JP6019659B2 - 無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム - Google Patents

無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム Download PDF

Info

Publication number
JP6019659B2
JP6019659B2 JP2012071766A JP2012071766A JP6019659B2 JP 6019659 B2 JP6019659 B2 JP 6019659B2 JP 2012071766 A JP2012071766 A JP 2012071766A JP 2012071766 A JP2012071766 A JP 2012071766A JP 6019659 B2 JP6019659 B2 JP 6019659B2
Authority
JP
Japan
Prior art keywords
breathing
frame
midway
section
apnea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012071766A
Other languages
English (en)
Other versions
JP2013202101A (ja
Inventor
千里 石川
千里 石川
太郎 外川
太郎 外川
猛 大谷
猛 大谷
鈴木 政直
政直 鈴木
亜佐子 西田
亜佐子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012071766A priority Critical patent/JP6019659B2/ja
Priority to US13/692,463 priority patent/US9629582B2/en
Priority to EP12195591.8A priority patent/EP2644096B1/en
Publication of JP2013202101A publication Critical patent/JP2013202101A/ja
Application granted granted Critical
Publication of JP6019659B2 publication Critical patent/JP6019659B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Description

本発明は、睡眠時無呼吸症候群を検査するための無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラムに関する。
睡眠時無呼吸症候群は、10秒以上呼吸が停止する状態である無呼吸状態が、7時間の睡眠中に30回以上認められるもの、または、睡眠1時間当りに5回以上認められるものと定義される。睡眠時無呼吸症候群は、昼間の耐えがたい眠気,抑うつ,集中力の低下,いびき等の症状を引き起こす。また、睡眠時無呼吸症候群の患者自身は睡眠中であるため、家族等の同居者がいない場合などは、睡眠時無呼吸症候群の発見が遅れることが多い。
睡眠時無呼吸症候群の精密検査では、検査用のデータ取得装置の備えつけてある病室を有する病院への入院,及び専門医によるデータの解析が必要となる。すなわち、患者に費用及び時間の負担がかかる上、体にセンサを取りつける等が必要であることが多く、患者の肉体的負担となる。
かかる観点から、個人が自宅等で睡眠時の無呼吸状態の有無を簡易に検出できる方法が望まれている。
睡眠時の無呼吸状態の簡易な検出方法には、例えば、睡眠中の音響を録音し、音量が所定の閾値以下になる状況が一定時間以上継続する場合に無呼吸状態と判定する方法がある。また、例えば、睡眠中の音響を録音し、無呼吸状態直後の突発的な音(例えば、短い息、うめき声)に基づいて無呼吸状態を検出する方法がある。
特開2001−029328号公報 国際公開第2011/010384号
しかしながら、睡眠時の被験者の音声は、個人差や睡眠時の姿勢によって音量が変わりやすい。また、音響信号には背景雑音が含まれる。背景雑音はその性質が一定ではなく変化しやすい。そのため、音量を判定基準とした無呼吸状態の検出方法では、無呼吸状態の検出漏れや無呼吸状態の誤検出が発生しやすいという問題があった。無呼吸状態の検出漏れは、例えば、被験者は無呼吸状態であるにもかかわらず体動音や背景雑音が含まれることにより無呼吸状態と判定されないことである。無呼吸状態の誤検出は、例えば、被験者は呼吸しているにもかかわらず、被験者の姿勢等により録音された呼吸音が小さいために無呼吸状態と判定されてしまうことである。
本発明の一態様は、睡眠時の無呼吸状態を精度良く検出する無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラムを提供することを目的とする。
本発明の態様の一つは、
睡眠中の音響信号から、呼吸音を含むとみなされる呼吸区間と、呼吸区間の間に存在す
る中途区間とを検出する区間検出部と、
前記中途区間に含まれる背景雑音成分と前記背景雑音成分以外の信号成分に基づく音響特徴量を算出する算出部と、
前記音響特徴量が所定条件に合致する場合に、前記中途区間を無呼吸状態と判定する判定部と、
を備える無呼吸状態判定装置である。
本発明の他の態様の一つは、上述した無呼吸状態判定装置が実行する無呼吸状態判定方法である。また、本発明の他の態様は、コンピュータを上述した無呼吸状態判定装置として機能させる無呼吸状態判定プログラム、及び当該プログラムを記録したコンピュータ読み取り可能な記録媒体を含むことができる。コンピュータ等が読み取り可能な記録媒体には、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータ等から読み取ることができる記録媒体をいう。
開示の無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラムによれば、睡眠時の無呼吸状態を精度良く検出することができる。
呼吸音が含まれる場合と呼吸音が含まれない場合とでの音響データのSN比の一例を示す図である。 無呼吸状態判定装置のハードウェア構成例を示す図である。 第1実施形態における無呼吸状態判定装置の機能ブロックの一例を示す図である。 音響フレーム,呼吸区間,中途区間の関係の一例を示す図である。 第1実施形態における中途区間分析部の機能ブロックの一例を示す図である。 無呼吸状態判定装置の処理のフローチャートの一例である。 無呼吸状態判定装置の処理のフローチャートの一例である。 第2実施形態における無呼吸状態判定装置の機能ブロック図の一例である。 第2実施形態における前後区間分析部の機能ブロックの一例を示す図である。 無呼吸状態判定装置が各区間について実行する処理のフローチャートの一例である。 1の中途区間に対する直前の呼吸区間と直後の呼吸区間とのパワースペクトルを比較した例を示す図である。 中途区間と該中途区間に対する直前の呼吸区間とのパワースペクトルを比較した例を示す図である。 第3実施形態における無呼吸状態判定装置の機能ブロック図の一例である。 第3実施形態における中途区間分析部の機能ブロックの一例を示す図である。 無呼吸状態判定装置の処理のフローチャートの一例である。 無呼吸状態判定装置の処理のフローチャートの一例である。 第4実施形態における無呼吸状態判定装置の機能ブロック図の一例である。 第4実施形態における前後区間分析部の機能ブロックの一例を示す図である。 第4実施形態における中途区間分析部の機能ブロックの一例を示す図である。 無呼吸状態判定装置の処理のフローチャートの一例である。 無呼吸状態判定装置の処理のフローチャートの一例である。
以下、図面に基づいて、本発明の実施の形態を説明する。以下の実施形態の構成は例示であり、本発明は実施形態の構成に限定されない。
<第1実施形態>
例えば、マイクとは反対の方向に向いている等の被験者の姿勢によって録音される呼吸音の音量が小さい場合には、音量を判定基準として、呼吸と呼吸との間の中途区間が呼吸音を含んでいない、すなわち、無呼吸状態である、と判定することは困難である。そこで、第1実施形態では、信号成分に基づく音響特徴量を用いて、無呼吸状態を検出する。
音響信号には、背景騒音が含まれることが多い。例えば、一般家庭の寝室において録音された睡眠中の音声には、被験者の呼吸音に加え、部屋の暗騒音,屋内の騒音,屋外の騒音(例えば、自動車音,工事音等)が録音されることが多い。
図1は、呼吸音が含まれる区間と呼吸音が含まれない区間とでの音響データのSN比の一例を示す図である。図1中では、呼吸音が含まれる区間は「呼吸あり」、呼吸音が含まれない区間は「呼吸なし」と表記されている。時間的に連続する呼吸音が含まれる区間と呼吸音が含まれない区間とには同程度の背景雑音が含まれると仮定すると、呼吸音が含まれる区間と呼吸音が含まれない区間とでは、呼吸音が含まれる区間の方が雑音の影響は小さい。そのため、図1に示されるように、呼吸音が含まれる区間のSN比は、所定の閾値より大きくなる。一方、呼吸音が含まれない区間では、呼吸音が含まれないために雑音の影響が大きくなる。したがって、呼吸音が含まれない区間のSN比は、所定の閾値より小さくなる。以上より、図1に示されるように、音響データのSN比を用いると、音量に関わらず、呼吸音が含まれる区間と呼吸音が含まれない区間との差異が明確になる。
したがって、第1実施形態では、無呼吸状態判定装置は、背景雑音成分と背景雑音成分以外の信号成分に基づく音響特徴量としてSN比を用いて、無呼吸状態を検出する。具体的には、無呼吸状態判定装置は、マイク等で収集した被験者の睡眠時の音響データから、呼吸と呼吸との間の中途区間におけるSN比を算出し、該中途区間が無呼吸状態であることを判定する。
<無呼吸状態判定装置の構成>
図2は、無呼吸状態判定装置のハードウェア構成例を示す図である。無呼吸状態判定装置は、例えば、携帯電話端末,スマートフォン,携帯情報端末,タブレット型のコンピュータ,ノート型のパーソナルコンピュータ,ゲーム装置等の情報処理装置である。
無呼吸状態判定装置100は、プロセッサ101,主記憶装置102,入力装置103,出力装置104,補助記憶装置105,可搬記録媒体駆動装置106,ネットワークインタフェース107,及び音声入力部108を備える。また、これらはバス109により互いに接続されている。
入力装置103は、例えば、操作ボタン,タッチパネル,キーボード,キーパッド等である。入力装置103から入力されたデータは、プロセッサ101に出力される。
音声入力部108は、マイクロフォン108a,アンプ108b,AD変換器108cを含む。マイクロフォン108aは、被験者の近傍に、被験者の方を向いて配置される。マイクロフォン108aは、被験者が発する呼吸音や音声、及び被験者の周囲の音響信号
を収集する。マイクロフォン108aは、収集された音響の電気信号をアンプ108bに出力する。以降、音響の電気信号を「音響信号」と呼ぶ。
音響信号はアンプ108bによって増幅されアナログ/ディジタル変換器(A/D変換器)108cに入力される。A/D変換器108cは、音響信号をアナログ信号からディジタル信号に変換する。ディジタル信号に変換された音響データは、プロセッサ101に出力される。
可搬記録媒体駆動装置106は、可搬記録媒体110に記録されるプログラムや各種データを読出し、プロセッサ101に出力する。可搬記録媒体110は、例えば、SDカード,miniSDカード,microSDカード,USB(Universal Serial Bus)フラッシュメモリ,CD(Compact Disc),DVD(Digital Versatile Disc),又はフラッシュメモリカードのような記録媒体である。
ネットワークインタフェース107は、ネットワークとの情報の入出力を行うインタフェースである。ネットワークインタフェース107は、有線のネットワーク、および、無線のネットワークと接続する。ネットワークインタフェース107は、例えば、NIC(Network Interface Card),無線LAN(Local Area Network)カード等である。ネットワークインタフェース107で受信されたデータ等は、プロセッサ101に出力される。
補助記憶装置105は、様々なプログラムや、各プログラムの実行に際してプロセッサ101が使用するデータを格納する。補助記憶装置105は、例えば、EPROM(Erasable Programmable ROM)、又はハードディスクドライブ(Hard Disc Drive)等の不揮発性のメモリである。補助記憶装置105は、例えば、オペレーティングシステム(OS),無呼吸状態判定プログラム,その他様々なアプリケーションプログラムを保持する。
主記憶装置102は、プロセッサ101に、補助記憶装置105に格納されているプログラムをロードする記憶領域および作業領域を提供したり、バッファとして用いられたりする。主記憶装置102は、例えば、RAM(Random Access Memory)のような半導体メモリである。
プロセッサ101は、例えば、CPU(Central Processing Unit)である。プロセッ
サ101は、補助記憶装置105又は可搬記録媒体に保持されたOSや様々なアプリケーションプログラムを主記憶装置102にロードして実行することによって、様々な処理を実行する。プロセッサ101は、1つに限られず、複数備えられてもよい。
出力装置104は、プロセッサ101の処理の結果を出力する。出力装置104は、スピーカ等の音声出力装置,ディスプレイ,プリンタを含む。
例えば、無呼吸状態判定装置100は、プロセッサ101が補助記憶装置105に保持される無呼吸状態判定プログラムを主記憶装置102にロードして実行する。無呼吸判定装置100は、無呼吸状態判定プログラムの実行を通じて、音声入力部108を通じて入力される被験者の睡眠中の音響データから無呼吸状態を検出する。なお、無呼吸状態判定装置のハードウェア構成は、一例であり、上記に限られず、実施の形態に応じて適宜構成要素の省略や置換、追加が可能である。例えば、マイクロフォン108aは、無呼吸判定装置100とは別の独立した装置であって、ケーブルで接続されていてもよい。また、以降は、無呼吸状態判定装置100が、音声入力装置108を通じて入力される被験者の睡眠中の音響データから無呼吸状態を判定する場合について説明するが、これに限れない。例えば、無呼吸状態判定装置100は、予め録音された被験者の睡眠時の音響データから無呼吸状態を判定してもよい。この場合の被験者の睡眠時の音響データは、例えば、補助
記憶装置105に格納されていてもよいし、可搬記録媒体110に記録されていてもよいし、ネットワークを通じてネットワークインタフェース107から入力されてもよい。
図3は、第1実施形態における無呼吸状態判定装置100の機能ブロックの一例を示す図である。無呼吸状態判定装置100は、プロセッサ101が補助記憶装置105に格納される無呼吸状態判定プログラムを実行することによって、フレーム分割部1,無呼吸検出部2,出力処理部3として動作する。無呼吸状態判定装置100の各機能ブロックは、プロセッサ101のソフトウェア処理によって実現されることに限られず、ハードウェアによって実現されてもよい。例えば、無呼吸状態判定装置100の各機能ブロックは、LSI(Large Scale Integration),FPGA(Field-Programmable Gate Array)等の電子回路によって実現されてもよい。
フレーム分割部1は、音声入力部108から入力される音響データを所定の時間長の音響フレームに分割し、音響フレームを出力する。以下、音響フレームを、単にフレームと称することもある。例えば、1フレームの時間長は20msである。フレーム分割部1は、「分割部」の一例である。
無呼吸検出部2には、フレーム分割部1から出力された音響フレームが入力される。無呼吸検出部2は、音響フレームを分析し、無呼吸状態を検出して、無呼吸状態の検出結果を出力する。無呼吸検出部2の詳細は、後述する。
出力処理部3は、無呼吸検出部2から入力される無呼吸状態の検出結果に対し所定の処理を実行して、無呼吸状態の検出結果を所定の装置に出力する。例えば、出力処理部3は、無呼吸状態の検出結果を補助記憶装置105に格納し、ユーザから出力指示が入力されると、無呼吸状態の検出結果を出力装置104に出力する。無呼吸状態の検出結果は、例えば、入力又は収集された音響データ中の無呼吸状態の検出回数,各無呼吸状態の時間長等である。
(無呼吸検出部)
無呼吸検出部2は、呼吸検出部21,音量算出部22,中途区間分析部23,及び無呼吸判定部24を含む。
呼吸検出部21には、フレーム分割部1から出力された音響フレームが入力される。呼吸検出部21は、フレーム単位で呼吸の有無を判定し、各フレームの呼吸の有無の判定結果を出力する。呼吸検出部21のフレームの呼吸の有無の判定方法は所定の方法に限定されない。例えば、特許文献1(特開2001−029328号公報)に開示されるように、呼吸検出部21は、各フレームの音量と所定の閾値とを比較して、各フレームの呼吸の有無を判定してもよい。この場合には、音量が所定の閾値以上であるフレームは呼吸ありと判定され、音量が所定の閾値未満であるフレームは呼吸なしと判定される。また、例えば、特許文献2(国際公開第2011/010384号)に開示される方法でもよい。以下、呼吸検出部21によって呼吸ありと判定された音響フレームを、呼吸フレームと称する。また、呼吸検出部21によって呼吸なしと判定された音響フレームを、非呼吸フレームと称する。呼吸検出部21は、「区間検出部」の一例である。
図4は、音響フレーム,呼吸区間,中途区間の関係の一例を示す図である。図4に示されるグラフにおいて、横軸は時間,縦軸は入力音の音量を示す。無呼吸状態判定装置100では、呼吸フレームが連続する区間を呼吸区間として定義する。また、非呼吸フレームが連続する区間を中途区間として定義する。
以下、呼吸区間及び中途区間の検出の処理が開始されてからk番目(kは0以上の整数)
の呼吸区間は呼吸(k)と表わされる。図4に示されるように、呼吸(k−1)と呼吸(k)との間には中途区間が存在する。
音量算出部22には、フレーム分割部1から出力された音響フレームが入力される。音量算出部22は、各フレームの音量を求め、出力する。フレームの音量Sは、以下の(式1)で求められる。
Figure 0006019659
(式1)において、fは音響フレームの入力開始から各フレームに連続して付されるフレーム番号(fは1以上の整数),Mは1フレームの時間長,tは時間を示す。また、s(t)は、入力音信号の振幅(電力)である。
中途区間分析部23は、中途区間の音響特徴を分析し、出力する。音響特徴は、例えば、音量,累積音量,SN比,過去の入力音との相関等である。中途区間分析部23には、呼吸検出部21から出力された各フレームの呼吸の有無の判定結果と、音量算出部22から出力された各フレームの音量と、が入力される。中途区間分析部23は、「算出部」の一例である。中途区間分析部23の詳細は以下の通りである。
図5は、第1実施形態における中途区間分析部23の機能ブロックの一例を示す図である。中途区間分析部23は、呼吸間隔推定部231,雑音推定部232,SN比算出部233を含む。
呼吸間隔推定部231には、呼吸検出部21から出力された各フレームの呼吸の有無の判定結果が入力される。呼吸間隔推定部231は、呼吸と呼吸との間(呼吸間隔)の長さ、すなわち、中途区間の時間長を推定し、出力する。呼吸間隔推定部231は、各フレームの呼吸の有無の判定結果の入力が、呼吸フレームから非呼吸フレーム,非呼吸フレームから呼吸フレームに変わる境界を検出することで中途区間を検出する。呼吸間隔推定部231は、中途区間に含まれる連続する非呼吸フレームの数を計数し、呼吸間隔として出力する。ただし、これに限られず、例えば、呼吸間隔推定部231は、非呼吸フレームが連続する数とフレーム長とを掛け合わせて呼吸間隔(中途区間の時間長)を算出してもよい。呼吸間隔推定部231は、「呼吸間隔算出部」の一例である。
雑音推定部232には、音量算出部22から出力された各フレームの音量が入力される。雑音推定部232は、各フレームにおける雑音を推定し、出力する。雑音推定部232は、「推定部」の一例である。各フレームの雑音推定は、例えば、以下の雑音推定方法1又は2のいずれかで行われる。
(フレームの雑音推定方法1)
フレームfにおける雑音の大きさ(電力)N(f)は、以下の(式2)で推定される。
Figure 0006019659
(式2)におけるα、βは、定数であり、実験的に決定される。また、雑音電力の初期値N(0)は、実験的に決定される。
(式2)では、フレームfの音量S(f)が1つ前のフレームf−1の音量S(f−1)に対して一定値β以上変化しない場合には、フレームfの雑音電力N(f)を更新する。一方、フレームfの音量S(f)が1つ前のフレームf−1の音量S(f−1)に対して一定値β以上変化する場合には、1つ前のフレームf−1の雑音電力N(f−1)をフレームfの雑音電力N(f)とする。例えば、定数α=0.9、定数β=2.0である。
(フレームの雑音推定方法2)
雑音の大きさの更新は、以下の(式3)のように、フレームfの音量S(f)と1つ前のフレームf−1の雑音電力N(f−1)との比に基づいて行ってもよい。
Figure 0006019659
(式3)におけるγは定数であり、実験的に決定される。また、雑音電力の初期値N(0)は、実験的に決定される。
(式3)では、フレームfの音量S(f)が1つ前のフレームf−1の雑音電力N(f−1)に対して一定値γ倍以下である場合には、フレームfの雑音電力N(f)を更新する。一方、フレームfの音量S(f)が1つ前のフレームf−1の雑音電力N(f−1)に対して一定値γ倍以上である場合には、1つ前のフレームf−1の雑音電力N(f−1)をフレームfの雑音電力N(f)とする。例えば、定数γ=2.0である。
なお、各フレームの雑音推定方法は、上記の2つに限られず、あらゆる方法を適用可能である。
SN比算出部233には、呼吸検出部21から出力された各フレームの呼吸の有無の判定結果,音量算出部22から出力された各フレームの音量S(f),雑音推定部232から出力された各フレームの雑音電力N(f)が入力される。SN比算出部233は、これらの入力に基づき、中途区間のSN比を算出し、出力する。
まず、SN比算出部233は、呼吸検出部21によって非呼吸フレームと判定されたフレームについて、SN比を以下の(式4)で算出する。なお、以降、添え字にsigとある場合には、呼吸フレームについて示される。添え字にno_sigとある場合には、非呼吸フレームについて示される。呼吸フレームと非呼吸フレームとを区別しない場合には、添え字は付かない。
Figure 0006019659
次に、SN比算出部233は、算出した非呼吸フレームのSN比を用いて、中途区間のSN比を算出する。例えば、SN比算出部233は、中途区間に含まれる各非呼吸フレームのSN比の総和,平均値,加重平均等を中途区間のSN比として算出する。
図3に戻って、無呼吸判定部24には、中途区間分析部23から出力された、呼吸間隔と中途区間のSN比とが入力される。無呼吸判定部24は、呼吸間隔と中途区間のSN比とに基づいて、中途区間が無呼吸状態であるか否かを判定する。無呼吸判定部24は、以下の条件1,2が成立する場合に、中途区間を無呼吸状態と判定する。
(無呼吸状態の判定条件)
(条件1) 呼吸間隔閾値1≦呼吸間隔≦呼吸間隔閾値2
(条件2) 中途区間のSN比<中途区間SN比閾値
条件1は、呼吸間隔が、睡眠時無呼吸症候群における無呼吸状態の定義である範囲(10秒から120秒)であることを確認するための条件である。例えば、呼吸間隔が中途区間に含まれる非呼吸フレームの数であり、フレーム長が20msである場合には、呼吸間隔閾値1は500、呼吸間隔閾値2は6000である。
条件2は、中途区間に含まれる音響信号が背景雑音に近い、すなわち、中途区間に呼吸音が含まれていないことを確認するための条件である。図1で示されるように、呼吸音が含まれる区間のSN比は所定の閾値より大きくなり、呼吸音が含まれない区間のSN比は所定の閾値より小さくなる。したがって、中途区間SN比閾値は、中途区間に呼吸音が含まれていないとみなせるSN比の値であり、この値は、実験的に設定される。中途区間のSN比が中途区間SN比閾値よりも小さい場合には、中途区間に含まれる音響信号は背景雑音に近く、中途区間には呼吸音が含まれていない可能性が高い。中間区間のSN比が小さいことは、中途区間における雑音の影響が大きいことを表す。
無呼吸判定部24は、中途区間の無呼吸判定結果を出力する。その後、中途区間の無呼吸判定結果は、ユーザからの指示に応じて、出力処理部3によって所定の出力装置104に出力される。無呼吸判定部24は、「判定部」の一例である。
(動作例)
図6A及び図6Bは、無呼吸状態判定装置100の処理のフローチャートの一例である。図6A及び図6Bのフローチャートは、例えば、並行して実行される。図6Aは、無呼吸状態判定装置100が各フレームに対して実行する処理のフローチャートの一例である。図6Aに示されるフローチャートは、例えば、音響信号の入力に応じてフレーム単位で繰り返し実行されてもよいし(リアルタイム処理)、所定期間バッファされた音響信号に対して実行されてもよい(バッチ処理)。所定期間は、例えば、数分から数十分である。以下、いずれのフローチャートについても、プロセッサ101が補助記憶装置105に格納される無呼吸状態判定プログラムを実行する場合について説明する。
OP1では、プロセッサ101は、音響信号を所定の時間長の音響フレームに分割する。次に処理がOP2に進む。OP2では、プロセッサ101は、各フレームの呼吸の有無を判定する。次に処理がOP3に進む。OP3では、プロセッサ101は、各フレームの音量を算出する。次に処理がOP4に進む。OP4では、プロセッサ101は、各フレームにおける雑音を推定する。その後、図6Aに示される処理が終了し、OP1から繰り返し実行される。
OP1の処理は、フレーム分割部1の処理に相当する。OP2−OP4の処理は無呼吸検出部2の処理の一部に相当する。より具体的には、OP2の処理は、呼吸検出部21の処理に相当する。OP3の処理は、音量算出部22の処理に相当する。OP4の処理は、雑音推定部232に相当する。また、OP2−OP4の処理の実行順は限定されず、これらの処理の順番は適宜入れ替わってもよいし、並行して行われてもよい。
図6Bは、中途区間に対して実行される処理のフローチャートの一例である。図6Bに示される処理は、図6Aのフローチャートの実行結果を受けて、逐次繰り返し実行されてもよいし(リアルタイム処理)、所定期間バッファされた音響信号について処理が終わるまで繰り返し実行されてもよい(バッチ処理)。
OP11では、プロセッサ101は、中途区間を検出したか否かを判定する。中途区間の検出は、例えば、連続するフレームにおいて、呼吸フレームから非呼吸フレームに変わる境界と、非呼吸フレームから呼吸フレームに変わる境界を検出することによって、行われる。中途区間が検出された場合には(OP11:Yes)、処理がOP12に進む。中途区間が検出されない場合には(OP11:No)、図6Bに示される処理が終了し、再度OP11から開始される。
OP12では、プロセッサ101は呼吸間隔を算出する。呼吸間隔は、例えば、中途区間に含まれる非呼吸フレームの数で求められる。次に処理がOP13に進む。
OP13では、プロセッサ101は、中途区間のSN比を算出する。プロセッサ101は、中途区間に含まれる各非呼吸フレームのSN比を算出し、例えば、これらの総和を中途区間のSN比として算出する。次に処理がOP14に進む。
OP14では、プロセッサ101は、無呼吸状態の判定条件である条件1,条件2が満たされるか否かを判定する。すなわち、プロセッサ101は、呼吸間隔が無呼吸状態の定義に合致し(条件1)、且つ、中途区間のSN比が中途区間SN比閾値より小さい(条件2)か否かを判定する。条件1及び条件2が満たされる場合には(OP14:Yes)、処理がOP15に進み、プロセッサ101は、中途区間は無呼吸状態であると判定する(OP15)。条件1及び条件2の少なくとも一方が満たされない場合には(OP14:No)、処理がOP16に進み、プロセッサ101は、中途区間は無呼吸状態ではないと判定する(OP16)。OP15及びOP16の処理の後、図6Bに示される処理が終了し、再度OP11から実行される。
OP11−OP13の処理は、中途区間分析部23の処理の一部に相当する。より具体的には、OP11の処理は、呼吸間隔推定部231,SN比算出部233それぞれにおいて実行される処理の一部に相当する。OP12の処理は、呼吸間隔推定部231の処理の一部に相当する。OP13の処理は、SN比算出部233の処理の一部に相当する。また、OP12、OP13の処理の実行順は限定されず、これらの処理の順番は適宜入れ替わってもよいし、並行して行われてもよい。OP14−OP16の処理は、無呼吸判定部24の処理の一部に相当する。なお、無呼吸状態判定装置100の各機能ブロックがハードウェアによって実現される場合には、図6A及び図6Bの各処理は、それぞれ対応する機能ブロックに相当するハードウェアによって実行される。
<第1実施形態の作用効果>
第1実施形態の無呼吸状態判定装置100は、中途区間における雑音の影響の度合いを示す中途区間のSN比を算出し、中途区間のSN比が中途区間SN比閾値よりも小さい場合に中途区間が無呼吸状態であることを判定する。したがって、背景雑音及び呼吸音の音量に関わらず、精度良く無呼吸状態を検出することができる。また、第1実施形態では、SN比の算出に用いられる雑音電力は、各フレームについての雑音推定により算出される。そのため、SN比は、背景雑音の性質の変化を反映した値となり、第1実施形態の無呼吸判定装置100は、背景雑音が変動する場合でも、より精度良く無呼吸状態を検出することができる。
<第2実施形態>
第2実施形態では、無呼吸判定装置は、中途区間に加えて、中途区間の前後の呼吸区間についても分析を行う。より具体的には、第2実施形態では、前後の呼吸区間に呼吸音が含まれるか否かを分析する。これによって、呼吸区間に呼吸音が含まれるか否かをより精度良く判定することができ、中途区間が無呼吸状態であることをより精度良く判定するこ
とができる。第2実施形態では、第1実施形態と共通する説明は省略される。
図7は、第2実施形態における無呼吸状態判定装置100bの機能ブロック図の一例である。第2実施形態における無呼吸状態判定装置100bのハードウェア構成は、第1実施形態の無呼吸状態判定装置100と同様である(図2参照)。
第2実施形態における無呼吸状態判定装置100bは、第1実施形態における無呼吸状態判定装置100の機能ブロックに加えて、無呼吸検出部2bに前後区間分析部25を含む。第2実施形態において、フレーム分割部1,出力処理部3,呼吸検出部21,音量算出部22,中途区間分析部23の処理は、第1実施形態と同様である。
前後区間分析部25は、中途区間の前後の呼吸区間について音響特徴を分析する。中途区間の時間的に直前の呼吸区間を、以降、直前呼吸区間と称する。中途区間の時間的に直後の呼吸区間を、以降、直後呼吸区間と称する。例えば、図4において、直前呼吸区間は呼吸(k−1)である。直後呼吸区間は呼吸(k−1)である。直前呼吸区間と直後呼吸区間とをまとめて、前後区間と称することもある。前後区間分析部25は、「第2の算出部」の一例である。
前後区間分析部25には、呼吸検出部21から各フレームの呼吸の有無の判定結果と、音量算出部22から各フレームの音量と、が入力される。前後区間分析部25の詳細は以下の通りである。
図8は、第2実施形態における前後区間分析部25の機能ブロックの一例を示す図である。前後区間分析部25は、累積音量算出部251と、呼吸長推定部252とを含む。
呼吸長推定部252には、呼吸検出部21から、各フレームの呼吸の有無の判定結果が入力される。呼吸長推定部252は、連続する呼吸フレームの数を計数し、呼吸長breath_length(k)を出力する。すなわち、呼吸長breath_length(k)は、呼吸区間(k)に含まれる呼吸フレームの数である。例えば、呼吸検出部21から連続して呼吸フレームの判定結果が3つ入力された場合には、呼吸区間(k)の呼吸長breath_length(k)は3である。
累積音量算出部251には、呼吸検出部21から出力された各フレームの呼吸の有無の判定結果、音量算出部22から出力された各フレームの音量,呼吸長推定部252から出力された呼吸区間の呼吸長が入力される。累積音量算出部251は、呼吸区間(k)における累積音量を算出し、出力する。呼吸区間(k)における累積音量は以下の(式5)で示される。
Figure 0006019659
iは、呼吸区間(k)に含まれるフレームを示す。
図7に戻って、第2実施形態において、無呼吸判定部24bは、以下のような処理を実行する。無呼吸判定部24bには、中途区間分析部23から出力された呼吸間隔と中途区間のSN比と、前後区間分析部25から出力された呼吸区間の呼吸長と累積音量と、が入力される。無呼吸判定部24bは、これらに基づいて、中途区間が無呼吸状態であるか否かを判定し、無呼吸状態の検出結果を出力する。無呼吸判定部24bは、以下の条件1−6が成立する場合に、中途区間を無呼吸状態と判定する。
(無呼吸状態の判定条件)
(条件1) 呼吸間隔閾値1≦呼吸間隔≦呼吸間隔閾値2
(条件2) 中途区間のSN比<中途区間SN比閾値
(条件3) 直前呼吸区間の累積音量>累積音量閾値
(条件4) 直前呼吸区間の呼吸長>呼吸長閾値
(条件5) 直後呼吸区間の累積音量>累積音量閾値
(条件6) 直後呼吸区間の呼吸長>呼吸長閾値
条件1及び条件2は、第1実施形態と同様である。条件3及び条件5は、呼吸区間の音量が呼吸音とみなせる程度に大きいことを確認するための条件である。したがって、累積音量閾値は、呼吸区間に呼吸音が含まれているとみなせる程度の値であり、実際の音響データの統計から設定される。なお、直前呼吸区間と直後呼吸区間とで累積音量閾値の値を異なる値に設定してもよい。
条件4及び条件6は、呼吸区間の呼吸長が呼吸音とみなせる程度に長いことを確認するための条件である。したがって、呼吸長閾値は、呼吸区間に呼吸音が含まれているとみなせる程度の値である。例えば、呼吸長閾値は、フレーム長が20msの場合には、50−500の値である。なお、直前呼吸区間と直後呼吸区間とで呼吸長閾値の値を異なる値に設定してもよい。
したがって、条件3−6が満たされる場合には、呼吸音を含むとみなせる程度に、中途区間の前後の呼吸区間の呼吸長が長く、累積音量が大きいため、中途区間の前後の呼吸区間が呼吸音を含む可能性が高い。したがって、呼吸音を含む可能性が高い呼吸区間に挟まれた中途区間は、呼吸音を含まない可能性が高いことが示される。一方、条件3−6が満たされない場合には、呼吸検出部21において呼吸フレームと判定されたものの、中途区間の前後の呼吸区間には呼吸音が含まれていない可能性が高く、例えば、呼吸音以外の音(体動音や背景雑音)が含まれている可能性がある。無呼吸状態は呼吸と呼吸との間に現れるものであるため、前後の呼吸区間に呼吸音が含まれていない可能性が高い場合には、中途区間が無呼吸状態である可能性も低くなり、中途区間は無呼吸状態であると判定されない。
(動作例)
図9は、無呼吸状態判定装置100bが各区間について実行する処理のフローチャートの一例である。第2実施形態においても、無呼吸状態判定装置100bは、第1実施形態と同様に図6Aの各フレームに対する処理を実行する。図9に示される処理は、図6Aのフローチャートの実行結果を受けて、逐次繰り返し実行されてもよいし(リアルタイム処理)、所定期間バッファされた音響信号について処理が終わるまで繰り返し実行されてもよい(バッチ処理)。
OP21−OP23の処理は、図6AのOP11−OP13と同様であり、中途区間が検出された場合に、呼吸間隔と中途区間のSN比とを算出する処理である。次に、処理がOP24に進む。
OP24では、プロセッサ101は呼吸長を算出する。呼吸長は、例えば、連続する呼吸フレームの数を計数することにより求められる。次に処理がOP25に進む。
OP25では、プロセッサ101は、直前呼吸区間、直後呼吸区間それぞれの累積音量を算出する。次に処理がOP26に進む。
OP26では、プロセッサ101は、無呼吸状態の判定条件である条件1−条件6が満たされるか否かを判定する。条件1−条件6が満たされる場合には(OP26:Yes)、処理がOP27に進み、プロセッサ101は、中途区間は無呼吸状態であると判定する(OP27)。条件1−条件6の少なくとも一つが満たされない場合には(OP26:No)、処理がOP28に進み、プロセッサ101は、中途区間は無呼吸状態ではないと判定する(OP28)。OP27及びOP28の処理の後、図9に示される処理が終了し、再度OP21から実行される。
OP21−OP23の処理は、中途区間分析部23の処理の一部に相当する。OP24,OP25の処理は、前後区間分析部25の処理の一部に相当する。より具体的には、OP24の処理は、呼吸長推定部252の処理に相当する。OP25の処理は、累積音量算出部251の処理に相当する。OP26−OP28の処理は、無呼吸判定部24bの処理に相当する。また、OP22−OP23の処理と、OP24−OP25の処理と、の実行順は限定されず、これらの処理の順番は適宜入れ替わってもよいし、並行して行われてもよい。なお、無呼吸状態判定装置100bの各機能ブロックがハードウェアによって実現される場合には、図9の各処理は、それぞれ対応する機能ブロックに相当するハードウェアによって実行される。
<第2実施形態の作用効果>
第2実施形態の無呼吸状態判定装置100bは、中途区間の分析に加えて、前後の呼吸区間を分析し、前後の呼吸区間に含まれる音響信号が呼吸音である可能性が高いことを無呼吸判定の条件に加える。無呼吸状態は、呼吸と呼吸との間に現れるため、前後の呼吸区間に呼吸音が含まれるか否かを判定することによって、中途区間の無呼吸状態をより精度良く検出することができる。
<第3実施形態>
第3実施形態では、無呼吸状態判定装置は、背景雑音成分と背景雑音成分以外の信号成分に基づく音響特徴量として、中途区間と前後の呼吸区間との相関を用いる。具体的には、無呼吸状態判定装置は、中途区間と前後の呼吸区間とのスペクトル距離を算出し、中途区間が無呼吸状態であることを検出する。第3実施形態では、第1実施形態、第2実施形態と共通する説明は省略される。
図10Aは、1の中途区間に対する直前呼吸区間と直後呼吸区間とのパワースペクトルを比較した例を示す図である。図10Aには、実際に測定された音響データ中の1の中途区間に対する、直前呼吸区間のパワースペクトルと、直後呼吸区間のパワースペクトルとが示される。
図10Aにおいてパワースペクトルが示される直前呼吸区間と直後呼吸区間とには、それぞれ同一人物から発せられる呼吸音が含まれる。同一人物から発せられる呼吸音に含まれる周波数はほぼ同じであるため、直前の呼吸区間のパワースペクトルと直後の呼吸区間のパワースペクトルとは、図10Aに示されるように、いずれの周波数においてもスペクトル間の距離が近く、相関が高い。
図10Bは、中途区間と該中途区間に対する直前呼吸区間とのパワースペクトルを比較した例を示す図である。図10Bには、実際に測定された音響データ中の1つの中途区間のパワースペクトルと、該中途区間に対する直前呼吸区間のパワースペクトルとが示される。
図10Bにおいて、直前の呼吸区間には、呼吸音が含まれるが、無呼吸状態である中途区間には呼吸音が含まれない。そのため、図10Bに示されるように、直前の呼吸区間の
パワースペクトルと中途区間のパワースペクトルとは、その形状が似通っておらず、スペクトル間の距離が離れており、相関が低い。
第3実施形態では、無呼吸状態判定装置は、中途区間と呼吸区間との相関関係に応じて変化するスペクトル間の距離を用いて、中途区間が無呼吸状態であるか否かを判定する。
図11は、第3実施形態における無呼吸状態判定装置100cの機能ブロック図の一例である。第3実施形態における無呼吸状態判定装置100cのハードウェア構成は、第1実施形態の無呼吸状態判定装置100と同様である(図2参照)。
第3実施形態における無呼吸状態判定装置100cは、フレーム分割部1、無呼吸検出部2c,出力処理部3を含み、無呼吸検出部2cは、呼吸検出部21,中途区間分析部23c,無呼吸判定部24c,FFT処理部26を含む。第3実施形態において、フレーム分割部1,出力処理部3,呼吸検出部21の処理は、第1実施形態と同様である。
FFT処理部26には、フレーム分割部1から出力された音響フレームが入力される。FFT処理部26は、入力された各フレーム対して、時間領域の音響信号をフーリエ変換(Fast Fourier Transform)してFFT信号を求めて、出力する。FFT信号FFT(ω)は、例えば、以下の(式6)で求められる。
Figure 0006019659
(式6)において、ωは周波数であり、ωmaxは周波数帯域を表す。jは虚数を表す。
なお、第3実施形態ではFFTが用いられるが、これに限られず、DCT(離散コサイン変換:Discrete Cosine Transform),MDCT(修正離散コサイン変換:Modified Discrete Cosine Transform)等の他の直交変換が用いられてもよい。
図12は、第3実施形態における中途区間分析部23cの機能ブロックの一例を示す図である。第3実施形態における中途区間分析部23cは、呼吸間隔推定部231,スペクトル算出部234,スペクトル距離算出部235を含む。呼吸間隔推定部231の処理は、第1実施形態と同様である。中途区間分析部23cは、「算出部」の一例である。
スペクトル算出部234には、呼吸検出部21から各フレームの呼吸の有無の判定結果と、FFT処理部26から各フレームのFFT信号とが入力される。スペクトル算出部234は、各フレームについて、パワースペクトルを算出する。パワースペクトルP(ω)は、以下の(式7)のように、FFT信号の実部と虚部との二乗和で求められる。
Figure 0006019659
スペクトル算出部234は、連続する呼吸フレーム又は非呼吸フレームそれぞれのパワースペクトルを算出し、これらの平均値を算出して、1つの呼吸区間又は中途区間のパワースペクトルとする。区間の境界は、呼吸フレームから非呼吸フレームへ、又は非呼吸フレームから呼吸フレームへの変化により検出される。スペクトル算出部234は、各区間のパワースペクトルを出力する。なお、各区間のパワースペクトルは、区間に含まれる各フレームのパワースペクトルの平均値に限られず、加重平均等としてもよい。
スペクトル距離算出部235には、スペクトル算出部234から出力された各区間のスペクトルが入力される。スペクトル距離算出部235は、中途区間とその前後の呼吸区間とのスペクトル距離を算出する。直前呼吸区間と中途区間とのスペクトル距離Dpre#nbは以下の(式8)で算出される。
Figure 0006019659
pre(ω)は直前呼吸区間のパワースペクトルである。Pnb(ω)は中途区間のパワース
ペクトルである。
中途区間と直後呼吸区間とのスペクトル距離Dpost#nbは以下の(式9)で算出される

Figure 0006019659
post(ω)は直後呼吸区間のパワースペクトルである。
図11に戻って、無呼吸判定部24cには、中途区間分析部23cから出力された、直前呼吸区間と中途区間とのスペクトル距離と、中途区間と直後呼吸区間とのスペクトル距離と、呼吸間隔とが入力される。無呼吸判定部24cは、直前呼吸区間と中途区間とのスペクトル距離と、中途区間と直後呼吸区間とのスペクトル距離と、呼吸間隔と、に基づいて、中途区間が無呼吸状態であるか否かを判定する。無呼吸判定部24cは、以下の条件A−Cが成立する場合に、中途区間を無呼吸状態と判定する。以下、直前呼吸区間と中途区間とのスペクトル距離を直前中途区間スペクトル距離と表記する。また、中途区間と直後呼吸区間とのスペクトル距離を中途直後区間スペクトル距離と表記する。
(無呼吸状態の判定条件)
(条件A) 呼吸間隔閾値1≦呼吸間隔≦呼吸間隔閾値2
(条件B) 直前中途区間スペクトル距離>直前中途区間スペクトル距離閾値
(条件C) 中途直後区間スペクトル距離>中途直後区間スペクトル距離閾値
条件Aは、第1実施形態の条件1と同様であり、呼吸間隔が、睡眠時無呼吸症候群における無呼吸状態の定義である範囲(10秒から120秒)であることを確認するための条件である。
条件Bおよび条件Cは、中途区間と前後の呼吸区間との相関が低いことを確認するための条件である。図10Bで示されるように、呼吸音を含む呼吸区間と呼吸音が含まれない中途区間との相関は低く、これらの区間のスペクトル距離は大きくなる。直前中途区間スペクトル距離閾値および中途直後区間スペクトル距離閾値は、例えば、実際に測定された音響データの、呼吸音を含む呼吸区間と呼吸音が含まれない中途区間とのスペクトル距離に基づいて決定された値となる。また、直前中途区間スペクトル距離閾値および中途直後区間スペクトル距離閾値は、同じ値でも異なる値でもよい。直前中途区間スペクトル距離及び中途直後区間スペクトル距離がそれぞれの閾値よりも大きい場合には、中途区間と前後の呼吸区間との相関が低く、中途区間には呼吸音が含まれていない可能性が高いことが示される。
したがって、条件A−Cが満たされる場合には、無呼吸判定部24cは、中途区間は無呼吸状態であると判定し、条件A−Cの少なくとも一つが満たされない場合には、中途区間は無呼吸状態でないと判定する。無呼吸判定部24cは、中途区間の無呼吸判定結果を出力する。その後、中途区間の無呼吸判定結果は、ユーザからの指示に応じて、出力処理部3によって所定の出力装置104に出力される。
(動作例)
図13A及び図13Bは、無呼吸状態判定装置100cの処理のフローチャートの一例である。図13A及び図13Bのフローチャートは、並行して実行される。図13Aは、無呼吸状態判定装置100cが、各フレームに対して実行する処理のフローチャートの一例である。図13Aに示されるフローチャートは、例えば、音響信号の入力に応じてフレーム単位で繰り返し実行されてもよいし(リアルタイム処理)、所定期間バッファされた音響信号に対して実行されてもよい(バッチ処理)。所定期間は、例えば、数分から数十分である。以下、フローチャートについては、プロセッサ101が補助記憶装置105に格納される無呼吸状態判定プログラムを実行する場合について説明する。
OP31及びOP32の処理は、図6AのOP1及びOP2の処理と同様である。すなわち、プロセッサ101は、音響信号を所定の時間長の音響フレームに分割し(OP31)、各フレームの呼吸の有無を判定する(OP32)。次に処理がOP33に進む。OP33では、プロセッサ101は、各フレームについてフーリエ変換を行う。その後、図13Aに示される処理が終了し、OP31から繰り返し実行される。
OP31の処理は、フレーム分割部1の処理に相当する。OP32−OP33の処理は無呼吸検出部2cの処理の一部に相当する。より具体的には、OP32の処理は、呼吸検出部21の処理に相当する。OP33の処理は、FFT処理部26の処理に相当する。また、OP32−OP33の処理の実行順は限定されず、これらの処理の順番は適宜入れ替わってもよいし、並行して行われてもよい。
図13Bは、無呼吸状態判定装置100cが、中途区間及び呼吸区間に対して実行する処理のフローチャートの一例である。図13Bに示される処理は、図13Aのフローチャートの実行結果を受けて、逐次繰り返し実行されてもよいし(リアルタイム処理)、所定期間バッファされた音響信号について処理が終わるまで繰り返し実行されてもよい(バッチ処理)。
OP41では、プロセッサ101は、中途区間を検出したか否かを判定する。中途区間の検出は、例えば、連続するフレームにおいて、呼吸フレームから非呼吸フレームに変わる境界と、非呼吸フレームから呼吸フレームに変わる境界を検出することによって、行われる。中途区間が検出された場合には(OP41:Yes)、処理がOP42に進む。中途区間が検出されない場合には(OP41:No)、図13Bに示される処理が終了し、再度OP31から開始される。
OP42では、プロセッサ101は呼吸間隔を算出する。次に処理がOP43に進む。
OP43では、プロセッサ101は、中途区間及び呼吸区間のパワースペクトルを算出する。プロセッサ101は、各区間に含まれる各フレームのパワースペクトルを算出し、例えば、各区間に含まれる各フレームのパワースペクトルの平均を各区間のパワースペクトルとして算出する。次に処理がOP44に進む。
OP44では、プロセッサ101は、直前中途区間スペクトル距離及び中途直後区間スペクトル距離を算出する。次に処理がOP45に進む。
OP45では、プロセッサ101は、無呼吸状態の判定条件である条件A−Cが満たされるか否かを判定する。すなわち、プロセッサ101は、中途区間長(呼吸間隔)が無呼吸状態の定義に合致し(条件A)、且つ、直前中途区間スペクトル距離及び中途直後区間スペクトル距離がそれぞれの閾値より大きい(条件B,C)か否かを判定する。条件A−Cが満たされる場合には(OP45:Yes)、処理がOP46に進み、プロセッサ101は、中途区間は無呼吸状態であると判定する(OP46)。条件A−Cの少なくとも一つが満たされない場合には(OP45:No)、処理がOP47に進み、プロセッサ101は、中途区間は無呼吸状態ではないと判定する(OP47)。OP46及びOP47の処理の後、図13Bに示される処理が終了し、再度OP41から実行される。
OP41−OP44の処理は、中途区間分析部23cの処理の一部に相当する。より具体的には、OP41の処理は、呼吸間隔推定部231,スペクトル算出部234それぞれにおいて実行される処理の一部に相当する。OP42の処理は、呼吸間隔推定部231の処理の一部に相当する。OP43の処理は、スペクトル算出部234の処理の一部に相当する。OP44の処理は、スペクトル距離算出部235の処理の一部に相当する。また、OP42と、OP43及びOP44と、の処理の実行順は限定されず、これらの処理の順番は適宜入れ替わってもよいし、並行して行われてもよい。OP45−OP47の処理は、無呼吸判定部24cの処理の一部に相当する。なお、無呼吸状態判定装置100cの各機能ブロックがハードウェアによって実現される場合には、図13A及び図13Bの各処理は、それぞれ対応する機能ブロックに相当するハードウェアによって実行される。
<第3実施形態の作用効果>
第3実施形態の無呼吸状態判定装置100cは、中途区間と前後の呼吸区間とのスペクトル距離を算出し、これらのスペクトル距離がそれぞれの閾値よりも大きい場合に中途区間が無呼吸状態であることを判定する。前後の呼吸区間に呼吸音が含まれている場合には、中途区間と前後の呼吸区間との相関は低くなり、スペクトル距離がそれぞれの閾値よりも大きくなる。また、雑音の性質が一定でないとしても、中途区間とその直前又は直後の呼吸区間とに含まれる雑音間の相関は高いことが考えられる。第3実施形態では、中途区間とその直前又は直後の呼吸区間とのスペクトル距離を算出するので、音響信号に背景雑音が含まれていても、呼吸音が含まれる前後の呼吸区間と呼吸音が含まれない中途区間との相関は低くなる。したがって、第3実施形態の無呼吸判定装置100cは、背景雑音の性質が一定でなくとも、より精度良く無呼吸状態を検出することができる。なお、第3実施形態では、各フレームに対してフーリエ変換を行ってパワースペクトルを算出し、各区間に含まれるフレームのパワースペクトルの平均値を各区間のパワースペクトルとしたが、これに限られない。例えば、各区間に含まれるフレームに対して一括してフーリエ変換を行い、パワースペクトルを算出して、区間のパワースペクトルとしてもよい。
<第4実施形態>
第4実施形態では、無呼吸判定装置は、中途区間に加えて、中途区間の前後の呼吸区間についても分析を行う。また、中途区間と前後の呼吸区間とのスペクトル距離に加えて中途区間のSN比も算出し、中途区間の無呼吸状態の判定条件に用いる。これによって、呼吸区間に呼吸音が含まれるか否かをより精度良く判定することができ、中途区間が無呼吸状態であることをより精度良く判定することができる。第4実施形態では、第1実施形態−第3実施形態と共通する説明は省略される。
図14は、第4実施形態における無呼吸状態判定装置100dの機能ブロック図の一例である。第4実施形態における無呼吸状態判定装置100dのハードウェア構成は、第1実施形態の無呼吸状態判定装置100と同様である(図2参照)。
第4実施形態における無呼吸状態判定装置100bは、第3実施形態における無呼吸状態判定装置100cの機能ブロックに加えて、無呼吸検出部2dに音量算出部22と前後区間分析部25dとを含む。第4実施形態において、フレーム分割部1,出力処理部3,呼吸検出部21,FFT処理部26の処理は、第3実施形態と同様である。音量算出部22の処理は第1実施形態と同様である。
前後区間分析部25dには、呼吸検出部21から各フレームの呼吸の有無の判定結果と、音量算出部22から各フレームの音量と、FFT処理部26から各フレームのフーリエ変換の結果と、が入力される。前後区間分析部25dは、「第2の算出部」の一例である。
前後区間分析部25dの詳細は以下の通りである。
図15は、第4実施形態における前後区間分析部25dの機能ブロックの一例を示す図である。前後区間分析部25dは、累積音量算出部251,スペクトル算出部253,スペクトル距離算出部254,累積音量差算出部255を含む。
累積音量算出部251は、第2実施形態と同様の処理を行う。すなわち、累積音量算出部251は、各呼吸区間に含まれる呼吸フレームの音量を累積し、各呼吸区間の累積音量を出力する。
累積音量差算出部255には、累積音量算出部251から出力された各呼吸区間の累積音量が入力される。累積音量差算出部255は、直前呼吸区間と直後呼吸区間との累積音量の差分を算出し、出力する。
スペクトル算出部253には、呼吸検出部21から出力された各フレームの呼吸の有無の判定結果と、各フレームのフーリエ変換のFFT信号とが入力される。スペクトル算出部253は、各呼吸フレームについてパワースペクトルスペクトルを算出し、各呼吸区間に含まれる呼吸フレームのパワースペクトルの平均を、各呼吸区間のパワースペクトルとして、算出する。各呼吸区間のパワースペクトルは、例えば、呼吸区間に含まれる呼吸フレームのパワースペクトルの加重平均でもよい。各呼吸区間のパワースペクトルの算出方法は、第3実施形態のスペクトル算出部234と同様である。
スペクトル距離算出部254には、スペクトル算出部253から出力された各呼吸区間のパワースペクトルが入力される。スペクトル距離算出部254は、直前呼吸区間と直後呼吸区間とのスペクトル距離を算出し、出力する。直前呼吸区間と直後呼吸区間とのスペクトル距離Dpre#postは、以下の(式10)で算出される。以降、直前呼吸区間と直後呼吸区間とのスペクトル距離を直前直後区間スペクトル距離と称する。
Figure 0006019659
図16は、第4実施形態における中途区間分析部23dの機能ブロックの一例を示す図である。中途区間分析部23dは、呼吸間隔推定部231,雑音推定部232,SN比算出部233,スペクトル算出部234,スペクトル距離算出部235,累積音量算出部236を含む。中途区間分析部23dは、「算出部」の一例である。
呼吸間隔推定部231,雑音推定部232,SN比算出部233は、第1実施形態と同
様の処理を行う。スペクトル算出部234,スペクトル距離算出部235は、第3実施形態と同様の処理を行う。すなわち、呼吸間隔推定部231は、呼吸間隔を算出し出力する。SN比算出部233は、中途区間のSN比を算出して出力する。スペクトル距離算出部235は、直前中途区間スペクトル距離と中途直後区間スペクトル距離とを出力する。
累積音量算出部236には、呼吸検出部21から出力された各フレームの呼吸の有無の判定結果と、音量算出部22から出力された各フレームの音量とが入力される。累積音量算出部236は、中途区間に含まれる非呼吸フレームの音量を累積して、出力する。
図14に戻って、第4実施形態において、無呼吸判定部24dは、以下のような処理を実行する。無呼吸判定部24dには、中途区間分析部23dから出力された呼吸間隔と直前中途区間スペクトル距離と中途直後区間スペクトル距離と中途区間のSN比と中途区間の累積音量と、前後区間分析部25dから出力された各呼吸区間の累積音量と前後の呼吸区間の累積音量差と直前直後区間スペクトル距離と、が入力される。無呼吸判定部24dは、これらに基づいて、中途区間が無呼吸状態であるか否かを判定し、無呼吸状態の検出結果を出力する。無呼吸判定部24dは、以下の条件A−Iが成立する場合に、中途区間を無呼吸状態と判定する。
(無呼吸状態の判定条件)
(条件A) 呼吸間隔閾値1≦呼吸間隔≦呼吸間隔閾値2
(条件B) 直前中途区間スペクトル距離>直前中途区間スペクトル距離閾値
(条件C) 中途直後区間スペクトル距離>中途直後区間スペクトル距離閾値
(条件D) 直前直後区間スペクトル距離<直前直後区間スペクトル距離閾値
(条件E) 中途区間のSN比<中途区間SN比閾値
(条件F) 中途区間の累積音量<中途区間の累積音量閾値
(条件G) 直前呼吸区間の累積音量>累積音量閾値
(条件H) 直後呼吸区間の累積音量>累積音量閾値
(条件I) 前後の呼吸区間の累積音量差<前後の呼吸区間の累積音量差閾値
条件A−Cは、第3実施形態と同様である。また、条件E,G,Hは、第2実施形態の条件2,3,5と同様である。
条件Dは、前後の呼吸区間が呼吸音を含むことを確認するための条件である。図10Aで示されるように、前後の呼吸区間に同一人物の呼吸音が含まれている場合には、前後の呼吸区間の相関が高くなり、スペクトル距離も小さくなる。直前直後区間スペクトル距離が直前直後区間スペクトル距離閾値よりも小さい場合には、前後の呼吸区間には同一人物の呼吸音が含まれている可能性が高いことが示される。
条件Fは、中途区間の音量が小さいことを確認するための条件である。中途区間に呼吸音が含まれていない場合には、中途区間の音量は小さくなる。したがって、中途区間の音量が中途区間の累積音量閾値より小さい場合には、中途区間に呼吸音が含まれていない可能性が高いことが示される。
条件Iは、前後の呼吸区間の音量が近いことを確認するための条件である。前後の呼吸区間に呼吸音が含まれている場合には、前後の呼吸区間の音量が近くなる。したがって、前後の呼吸区間の累積音量差が前後の呼吸区間の累積音量差閾値より小さい場合には、前後の呼吸区間に呼吸音が含まれている可能性が高いことが示される。
直前直後区間スペクトル閾値,中途区間の累積音量閾値,前後の呼吸区間の累積音量差閾値は、例えば、実際に測定した音響データの統計をもとに設定される。
したがって、条件A−C,Fが満たされる場合には、中途区間に呼吸音が含まれていない可能性が高いことが示される。一方、条件A−C,Fが満たされない場合には、呼吸検出部21において非呼吸フレームと判定されたものの、中途区間が無呼吸状態である可能性が低く、例えば、音量の小さな呼吸音が含まれている可能性がある。
また、条件D,E,G−Iが満たされる場合には、中途区間の前後の呼吸区間に呼吸音が含まれている可能性が高いことが示される。一方、条件D,E,G−Iが満たされない場合には、呼吸検出部21において呼吸フレームと判定されたものの、中途区間の前後の呼吸区間には呼吸音が含まれていない可能性が高く、例えば、呼吸音以外の音(体動音や背景雑音)が含まれている可能性がある。無呼吸状態は呼吸と呼吸との間に現れるものであるため、前後の呼吸区間に呼吸音が含まれていない可能性が高い場合には、中途区間が無呼吸状態である可能性も低くなり、中途区間は無呼吸状態であると判定されない。
(動作例)
図17A及び図17Bは、無呼吸状態判定装置100dの処理のフローチャートの一例である。図17A及び図17Bのフローチャートは、並行して実行される。図17Aは、無呼吸状態判定装置100dが、各フレームに対して実行する処理のフローチャートの一例である。図17Aに示されるフローチャートは、例えば、音響信号の入力に応じてフレーム単位で繰り返し実行されてもよいし(リアルタイム処理)、所定期間バッファされた音響信号に対して実行されてもよい(バッチ処理)。所定期間は、例えば、数分から数十分である。以下、フローチャートについては、プロセッサ101が補助記憶装置105に格納される無呼吸状態判定プログラムを実行する場合について説明する。
OP51−OP54の処理は、図6AのOP1−OP4の処理と同様である。また、OP55の処理は、図13AのOP33の処理と同様である。すなわち、プロセッサ101は、音響信号を所定の時間長の音響フレームに分割し(OP51)、各フレームの呼吸の有無を判定する(OP52)。プロセッサ101は、各フレームの音量を算出し(OP53)、雑音を推定する(OP54)。またプロセッサ101は、各フレームについてフーリエ変換を行う(OP55)。その後、図17Aに示される処理が終了し、OP51から繰り返し実行される。
OP51の処理は、フレーム分割部1の処理に相当する。OP52−OP55の処理は無呼吸検出部2dの処理の一部に相当する。より具体的には、OP52の処理は、呼吸検出部21の処理に相当する。OP53の処理は、音量算出部22の処理の一部に相当する。OP54の処理は、雑音推定部232の処理の一部である。OP55の処理は、FFT処理部26の処理に相当する。また、OP52,OP53及びOP54の2つの処理,OP55の処理の実行順は限定されず、これらの処理の順番は適宜入れ替わってもよいし、並行して行われてもよい。
図17Bは、無呼吸状態判定装置100dが、中途区間及び呼吸区間に対して実行する処理のフローチャートの一例である。図17Bに示される処理は、図17Aのフローチャートの実行結果を受けて、逐次繰り返し実行されてもよいし(リアルタイム処理)、所定期間バッファされた音響信号について処理が終わるまで繰り返し実行されてもよい(バッチ処理)。各区間に対して実行される処理のフローチャートの一例である。
OP61−OP63の処理は、図6AのOP11−OP13と同様であり、中途区間が検出された場合に、呼吸間隔と中途区間のSN比とを算出する処理である。次に、処理がOP64に進む。
OP64では、プロセッサ101は、中途区間の累積音量を算出する。次に処理がOP65に進む。
OP65では、プロセッサ101は、直前呼吸区間、直後呼吸区間それぞれの累積音量と、直前呼吸区間と直後呼吸区間との累積音量差と、を算出する。次に処理がOP66に進む。
OP66では、プロセッサ101は、中途区間及び呼吸区間のパワースペクトルを算出する。まず、プロセッサ101は、各区間に含まれる各フレームのパワースペクトルを算出し、次に、例えば、各フレームのパワースペクトルの平均を、各区間のパワースペクトルとして、算出する。次に処理がOP67に進む。
OP67では、プロセッサ101は、直前中途区間スペクトル距離及び中途直後区間スペクトル距離を算出する。次に処理がOP68に進む。
OP68では、プロセッサ101は、直前直後区間スペクトル距離を算出する。次に処理がOP69に進む。
OP69では、プロセッサ101は、無呼吸状態の判定条件である条件A−条件Iが満たされるか否かを判定する。条件A−条件Iが満たされる場合には(OP69:Yes)、処理がOP70に進み、プロセッサ101は、中途区間は無呼吸状態であると判定する(OP70)。条件A−条件Iの少なくとも一つが満たされない場合には(OP69:No)、処理がOP71に進み、プロセッサ101は、中途区間は無呼吸状態ではないと判定する(OP71)。OP70及びOP71の処理の後、図17Bに示される処理が終了し、再度OP61から実行される。
OP61−OP64,OP66,OP67の処理は、中途区間分析部23dの処理の一部に相当する。OP65,OP66,OP68の処理は、前後区間分析部25dの処理の一部に相当する。より具体的には、OP62の処理は、呼吸間隔推定部231の処理の一部に相当する。OP63の処理は、SN比算出部233の処理の一部に相当する。OP64の処理は、累積音量算出部236の処理の一部に相当する。OP65の処理は、累積音量算出部251、累積音量差算出部255の処理の一部に相当する。OP66の処理は、スペクトル算出部234、スペクトル算出部253の処理の一部に相当する。OP67の処理は、スペクトル距離算出部235の処理の一部に相当する。OP68の処理は、スペクトル距離算出部254の処理の一部に相当する。OP69−OP71の処理は、無呼吸判定部24dの処理に相当する。なお、無呼吸状態判定装置100dの各機能ブロックがハードウェアによって実現される場合には、図17A及び図17Bの各処理は、それぞれ対応する機能ブロックに相当するハードウェアによって実行される。
<第4実施形態の作用効果>
第4実施形態の無呼吸状態判定装置100dは、中途区間の分析に加えて、前後の呼吸区間を分析し、前後の呼吸区間に含まれる音響信号が呼吸音である可能性が高いことを無呼吸判定の条件に加える。無呼吸状態は、呼吸と呼吸との間に現れるため、前後の呼吸区間に呼吸音が含まれるか否かを判定することによって、中途区間の無呼吸状態をより精度良く検出することができる。また、第4実施形態では、中途区間と前後の呼吸区間とのスペクトル距離に加えて、中途区間のSN比も用いて、中途区間の無呼吸状態を判定する。これによって、背景雑音の性質が変化した場合でも、より正確に無呼吸状態を検出することができる。
1 フレーム分割部
2,2b,2c,2d 無呼吸検出部
3 出力処理部
21 呼吸検出部
22 音量算出部
23,23c,23d 中途区間分析部
24,24b,24c,24d 無呼吸判定部
25,25d 前後区間分析部
26 FFT処理部
231 呼吸間隔推定部
232 雑音推定部
233 SN比算出部
234,253 スペクトル算出部
235,254 スペクトル距離算出部
236,251 累積音量算出部
252 呼吸長推定部
255 累積音量差算出部
100,100b,100c,100d 無呼吸状態判定装置

Claims (16)

  1. 睡眠中の音響信号を所定の時間長のフレームに分割する分割部と、
    音量が所定値以上の連続するフレームを含む呼吸区間と、呼吸区間の間に存在する中途区間とを検出する区間検出部と、
    前記中途区間に含まれる各フレームについて、前記フレームに含まれる音響信号の電力を前記フレームに含まれる雑音信号の電力で割った値を算出する算出部と、
    前記中途区間に含まれる各フレームの前記値が所定閾値より小さいことを含む所定条件が満たされた場合に、前記中途区間を無呼吸状態と判定する判定部と、
    を備える無呼吸状態判定装置。
  2. 各フレームについて、雑音信号の電力を、該フレームの1つ前のフレームの雑音信号の電力と、該フレームに含まれる音響信号の電力とから、推定する推定部をさらに含み、
    前記算出部は、前記推定部によって推定された各フレームに含まれる雑音信号の電力に基づいて、前記中途区間に含まれる各フレームについて、前記値を算出する、
    請求項に記載の無呼吸状態判定装置。
  3. 前記推定部は、フレームについて、雑音信号の電力を、該フレームに含まれる音響信号の電力、該フレームの1つ前のフレームに含まれる音響信号の電力からの変化量が所定値未満の場合に、前記1つ前のフレームに含まれる雑音信号の電力に第1の係数を乗じた値に、該フレームに含まれる音響信号の電力に第2の係数を乗じた値を加算して得られる値として推定し、前記変化量が所定以上の場合に、前記1つ前のフレームの雑音信号の電力と同じ値として推定する、
    請求項に記載の無呼吸状態判定装置。
  4. 前記推定部は、フレームについて、雑音信号の電力を、該フレームに含まれる音響信号該フレームの1つ前のフレームに含まれる雑音信号の電力で割った値が所定未満の場合に、前記1つ前のフレームに含まれる雑音信号の電力に第1の係数を乗じた値に、該フレームに含まれる音響信号の電力に第2の係数を乗じた値を加算して得られる値として推定し、前記変化量が所定以上の場合に、前記1つ前のフレームの雑音信号の電力と同じ
    値として推定する、
    請求項に記載の無呼吸状態判定装置。
  5. 睡眠中の音響信号を所定の時間長のフレームに分割する分割部と、
    音量が所定値以上の連続するフレームを含む呼吸区間と、呼吸区間の間に存在する中途区間とを検出する区間検出部と、
    前記中途区間の直前又は直後の呼吸区間における音響信号の少なくともいずれか一方と、前記中途区間における音響信号と、の相関量を求める算出部と、
    記相関量が所定閾値より小さいことを含む所定条件が満たされた場合に、前記中途区間を無呼吸状態と判定する
    呼吸状態判定装置。
  6. 前記算出部は、前記相関量を、前記中途区間の直前又は直後の呼吸区間における音響信号の少なくともいずれか前記一方と、前記中途区間における音響信号と、のパワースペクトルの差分に基づいて算出する、
    請求項に記載の無呼吸状態判定装置。
  7. 前記算出部は、前記中途区間の時間長を求める呼吸間隔算出部を備え、
    前記所定条件には、前記中途区間の時間長が所定範囲に含まれることがさらに含まれる、
    請求項1からのいずれか一項に記載の無呼吸状態判定装置。
  8. 記中途区間の直前又は直後の呼吸区間における音響信号の少なくともいずれか一方の時間長を算出する第2の算出部をさらに備え
    前記所定条件には、前記時間長が所定閾値より長いことがさらに含まれる
    請求項1から7のいずれか一項に記載の無呼吸状態判定装置。
  9. 記中途区間の直前又は直後の呼吸区間における音響信号の少なくともいずれか一方の累積音量を算出する第3の算出部をさらに備え
    前記所定条件には、前記累積音量が所定閾値より大きいことがさらに含まれる
    請求項1から8のいずれか一項に記載の無呼吸状態判定装置。
  10. 記中途区間の直前及び直後の呼吸区間における音響信号の累積音量の差分を算出する第4の算出部をさらに備え
    前記所定条件には、前記累積音量の差分が所定閾値より大きいことがさらに含まれる、請求項1から9のいずれか一項に記載の無呼吸状態判定装置。
  11. 記中途区間の直前及び直後の呼吸区間における音響信号のスペクトル距離を算出する第5の算出部をさらに備え
    前記所定条件には、前記スペクトル距離が所定閾値より大きいことがさらに含まれる、請求項1から10のいずれか一項に記載の無呼吸状態判定装置。
  12. 前記中途区間に含まれる各フレームについて、前記フレームに含まれる音響信号の電力を前記フレームに含まれる雑音信号の電力で割った値を算出する第6の算出部をさらに備え、
    前記所定条件には、前記中途区間に含まれる各フレームの前記値が所定閾値より小さいことがさらに含まれる、
    請求項5又は6に記載の無呼吸状態判定装置。
  13. コンピュータが、
    睡眠中の音響信号を所定の時間長のフレームに分割し
    音量が所定値以上の連続するフレームを含む呼吸区間と、呼吸区間の間に存在する中途区間とを検出し、
    前記中途区間に含まれる各フレームについて、前記フレームに含まれる音響信号の電力を前記フレームに含まれる雑音信号の電力で割った値を算出し、
    前記中途区間に含まれる各フレームの前記値が所定閾値より小さいことを含む所定条件が満たされた場合に、前記中途区間を無呼吸状態と判定する、
    無呼吸状態判定方法。
  14. コンピュータ
    睡眠中の音響信号を所定の時間長のフレームに分割させ
    音量が所定値以上の連続するフレームを含む呼吸区間と、呼吸区間の間に存在する中途区間とを検出させ
    前記中途区間に含まれる各フレームについて、前記フレームに含まれる音響信号の電力を前記フレームに含まれる雑音信号の電力で割った値を算出させ
    前記中途区間に含まれる各フレームの前記値が所定閾値より小さいことを含む所定条件が満たされた場合に、前記中途区間を無呼吸状態と判定させる、
    ための無呼吸状態判定プログラム。
  15. コンピュータが、
    睡眠中の音響信号を所定の時間長のフレームに分割し、
    音量が所定値以上の連続するフレームを含む呼吸区間と、呼吸区間の間に存在する中途区間とを検出し、
    前記中途区間の直前又は直後の呼吸区間における音響信号の少なくともいずれか一方と、前記中途区間における音響信号と、の相関量を求め、
    前記相関量が所定閾値より小さいことを含む所定条件が満たされた場合に、前記中途区間を無呼吸状態と判定する、
    無呼吸状態判定方法。
  16. コンピュータに、
    睡眠中の音響信号を所定の時間長のフレームに分割させ、
    音量が所定値以上の連続するフレームを含む呼吸区間と、呼吸区間の間に存在する中途区間とを検出させ、
    前記中途区間の直前又は直後の呼吸区間における音響信号の少なくともいずれか一方と、前記中途区間における音響信号と、の相関量を求めさせ、
    前記相関量が所定閾値より小さいことを含む所定条件が満たされた場合に、前記中途区間を無呼吸状態と判定させる、
    ための無呼吸状態判定プログラム。
JP2012071766A 2012-03-27 2012-03-27 無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム Active JP6019659B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012071766A JP6019659B2 (ja) 2012-03-27 2012-03-27 無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム
US13/692,463 US9629582B2 (en) 2012-03-27 2012-12-03 Apnea episode determination device and apnea episode determination method
EP12195591.8A EP2644096B1 (en) 2012-03-27 2012-12-05 Apnea episode determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012071766A JP6019659B2 (ja) 2012-03-27 2012-03-27 無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム

Publications (2)

Publication Number Publication Date
JP2013202101A JP2013202101A (ja) 2013-10-07
JP6019659B2 true JP6019659B2 (ja) 2016-11-02

Family

ID=47290740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071766A Active JP6019659B2 (ja) 2012-03-27 2012-03-27 無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム

Country Status (3)

Country Link
US (1) US9629582B2 (ja)
EP (1) EP2644096B1 (ja)
JP (1) JP6019659B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179254A1 (en) * 2012-05-31 2013-12-05 Ben Gurion University Of The Negev Research And Development Authority Apparatus and method for diagnosing sleep quality
US11000223B2 (en) * 2016-02-03 2021-05-11 Nanyang Technological University Methods for detecting a sleep disorder and sleep disorder detection devices
CN110325110B (zh) 2016-11-10 2022-08-09 纽约州立大学研究基金会 用于气道阻塞的系统、方法和生物标记
JP7122225B2 (ja) * 2018-10-31 2022-08-19 エア・ウォーター・バイオデザイン株式会社 処理装置、システム、処理方法、およびプログラム
WO2020090763A1 (ja) * 2018-10-31 2020-05-07 パイオニア株式会社 処理装置、システム、処理方法、およびプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375621B1 (en) * 1987-03-06 2002-04-23 Ocean Laboratories, Inc. Passive apnea monitor
US6168568B1 (en) * 1996-10-04 2001-01-02 Karmel Medical Acoustic Technologies Ltd. Phonopneumograph system
JP4147441B2 (ja) 1999-07-09 2008-09-10 富士通株式会社 化合物半導体装置
JP2001029328A (ja) 1999-07-23 2001-02-06 Toshiba Corp 事故防止装置
US6932774B2 (en) * 2002-06-27 2005-08-23 Denso Corporation Respiratory monitoring system
US7678061B2 (en) * 2003-09-18 2010-03-16 Cardiac Pacemakers, Inc. System and method for characterizing patient respiration
US20070118054A1 (en) * 2005-11-01 2007-05-24 Earlysense Ltd. Methods and systems for monitoring patients for clinical episodes
JP4588515B2 (ja) * 2005-03-31 2010-12-01 住友大阪セメント株式会社 状態解析装置及びソフトウエアプログラム
JP2006320641A (ja) * 2005-05-20 2006-11-30 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 麻酔就眠時の呼吸音の解析による睡眠時無呼吸症候群の検出・評価システム
JP4642626B2 (ja) 2005-10-11 2011-03-02 博 中野 無呼吸低呼吸自動検出装置、検出方法、プログラム及び記録媒体
US7559903B2 (en) * 2007-03-28 2009-07-14 Tr Technologies Inc. Breathing sound analysis for detection of sleep apnea/popnea events
FR2924914B1 (fr) * 2007-12-18 2010-12-03 Alcatel Lucent Procede de detection des cycles respiratoires dans un signal stethoscopique
WO2010044162A1 (ja) * 2008-10-16 2010-04-22 富士通株式会社 無呼吸検出プログラム、無呼吸検出装置および無呼吸検出方法
EP2457504B1 (en) * 2009-07-24 2014-07-16 Fujitsu Limited Sleep apnea syndrome examination device and program
GB201011816D0 (en) * 2010-07-14 2010-09-01 Imp Innovations Feature characterization for breathing monitor
US20120071741A1 (en) * 2010-09-21 2012-03-22 Zahra Moussavi Sleep apnea monitoring and diagnosis based on pulse oximetery and tracheal sound signals
CN103687540B (zh) * 2011-05-17 2016-03-16 大学健康网络 使用记录的呼吸音振幅谱图和音高升降曲线诊断osa/csa

Also Published As

Publication number Publication date
JP2013202101A (ja) 2013-10-07
EP2644096B1 (en) 2014-11-19
US20130261485A1 (en) 2013-10-03
US9629582B2 (en) 2017-04-25
EP2644096A1 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5177293B2 (ja) 睡眠時無呼吸症候群の検査装置及びプログラム
JP6019659B2 (ja) 無呼吸状態判定装置,無呼吸状態判定方法,及び無呼吸状態判定プログラム
JP5233342B2 (ja) 睡眠時無呼吸検出プログラム、睡眠時無呼吸検出装置および睡眠時無呼吸検出方法
US9959886B2 (en) Spectral comb voice activity detection
JP5418666B2 (ja) ブラキシズム検出装置及びブラキシズム検出用コンピュータプログラム
JP6515670B2 (ja) 睡眠深度推定装置、睡眠深度推定方法、およびプログラム
CN109414174B (zh) 用于概率性地估计个体的脉搏率的方法和系统
Zhang et al. A novel wheeze detection method for wearable monitoring systems
JPWO2010044162A1 (ja) 無呼吸検出プログラムおよび無呼吸検出装置
CN102469978A (zh) 呼气吸气信号的降噪
JP5765338B2 (ja) 音声処理装置および音声処理装置の作動方法
CN107811610B (zh) 一种呼吸率检测方法、装置、电子设备及存储介质
Saudi et al. Computer aided recognition of vocal folds disorders by means of RASTA-PLP
JP2014233487A (ja) 睡眠判定装置と睡眠判定方法
JP6299172B2 (ja) 情報処理装置、情報処理方法及びプログラム
JP7061126B2 (ja) 睡眠呼吸障害を特徴付ける方法
WO2021132289A1 (ja) 病態解析システム、病態解析装置、病態解析方法、及び病態解析プログラム
JP2012024527A (ja) 腹式呼吸習熟度判定装置
KR102242479B1 (ko) 피부영상을 이용한 디지털 호흡 청진 방법
WO2020090763A1 (ja) 処理装置、システム、処理方法、およびプログラム
WO2023233667A1 (ja) 情報処理装置、情報処理方法、情報処理システム、及び情報処理プログラム
JP2013106707A (ja) 情報処理方法、装置及びプログラム
AU2021366259A1 (en) Processing recordings of a subject's breathing
Kemper et al. An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
JP2020069113A (ja) 処理装置、システム、処理方法、およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150