響フレームFに含まれることを示す。従って、信号持続時間算出部131bは、サブフレーム(F,T)と、サブフレーム(F,T)から見てt個前のサブフレーム(F,T−t)との相関係数r(t)を求める(OP45)。信号持続時間算出部131bは、式1を用いて、相関係数r(t)を求める。
信号持続時間算出部131bは、算出された相関係数r(t)の値が、所定の閾値以上か否かを判定する(OP46)。例えば、所定の閾値は、0.7である。
算出された相関係数r(t)の値が、閾値以上である場合には(OP46:Yes)、サブフレーム(F,T)に含まれる音響信号とサブフレーム(F,T−t)に含まれる音響信号が同じ音響信号であるとみなされる。または、算出された相関係数r(t)の値が、閾値以上である場合には(OP46:Yes)、サブフレーム(F,T)に含まれる音響信号とサブフレーム(F−1,M+T−t)に含まれる音響信号が同じ音響信号であるとみなされる。従って、算出された相関係数r(t)の値が閾値以上である場合には、信号持続時間算出部131bは、次に、サブフレーム(F,T)と、サブフレーム(F−1,M+T−t)のさらに1つ前のサブフレームとの相関係数r(t)を求める。すなわち、信号持続時間算出部131bは、変数t=t+1とする(OP47)。その後、処理がOP43に移り、サブフレーム(F,T)と、サブフレーム(F−1,M+T−t)との相関係数r(t)が求められる。
算出された相関係数r(t)の値が、閾値未満である場合には(OP46:No)、サブフレーム(F,T)に含まれる音響信号と、サブフレーム(F,T−t)に含まれる音響信号が異なる音響信号であるとみなされる。又は、算出された相関係数r(t)の値が、閾値未満である場合には(OP46:No)、サブフレーム(F,T)に含まれる音響信号と、サブフレーム(F−1,M+T−t)に含まれる音響信号が異なる音響信号であるとみなされる。信号持続時間算出部131bは、算出された相関係数r(t)の値が閾値未満である場合には(OP46:No)、サブフレーム(F,T)とサブフレーム(F,T)のt個前のサブフレームとの相関係数r(t)を求める処理を終了する。
算出された相関係数r(t)の値が閾値未満である場合には(OP46:No)、信号持続時間算出部131bは、サブフレーム(F,T−t)と、その1つ後のサブフレームとの境界を音響信号の持続区間の境界に定める(OP48)。または、信号持続時間算出部131bは、サブフレーム(F−1,M+T−t)と、その1つ後のサブフレームとの境界を音響信号の持続区間の境界に定める(OP48)。
次に、信号持続時間算出部131bは、変数TがM−1より小さいか否かを判定する(OP49)。すなわち、信号持続時間算出部131bは、音響フレームFに含まれるすべてのサブフレーム(F,T)について、サブフレーム(F,T)からt個前のサブフレームとの相関係数r(t)を求める処理が終了したか否かを判定する。
変数TがM−1より小さい場合には(OP49:Yes)、音響フレームFに含まれるすべてのサブフレーム(F,T)について、サブフレーム(F,T)からt個前のサブフレームとの相関係数rT(t)を求める処理が終了していないことが示される。サブフレ
ーム(F,T)の次のサブフレーム(F,T+1)について、サブフレーム(F,T+1)からt個前のサブフレームとの相関係数rT(t)を求めるため、信号持続時間算出部
131bは、変数T=T+1とする(OP50)。その後、処理がOP42に移る。
変数TがM−1以上の場合には(OP49:No)、音響フレームFに含まれるすべてのサブフレーム(F,T)について、サブフレーム(F,T)からt個前のサブフレームとの相関係数rT(t)を求める処理が終了したことが示される。信号持続時間算出部1
31bは、OP48において定められた区間の境界に基づいて、音響信号の持続する区間を決定し、各区間に含まれる音響信号の持続時間を算出する(OP51)。信号持続時間算出部131は、各区間に含まれるサブフレームの数を計算し、各区間における音響信号の持続時間を算出する。
図15に示される例では、信号持続時間算出部131bは、サブフレーム(F,T)との相関係数r(t)の値が閾値以下になるまで、サブフレーム(F,T)と、サブフレーム(F,T)からt個前のサブフレームとの相関係数r(t)を求める処理を行う。すなわち、サブフレーム(F,T)に含まれる音響信号が音響フレームFの直前の音響フレームF−1にまたがる場合には、信号持続時間算出部131bは、直前の音響フレームF−1から音響フレームFに持続する音響信号の持続時間を算出する。
信号持続時間算出部131bは、音響フレームF−1におよぶ音響信号の区間と持続時間,その他の音響フレームFに含まれる音響信号の区間と持続時間,及び音響フレームF−1におよんだ分の音響信号を含む音響フレームF−1のサブフレームのパワースペクトルとを周波数特性比較部132bに出力する。
周波数特性比較部132bは、音響フレームFに含まれる全サブフレームのパワースペクトルと、音響フレームFに含まれる音響信号の区間と持続時間と、を入力として得る。また、音響フレームFに含まれる音響信号が、音響フレームFの直前の音響フレームF−1に及ぶ場合には、周波数特性比較部132bは、直前の音響フレームF−1に及んだ分の音響信号が含まれるサブフレームのパワースペクトルも入力として得る。周波数特性比較部132bは、第1実施形態の周波数特性比較部132と同様にして、音響信号の持続
時間が一定値以上である区間を抽出する。周波数特性比較部132bは、抽出された区間の音響信号を含むサブフレームのパワースペクトルから、ホルマント数と微細構造パワースペクトルの分散とを算出する。音響フレームFに含まれる音響信号が、直前の音響フレームF−1に及ぶ場合には、周波数特性比較部132bは、音響フレームF−1に及ぶ分の音響フレームF−1のサブフレームを含んだ区間の音響信号のホルマント数と微細構造パワースペクトルの分散とを算出する。
周波数特性比較部132bは、抽出された区間に含まれる音響信号のホルマント数と微細構造パワースペクトルの分散の値と、格納部133に格納される特徴音A〜C及び呼吸音のホルマント数と微細構造パワースペクトルの分散との比較値の範囲とを比較する。比較の結果によって、周波数特性比較部132bは、音響フレームFの睡眠状態を「呼吸あり状態」,「呼吸なし状態」,及び「無呼吸回復状態」の何れかに決定する。すなわち、周波数特性比較部132bは、図9に示される睡眠状態決定処理を実行する。
周波数特性比較部132bは、現音響フレームの睡眠状態を無呼吸判定部14に出力する。
<<第2実施形態の作用効果>>
睡眠状態決定部13bに、過去の音響フレームに含まれる全サブフレームのパワースペクトルの値を格納するパワースペクトル格納部135を備える。これによって、信号持続時間算出部131bは、現音響フレームの直前の音響フレームに含まれるサブフレームのパワースペクトルを用いて、音響信号の持続時間を算出することができる。直前の音響フレームに含まれるサブフレームのパワースペクトルを用いることによって、例えば、音響信号が直前の音響フレームに及ぶ場合にも、音響フレームの睡眠状態を精度よく決定することができる。
図16は、第2実施形態の作用効果を説明するため例の図である。図16に示される例では、特徴音の音響信号が連続する音響フレームF−1と音響フレームFとに分断される。第1実施形態の睡眠状態決定部13は、直前の音響フレームF−1に含まれるサブフレームのパワースペクトルを用いて音響信号の持続時間を算出することができない。すなわち、第1実施形態の睡眠状態決定部13は、音響フレームFに含まれる音響信号のみの持続時間,ホルマント数,微細構造パワースペクトルの分散を算出する。したがって、図16に示される例における、音響フレームF−1及び音響フレームFのそれぞれに含まれる特徴音の音響信号は、持続時間が一定値未満となってしまう可能性がある。また、音響フレームF−1及び音響フレームFのそれぞれに含まれる特徴音の音響信号の睡眠状態判断用パラメータ(ホルマント数及び微細構造パワースペクトルの分散)の値は、特徴音A〜C及び呼吸音の何れのホルマント数及び微細構造パワースペクトルの分散との比較値の範囲に含まれない可能性がある。すなわち、図16に示される例の場合には、第1実施形態の睡眠状態決定部13は、音響フレームF−1及び音響フレームFの睡眠状態を「呼吸なし状態」と決定し、睡眠状態の誤りが発生する可能性がある。
また、呼吸音の音響信号が音響フレームF−1と音響フレームFとにまたがる場合も考えられる。音響フレームF−1又は音響フレームFに含まれる呼吸音の音響信号の睡眠状態判定用パラメータの値が、特徴音A〜Cのいずれかの睡眠状態判定用パラメータが取り得る値の範囲に含まれる可能性がある。従って、第1実施形態の睡眠状態決定部13は、呼吸音が音響フレームF−1と音響フレームFとに含まれているにもかかわらず、音響フレームF−1又は音響フレームFの睡眠状態を「無呼吸回復状態」と決定し、睡眠状態の誤りが発生する可能性がある。
第2実施形態の睡眠状態決定部13bでは、直前の音響フレームF−1に含まれるサブフレームのパワースペクトルを用いて、音響フレームFに含まれる音響信号の持続時間を算出することができる。また、音響信号が直前の音響フレームF−1に及ぶ場合には、直前の音響フレームF−1に及ぶ音響信号のサブフレームのパワースペクトルを用いて、音響フレームFの睡眠状態決定処理を行うことができる。したがって、第2実施形態の睡眠状態決定部13bは、図16における音響フレームFに特徴音が含まれることを検出することができ、音響フレームFの睡眠状態を「無呼吸回復状態」と決定することができる。すなわち、第2実施形態の睡眠状態決定部13bによれば、音響フレームの睡眠状態決定の誤りを抑えることができる。
<<第2実施形態の変形例>>
信号持続時間算出部131bは、2つ以上の音響フレームにわたって持続する音響信号の持続時間を算出する場合には、図15のOP44における処理の代わりに、以下のような処理を行ってもよい。
図15のOP43において、T−tが0より小さい場合には、信号持続時間算出部131bは、サブフレーム(F,T)と、サブフレーム(F,T)よりt個前のサブフレーム(F−n,Mn+T−t)との相関係数r(t)を算出する。すなわち、サブフレーム(F,T)よりt個前のサブフレームが、音響フレームF−nに含まれることを示す。nは、以下の式3を満たす最大の0を含まない自然数である。
Figure 0005177293
これによって、音響信号が音響フレームF−nに含まれるサブフレームから、音響フレームFに含まれるサブフレーム(F,T)まで持続する場合でも、音響信号の持続時間を算出することができる。すなわち、音響信号が2つ以上の音響フレームにわたって持続する場合でも、音響信号の持続時間を算出することができる。
<第3実施形態>
第3実施形態の睡眠時無呼吸症候群の検査装置は、第1実施形態の検査装置1の構成と共通する構成を有するため、相違する点についてのみ説明する。
図17は、睡眠時無呼吸症候群の検査システムの構成例を示す図である。第3実施形態の睡眠時無呼吸症候群の検査システムは、検査装置1cと、検査装置1cに接続された媒体駆動装置20とを含む。第3実施形態の検査装置1cは、事前に録音された被験者の就寝中の音響データから、睡眠時無呼吸症候群の検査を行う。
検査装置1cは、入力部11c,CPU16,主記憶装置19,出力部15,バッファ18,及びディスプレイ6を備える。
入力部11cは、可搬記録媒体21から音響データを読み出す媒体駆動装置20と接続し、媒体駆動装置20から可搬記録媒体21に格納された音響データが入力される。または、入力部11cは、ネットワーク10と接続しており、ネットワーク10を通じて被験者の端末から音響データが入力される。このとき、入力される音響データは、ディジタル信号に変換済みである。入力部11cは、バッファ18に音響データを出力する。
バッファ18,主記憶装置19,及びCPU16については、第1実施形態で説明された構成と同様のため、説明は省略される。なお、CPU16は、主記憶装置19に保持される睡眠時無呼吸症候群の検査プログラムを読み出し、音響分析部12,睡眠状態決定部13,及び無呼吸判定部14として動作する。音響分析部12,睡眠状態決定部13,及び無呼吸判定部14についても、第1実施形態で説明された構成と同様のため、説明は省略される。
出力部15は、無呼吸判定部14から無呼吸状態の検出結果を入力として得る。出力部15は、無呼吸状態の検出結果をネットワーク5、プリンタ30、及びディスプレイ6に出力する。出力部15から出力される無呼吸状態の検出結果は、ディスプレイ6に表示されてもよい。出力部15から出力される無呼吸状態の検出結果は、ネットワーク5を通じて、被験者の端末に送信されてもよい。出力部15から出力される無呼吸状態の検出結果は、プリンタ30に出力され、紙媒体に印刷されてもよい。
<睡眠時無呼吸症候群の検査装置のハードウェア構成>
第1実施形態の検査装置1,第2実施形態の検査装置,及び第3実施形態の検査装置1c(以下、まとめて「検査装置」)は、情報処理装置(コンピュータ)を適用できる。情報処理装置とは、例えば、パーソナルコンピュータのような汎用のコンピュータや睡眠時無呼吸症候群の検査を実施する専用のコンピュータを用いて実現することができる。また、第1実施形態及び第2実施形態の検査装置は、携帯電話機を用いて実現することができる。
検査装置は、プロセッサ,主記憶装置,入力装置,出力装置,二次記憶装置,及び通信インタフェース装置のような周辺装置とのインタフェース装置を含む。主記憶装置及び二次記憶装置はコンピュータ読み取り可能な記録媒体である。
検査装置は、プロセッサが記録媒体に記憶されたプログラムを主記憶装置の作業領域にロードして実行し、プログラムの実行を通じて周辺装置が制御されることによって、所定の目的に合致した機能を実現することができる。
プロセッサは、例えば、CPU(Central Processing Unit)や、DSP(Digital Signal Processor)である。主記憶装置は、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)を含む。
二次記憶装置は、例えば、EPROM(Erasable Programmable
ROM),又はハードディスクドライブ(Hard Disk Drive)である。
また、二次記憶装置は、リムーバブルメディア、すなわち可搬記録媒体を含むことができる。リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、或いは、CD(Compact Disc)やDVD(Digital Versatile Disc)のようなディスク記録媒体である。
通信インタフェース装置は、有線のネットワーク、および、無線のネットワークと接続する。通信インタフェース装置は、例えば、LAN(Local Area Network)インタフェースボーや、無線通信のための無線通信回路である。
さらに、周辺装置は、キーボードやポインティングデバイスのような入力装置や、ディスプレイ装置やプリンタのような出力装置を含む。また、入力装置はマイクロフォンのような音声の入力装置を含むことができる。また、出力装置は、スピーカのような音声の出力装置を含むことができる。
検査装置として使用されるコンピュータは、プロセッサによる記録媒体上の睡眠時無呼吸症候群の検査プログラムの実行を通じて、周辺装置が制御されることによって、音響分析部12,睡眠状態決定部13,及び無呼吸判定部14としての機能を実現する。格納部133,状態メモリ143,パワースペクトル格納部135は、静的に又はプログラムの実行過程で主記憶装置又は二次記憶装置の記憶領域に作成される。
<第4実施形態>
図18は、第4実施形態の睡眠時無呼吸症候群の検査システムの構成例を示す図である。第4実施形態の睡眠時無呼吸症候群の検査システムは、検査装置100と、収音装置50とを含む。検査装置100は、分析部101,判定部102,検出部103,及び格納部104を含む。
収音装置50は、被験者の睡眠時に生じた音響信号を収集し、検査装置100に出力する。
検査装置100の分析部101は、収音装置で収集された被験者の睡眠時に生じた音響信号を入力として得る。分析部101は、入力された音響信号を分析する。分析部101は、音響信号の分析結果を判定部102に出力する。
判定部102は、分析部101から音響信号の分析結果を入力として得る。判定部102は、分析部101の分析結果において、音響信号に特徴音が含まれているか否かを判定する。特徴音は、睡眠状態が無呼吸状態から呼吸状態へ回復する際に生じる音である。判定部102は、特徴音が含まれるか否かの判定結果を検出部103に出力する。
検出部103は、特徴音が含まれるか否かの判定結果を入力として得る。検出部103は、特徴音が含まれると判定された場合、無呼吸状態を検出する。検出部103は、無呼吸状態の検出結果を出力する。
睡眠時無呼吸症候群の検査装置100は、睡眠状態が無呼吸状態から呼吸状態へ回復する際に生じる特徴音が、被験者の睡眠時に生じた音響信号に含まれることを判定する。これによって、特徴音が検出されない限り無呼吸状態は検出されないので、睡眠時の無呼吸状態を精度よく検出することができる。
また、検査装置100は、以下のように構成されてもよい。分析部101は、入力された音響信号を単位時間毎に分析する。分析部101は、単位時間の音響信号の分析結果を判定部102に出力する。
判定部102は、単位時間の音響信号に特徴音が含まれているかを判定する。判定部102は、単位時間の音響信号に特徴音が含まれていない場合には、当該単位時間の音響信号に呼吸音が含まれているか否かを判定する。
判定部102は、単位時間の音響信号に特徴音が含まれている場合には、睡眠状態が「無呼吸回復状態」であると判定する。
判定部102は、単位時間の音響信号に特徴音が含まれていないが呼吸音が含まれている場合には睡眠状態が「呼吸あり状態」であると判定する。
判定部102は、単位時間の音響信号に特徴音及び呼吸音が含まれていない場合には睡眠状態が「呼吸なし状態」であると判定する。
判定部102は、判定された睡眠状態を、検出部103と格納部104に出力する。
格納部104は、判定部102からの睡眠状態を入力として得る。格納部104は、睡眠状態を時系列に沿った順番で格納する。すなわち、格納部104は、睡眠状態の履歴を保持する。
検出部103は、判定部102から睡眠状態を入力として得る。格納部に格納された睡眠状態の履歴が少なくとも「呼吸なし状態」から「無呼吸回復状態」への遷移を示す場合に、無呼吸状態を検出する。検出部103は、無呼吸状態の検出結果を出力する。
睡眠時無呼吸症候群の検査装置100は、単位時間毎に音響信号を分析し、単位時間の音響信号に特徴音及び呼吸音が含まれているかを判定する。検査装置100は、判定結果に基づいて、単位時間の音響信号から見た被験者の睡眠状態を「無呼吸回復状態」,「呼吸あり状態」,及び「呼吸なし状態」の何れかであると判定する。検査装置100は、単位時間の被験者の睡眠状態の履歴が、少なくとも「呼吸なし状態」から「無呼吸回復状態」への遷移を示す場合に、被験者の無呼吸状態を検出する。これによって、より慎重に無呼吸状態を検出することができ、無呼吸状態の検出の精度を高めることができる。
また、検査装置100の分析部101は、音響信号に含まれる被験者により生じる音の音響信号の持続時間と周波数特性を算出し、判定部102は、被験者により生じる音の音響信号の持続時間及び周波数特性が特徴音と一致するか否かを判定するようにしてもよい。
また、検査装置100の分析部101は、単位時間における音響信号を所定の時間区間長でM個(M:0を含まない自然数)の時間区間に分割し、時間区間毎のパワースペクトルを算出するようにしてもよい。判定部102は、或る時間区間T(0≦T≦M−1)における音響信号のパワースペクトルと時間区間T以前の時間区間(T−t)(0<t)における音響信号のパワースペクトルとの相関係数を求める。当該相関係数が閾値以上であれば、判定部102は、時間区間(T−t)から時間区間Tまで持続する音響信号を検出することで、当該音響信号の持続時間を算出してもよい。さらに判定部102は、時間区間(T−t)が当該単位時間より以前の単位時間に含まれる時間区間を示す場合には、時間区間Tにおける音響信号のパワースペクトルと当該単位時間より以前の単位時間に含まれる時間区間(T−t)におけるパワースペクトルとの相関係数を求めてもよい。これによって、当該相関係数が閾値以上であれば、当該単位時間より以前の単位時間に含まれる時間区間(T−t)から時間区間Tまで持続する音響信号を検出することができる。当該単位時間より以前の単位時間に含まれる時間区間(T−t)から時間区間Tまで持続する音響信号が検出されることによって、判定部102は、或る単位時間の音響信号に特徴音又は呼吸音が含まれることを精度よく判定することができる。或る単位時間の音響信号に特徴音又は呼吸音が含まれることが精度よく判定されることによって、判定部102は、或る単位時間の睡眠状態を精度よく判定することができる。結果として、睡眠時の無呼吸状態の検出の精度が向上する。
判定部102は、時間区間(T−t)から時間区間Tまで持続する音響信号の持続時間、ホルマント数及びパワースペクトルの分散特性を含む音響信号の音響的特徴を表す音響パラメータを算出してもよい。判定部102は、音響パラメータをあらかじめ定められた特徴音及び呼吸音の音響的特徴と比較することで、睡眠状態を「無呼吸回復状態」,「呼吸あり状態」,「呼吸なし状態」のいずれであるかを判定してもよい。
1,1c,100 睡眠時無呼吸症候群の検査装置
2 マイクロフォン
3 被験者
5 ネットワーク
6 ディスプレイ
7 スピーカ
8 二次記憶装置
11,11c 入力部
12 音響分析部
13,13b 睡眠状態決定部
14 無呼吸判定部
15 出力部
17 アナログ/ディジタル変換部
18 バッファ
20 媒体駆動装置
21 可搬記録媒体
30 プリンタ
50 収音装置
101 分析部
102 判定部
103 検出部
104 格納部
121 サブフレーム分割部
122 時間/周波数変換部
123 パワースペクトル算出部
131,131b 信号持続時間算出部
132 周波数特性比較部
133 格納部
134 遅延素子
135 パワースペクトル格納部
141 状態推移調査部
142 遅延素子
143 状態メモリ

Claims (11)

  1. 収音装置で収音された被験者の睡眠時に生じる音響信号を分析し、前記音響信号に含まれる被験者によって生じる音と認められる音響信号の持続時間と周波数特性を算出する分析部と、
    前記分析部の分析結果に基づいて、前記音響信号の前記持続時間及び前記周波数特性が、前記被験者の睡眠状態が無呼吸状態から呼吸状態へ回復する際に生じる特徴音と一致するか否かを判定し、前記音響信号に前記特徴音が含まれているか否かを判定する判定部と、
    を含む睡眠時無呼吸症候群の検査装置。
  2. 前記音響信号に前記特徴音が含まれている場合に、無呼吸状態を検出する検出部をさらに含む請求項1に記載の睡眠時無呼吸症候群の検査装置。
  3. 前記分析部は、前記音響信号の分析を単位時間毎に行い、
    前記判定部は、前記分析部の分析結果に基づいて、当該単位時間の音響信号に少なくとも前記特徴音が含まれているか否かを判定し、当該単位時間の音響信号に前記特徴音が含まれている場合には睡眠状態が「無呼吸回復状態」であると判定し、当該単位時間の音響信号に前記特徴音及び呼吸音が含まれていない場合には前記睡眠状態が「呼吸なし状態」であると判定し、
    前記睡眠状態が少なくとも「呼吸なし状態」から「無呼吸回復状態」への推移を示す場合に、無呼吸状態を検出する検出部と、
    をさらに含む請求項1又は2に記載の睡眠時無呼吸症候群の検査装置。
  4. 前記睡眠状態の履歴を保持する格納部
    をさらに含む請求項3に記載の睡眠時無呼吸症候群の検査装置。
  5. 前記判定部は、当該単位時間の音響信号に前記特徴音は含まれていないが前記呼吸音が含まれている場合は前記睡眠状態が「呼吸あり状態」と判定し、
    前記検出部は、前記格納部に格納された前記睡眠状態の履歴が「呼吸あり状態」,「呼吸なし状態」,「無呼吸回復状態」の順に推移する場合に、前記無呼吸状態を検出する
    請求項4に記載の睡眠時無呼吸症候群の検査装置。
  6. 前記分析部は、単位時間における音響信号を所定の時間区間長でM個(M:0を含まない自然数)の時間区間に分割し、時間区間毎のパワースペクトルを算出し、
    前記判定部は、或る時間区間T(0≦T≦M−1)における音響信号のパワースペクトルと前記時間区間T以前の時間区間(T−t)(0<t)における音響信号のパワースペクトルとの相関係数を求め、当該相関係数が閾値以上であれば、前記時間区間(T−t)から前記時間区間Tまで持続する音響信号を検出することで、当該音響信号の持続時間を算出する
    請求項1からのいずれか一項に記載の睡眠時無呼吸症候群の検査装置。
  7. 前記判定部は、前記時間区間(T−t)が当該単位時間より以前の単位時間に含まれる時間区間を示す場合には、前記時間区間Tにおける音響信号のパワースペクトルと当該単位時間より以前の単位時間に含まれる時間区間(T−t)におけるパワースペクトルとの相関係数を求め、当該相関係数が前記閾値以上であれば、当該単位時間より以前の単位時間に含まれる時間区間(T−t)から前記時間区間Tまで持続する音響信号を検出することで、当該音響信号の持続時間を算出する
    請求項に記載の睡眠時無呼吸症候群の検査装置。
  8. 前記判定部は、前記音響信号の音響的特徴を表す音響パラメータを算出し、
    前記音響パラメータをあらかじめ定められる前記特徴音及び前記呼吸音の前記音響的特徴と比較することで、前記睡眠状態を「無呼吸回復状態」,「呼吸あり状態」,「呼吸なし状態」のいずれであるかを判定する
    請求項又はに記載の睡眠時無呼吸症候群の検査装置。
  9. 前記音響パラメータは、前記音響信号の持続時間、ホルマント数及びパワースペクトルの分散特性である
    請求項に記載の睡眠時無呼吸症候群の検査装置。
  10. コンピュータが、
    収音装置で収音された睡眠時に生じる音響信号を分析し、前記音響信号に含まれる被験者によって生じる音と認められる音響信号の持続時間と周波数特性を算出し、
    前記分析部の分析結果に基づいて、前記音響信号の前記持続時間及び前記周波数特性が、前記被験者が無呼吸状態から呼吸状態へ回復する際に生じる特徴音と一致するか否かを判定し、前記音響信号に前記特徴音が含まれているか否かを判定する
    睡眠時無呼吸症候群の検査方法。
  11. 睡眠時無呼吸症候群の検査装置として動作するコンピュータに、
    収音装置で収音された睡眠時に生じる音響信号を分析し、前記音響信号に含まれる被験者によって生じる音と認められる音響信号の持続時間と周波数特性を算出するステップと、
    前記分析の結果に基づいて、前記音響信号の前記持続時間及び前記周波数特性が、前記被験者が無呼吸状態から呼吸状態へ回復する際に生じる特徴音と一致するか否かを判定し、前記音響信号に前記特徴音が含まれているか否かを判定するステップと
    を実行させるためのプログラム。
JP2011523522A 2009-07-24 2009-07-24 睡眠時無呼吸症候群の検査装置及びプログラム Active JP5177293B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/063255 WO2011010384A1 (ja) 2009-07-24 2009-07-24 睡眠時無呼吸症候群の検査装置及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2011010384A1 JPWO2011010384A1 (ja) 2012-12-27
JP5177293B2 true JP5177293B2 (ja) 2013-04-03

Family

ID=43498869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011523522A Active JP5177293B2 (ja) 2009-07-24 2009-07-24 睡眠時無呼吸症候群の検査装置及びプログラム

Country Status (4)

Country Link
US (1) US9307950B2 (ja)
EP (1) EP2457504B1 (ja)
JP (1) JP5177293B2 (ja)
WO (1) WO2011010384A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2739351C (en) 2008-11-17 2013-01-29 Toronto Rehabilitation Institute Method and apparatus for monitoring breathing cycle by frequency analysis of an acoustic data stream
US9949667B2 (en) 2008-11-17 2018-04-24 University Health Network Mask and method for use in respiratory monitoring and diagnostics
JP5765338B2 (ja) * 2010-06-10 2015-08-19 富士通株式会社 音声処理装置および音声処理装置の作動方法
CA2836196C (en) 2011-05-17 2021-06-29 University Health Network Breathing disorder identification, characterization and diagnosis methods, devices and systems
US9649087B2 (en) 2011-05-17 2017-05-16 University Health Network Method and device for apnea and hypopnea detection
JP5673351B2 (ja) * 2011-05-25 2015-02-18 富士通株式会社 体動検出装置、体動検出方法及び体動検出プログラム
EP2810599B1 (en) 2012-01-31 2016-05-25 Torytrans, S.l. Electrostimulation system for the treatment of sleep apnoea
JP6019659B2 (ja) * 2012-03-27 2016-11-02 富士通株式会社 無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム
JP5942566B2 (ja) * 2012-04-19 2016-06-29 富士通株式会社 無呼吸判定プログラム、無呼吸判定装置及び無呼吸判定方法
US20130281883A1 (en) * 2012-04-19 2013-10-24 Fujitsu Limited Recording medium, apnea determining apparatus, and apnea determining method
US11633150B2 (en) * 2012-05-31 2023-04-25 Ben Gurion University Of The Negev Research And Development Authority Apparatus and method for diagnosing sleep quality
EP4176800A1 (en) * 2015-08-17 2023-05-10 ResMed Sensor Technologies Limited Screener for sleep disordered breathing
US10506969B2 (en) 2015-11-03 2019-12-17 University Health Network Acoustic upper airway assessment system and method, and sleep apnea assessment system and method relying thereon
WO2017135899A1 (en) * 2016-02-03 2017-08-10 Nanyang Technological University Methods for detecting a sleep disorder and sleep disorder detection devices
WO2020070170A1 (en) * 2018-10-01 2020-04-09 Koninklijke Philips N.V. Systems and methods for using breath events in sleep staging
JP7122225B2 (ja) * 2018-10-31 2022-08-19 エア・ウォーター・バイオデザイン株式会社 処理装置、システム、処理方法、およびプログラム
CN114754905B (zh) * 2021-01-08 2023-10-31 深圳爱根斯通科技有限公司 对象状态检测方法、装置、智能终端及存储介质
WO2023048158A1 (ja) * 2021-09-22 2023-03-30 国立大学法人電気通信大学 睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339674A (ja) * 2002-05-29 2003-12-02 Yokogawa Electric Corp 睡眠段階推定方法及びその方法を用いた装置
JP2005152328A (ja) * 2003-11-26 2005-06-16 Denso Corp 無呼吸症候群の検査装置
JP2007014501A (ja) * 2005-07-06 2007-01-25 Toshiba Corp 呼吸状態判定装置、呼吸状態判定方法および呼吸状態判定プログラム
JP2007061203A (ja) * 2005-08-29 2007-03-15 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 体温センサ付き検出端を用いた睡眠中呼吸音の解析による睡眠時無呼吸症候群の検出・評価システム
JP2007300951A (ja) * 2006-05-08 2007-11-22 Mitsubishi Electric Corp 健康状態測定装置及び健康管理システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522382A (en) * 1987-06-26 1996-06-04 Rescare Limited Device and method for treating obstructed breathing having a delay/ramp feature
US6168568B1 (en) * 1996-10-04 2001-01-02 Karmel Medical Acoustic Technologies Ltd. Phonopneumograph system
US6290654B1 (en) * 1998-10-08 2001-09-18 Sleep Solutions, Inc. Obstructive sleep apnea detection apparatus and method using pattern recognition
JP2001029328A (ja) 1999-07-23 2001-02-06 Toshiba Corp 事故防止装置
US6666830B1 (en) * 2000-08-17 2003-12-23 East River Ventures, Lp System and method for detecting the onset of an obstructive sleep apnea event
US6932774B2 (en) 2002-06-27 2005-08-23 Denso Corporation Respiratory monitoring system
JP3823887B2 (ja) 2002-06-27 2006-09-20 株式会社デンソー 無呼吸症候群の検査装置
JP3744934B2 (ja) * 2003-06-11 2006-02-15 松下電器産業株式会社 音響区間検出方法および装置
JP4472294B2 (ja) * 2003-08-22 2010-06-02 株式会社サトー 睡眠時無呼吸症候群診断装置、並びに、信号解析装置及びその方法
US7306564B2 (en) 2003-11-26 2007-12-11 Denso Corporation Breath monitor
JP4407365B2 (ja) 2004-04-23 2010-02-03 パナソニック電工株式会社 睡眠状態検出装置
JP2008507316A (ja) * 2004-07-23 2008-03-13 インターキュア リミティド 非接触マイクを使用する呼吸パターン決定のための装置と方法
US20080243017A1 (en) * 2007-03-28 2008-10-02 Zahra Moussavi Breathing sound analysis for estimation of airlow rate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339674A (ja) * 2002-05-29 2003-12-02 Yokogawa Electric Corp 睡眠段階推定方法及びその方法を用いた装置
JP2005152328A (ja) * 2003-11-26 2005-06-16 Denso Corp 無呼吸症候群の検査装置
JP2007014501A (ja) * 2005-07-06 2007-01-25 Toshiba Corp 呼吸状態判定装置、呼吸状態判定方法および呼吸状態判定プログラム
JP2007061203A (ja) * 2005-08-29 2007-03-15 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 体温センサ付き検出端を用いた睡眠中呼吸音の解析による睡眠時無呼吸症候群の検出・評価システム
JP2007300951A (ja) * 2006-05-08 2007-11-22 Mitsubishi Electric Corp 健康状態測定装置及び健康管理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012064786; 中野博: '睡眠時無呼吸症候群といびき音の解析' 日本胸部臨床 63巻7号, 20040720, PAGE.644-653, 克誠堂出版株式会社/今井良 *

Also Published As

Publication number Publication date
EP2457504A4 (en) 2013-07-10
EP2457504B1 (en) 2014-07-16
JPWO2011010384A1 (ja) 2012-12-27
WO2011010384A1 (ja) 2011-01-27
EP2457504A1 (en) 2012-05-30
US9307950B2 (en) 2016-04-12
US20120190996A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5177293B2 (ja) 睡眠時無呼吸症候群の検査装置及びプログラム
US11000223B2 (en) Methods for detecting a sleep disorder and sleep disorder detection devices
JP4472294B2 (ja) 睡眠時無呼吸症候群診断装置、並びに、信号解析装置及びその方法
US8834386B2 (en) Noise reduction of breathing signals
JP4935931B2 (ja) 無呼吸検出プログラムおよび無呼吸検出装置
US20080312547A1 (en) Cough Detecting Apparatus and Cough Detecting Method
JP2008525060A5 (ja)
WO2014036263A1 (en) An accurate analysis tool and method for the quantitative acoustic assessment of infant cry
Chang et al. Performance evaluation and enhancement of lung sound recognition system in two real noisy environments
JP2013123495A (ja) 呼吸音解析装置、呼吸音解析方法、呼吸音解析プログラムおよび記録媒体
JP2005066045A (ja) 音データ処理装置及びプログラム
JP6019659B2 (ja) 無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム
JP5293329B2 (ja) 音声信号評価プログラム、音声信号評価装置、音声信号評価方法
Doheny et al. Estimation of respiratory rate and exhale duration using audio signals recorded by smartphone microphones
Abeyratne et al. Pitch-jitter analysis of snoring sounds for the diagnosis of sleep apnea
CN111374819B (zh) 止鼾器及其鼾声识别方法、鼾声识别装置和存储介质
JP5827108B2 (ja) 情報処理方法、装置及びプログラム
JP6501917B2 (ja) 生体音解析装置及び生体音解析方法、並びにコンピュータプログラム及び記録媒体
Ankişhan et al. A new portable device for the snore/non-snore classification
AU2021366259A1 (en) Processing recordings of a subject&#39;s breathing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R150 Certificate of patent or registration of utility model

Ref document number: 5177293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150