JP5172476B2 - Intermediate product of multilayer wiring board, manufacturing method of multilayer wiring board - Google Patents

Intermediate product of multilayer wiring board, manufacturing method of multilayer wiring board Download PDF

Info

Publication number
JP5172476B2
JP5172476B2 JP2008142668A JP2008142668A JP5172476B2 JP 5172476 B2 JP5172476 B2 JP 5172476B2 JP 2008142668 A JP2008142668 A JP 2008142668A JP 2008142668 A JP2008142668 A JP 2008142668A JP 5172476 B2 JP5172476 B2 JP 5172476B2
Authority
JP
Japan
Prior art keywords
product
conductor layer
area ratio
layer
side conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008142668A
Other languages
Japanese (ja)
Other versions
JP2009290081A (en
Inventor
俊哉 浅野
一広 鈴木
正剛 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008142668A priority Critical patent/JP5172476B2/en
Publication of JP2009290081A publication Critical patent/JP2009290081A/en
Application granted granted Critical
Publication of JP5172476B2 publication Critical patent/JP5172476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなる多層配線基板の中間製品、及び、多層配線基板の中間製品から得られる多層配線基板の製造方法に関するものである。   The present invention relates to an intermediate product of a multilayer wiring board comprising a product forming region in which a plurality of product parts to be products are arranged along the plane direction, and a frame part surrounding the product forming region, and a multilayer wiring substrate The present invention relates to a method for producing a multilayer wiring board obtained from the intermediate product.

配線基板を効率よく製造する技術の1つとして、多数個取りという手法が従来よく知られている。ここで多数個取りとは、1枚の配線基板の中間製品から複数の製品を得る手法であって、通常このような中間製品は、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とによって構成されている。なお、製品となるべき製品部については、その表面に製品部側導体層が形成される一方、製品にならない枠部については、その表面に従来何ら導体層は形成されていなかった。しかしながら近年では、反りの軽減等を目的として、枠部の表面にめっきからなるダミー導体層(枠部側導体層)をベタ状に設けることがある。また、このような枠部側導体層をベタ状ではなく、メッシュ状に形成したものも従来知られている(例えば特許文献1参照)。   As one of techniques for efficiently producing a wiring board, a technique of taking a large number of pieces is well known. Here, multi-cavity is a technique for obtaining a plurality of products from an intermediate product on a single wiring board. Usually, such an intermediate product has a plurality of product portions that are to be products arranged in a plane direction. The product forming region and a frame portion surrounding the product forming region. In addition, while the product part side conductor layer is formed in the surface about the product part which should become a product, the conductor layer was not formed on the surface conventionally about the frame part which does not become a product. However, in recent years, for the purpose of reducing warpage or the like, a dummy conductor layer (frame portion side conductor layer) made of plating may be provided in a solid shape on the surface of the frame portion. Moreover, what formed such a frame part side conductor layer in the mesh shape instead of the solid shape is also known conventionally (for example, refer patent document 1).

なお、配線基板の中間製品としては、コア基板の表面及び裏面にビルドアップ層を形成した多層配線基板の中間製品が実用化されている。この多層配線基板の中間製品において、コア基板は、例えば、補強繊維に樹脂を含浸させた樹脂基板(ガラスエポキシ基板など)が用いられている。そして、そのコア基板の剛性を利用して、コア基板の表面及び裏面に樹脂絶縁層と導体層とを交互に積層することにより、ビルドアップ層が形成されている。つまり、この多層配線基板の中間製品において、コア基板は、補強の役割を果たしており、ビルドアップ層と比べて非常に厚く形成されている。また、コア基板には、表面及び裏面に形成されたビルドアップ層間の導通を図るための配線(具体的には、スルーホール導体など)が貫通形成されている。さらに、多層配線基板の中間製品には、コンピュータのマイクロプロセッサ等として使用される半導体集積回路素子(ICチップ)が搭載可能となっている。   As an intermediate product of a wiring board, an intermediate product of a multilayer wiring board in which a buildup layer is formed on the front surface and the back surface of a core substrate has been put into practical use. In the intermediate product of this multilayer wiring substrate, for example, a resin substrate (glass epoxy substrate or the like) in which a reinforcing fiber is impregnated with a resin is used as the core substrate. Then, by utilizing the rigidity of the core substrate, a buildup layer is formed by alternately laminating a resin insulating layer and a conductor layer on the front surface and the back surface of the core substrate. That is, in the intermediate product of the multilayer wiring board, the core board plays a role of reinforcement and is formed much thicker than the build-up layer. In addition, wiring (specifically, a through-hole conductor or the like) is formed through the core substrate for conduction between buildup layers formed on the front surface and the back surface. Furthermore, a semiconductor integrated circuit element (IC chip) used as a computer microprocessor or the like can be mounted on the intermediate product of the multilayer wiring board.

ところで、近年では、半導体集積回路素子の高速化に伴い、使用される信号周波数が高周波帯域となってきている。この場合、コア基板を貫通する配線が大きなインダクタンスとして寄与し、高周波信号の伝送ロスや回路誤動作の発生につながり、高速化の妨げとなってしまう。この問題を解決するために、多層配線基板を、コア基板を有さないコアレス配線基板とすることが提案されている(例えば特許文献2参照)。このコアレス配線基板は、比較的に厚いコア基板を省略することにより全体の配線長を短くしたものであるため、高周波信号の伝送ロスが低減され、半導体集積回路素子を高速で動作させることが可能となる。
特開2007−180212号公報(図1,図2等参照) 特許第3664720号公報
By the way, in recent years, with the increase in the speed of semiconductor integrated circuit elements, the signal frequency used has become a high frequency band. In this case, the wiring penetrating the core substrate contributes as a large inductance, leading to transmission loss of high-frequency signals and circuit malfunction, which hinders speeding up. In order to solve this problem, it has been proposed that the multilayer wiring board is a coreless wiring board that does not have a core board (see, for example, Patent Document 2). This coreless wiring board shortens the overall wiring length by omitting the relatively thick core board, so that the transmission loss of high-frequency signals is reduced and the semiconductor integrated circuit element can be operated at high speed. It becomes.
Japanese Unexamined Patent Publication No. 2007-180212 (see FIG. 1, FIG. 2, etc.) Japanese Patent No. 3664720

ところが、上記コアレス配線基板は、コア基板を省略して製造されているため、その強度を十分に確保することができない。ゆえに、多層配線基板をコアレス配線基板とする場合には、たとえ枠部の表面に上記した枠部側導体層を設けたとしても、多層配線基板の中間製品の強度を確保できなくなる。その結果、例えば中間製品に対して半導体集積回路素子やチップコンデンサなどを接合する場合、接合に用いたはんだが冷却される際に、製品形成領域と枠部との熱膨張係数差に起因する熱応力の影響を受けて中間製品に反りが生じてしまうため、多層配線基板の歩留まりが低下してしまう。   However, since the coreless wiring substrate is manufactured by omitting the core substrate, the strength cannot be sufficiently ensured. Therefore, when the multilayer wiring board is a coreless wiring board, the strength of the intermediate product of the multilayer wiring board cannot be ensured even if the above-mentioned frame side conductor layer is provided on the surface of the frame. As a result, for example, when a semiconductor integrated circuit element or a chip capacitor is bonded to an intermediate product, when the solder used for the bonding is cooled, the heat caused by the difference in thermal expansion coefficient between the product formation region and the frame portion Since the intermediate product is warped under the influence of stress, the yield of the multilayer wiring board is lowered.

本発明は上記の課題に鑑みてなされたものであり、その目的は、反りを防止して製品の歩留まりを向上させることができる多層配線基板の中間製品を提供することにある。また、本発明の別の目的は、歩留まりを向上させることができる多層配線基板の製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an intermediate product of a multilayer wiring board capable of preventing warpage and improving product yield. Another object of the present invention is to provide a method for manufacturing a multilayer wiring board capable of improving the yield.

そして、上記課題を解決するための手段(手段1)としては、複数の樹脂絶縁層を積層した構造を有し、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなり、それぞれの樹脂絶縁層の主面に、導体層として前記製品部内の領域に形成された製品部側導体層と前記枠部内の領域に形成された枠部側導体層とが設けられている多層配線基板の中間製品であって、前記製品形成領域に占める前記製品部側導体層の面積率が同一ではなく、前記製品形成領域に占める前記製品部側導体層の面積率が大きいものほど、それと同一面内に存在する前記枠部に占める前記枠部側導体層の面積率が小さく設定され、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定したことを特徴とする多層配線基板の中間製品がある。   And as a means (means 1) for solving the above-mentioned problem, it has a structure in which a plurality of resin insulation layers are laminated, and a product forming region in which a plurality of product parts to be products are arranged along the plane direction; A frame portion surrounding the periphery of the product formation region, and formed on the main surface of each resin insulation layer as a conductor layer in the product portion side conductor layer formed in the region in the product portion and in the region in the frame portion And an intermediate product of the multilayer wiring board provided with the frame portion side conductor layer, wherein the area ratio of the product portion side conductor layer in the product formation region is not the same, and the area occupied in the product formation region is As the area ratio of the product part side conductor layer is larger, the area ratio of the frame part side conductor layer occupying the frame part existing in the same plane is set smaller, and the conductor occupying the main surface of the resin insulation layer The area ratio of the layer, the product formation There is an intermediate product of a multilayer wiring board, characterized in that set between the maximum value and the minimum value of the area ratio of the product portion side conductor layer to the range.

従って、手段1の多層配線基板の中間製品によれば、樹脂絶縁層の主面に占める導体層の面積率が、製品形成領域に占める製品部側導体層の面積率の最高値と最低値との間に設定されるため、各層の樹脂絶縁層の主面に占める導体層の面積率のバラツキが小さくなる。その結果、各層の熱膨張係数差が小さくなるとともに、熱膨張係数差に起因する熱応力も小さくなるため、製品部側導体層に部品を接続する際に上記の熱応力が加わったとしても、中間製品が反りにくくなる。ゆえに、中間製品から得られる製品の歩留まりを向上させることができる。   Therefore, according to the intermediate product of the multilayer wiring board of means 1, the area ratio of the conductor layer occupying the main surface of the resin insulating layer is the highest value and the lowest value of the area ratio of the product part side conductor layer occupying the product formation region. Therefore, the variation in the area ratio of the conductor layer in the main surface of the resin insulating layer of each layer is reduced. As a result, the difference in thermal expansion coefficient of each layer is reduced, and the thermal stress due to the difference in thermal expansion coefficient is also reduced, so even when the above-described thermal stress is applied when connecting a component to the product side conductor layer, Intermediate products are less likely to warp. Therefore, the yield of products obtained from intermediate products can be improved.

上記課題を解決するための別の手段(手段2)としては、複数の樹脂絶縁層を積層した構造を有し、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなり、それぞれの樹脂絶縁層の主面に、導体層として前記製品部内の領域に形成された製品部側導体層と前記枠部内の領域に形成された枠部側導体層とが設けられ、前記製品部内の領域における前記樹脂絶縁層と前記製品部側導体層とを交互に積層した構造を有し、同一の前記樹脂絶縁層を主体として形成され、同一方向に拡径したビアのみによりそれぞれの前記製品部側導体層が接続される多層配線基板の中間製品であって、前記複数の樹脂絶縁層のうち少なくとも1つの樹脂絶縁層上における前記枠部内の領域に、前記枠部側導体層が存在しない複数のスリット状の非形成領域が前記製品部の外形線に沿って設定された切断予定線の延長線上に配置され、前記製品形成領域に占める前記製品部側導体層の面積率が同一ではなく、前記製品形成領域に占める前記製品部側導体層の面積率が大きいものほど、それと同一面内に存在する前記枠部に占める前記枠部側導体層の面積率が小さく設定され、前記樹脂絶縁層の主面に占める前記導体層の面積率のバラツキを、15%以内に設定したことを特徴とする配線基板の中間製品がある。 As another means (means 2) for solving the above-mentioned problem, there is a product formation region having a structure in which a plurality of resin insulating layers are laminated, and a plurality of product parts to be products are arranged along the planar direction. A frame portion surrounding the periphery of the product formation region, and formed on the main surface of each resin insulation layer as a conductor layer in the product portion side conductor layer formed in the region in the product portion and in the region in the frame portion Frame portion side conductor layer is provided , and has a structure in which the resin insulation layer and the product portion side conductor layer in the region in the product portion are alternately laminated, and the same resin insulation layer is mainly formed. And an intermediate product of a multilayer wiring board in which each product part side conductor layer is connected only by vias whose diameters are expanded in the same direction, wherein the product on at least one resin insulation layer of the plurality of resin insulation layers In the area inside the frame, A plurality of slit-shaped non-forming region Kiwaku side conductor layer is not present is disposed on an extension of the cutting line that is set along the outline of the product portion, said product portion occupied in the product forming region The area ratio of the conductor layer is not the same, and the larger the area ratio of the product part side conductor layer in the product forming region, the larger the area of the frame part side conductor layer in the frame part existing in the same plane. There is an intermediate product of a wiring board characterized in that the ratio is set small, and the variation in the area ratio of the conductor layer occupying the main surface of the resin insulating layer is set within 15%.

従って、手段2の多層配線基板の中間製品によれば、樹脂絶縁層の主面に占める導体層の面積率のバラツキが、15%以内に設定されて小さくなる。その結果、各層の熱膨張係数差が小さくなるとともに、熱膨張係数差に起因する熱応力も小さくなるため、製品部側導体層に部品を接続する際に上記の熱応力が加わったとしても、中間製品が反りにくくなる。ゆえに、中間製品から得られる製品の歩留まりを向上させることができる。   Therefore, according to the intermediate product of the multilayer wiring board of the means 2, the variation in the area ratio of the conductor layer occupying the main surface of the resin insulating layer is set within 15% and becomes small. As a result, the difference in thermal expansion coefficient of each layer is reduced, and the thermal stress due to the difference in thermal expansion coefficient is also reduced, so even when the above-described thermal stress is applied when connecting a component to the product side conductor layer, Intermediate products are less likely to warp. Therefore, the yield of products obtained from intermediate products can be improved.

ここで、「前記製品形成領域に占める前記製品部側導体層の面積率」とは、製品形成領域の表面において所定の領域を設定した場合にその領域に占める製品部側導体層の比率(露出比率)のことをいうものとする。同様に、「前記枠部に占める前記枠部側導体層の面積率」とは、枠部の表面において所定の領域を設定した場合にその領域に占める枠部側導体層の比率(露出比率)のことをいうものとする。さらに、「前記樹脂絶縁層の主面に占める前記導体層の面積率」とは、樹脂絶縁層の主面において所定の領域を設定した場合にその領域に占める導体層の比率(露出比率)のことをいうものとする。   Here, “the area ratio of the product part side conductor layer in the product formation region” means the ratio (exposure) of the product part side conductor layer in the region when a predetermined region is set on the surface of the product formation region. Ratio). Similarly, “the area ratio of the frame-side conductor layer in the frame portion” is the ratio (exposure ratio) of the frame-side conductor layer in that region when a predetermined region is set on the surface of the frame portion. It shall be said. Furthermore, “the area ratio of the conductor layer in the main surface of the resin insulating layer” is the ratio (exposure ratio) of the conductor layer in the region when a predetermined region is set in the main surface of the resin insulating layer. It shall be said.

前記枠部に占める前記枠部側導体層の面積率はいずれも限定されるべきではないが、例えば50%以上に設定することがよい。仮に、枠部側導体層の面積率が50%未満であると、製品形成領域と枠部との熱膨張係数差が大きくなり、その熱膨張係数差に起因する熱応力も大きくなるため、熱応力の影響を受けて中間製品に反りが生じてしまう可能性がある。   The area ratio of the frame portion side conductor layer in the frame portion should not be limited, but is preferably set to, for example, 50% or more. If the area ratio of the frame side conductor layer is less than 50%, the difference in thermal expansion coefficient between the product formation region and the frame increases, and the thermal stress resulting from the difference in thermal expansion coefficient also increases. There is a possibility that the intermediate product is warped under the influence of stress.

なお、前記樹脂絶縁層の主面に占める前記導体層の面積率を、全て同一となるように設定することが好ましい。このようにすれば、樹脂絶縁層の主面に占める導体層の面積率のバラツキが殆どなくなるため、各層の熱膨張係数を略一定にすることができる。ゆえに、各層の熱膨張係数差に起因して発生する熱応力がほぼ零となるため、上記の熱応力に起因する中間製品の反りを極めて小さくすることができる。なお、「前記樹脂絶縁層の主面に占める前記導体層の面積率を、全て同一となるように設定」したとは、面積率を完全に同一にしたことだけでなく、面積率を略同一にしたことも含むものとする。   In addition, it is preferable to set so that all the area ratios of the said conductor layer which occupy for the main surface of the said resin insulation layer may become the same. In this way, there is almost no variation in the area ratio of the conductor layer occupying the main surface of the resin insulating layer, so that the thermal expansion coefficient of each layer can be made substantially constant. Therefore, since the thermal stress generated due to the difference in thermal expansion coefficient of each layer becomes almost zero, the warp of the intermediate product due to the thermal stress can be extremely reduced. “The area ratio of the conductor layer occupying the main surface of the resin insulation layer is set to be all the same” means that the area ratio is almost the same, and the area ratio is substantially the same. It also includes what has been done.

また、前記多層配線基板が、コア基板を有さず、前記製品部内の領域における前記樹脂絶縁層と前記製品部側導体層とを交互に積層した構造を有し、同一の前記樹脂絶縁層を主体として形成され、同一方向に拡径したビアのみによりそれぞれの前記製品部側導体層を接続する配線基板である場合、強度を十分に確保することができず、多層配線基板の中間製品の反りがより顕著になる。よって、多層配線基板がコア基板を有しない場合に、樹脂絶縁層の主面に占める導体層の面積率を製品形成領域に占める製品部側導体層の面積率の最高値と最低値との間に設定したり、樹脂絶縁層の主面に占める導体層の面積率のバラツキを15%以内に設定したりすれば、より効果的に中間製品の反りを防止することができる。   Further, the multilayer wiring board does not have a core substrate, and has a structure in which the resin insulating layers and the product part side conductor layers in a region in the product part are alternately laminated, and the same resin insulating layer is provided. When the wiring board is formed as a main body and connects each product part side conductor layer only with vias whose diameters are expanded in the same direction, sufficient strength cannot be secured, and warping of the intermediate product of the multilayer wiring board Becomes more prominent. Therefore, when the multilayer wiring board does not have a core substrate, the area ratio of the conductor layer occupying the main surface of the resin insulation layer is between the maximum value and the minimum value of the area ratio of the product part side conductor layer occupying the product formation area. If the variation of the area ratio of the conductor layer occupying the main surface of the resin insulating layer is set to 15% or less, the warp of the intermediate product can be more effectively prevented.

ここで、「多層配線基板の中間製品」とは、多層配線基板の完成品に対する概念であって、具体的には、製品形成領域から枠部を除去するとともに、製品形成領域を製品部の外形線に沿って設定された切断予定線に沿って切断することにより、製品部同士を分割する分離工程が完了していない状態の多層配線基板のことを指す。一般的に、多層配線基板の中間製品、製品形成領域及び製品部は、いずれも平面視略矩形状となるように形成される。また、製品部の面積は、製品形成領域の面積に比べてかなり小さく設定される。従って、製品形成領域内には、製品部が例えば数十個から数百個配置される。   Here, the “intermediate product of the multilayer wiring board” is a concept for the finished product of the multilayer wiring board. Specifically, the frame part is removed from the product formation area and the product formation area is defined as the outer shape of the product part. A multilayer wiring board in a state where a separation process for dividing product parts is not completed by cutting along a planned cutting line set along the line. In general, the intermediate product, the product formation region, and the product portion of the multilayer wiring board are all formed in a substantially rectangular shape in plan view. Further, the area of the product portion is set to be considerably smaller than the area of the product formation region. Therefore, for example, several tens to several hundreds of product parts are arranged in the product formation region.

一方、「枠部」は、製品とはならず製造時に製品形成領域から分離、除去されてしまう部分であって、製品形成領域の周囲を取り囲んでいる。前記枠部には、枠部側導体層がいわゆるダミー導体層として形成されている。   On the other hand, the “frame portion” is a portion that is not a product but is separated and removed from the product formation region during manufacture, and surrounds the periphery of the product formation region. In the frame portion, a frame portion side conductor layer is formed as a so-called dummy conductor layer.

また、多層配線基板の中間製品は、複数の樹脂絶縁層を積層した構造を有する。前記樹脂絶縁層は、絶縁性、耐熱性、耐湿性等を考慮して適宜選択することができる。前記樹脂絶縁層の形成材料の好適例としては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂などの熱硬化性樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリアセタール樹脂、ポリプロピレン樹脂などの熱可塑性樹脂等が挙げられる。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料、あるいは、連続多孔質PTFE等の三次元網目状フッ素系樹脂基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた樹脂−樹脂複合材料等を使用してもよい。なお、樹脂絶縁層には、層間接続のためのビア導体を形成するために、あらかじめビア穴が形成されていてもよい。   Further, the intermediate product of the multilayer wiring board has a structure in which a plurality of resin insulating layers are laminated. The resin insulation layer can be appropriately selected in consideration of insulation, heat resistance, moisture resistance, and the like. Preferred examples of the material for forming the resin insulating layer include thermosetting resins such as epoxy resins, phenol resins, urethane resins, silicone resins, and polyimide resins, and thermoplastic resins such as polycarbonate resins, acrylic resins, polyacetal resins, and polypropylene resins. Etc. In addition, composite materials of these resins and organic fibers such as glass fibers (glass woven fabrics and glass nonwoven fabrics) and polyamide fibers, or three-dimensional network fluorine-based resin base materials such as continuous porous PTFE, epoxy resins, etc. A resin-resin composite material impregnated with a thermosetting resin may be used. Note that via holes may be formed in the resin insulating layer in advance in order to form via conductors for interlayer connection.

前記導体層(前記製品部側導体層及び前記枠部側導体層)は、サブトラクティブ法、セミアディティブ法、フルアディティブ法などといった公知の手法によって、樹脂絶縁層の主面にパターン形成される。前記製品部側導体層及び前記枠部側導体層の形成に用いられる金属材料の例としては、銅、銅合金、ニッケル、ニッケル合金、スズ、スズ合金などが挙げられる。   The conductor layer (the product part side conductor layer and the frame part side conductor layer) is patterned on the main surface of the resin insulating layer by a known method such as a subtractive method, a semi-additive method, or a full additive method. Examples of the metal material used for forming the product part side conductor layer and the frame part side conductor layer include copper, copper alloy, nickel, nickel alloy, tin, and tin alloy.

なお、前記複数の樹脂絶縁層のうち少なくとも1つの樹脂絶縁層上における前記枠部内の領域に、前記枠部側導体層が存在しない複数のスリット状の非形成領域を前記製品部の外形線に沿って設定された切断予定線の延長線上に配置するとともに、前記製品形成領域に占める前記製品部側導体層の面積率が大きくなるに従って、前記非形成領域の幅を大きく設定することにより、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定してもよい。このようにした場合、一般的に等間隔に配置される製品部に合わせて複数の非形成領域が配置されるため、複数の非形成領域を互いに等間隔に配置しやすくなる。その結果、枠部に占める枠部側導体層の面積率を枠部のどの部分においても均一にしやすくなり、ひいては、樹脂絶縁層の主面に占める導体層の面積率のバラツキをよりいっそう小さくすることができる。その結果、各層の熱膨張係数差がよりいっそう小さくなるとともに、熱膨張係数差に起因する熱応力もよりいっそう小さくなるため、上記の熱応力が多層配線基板の中間製品に加わったとしても、中間製品がよりいっそう反りにくくなる。   In addition, a plurality of slit-shaped non-formation regions in which the frame-side conductor layer is not present in the region within the frame portion on at least one resin insulation layer among the plurality of resin insulation layers are used as the outline of the product portion. By arranging on the extension line of the planned cutting line set along, and by increasing the width of the non-formation region as the area ratio of the product portion side conductor layer in the product formation region is increased, The area ratio of the conductor layer occupying the main surface of the resin insulating layer may be set between the maximum value and the minimum value of the area ratio of the product part side conductor layer occupying the product formation region. In this case, since a plurality of non-formation regions are generally arranged in accordance with product parts arranged at regular intervals, the plural non-formation regions are easily arranged at regular intervals. As a result, the area ratio of the frame-side conductor layer occupying the frame part can be easily made uniform in any part of the frame part, and as a result, the variation in the area ratio of the conductor layer occupying the main surface of the resin insulating layer is further reduced. be able to. As a result, the difference in thermal expansion coefficient of each layer is further reduced, and the thermal stress due to the difference in thermal expansion coefficient is further reduced, so even if the above thermal stress is applied to the intermediate product of the multilayer wiring board, The product becomes more difficult to warp.

ここで、前記複数のスリット状の非形成領域は、前記複数の樹脂絶縁層のうち少なくとも1つの樹脂絶縁層上に配置される。非形成領域の深さは、特に限定される訳ではないが、例えば、枠部の幅(枠部と製品形成領域との境界部分から枠部の外周縁までの距離)と等しく設定されていてもよい。即ち、枠部側導体層は、複数の非形成領域によって分断されていてもよい。   Here, the plurality of slit-like non-formation regions are disposed on at least one resin insulation layer among the plurality of resin insulation layers. The depth of the non-formation region is not particularly limited. For example, the depth of the non-formation region is set equal to the width of the frame portion (the distance from the boundary portion between the frame portion and the product formation region to the outer periphery of the frame portion). Also good. That is, the frame portion side conductor layer may be divided by a plurality of non-formed regions.

また、前記枠部側導体層をメッシュ状に形成するとともに、前記製品形成領域に占める前記製品部側導体層の面積率が大きくなるに従って、前記枠部側導体層の線幅を細く設定することにより、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定してもよい。このようにした場合、パターン設計の負担を軽減できるため高コスト化の防止を達成しやすくなる。   In addition, the frame portion side conductor layer is formed in a mesh shape, and the line width of the frame portion side conductor layer is set narrower as the area ratio of the product portion side conductor layer occupying the product formation region increases. Thus, the area ratio of the conductor layer occupying the main surface of the resin insulating layer may be set between the maximum value and the minimum value of the area ratio of the product portion side conductor layer occupying the product formation region. In this case, since the burden of pattern design can be reduced, it is easy to prevent cost increase.

ここで、メッシュ状の枠部側導体層は、導体層がある領域と導体層がない領域とが規則的に連続するものであれば何でもよいが、パターン設計負担の軽減という観点から、複数のラインパターンを交差させてなるものが好適である。より具体的にいうと、メッシュ状の枠部側導体層は、互いに等間隔に配置された複数の第1ラインパターンと、同じく互いに等間隔に配置された複数の第2ラインパターンとを垂直に交差させてなるものが好ましい。この場合、ラインパターンの線幅は特に限定されるべきではないが、例えば0.1mm以上1.5mm以下、さらには0.2mm以上1.3mm以下、特には0.3mm以上1.0mm以下に設定されることが好適である。   Here, the mesh-shaped frame portion side conductor layer may be anything as long as the region where the conductor layer is present and the region where the conductor layer is not present are regularly continuous. What cross | intersects a line pattern is suitable. More specifically, the mesh-shaped frame-side conductor layer vertically connects a plurality of first line patterns that are equally spaced from each other and a plurality of second line patterns that are also equally spaced from each other. What crosses is preferable. In this case, the line width of the line pattern should not be particularly limited, but is, for example, 0.1 mm to 1.5 mm, further 0.2 mm to 1.3 mm, particularly 0.3 mm to 1.0 mm. It is preferable to set.

上記課題を解決するための別の手段(手段3)としては、複数の樹脂絶縁層を積層した構造を有し、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなり、それぞれの樹脂絶縁層の主面に、導体層として前記製品部内の領域に形成された製品部側導体層と前記枠部内の領域に形成された枠部側導体層とが設けられ、前記製品形成領域に占める前記製品部側導体層の面積率が同一ではなく、前記製品形成領域に占める前記製品部側導体層の面積率が大きいものほど、それと同一面内に存在する前記枠部に占める前記枠部側導体層の面積率が小さく設定され、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定した多層配線基板の中間製品を準備する準備工程と、前記製品形成領域から前記枠部を除去するとともに、前記製品形成領域における切断予定線に沿って切断することにより、前記製品部同士を分割する分離工程とを含むことを特徴とする多層配線基板の製造方法がある。   As another means (means 3) for solving the above-mentioned problem, there is a product formation region having a structure in which a plurality of resin insulation layers are laminated, and a plurality of product portions to be products are arranged along the planar direction. A frame portion surrounding the periphery of the product formation region, and formed on the main surface of each resin insulation layer as a conductor layer in the product portion side conductor layer formed in the region in the product portion and in the region in the frame portion And the area ratio of the product part side conductor layer in the product formation region is not the same, and the area ratio of the product part side conductor layer in the product formation region is large. The area ratio of the frame-side conductor layer occupying the frame section existing in the same plane is set to be small, and the area ratio of the conductor layer occupying the main surface of the resin insulation layer is set in the product formation region. Of the area ratio of the product part side conductor layer A preparation step of preparing an intermediate product of a multilayer wiring board set between a high value and a minimum value, and removing the frame portion from the product formation region and cutting along a planned cutting line in the product formation region The manufacturing method of the multilayer wiring board characterized by including the isolation | separation process which divides | segments the said product parts.

従って、手段3の多層配線基板の製造方法によれば、準備工程において、樹脂絶縁層の主面に占める導体層の面積率を製品形成領域に占める製品部側導体層の面積率の最高値と最低値との間に設定した中間製品を準備することにより、各層の樹脂絶縁層の主面に占める導体層の面積率のバラツキが小さくなる。その結果、各層の熱膨張係数差が小さくなるとともに、熱膨張係数差に起因する熱応力も小さくなる。よって、準備工程後に製品部側導体層に対して部品を接続する際に、上記の熱膨張係数差に起因する熱応力が多層配線基板の中間製品に加わったとしても、中間製品が反りにくくなるため、中間製品から得られる多層配線基板の歩留まりを向上させることができる。   Therefore, according to the manufacturing method of the multilayer wiring board of means 3, in the preparation step, the area ratio of the conductor layer occupying the main surface of the resin insulation layer is the maximum value of the area ratio of the product portion side conductor layer occupying the product formation area. By preparing an intermediate product set between the minimum value and the minimum value, the variation in the area ratio of the conductor layer in the main surface of the resin insulation layer of each layer is reduced. As a result, the difference in thermal expansion coefficient of each layer is reduced, and the thermal stress resulting from the difference in thermal expansion coefficient is also reduced. Therefore, even when a component is connected to the product part side conductor layer after the preparation process, even if the thermal stress due to the above-described difference in thermal expansion coefficient is applied to the intermediate product of the multilayer wiring board, the intermediate product is less likely to warp. Therefore, the yield of the multilayer wiring board obtained from the intermediate product can be improved.

上記課題を解決するための別の手段(手段4)としては、複数の樹脂絶縁層を積層した構造を有し、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなり、それぞれの樹脂絶縁層の主面に、導体層として前記製品部内の領域に形成された製品部側導体層と前記枠部内の領域に形成された枠部側導体層とが設けられ、前記製品部内の領域における前記樹脂絶縁層と前記製品部側導体層とを交互に積層した構造を有し、同一の前記樹脂絶縁層を主体として形成され、同一方向に拡径したビアのみによりそれぞれの前記製品部側導体層が接続され、前記複数の樹脂絶縁層のうち少なくとも1つの樹脂絶縁層上における前記枠部内の領域に、前記枠部側導体層が存在しない複数のスリット状の非形成領域が前記製品部の外形線に沿って設定された切断予定線の延長線上に配置され、前記製品形成領域に占める前記製品部側導体層の面積率が同一ではなく、前記製品形成領域に占める前記製品部側導体層の面積率が大きいものほど、それと同一面内に存在する前記枠部に占める前記枠部側導体層の面積率が小さく設定され、前記樹脂絶縁層の主面に占める前記導体層の面積率のバラツキを、15%以内に設定した多層配線基板の中間製品を準備する準備工程と、前記製品形成領域から前記枠部を除去するとともに、前記製品形成領域における切断予定線に沿って切断することにより、前記製品部同士を分割する分離工程とを含むことを特徴とする多層配線基板の製造方法がある。 As another means (means 4) for solving the above-mentioned problem, there is a product formation region having a structure in which a plurality of resin insulation layers are laminated, and a plurality of product parts to be products are arranged along the planar direction. A frame portion surrounding the periphery of the product formation region, and formed on the main surface of each resin insulation layer as a conductor layer in the product portion side conductor layer formed in the region in the product portion and in the region in the frame portion Frame portion side conductor layer is provided, and has a structure in which the resin insulation layer and the product portion side conductor layer in the region in the product portion are alternately laminated, and the same resin insulation layer is mainly formed. The product part side conductor layers are connected only by vias whose diameters are expanded in the same direction, and the frame part side is disposed in a region within the frame part on at least one resin insulating layer of the plurality of resin insulating layers. Multiple without conductor layers Slit formed area is disposed on an extension of the cutting line that is set along the outline of the product portion, the area ratio of the product portion side conductor layer to the said product forming region are not identical, the The larger the area ratio of the product portion side conductor layer in the product formation region, the smaller the area ratio of the frame portion side conductor layer in the frame portion existing in the same plane as that, the resin insulating layer A preparation step of preparing an intermediate product of a multilayer wiring board in which variation in the area ratio of the conductor layer occupying the main surface is set within 15%, removing the frame portion from the product formation region, and the product formation region And a separation step of dividing the product parts by cutting along a planned cutting line.

従って、手段4の多層配線基板の製造方法によれば、準備工程において、樹脂絶縁層の主面に占める導体層の面積率のバラツキを15%以内に設定した中間製品を準備することにより、各層の樹脂絶縁層の主面に占める導体層の面積率のバラツキが小さくなる。その結果、各層の熱膨張係数差が小さくなるとともに、熱膨張係数差に起因する熱応力も小さくなる。よって、準備工程後に製品部側導体層に対して部品を接続する際に、上記の熱膨張係数差に起因する熱応力が多層配線基板の中間製品に加わったとしても、中間製品が反りにくくなるため、中間製品から得られる多層配線基板の歩留まりを向上させることができる。   Therefore, according to the multilayer wiring board manufacturing method of means 4, in the preparation step, by preparing an intermediate product in which the variation in the area ratio of the conductor layer in the main surface of the resin insulation layer is set to 15% or less, The variation in the area ratio of the conductor layer in the main surface of the resin insulation layer is reduced. As a result, the difference in thermal expansion coefficient of each layer is reduced, and the thermal stress resulting from the difference in thermal expansion coefficient is also reduced. Therefore, even when a component is connected to the product part side conductor layer after the preparation process, even if the thermal stress due to the above-described difference in thermal expansion coefficient is applied to the intermediate product of the multilayer wiring board, the intermediate product is less likely to warp. Therefore, the yield of the multilayer wiring board obtained from the intermediate product can be improved.

以下、手段3,4にかかる多層配線基板の製造方法について説明する。   Hereinafter, the manufacturing method of the multilayer wiring board concerning the means 3 and 4 is demonstrated.

準備工程では、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定した多層配線基板の中間製品、または、前記樹脂絶縁層の主面に占める前記導体層の面積率のバラツキを、15%以内に設定した多層配線基板の中間製品を準備する。   In the preparation step, the multilayer wiring in which the area ratio of the conductor layer occupying the main surface of the resin insulating layer is set between the maximum value and the minimum value of the area ratio of the product part side conductor layer occupying the product formation region An intermediate product of a multilayer wiring board is prepared in which the variation of the area ratio of the conductor layer occupying the main surface of the resin insulation layer is set to 15% or less.

なお、前記準備工程としては、片面に金属箔を有する基材上に前記複数の樹脂絶縁層を積層する積層工程と、前記積層工程後、前記基材を除去して前記金属箔を露出させる基材除去工程と、前記基材除去工程後、前記金属箔に対するパターニングを行うパターニング工程と、前記パターニング工程後、最表層の前記樹脂絶縁層の主面に形成された前記導体層上に部品接続用のはんだバンプを形成するはんだバンプ形成工程とからなる工程などが挙げられる。   The preparation step includes a lamination step of laminating the plurality of resin insulation layers on a base material having a metal foil on one side, and a base for removing the base material and exposing the metal foil after the lamination step. After the material removal step, after the substrate removal step, a patterning step for patterning the metal foil, and after the patterning step, for connecting components on the conductor layer formed on the main surface of the outermost resin insulation layer And a process including a solder bump forming process for forming the solder bump.

ここで、金属箔としては、例えば、銀、金、白金、銅、チタン、アルミニウム、パラジウム、ニッケル、タングステンのいずれかからなるものを挙げることができる。特に金属箔は、銅からなることが好ましい。このようにすれば、金属箔が他の材料からなる場合よりも、金属箔の低抵抗化が図られるとともに、金属箔の導電性が向上する。   Here, as metal foil, what consists of either silver, gold | metal | money, platinum, copper, titanium, aluminum, palladium, nickel, tungsten can be mentioned, for example. In particular, the metal foil is preferably made of copper. In this way, the resistance of the metal foil can be reduced and the conductivity of the metal foil can be improved as compared with the case where the metal foil is made of another material.

また、前記はんだバンプ形成工程では、最表層の前記樹脂絶縁層上に形成された前記製品部側導体層上に部品接続用のはんだバンプを形成する。このはんだバンプを介して製品部側導体層と部品との電気的接続が図られる。   Further, in the solder bump forming step, solder bumps for connecting components are formed on the product portion side conductor layer formed on the outermost resin insulating layer. Electrical connection between the product part side conductor layer and the part is achieved through the solder bumps.

前記はんだバンプをなす金属としては、搭載される部品の接続端子の材質等に応じて適宜選択すればよいが、90Pb−10Sn、95Pb−5Sn、40Pb−60SnなどのPb−Sn系はんだ、Sn−Sb系はんだ、Sn−Ag系はんだ、Sn−Ag−Cu系はんだ、Au−Ge系はんだ、Au−Sn系はんだなどが挙げられる。   The metal forming the solder bump may be appropriately selected according to the material of the connection terminal of the component to be mounted, but Pb-Sn solder such as 90Pb-10Sn, 95Pb-5Sn, 40Pb-60Sn, Sn- Examples thereof include Sb solder, Sn—Ag solder, Sn—Ag—Cu solder, Au—Ge solder, Au—Sn solder.

また、好適な前記部品としては、コンデンサ、半導体集積回路素子(ICチップ)、半導体製造プロセスで製造されたMEMS(Micro Electro Mechanical Systems)素子などを挙げることができる。さらに、ICチップとしては、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory )などを挙げることができる。ここで、「半導体集積回路素子」とは、主としてコンピュータのマイクロプロセッサ等として使用される素子をいう。   Suitable examples of the component include a capacitor, a semiconductor integrated circuit element (IC chip), and a MEMS (Micro Electro Mechanical Systems) element manufactured by a semiconductor manufacturing process. Further, examples of the IC chip include DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory) and the like. Here, “semiconductor integrated circuit element” refers to an element mainly used as a microprocessor of a computer or the like.

その後、製品形成領域から枠部を除去するとともに、製品形成領域を製品部の外形線に沿って設定された切断予定線に沿って切断することにより、製品部同士を分割する分離工程を行えば、複数ピースの製品(多層配線基板)を得ることができる。   Thereafter, the frame portion is removed from the product formation region, and the product formation region is cut along a planned cutting line set along the outline of the product portion, thereby performing a separation step of dividing the product portions. A multi-piece product (multilayer wiring board) can be obtained.

以下、本発明を具体化した一実施形態を図面に基づき詳細に説明する。   Hereinafter, an embodiment embodying the present invention will be described in detail with reference to the drawings.

図1は、本実施形態のコアレス配線基板101(多層配線基板)を示す概略断面図である。コアレス配線基板101は、コア基板を有さず、エポキシ樹脂からなる3層の樹脂絶縁層41,42,43と銅からなる配線層51とを交互に積層した構造を有する配線基板である。樹脂絶縁層41〜43は、同一の厚さ(48μm)及び材料からなる層間絶縁層である。   FIG. 1 is a schematic cross-sectional view showing a coreless wiring board 101 (multilayer wiring board) of the present embodiment. The coreless wiring substrate 101 does not have a core substrate and is a wiring substrate having a structure in which three resin insulating layers 41, 42, 43 made of epoxy resin and a wiring layer 51 made of copper are alternately stacked. The resin insulating layers 41 to 43 are interlayer insulating layers made of the same thickness (48 μm) and material.

コアレス配線基板101の主面102(第3層の樹脂絶縁層43の主面47)には、端子パッド52がアレイ状に配置されている。さらに、樹脂絶縁層43の主面47はソルダーレジスト128によってほぼ全体的に覆われている。このソルダーレジスト128には、各端子パッド52を露出させる開口部129が形成されている。各端子パッド52の表面上には、複数のはんだバンプ130が配設されている。各はんだバンプ130は、矩形平板状をなすICチップ131(部品)の面接続端子132に電気的に接続されている。なお、各端子パッド52及び各はんだバンプ130が形成されている領域は、ICチップ131を搭載可能なICチップ搭載領域133である。   Terminal pads 52 are arranged in an array on the main surface 102 of the coreless wiring substrate 101 (the main surface 47 of the third-layer resin insulation layer 43). Further, the main surface 47 of the resin insulating layer 43 is almost entirely covered with the solder resist 128. The solder resist 128 has openings 129 that expose the terminal pads 52. A plurality of solder bumps 130 are disposed on the surface of each terminal pad 52. Each solder bump 130 is electrically connected to a surface connection terminal 132 of an IC chip 131 (component) having a rectangular flat plate shape. The area where the terminal pads 52 and the solder bumps 130 are formed is an IC chip mounting area 133 on which the IC chip 131 can be mounted.

図1に示されるように、コアレス配線基板101の裏面103(第1層の樹脂絶縁層41の下面)には、BGA用パッド53がアレイ状に配設されている。また、樹脂絶縁層41の下面は、ソルダーレジスト142によってほぼ全体的に覆われている。ソルダーレジスト142には、各BGA用パッド53を露出させる開口部145が形成されている。各BGA用パッド53の表面上には、複数のはんだバンプ155が配設されており、各はんだバンプ155により、コアレス配線基板101は図示しないマザーボード上に実装される。   As shown in FIG. 1, BGA pads 53 are arranged in an array on the back surface 103 of the coreless wiring substrate 101 (the lower surface of the first resin insulation layer 41). Further, the lower surface of the resin insulating layer 41 is almost entirely covered with the solder resist 142. In the solder resist 142, openings 145 for exposing the respective BGA pads 53 are formed. A plurality of solder bumps 155 are disposed on the surface of each BGA pad 53, and the coreless wiring board 101 is mounted on a mother board (not shown) by each solder bump 155.

さらに、各樹脂絶縁層41〜43には、それぞれビア穴146及びビア導体147が設けられている。各ビア穴146は、逆円錐台形状をなし、各樹脂絶縁層41〜43に対してYAGレーザまたは炭酸ガスレーザを用いた穴あけ加工を施すことで形成される。各ビア導体147は、同一方向(図1では上方向)に拡径した導体であって、各配線層51、前記端子パッド52及びBGA用パッド53を相互に電気的に接続している。   Furthermore, each resin insulation layer 41 to 43 is provided with a via hole 146 and a via conductor 147, respectively. Each via hole 146 has an inverted frustoconical shape, and is formed by subjecting each resin insulating layer 41 to 43 to drilling using a YAG laser or a carbon dioxide gas laser. Each via conductor 147 is a conductor whose diameter is expanded in the same direction (upward in FIG. 1), and electrically connects each wiring layer 51, the terminal pad 52, and the BGA pad 53 to each other.

次に、コアレス配線基板101の中間製品11について説明する。   Next, the intermediate product 11 of the coreless wiring substrate 101 will be described.

図2,図3に示されるように、コアレス配線基板101の中間製品11は、縦213.6mm×横52.0mmの平面視略矩形状であって、製品形成領域28と、その製品形成領域28の周囲を取り囲む枠部29とからなっている。製品形成領域28には、製品(コアレス配線基板101)となるべき正方形状の製品部27が平面方向に沿って5個配置されている。また、枠部29は、製品形成領域28を取り囲むように配置される4つの縁部30と、縁部30同士の接続部分に位置する4つの角部31とを有している。   As shown in FIGS. 2 and 3, the intermediate product 11 of the coreless wiring substrate 101 has a substantially rectangular shape in plan view of 213.6 mm long × 52.0 mm wide, and includes a product formation region 28 and its product formation region. 28 and a frame portion 29 surrounding the periphery of 28. In the product formation region 28, five square product parts 27 to be products (coreless wiring substrate 101) are arranged along the plane direction. The frame portion 29 has four edge portions 30 arranged so as to surround the product forming region 28 and four corner portions 31 located at a connection portion between the edge portions 30.

図3に示されるように、前記各樹脂絶縁層41〜43の主面45〜47における製品部27内の領域には、製品部側導体層である前記配線層51(厚さ15μm)が形成されている。さらに、最表層の樹脂絶縁層43の主面46における製品部27内の領域には、製品部側導体層である前記各端子パッド52(厚さ15μm)が形成され、最表層の樹脂絶縁層41の下面における製品部27内の領域には、前記各BGA用パッド53(厚さ15μm)が形成されている。また、各樹脂絶縁層41〜43の主面45〜47における枠部29内の領域には、枠部側導体層54(厚さ15μm)が形成されている。枠部側導体層54は、枠部29内の略全体の領域において略矩形枠状に形成されたプレーン状導体である。枠部側導体層54は、いずれも最終製品に残るものではなく、いわばダミー導体層と言うべきものである。   As shown in FIG. 3, the wiring layer 51 (thickness: 15 μm), which is a product portion side conductor layer, is formed in a region within the product portion 27 on the main surfaces 45 to 47 of the resin insulating layers 41 to 43. Has been. Further, each terminal pad 52 (thickness 15 μm), which is a product portion side conductor layer, is formed in a region in the product portion 27 on the main surface 46 of the outermost resin insulation layer 43, and the outermost resin insulation layer. Each BGA pad 53 (thickness: 15 μm) is formed in a region in the product portion 27 on the lower surface of 41. Further, a frame portion side conductor layer 54 (thickness: 15 μm) is formed in a region in the frame portion 29 on the main surfaces 45 to 47 of the resin insulating layers 41 to 43. The frame-side conductor layer 54 is a plain conductor formed in a substantially rectangular frame shape in substantially the entire region in the frame portion 29. None of the frame-side conductor layer 54 remains in the final product, and it can be said to be a dummy conductor layer.

図2,図3に示されるように、このコアレス配線基板101の中間製品11は、各製品部27の外形線120に沿って切断される。このような外形線120に沿った線のことを切断予定線121と定義する。詳述すると、各製品部27同士を互いに分割するための切断予定線121は、隣接する製品部27の外形線120同士の間に設定されている。また、前記製品形成領域28から枠部29を分離するための切断予定線121は、製品部27の外形線120と枠部側導体層54の内周縁との間であって、製品形成領域28と枠部29との境界部分に設定されている。   As shown in FIGS. 2 and 3, the intermediate product 11 of the coreless wiring substrate 101 is cut along the outline 120 of each product portion 27. Such a line along the outline 120 is defined as a planned cutting line 121. More specifically, the planned cutting lines 121 for dividing the product parts 27 from each other are set between the outlines 120 of the adjacent product parts 27. The planned cutting line 121 for separating the frame portion 29 from the product forming region 28 is between the outer shape line 120 of the product portion 27 and the inner peripheral edge of the frame portion side conductor layer 54, and the product forming region 28. Is set at a boundary portion between the frame portion 29 and the frame portion 29.

そして図2に示されるように、全ての樹脂絶縁層41〜43上における枠部29内の領域には、枠部側導体層54が存在しない複数の非形成領域61が配置されている。各非形成領域61は、前記各縁部30において互いに等間隔に配置されるとともに、切断予定線121の延長線上に配置されたスリット状の領域である。そして、各非形成領域61の一部は、縁部30と前記角部31との境界部分に配置されている。なお、各非形成領域61は、枠部29の内周縁及び外周縁において開口しているため、各非形成領域61の長さは、枠部側導体層54の幅(枠部側導体層54の内周縁から枠部側導体層54の外周縁までの距離)と等しく設定されている。即ち、枠部側導体層54は、各非形成領域61によって分断されている。また、各非形成領域61の幅は、隣接する製品部27の外形線120同士の間隔、及び、製品部27の外形線120と枠部側導体層54の内周縁との間隔と等しく設定されている。   As shown in FIG. 2, a plurality of non-formation regions 61 in which the frame portion side conductor layer 54 does not exist are arranged in the regions in the frame portion 29 on all the resin insulating layers 41 to 43. The non-formation regions 61 are slit-like regions that are arranged at equal intervals in the respective edge portions 30 and that are arranged on an extension line of the planned cutting line 121. A part of each non-formation region 61 is disposed at a boundary portion between the edge portion 30 and the corner portion 31. In addition, since each non-formation area | region 61 is opened in the inner periphery and outer periphery of the frame part 29, the length of each non-formation area | region 61 is the width | variety (frame part side conductor layer 54 of the frame part side conductor layer 54). The distance from the inner peripheral edge of the frame portion side conductor layer 54 to the outer peripheral edge) is set equal. That is, the frame portion side conductor layer 54 is divided by the respective non-formation regions 61. The width of each non-formation region 61 is set to be equal to the interval between the outlines 120 of the adjacent product parts 27 and the interval between the outline 120 of the product part 27 and the inner peripheral edge of the frame side conductor layer 54. ing.

なお本実施形態では、製品形成領域28に占める前記製品部側導体層の面積率A1が、各層ごとに同一ではないように設定されている。具体的に言うと、第1層の樹脂絶縁層41の主面45上では、前記製品形成領域28に占める製品部側導体層(配線層51)の面積率A1が86%に設定されている。また、第2層の樹脂絶縁層42の主面46上では、製品形成領域28に占める製品部側導体層(配線層51)の面積率A1が64%に設定され、第3層の樹脂絶縁層43の主面47上では、製品形成領域28に占める製品部側導体層(配線層51及び端子パッド52)の面積率A1が78%に設定されている。よって、面積率A1の最高値は86%となり、面積率A1の最低値は64%となる。   In the present embodiment, the area ratio A1 of the product portion side conductor layer occupying the product formation region 28 is set so as not to be the same for each layer. Specifically, on the main surface 45 of the first resin insulating layer 41, the area ratio A1 of the product portion side conductor layer (wiring layer 51) occupying the product formation region 28 is set to 86%. . On the main surface 46 of the second resin insulation layer 42, the area ratio A1 of the product portion side conductor layer (wiring layer 51) occupying the product formation region 28 is set to 64%, and the third layer resin insulation. On the main surface 47 of the layer 43, the area ratio A1 of the product part side conductor layer (the wiring layer 51 and the terminal pad 52) occupying the product forming region 28 is set to 78%. Therefore, the maximum value of the area ratio A1 is 86%, and the minimum value of the area ratio A1 is 64%.

また本実施形態では、樹脂絶縁層に設けられた製品部側導体層の面積率A1が大きくなるに従って、その樹脂絶縁層の主面と同一面内に存在する前記非形成領域61の幅が大きく設定されるとともに、前記枠部29に占める前記枠部側導体層54の面積率A2が小さく設定される。具体的に言うと、第1層の樹脂絶縁層41の主面45上では、面積率A1が最も大きいため、非形成領域61の幅が最も大きい値(0.9mm)に設定されるとともに、面積率A2が最も小さい値(60%)に設定される。また、第2層の樹脂絶縁層42の主面46上では、面積率A1が最も小さいため、非形成領域61の幅が最も小さい値(0.3mm)に設定されるとともに、面積率A2が最も大きい値(100%)に設定される。さらに、第3層の樹脂絶縁層43の主面47上では、面積率A1が2番目に大きいため、非形成領域61の幅が2番目に大きい値(0.6mm)に設定されるとともに、面積率A2が2番目に大きい値(86%)に設定される。なお、枠部29に占める枠部側導体層54の面積率A2は、50%以上に設定されている。   In the present embodiment, as the area ratio A1 of the product portion side conductor layer provided in the resin insulation layer increases, the width of the non-formation region 61 existing in the same plane as the main surface of the resin insulation layer increases. In addition to being set, the area ratio A2 of the frame portion side conductor layer 54 occupying the frame portion 29 is set small. Specifically, on the main surface 45 of the first resin insulation layer 41, the area ratio A1 is the largest, so the width of the non-formation region 61 is set to the largest value (0.9 mm), The area ratio A2 is set to the smallest value (60%). Further, since the area ratio A1 is the smallest on the main surface 46 of the resin insulating layer 42 of the second layer, the width of the non-formation region 61 is set to the smallest value (0.3 mm), and the area ratio A2 is The largest value (100%) is set. Furthermore, since the area ratio A1 is the second largest on the main surface 47 of the resin insulation layer 43 of the third layer, the width of the non-formation region 61 is set to the second largest value (0.6 mm), The area ratio A2 is set to the second largest value (86%). Note that the area ratio A2 of the frame-side conductor layer 54 occupying the frame 29 is set to 50% or more.

さらに本実施形態では、各樹脂絶縁層41〜43の主面45〜47に占める導体層(製品部側導体層及び枠部側導体層54の全て)の面積率A3が、面積率A1の最高値(86%)と最低値(64%)との間に設定されている。具体的に言うと、第1層の樹脂絶縁層41の主面45に占める導体層(配線層51及び枠部側導体層54)の面積率A3が、80%に設定されている。また、第2層の樹脂絶縁層42の主面46に占める導体層(配線層51及び枠部側導体層54)の面積率A3が72%に設定され、第3層の樹脂絶縁層43の主面47に占める導体層(配線層51、端子パッド52及び枠部側導体層54)の面積率A3が80%に設定されている。つまり、最上層の樹脂絶縁層41の主面45に占める導体層の面積率A3と、最下層の樹脂絶縁層43の主面47に占める導体層の面積率A3とが、互いに同一となっている。また、各樹脂絶縁層41〜43の主面45〜47に占める面積率A3のバラツキは、8%となるため、面積率A3はほぼ同一となる。   Furthermore, in this embodiment, the area ratio A3 of the conductor layer (all of the product part side conductor layer and the frame part side conductor layer 54) occupying the main surfaces 45 to 47 of the resin insulation layers 41 to 43 is the highest of the area ratio A1. It is set between the value (86%) and the minimum value (64%). Specifically, the area ratio A3 of the conductor layer (the wiring layer 51 and the frame side conductor layer 54) occupying the main surface 45 of the first resin insulating layer 41 is set to 80%. Also, the area ratio A3 of the conductor layer (the wiring layer 51 and the frame side conductor layer 54) occupying the main surface 46 of the second resin insulation layer 42 is set to 72%, and the third layer resin insulation layer 43 The area ratio A3 of the conductor layer (the wiring layer 51, the terminal pad 52, and the frame portion side conductor layer 54) occupying the main surface 47 is set to 80%. That is, the area ratio A3 of the conductor layer occupying the main surface 45 of the uppermost resin insulation layer 41 and the area ratio A3 of the conductor layer occupying the main surface 47 of the lowermost resin insulation layer 43 are the same. Yes. Moreover, since the variation of the area ratio A3 which occupies for the main surfaces 45-47 of each resin insulating layer 41-43 will be 8%, the area ratio A3 will be substantially the same.

次に、コアレス配線基板101の製造方法について説明する。   Next, a method for manufacturing the coreless wiring substrate 101 will be described.

準備工程では、図2,図3に示したようなコアレス配線基板101の中間製品11を作製し、あらかじめ準備しておく。コアレス配線基板101の中間製品11は以下のように作製される。まず、図4に示されるように、ガラスエポキシ基板などの十分な強度を有する支持基板70を準備する。次に、支持基板70上に、エポキシ樹脂からなるシート状の絶縁樹脂基材を半硬化の状態で貼り付けて下地樹脂絶縁層71を形成することにより、支持基板70及び下地樹脂絶縁層71からなる基材69を得る。そして、図5に示されるように、基材69の片面(具体的には下地樹脂絶縁層71の上面)に、積層金属シート体72を配置する。ここで、半硬化の状態の下地樹脂絶縁層71上に積層金属シート体72を配置することにより、以降の製造工程で積層金属シート体72が下地樹脂絶縁層71から剥がれない程度の密着性が確保される。積層金属シート体72は、2枚の銅箔73,74(金属箔)を剥離可能な状態で密着させてなる。具体的には、金属めっき(例えば、クロムめっき)を介して各銅箔73,74を積層することで積層金属シート体72が形成されている。   In the preparation step, the intermediate product 11 of the coreless wiring substrate 101 as shown in FIGS. 2 and 3 is prepared and prepared in advance. The intermediate product 11 of the coreless wiring substrate 101 is manufactured as follows. First, as shown in FIG. 4, a support substrate 70 having sufficient strength such as a glass epoxy substrate is prepared. Next, a sheet-like insulating resin base material made of an epoxy resin is pasted on the support substrate 70 in a semi-cured state to form the base resin insulation layer 71, so that the support substrate 70 and the base resin insulation layer 71 are separated. A base material 69 is obtained. Then, as shown in FIG. 5, the laminated metal sheet body 72 is disposed on one surface of the base material 69 (specifically, the upper surface of the base resin insulating layer 71). Here, by arranging the laminated metal sheet body 72 on the base resin insulating layer 71 in a semi-cured state, the adhesiveness is such that the laminated metal sheet body 72 is not peeled off from the base resin insulating layer 71 in the subsequent manufacturing process. Secured. The laminated metal sheet body 72 is formed by closely attaching two copper foils 73 and 74 (metal foil) in a peelable state. Specifically, the laminated metal sheet body 72 is formed by laminating the copper foils 73 and 74 via metal plating (for example, chromium plating).

その後、図6に示されるように、積層金属シート体72上にシート状の絶縁樹脂基材40を積層し、真空圧着熱プレス機(図示略)を用いて真空下にて加圧加熱することにより、絶縁樹脂基材40を硬化させて第1層の樹脂絶縁層41を形成する(積層工程)。そして、図7に示されるように、レーザ加工を施すことによって樹脂絶縁層41の所定の位置にビア穴146を形成し、次いで各ビア穴146内のスミアを除去するデスミア処理を行う。その後、従来公知の手法に従って無電解銅めっき及び電解銅めっきを行うことで、各ビア穴146内にビア導体147を形成する。さらに、従来公知の手法(例えばセミアディティブ法)によってエッチングを行うことで、中間製品11の製品部27内となる領域における樹脂絶縁層41上に配線層51をパターン形成する(図8参照)。これと同時に、中間製品11の枠部29内となる領域における樹脂絶縁層41上に、枠部側導体層54をパターン形成するとともに、枠部側導体層54が存在しない複数の非形成領域61を形成する。   Thereafter, as shown in FIG. 6, a sheet-like insulating resin base material 40 is laminated on the laminated metal sheet body 72, and is heated under pressure using a vacuum press-bonding hot press (not shown). Thus, the insulating resin base material 40 is cured to form the first resin insulating layer 41 (lamination step). Then, as shown in FIG. 7, a via hole 146 is formed at a predetermined position of the resin insulating layer 41 by performing laser processing, and then a desmear process for removing smear in each via hole 146 is performed. Then, via conductor 147 is formed in each via hole 146 by performing electroless copper plating and electrolytic copper plating according to a conventionally known method. Further, the wiring layer 51 is patterned on the resin insulating layer 41 in the region in the product portion 27 of the intermediate product 11 by performing etching by a conventionally known method (for example, semi-additive method) (see FIG. 8). At the same time, the frame-side conductor layer 54 is patterned on the resin insulating layer 41 in the region in the frame portion 29 of the intermediate product 11, and a plurality of non-formation regions 61 in which the frame-side conductor layer 54 does not exist. Form.

また、第2層,第3層の樹脂絶縁層42,43及び配線層51についても、上述した第1層の樹脂絶縁層41及び配線層51と同様の手法によって形成し、樹脂絶縁層41上に積層していく。そして、端子パッド52が形成された樹脂絶縁層43上に感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト128を形成する。次に、所定のマスクを配置した状態で露光及び現像を行い、ソルダーレジスト128に開口部129をパターニングする。以上の製造工程によって、支持基板70上に積層金属シート体72、樹脂絶縁層41〜43及び配線層51を積層した積層体80を形成する(図9,図10参照)。なお図9に示されるように、積層体80において積層金属シート体72上に位置する領域が、コアレス配線基板101の中間製品11となるべき配線積層部81となる。また図10に示されるように、積層体80には、中間製品11を平面方向に沿って3個配置したブロック82が平面方向に沿って2個配置され、各ブロック82の周囲が周囲部83によって取り囲まれている。   Further, the second and third resin insulation layers 42 and 43 and the wiring layer 51 are also formed by the same method as the first resin insulation layer 41 and the wiring layer 51 described above. Laminate to. Then, a solder resist 128 is formed by applying and curing a photosensitive epoxy resin on the resin insulating layer 43 on which the terminal pads 52 are formed. Next, exposure and development are performed with a predetermined mask placed, and the opening 129 is patterned in the solder resist 128. Through the above manufacturing process, a laminated body 80 in which the laminated metal sheet body 72, the resin insulating layers 41 to 43, and the wiring layer 51 are laminated on the support substrate 70 is formed (see FIGS. 9 and 10). As shown in FIG. 9, the region located on the laminated metal sheet 72 in the laminated body 80 is a wiring laminated portion 81 to be the intermediate product 11 of the coreless wiring substrate 101. As shown in FIG. 10, in the laminate 80, two blocks 82 in which three intermediate products 11 are arranged along the plane direction are arranged along the plane direction, and the periphery of each block 82 is a peripheral portion 83. Surrounded by.

続く第1分離工程では、積層体80をダイシング装置(図示略)により切断し、各ブロック82の周囲領域を除去する。この際、図10に示すように、各ブロック82とその周囲部83との境界において、配線積層部81の下方にある下地樹脂絶縁層71及び支持基板70ごと切断する。これにより、各ブロック82同士が分割され、2個のブロック82(図11参照)となる。   In the subsequent first separation step, the stacked body 80 is cut by a dicing device (not shown), and the surrounding area of each block 82 is removed. At this time, as shown in FIG. 10, the base resin insulating layer 71 and the support substrate 70 below the wiring laminated portion 81 are cut at the boundary between each block 82 and the surrounding portion 83. Thereby, each block 82 is divided into two blocks 82 (see FIG. 11).

次に、各ブロック82において基材69を除去し、銅箔73を露出させる(基材除去工程)。具体的に言うと、積層金属シート体72における2枚の銅箔73,74の界面にて剥離して、配線積層部81を支持基板70から分離する(図12参照)。そして、図13に示されるように、配線積層部81(樹脂絶縁層41)の裏面103(下面)上にある銅箔73に対してエッチングによるパターンニングを行うことにより、最表層の樹脂絶縁層41における前記製品部27内の領域にBGA用パッド53を形成する(パターニング工程)。その後、図14に示されるように、BGA用パッド53が形成された樹脂絶縁層41上に感光性エポキシ樹脂を塗布して硬化させることにより、配線積層部81の裏面103を覆うようにソルダーレジスト142を形成する(ソルダーレジスト形成工程)。次に、所定のマスクを配置した状態で露光及び現像を行い、ソルダーレジスト142に開口部145をパターニングする。   Next, the base material 69 is removed in each block 82 to expose the copper foil 73 (base material removal step). Specifically, peeling is performed at the interface between the two copper foils 73 and 74 in the laminated metal sheet body 72 to separate the wiring laminated portion 81 from the support substrate 70 (see FIG. 12). Then, as shown in FIG. 13, by patterning the copper foil 73 on the back surface 103 (lower surface) of the wiring laminated portion 81 (resin insulating layer 41) by etching, the outermost resin insulating layer A BGA pad 53 is formed in a region of the product portion 27 in 41 (patterning step). Thereafter, as shown in FIG. 14, a photosensitive resist resin is applied and cured on the resin insulating layer 41 on which the BGA pads 53 are formed, so as to cover the back surface 103 of the wiring laminated portion 81 so as to cover the solder resist. 142 is formed (solder resist forming step). Next, exposure and development are performed in a state where a predetermined mask is arranged, and the opening 145 is patterned in the solder resist 142.

次に、最表層の樹脂絶縁層43上に形成された複数の端子パッド52上に、ICチップ接続用のはんだバンプ130を形成する(はんだバンプ形成工程)。具体的には、図示しないはんだボール搭載装置を用いて各端子パッド52上にはんだボールを配置した後、はんだボールを所定の温度に加熱してリフローすることにより、各端子パッド52上にはんだバンプ130を形成する。同様に、配線積層部81の裏面103側に形成されている複数のBGA用パッド53上にもはんだバンプ155を形成する。   Next, solder bumps 130 for connecting IC chips are formed on the plurality of terminal pads 52 formed on the outermost resin insulating layer 43 (solder bump forming step). Specifically, a solder ball is placed on each terminal pad 52 using a solder ball mounting device (not shown), and then the solder ball is heated to a predetermined temperature and reflowed, whereby solder bumps are placed on each terminal pad 52. 130 is formed. Similarly, solder bumps 155 are also formed on the plurality of BGA pads 53 formed on the back surface 103 side of the wiring laminated portion 81.

続く第2分離工程では、ダイシング装置(図示略)を用いて、ブロック82を中間製品11同士の境界線に沿って切断する。これにより、各中間製品11同士が分割され、図2,図3に示したコアレス配線基板101の中間製品11を得ることができる。   In the subsequent second separation step, the block 82 is cut along the boundary line between the intermediate products 11 using a dicing apparatus (not shown). Thereby, each intermediate product 11 is divided, and the intermediate product 11 of the coreless wiring substrate 101 shown in FIGS. 2 and 3 can be obtained.

続くICチップ搭載工程では、中間製品11を構成する各製品部27(コアレス配線基板101)のICチップ搭載領域133にそれぞれICチップ131を載置する。このとき、ICチップ131側の面接続端子132と、製品部27側のはんだバンプ130とを位置合わせするようにする。そして、加熱して各はんだバンプ130をリフローすることにより、面接続端子132とはんだバンプ130とが接合され、製品部27にICチップ131が搭載される。   In the subsequent IC chip mounting step, the IC chip 131 is mounted on the IC chip mounting area 133 of each product part 27 (coreless wiring substrate 101) constituting the intermediate product 11. At this time, the surface connection terminals 132 on the IC chip 131 side and the solder bumps 130 on the product part 27 side are aligned. Then, by heating and reflowing each solder bump 130, the surface connection terminal 132 and the solder bump 130 are joined, and the IC chip 131 is mounted on the product portion 27.

続く第3分離工程では、従来周知の切断装置などを用いて製品形成領域28から枠部29を切断除去するとともに、製品形成領域28における切断予定線121に沿って切断する。これにより、製品部27同士が分割され、複数ピースのコアレス配線基板101となる(図1参照)。   In the subsequent third separation step, the frame portion 29 is cut and removed from the product formation region 28 using a conventionally known cutting device or the like, and cut along the planned cutting line 121 in the product formation region 28. Thereby, the product parts 27 are divided into a plurality of coreless wiring boards 101 (see FIG. 1).

次に、コアレス配線基板の中間製品の反りについての評価方法及びその結果を説明する。   Next, an evaluation method for the warp of the intermediate product of the coreless wiring board and the result will be described.

まず、複数の測定用サンプル(図15参照)を次のように準備した。本実施形態の中間製品11を切断して、縦及び横の長さを半分にした測定用サンプルを準備し、これを実施例1とした。なお実施例1は、第1層(樹脂絶縁層41)、第2層(樹脂絶縁層42)及び第3層(樹脂絶縁層43)の主面に占める導体層の面積率A3のバラツキを15%以内(8%)に設定した測定用サンプルである。また、面積率A3のバラツキを0%に設定した測定用サンプルを準備し、これを比較例1,2,3とした。さらに、面積率A3のバラツキを15%よりも大きく設定した測定用サンプルを準備し、これを比較例4,5,6,7,8,9とした。なお、比較例4の面積率A3のバラツキは22%に設定され、比較例5の面積率A3のバラツキは17%に設定され、比較例6〜9の面積率A3のバラツキは17%に設定されている。   First, a plurality of measurement samples (see FIG. 15) were prepared as follows. The intermediate product 11 of this embodiment was cut to prepare a measurement sample in which the longitudinal and lateral lengths were halved. In Example 1, the variation in the area ratio A3 of the conductor layer occupying the main surface of the first layer (resin insulating layer 41), the second layer (resin insulating layer 42), and the third layer (resin insulating layer 43) is 15%. It is a sample for measurement set within% (8%). In addition, a measurement sample in which the variation in the area ratio A3 was set to 0% was prepared, and these were designated as Comparative Examples 1, 2, and 3. Furthermore, a measurement sample in which the variation in the area ratio A3 was set to be larger than 15% was prepared, and this was designated as Comparative Examples 4, 5, 6, 7, 8, and 9. The variation of the area ratio A3 of Comparative Example 4 is set to 22%, the variation of the area ratio A3 of Comparative Example 5 is set to 17%, and the variation of the area ratio A3 of Comparative Examples 6 to 9 is set to 17%. Has been.

次に、各測定用サンプル(実施例1、比較例1〜9)を室温(25℃)から190℃に加熱した。そして、各測定用サンプルの反り量をそれぞれ測定した。具体的には、測定用サンプルを支持台(図示略)上に載置し、支持台の表面から測定用サンプルにおいて持ち上がり量が最も大きい箇所までの高さを、反り量として測定した。   Next, each measurement sample (Example 1, Comparative Examples 1 to 9) was heated from room temperature (25 ° C.) to 190 ° C. And the amount of curvature of each sample for measurement was measured, respectively. Specifically, the measurement sample was placed on a support table (not shown), and the height from the surface of the support table to the location where the lift amount was the largest in the measurement sample was measured as the amount of warpage.

反り量の測定を行った結果、比較例4の反り量が10.3μm、比較例5の反り量が7.7μm、比較例6の反り量が8.0μm、比較例7の反り量が8.2μm、比較例8の反り量が8.5μm、比較例9の反り量が8.7μmとなった。一方、実施例1の反り量が2.7μm、比較例1〜3の反り量が0μmとなった。以上により、実施例1、比較例1〜3の反り量は、比較例4〜9の反り量よりも小さいことが確認された。従って、面積率A3のバラツキを15%以内とすれば、中間製品に反りが生じにくくなることが証明された。   As a result of measuring the warpage amount, the warpage amount of Comparative Example 4 was 10.3 μm, the warpage amount of Comparative Example 5 was 7.7 μm, the warpage amount of Comparative Example 6 was 8.0 μm, and the warpage amount of Comparative Example 7 was 8 0.2 μm, the warpage amount of Comparative Example 8 was 8.5 μm, and the warpage amount of Comparative Example 9 was 8.7 μm. On the other hand, the warpage amount of Example 1 was 2.7 μm, and the warpage amounts of Comparative Examples 1 to 3 were 0 μm. From the above, it was confirmed that the warpage amounts of Example 1 and Comparative Examples 1 to 3 were smaller than those of Comparative Examples 4 to 9. Therefore, it was proved that if the variation of the area ratio A3 is within 15%, the intermediate product is hardly warped.

また、複数の測定用サンプル(図16参照)を次のように準備した。各測定用サンプルでは、製品形成領域28に占める製品部側導体層の面積率A1が一定(第1層で86%、第2層で64%、第3層で78%)に設定されるとともに、枠部29に占める枠部側導体層54の面積率A2が複数通りに設定されている。例えば、各樹脂絶縁層41〜43上において面積率A2を50%以上に設定した測定用サンプルを準備し、これを実施例2とした。なお、実施例2の面積率A2は、第1層で77%、第2層及び第3層で100%に設定されている。また、樹脂絶縁層41上において面積率A2を50%未満に設定した測定用サンプルを準備し、これを比較例10とした。なお、比較例10の面積率A2は、第1層で43%、第2層で100%、第3層で69%に設定されている。さらに、樹脂絶縁層41,43上において面積率A2を50%未満に設定した測定用サンプルを準備し、これを比較例11とした。なお、比較例11の面積率A2は、第1層で1%、第2層で73%、第3層で26%に設定されている。また、各樹脂絶縁層41〜43上において面積率A2を50%未満に設定した測定用サンプルを準備し、これを比較例12〜16とした。なお、比較例12の面積率A2は各層で40%に設定され、比較例13の面積率A2は各層で30%に設定され、比較例14の面積率A2は各層で20%に設定され、比較例15の面積率A2は各層で10%に設定され、比較例16の面積率A2は各層で0%に設定されている。   A plurality of measurement samples (see FIG. 16) were prepared as follows. In each measurement sample, the area ratio A1 of the product-side conductor layer occupying the product formation region 28 is set to be constant (86% for the first layer, 64% for the second layer, 78% for the third layer). The area ratio A2 of the frame portion side conductor layer 54 occupying the frame portion 29 is set in a plurality of ways. For example, a measurement sample in which the area ratio A2 is set to 50% or more on each of the resin insulating layers 41 to 43 was prepared, and this was used as Example 2. In addition, the area ratio A2 of Example 2 is set to 77% for the first layer and 100% for the second layer and the third layer. Further, a measurement sample in which the area ratio A2 was set to less than 50% on the resin insulating layer 41 was prepared, and this was designated as Comparative Example 10. The area ratio A2 of Comparative Example 10 is set to 43% for the first layer, 100% for the second layer, and 69% for the third layer. Furthermore, a measurement sample in which the area ratio A2 was set to less than 50% on the resin insulating layers 41 and 43 was prepared, and this was designated as Comparative Example 11. The area ratio A2 of Comparative Example 11 is set to 1% for the first layer, 73% for the second layer, and 26% for the third layer. Moreover, the sample for a measurement which set area ratio A2 to less than 50% on each resin insulating layer 41-43 was prepared, and this was made into Comparative Examples 12-16. The area ratio A2 of Comparative Example 12 is set to 40% in each layer, the area ratio A2 of Comparative Example 13 is set to 30% in each layer, and the area ratio A2 of Comparative Example 14 is set to 20% in each layer. The area ratio A2 of Comparative Example 15 is set to 10% in each layer, and the area ratio A2 of Comparative Example 16 is set to 0% in each layer.

次に、各測定用サンプル(実施例2、比較例10〜16)を室温(25℃)から190℃に加熱し、各測定用サンプルの反り量をそれぞれ測定した。反り量の測定を行った結果、比較例10の反り量が4.5μm、比較例11の反り量が13.8μm、比較例12の反り量が9.0μm、比較例13の反り量が9.2μm、比較例14の反り量が9.4μm、比較例15の反り量が9.7μm、比較例16の反り量が10.0μmとなった。一方、実施例2の反り量は2.0μmとなった。以上により、実施例2の反り量は、比較例10〜16の反り量よりも小さいことが確認された。従って、各樹脂絶縁層41〜43上において面積率A2を50%以上に設定すれば、中間製品に反りが生じにくくなることが証明された。   Next, each measurement sample (Example 2, Comparative Examples 10 to 16) was heated from room temperature (25 ° C.) to 190 ° C., and the amount of warpage of each measurement sample was measured. As a result of measuring the warpage amount, the warpage amount of Comparative Example 10 is 4.5 μm, the warpage amount of Comparative Example 11 is 13.8 μm, the warpage amount of Comparative Example 12 is 9.0 μm, and the warpage amount of Comparative Example 13 is 9 μm. The warping amount of Comparative Example 14 was 9.4 μm, the warping amount of Comparative Example 15 was 9.7 μm, and the warping amount of Comparative Example 16 was 10.0 μm. On the other hand, the amount of warpage in Example 2 was 2.0 μm. From the above, it was confirmed that the warpage amount of Example 2 was smaller than the warpage amounts of Comparative Examples 10-16. Therefore, it has been proved that if the area ratio A2 is set to 50% or more on each of the resin insulating layers 41 to 43, the intermediate product is hardly warped.

従って、本実施形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施形態のコアレス配線基板101の中間製品11では、各樹脂絶縁層41〜43の主面45〜47に占める導体層の面積率A3のバラツキが、8%に設定されることで小さくなる。その結果、各層の熱膨張係数差が小さくなるとともに、熱膨張係数差に起因する熱応力も小さくなるため、ICチップ131の接続に用いたはんだバンプ130が冷却される際に上記の熱応力が加わったとしても、中間製品11が反りにくくなる。ゆえに、中間製品11から得られる製品(コアレス配線基板101)の歩留まりを向上させることができる。   (1) In the intermediate product 11 of the coreless wiring substrate 101 of the present embodiment, the variation in the area ratio A3 of the conductor layer occupying the main surfaces 45 to 47 of the resin insulation layers 41 to 43 is set to 8%. Get smaller. As a result, the thermal expansion coefficient difference of each layer is reduced and the thermal stress due to the thermal expansion coefficient difference is also reduced. Therefore, when the solder bump 130 used for connecting the IC chip 131 is cooled, the thermal stress described above is reduced. Even if added, the intermediate product 11 is less likely to warp. Therefore, the yield of the product (coreless wiring board 101) obtained from the intermediate product 11 can be improved.

(2)本実施形態では、それぞれの樹脂絶縁層41〜43上において、製品部側導体層(配線層51や端子パッド52)をパターン形成すると同時に、枠部側導体層54(及び非形成領域61)をパターン形成しているため、コアレス配線基板101の製造工程を短縮することができる。また、非形成領域61が、スリット状という比較的単純な形状の領域であるため、パターン設計の負担を軽減することができ、コアレス配線基板101の高コスト化を防止しやすくなる。   (2) In this embodiment, on the respective resin insulation layers 41 to 43, the product portion side conductor layer (the wiring layer 51 and the terminal pad 52) is patterned, and at the same time, the frame portion side conductor layer 54 (and the non-formation region). 61) is formed, the manufacturing process of the coreless wiring substrate 101 can be shortened. In addition, since the non-formation region 61 is a relatively simple region such as a slit shape, the burden of pattern design can be reduced, and the cost of the coreless wiring substrate 101 can be easily prevented.

なお、本実施形態を以下のように変更してもよい。   In addition, you may change this embodiment as follows.

・上記実施形態の非形成領域61は、枠部29において製品部27の外形線120に沿って設定された切断予定線121の延長線上に配置されていたが、切断予定線121の延長線から平面方向にずれた位置に配置されていてもよい。   -Although the non-formation area | region 61 of the said embodiment was arrange | positioned on the extended line of the planned cutting line 121 set along the external shape line 120 of the product part 27 in the frame part 29, it is from the extended line of the planned cutting line 121 You may arrange | position in the position shifted | deviated to the plane direction.

・上記実施形態のコアレス配線基板101の中間製品11では、プレーン状に形成された枠部側導体層54が枠部29内の領域に形成されていたが、枠部側導体層を枠部側導体層54とは異なる形態の枠部側導体層とした中間製品であってもよい。図17は、その中間製品151を示している。この中間製品151においては、メッシュ状に形成された枠部側導体層152が枠部29内の領域に形成されている。この場合、製品形成領域28に占める製品部側導体層の面積率A1が大きくなるに従って、枠部側導体層54の線幅を細く設定することにより、各樹脂絶縁層41〜43の主面45〜47に占める導体層の面積率A3が、面積率A1の最高値と最低値との間に設定される。このようにした場合、パターン設計の負担を軽減できるため高コスト化の防止を達成しやすくなる。   In the intermediate product 11 of the coreless wiring substrate 101 of the above embodiment, the frame-side conductor layer 54 formed in a plain shape is formed in the region in the frame portion 29. The intermediate product may be a frame side conductor layer having a different form from the conductor layer 54. FIG. 17 shows the intermediate product 151. In the intermediate product 151, a frame portion side conductor layer 152 formed in a mesh shape is formed in a region in the frame portion 29. In this case, as the area ratio A1 of the product-side conductor layer occupying the product formation region 28 increases, the main surface 45 of each resin insulating layer 41 to 43 is set by narrowing the line width of the frame-side conductor layer 54. The area ratio A3 of the conductor layer occupying ˜47 is set between the maximum value and the minimum value of the area ratio A1. In this case, since the burden of pattern design can be reduced, it is easy to prevent cost increase.

・上記実施形態のコアレス配線基板101の製造方法では、最表層の樹脂絶縁層44上に形成された複数の端子パッド52上に、ICチップ接続用のはんだバンプ130を形成していたが、端子パッド52をマザーボード等の他の接続部品に実装されるBGA用パッドとし、BGA用パッド上にはんだバンプを形成してもよい。この場合、配線積層部81の裏面103側にはICチップ接続用の端子パッドが形成される。   In the manufacturing method of the coreless wiring substrate 101 of the above embodiment, the solder bumps 130 for connecting the IC chip are formed on the plurality of terminal pads 52 formed on the outermost resin insulating layer 44. The pad 52 may be a BGA pad to be mounted on another connection component such as a motherboard, and solder bumps may be formed on the BGA pad. In this case, a terminal pad for connecting an IC chip is formed on the back surface 103 side of the wiring laminated portion 81.

・上記実施形態の製品部側導体層形成工程では、銅箔73に対してエッチングによるパターニングを行うことによってBGA用パッド53を形成していた。しかし、銅箔73をエッチングによって完全に除去した後で、別途BGA用パッド53を形成するようにしてもよい。   In the product part side conductor layer forming step of the above embodiment, the BGA pad 53 is formed by patterning the copper foil 73 by etching. However, the BGA pad 53 may be separately formed after the copper foil 73 is completely removed by etching.

・上記実施形態の積層工程において、銅箔73上にBGA用パッド53となる金属層を形成した後で、樹脂絶縁層41を形成してもよい。この場合、樹脂絶縁層41に金属層を露出させるビア穴146を形成した後、ビア穴146内にビア導体147を形成する。このようにすれば、銅箔73をエッチングによって完全に除去して金属層を露出させ、金属層をBGA用パッド53とすることができる。   In the laminating process of the above embodiment, the resin insulating layer 41 may be formed after forming a metal layer to be the BGA pad 53 on the copper foil 73. In this case, after forming the via hole 146 exposing the metal layer in the resin insulating layer 41, the via conductor 147 is formed in the via hole 146. In this way, the copper foil 73 can be completely removed by etching to expose the metal layer, and the metal layer can be used as the BGA pad 53.

次に、前述した実施形態によって把握される技術的思想を以下に列挙する。   Next, the technical ideas grasped by the embodiment described above are listed below.

(1)複数の樹脂絶縁層を積層した構造を有し、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなり、それぞれの樹脂絶縁層の主面に、導体層として前記製品部内の領域に形成された製品部側導体層と前記枠部内の領域に形成された枠部側導体層とが設けられている多層配線基板の中間製品であって、前記製品形成領域に占める前記製品部側導体層の面積率が同一ではなく、前記製品形成領域に占める前記製品部側導体層の面積率が大きいものほど、それと同一面内に存在する前記枠部に占める前記枠部側導体層の面積率が小さく設定され、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定し、最上層の樹脂絶縁層の主面に占める前記導体層の面積率と、最下層の樹脂絶縁層の主面に占める前記導体層の面積率とを、互いに同一となるように設定したことを特徴とする多層配線基板の中間製品。   (1) It has a structure in which a plurality of resin insulating layers are laminated, and includes a product forming region in which a plurality of product parts to be products are arranged along the plane direction, and a frame part surrounding the product forming region. A multilayer in which a product part side conductor layer formed in a region in the product part as a conductor layer and a frame part side conductor layer formed in a region in the frame part are provided on the main surface of each resin insulating layer It is an intermediate product of a wiring board, and the area ratio of the product part side conductor layer occupying the product formation area is not the same, and the area ratio of the product part side conductor layer occupying the product formation area is larger, The area ratio of the frame-side conductor layer occupying the frame section existing in the same plane is set to be small, and the product occupying the area ratio of the conductor layer occupying the main surface of the resin insulation layer in the product formation region Maximum area ratio and maximum area ratio The area ratio of the conductor layer occupying the main surface of the uppermost resin insulation layer and the area ratio of the conductor layer occupying the main surface of the lowermost resin insulation layer are the same as each other. An intermediate product for multilayer wiring boards, characterized in that

(2)コア基板を有さず、同一の樹脂絶縁層を主体として形成され、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなり、それぞれの樹脂絶縁層の主面に、導体層として前記製品部内の領域に形成された製品部側導体層と前記枠部内の領域に形成された枠部側導体層とが設けられ、前記製品部内の領域における前記樹脂絶縁層と前記製品部側導体層とを交互に積層した構造を有し、同一方向に拡径したビアのみによりそれぞれの前記製品部側導体層を接続する多層配線基板の中間製品であって、前記製品形成領域に占める前記製品部側導体層の面積率が同一ではなく、前記製品形成領域に占める前記製品部側導体層の面積率が大きいものほど、それと同一面内に存在する前記枠部に占める前記枠部側導体層の面積率が小さく設定され、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定したことを特徴とする多層配線基板の中間製品。   (2) A product formation region that does not have a core substrate and is formed mainly of the same resin insulation layer, and in which a plurality of product parts to be products are arranged along the plane direction, and surrounds the periphery of the product formation region A product portion side conductor layer formed in a region in the product portion as a conductor layer and a frame portion side conductor layer formed in a region in the frame portion on a main surface of each resin insulating layer. Provided and has a structure in which the resin insulation layer and the product part side conductor layer in the region in the product part are alternately laminated, and each product part side conductor layer is connected only by a via expanded in the same direction. Intermediate product of the multilayer wiring board, the area ratio of the product part side conductor layer occupying in the product formation region is not the same, and the area ratio of the product part side conductor layer in the product formation region is larger In the same plane The area ratio of the frame part side conductor layer occupying the frame part is set to be small, and the area ratio of the conductor layer occupying the main surface of the resin insulation layer is the same as that of the product part side conductor layer occupying the product formation region. An intermediate product of a multilayer wiring board characterized by being set between the maximum value and the minimum value of the area ratio.

本実施形態におけるコアレス配線基板の概略構成を示す概略断面図。The schematic sectional drawing which shows schematic structure of the coreless wiring board in this embodiment. コアレス配線基板の中間製品を示す概略平面図。The schematic plan view which shows the intermediate product of a coreless wiring board. 図2のA−A線断面図。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. コアレス配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a coreless wiring board. 実施例1及び比較例2〜9の各層の面積率を示す表。The table | surface which shows the area ratio of each layer of Example 1 and Comparative Examples 2-9. 実施例2及び比較例10〜16の各層の面積率を示す表。The table | surface which shows the area ratio of each layer of Example 2 and Comparative Examples 10-16. 他の実施形態におけるコアレス配線基板の中間製品を示す概略平面図。The schematic plan view which shows the intermediate product of the coreless wiring board in other embodiment.

符号の説明Explanation of symbols

11,151…多層配線基板の中間製品
27…製品部
28…製品形成領域
29…枠部
41,42,43…樹脂絶縁層
45,46,47…樹脂絶縁層の主面
51…導体層及び製品部側導体層としての配線層
52…導体層及び製品部側導体層としての端子パッド
54,152…導体層としての枠部側導体層
61…非形成領域
69…基材
73,74…金属箔としての銅箔
101…多層配線基板としてのコアレス配線基板
120…外形線
121…切断予定線
130…はんだバンプ
131…部品としてのICチップ
146…ビアとしてのビア穴
147…ビアとしてのビア導体
A1…製品部側導体層の面積率
A2…枠部側導体層の面積率
A3…導体層の面積率
DESCRIPTION OF SYMBOLS 11,151 ... Intermediate product 27 ... Product part 28 ... Product formation area 29 ... Frame part 41, 42, 43 ... Resin insulation layer 45, 46, 47 ... Main surface 51 of resin insulation layer ... Conductor layer and product Wiring layer 52 as part side conductor layer ... Terminal pad 54, 152 as conductor layer and product part side conductor layer ... Frame part side conductor layer 61 as conductor layer ... Non-forming region 69 ... Base material 73, 74 ... Metal foil Copper foil 101 as a coreless wiring board 120 as a multilayer wiring board ... Outline line 121 ... Planned cutting line 130 ... Solder bump 131 ... IC chip 146 as a component ... Via hole 147 as a via ... Via conductor A1 as a via ... Area ratio of product part side conductor layer A2 ... Area ratio of frame part side conductor layer A3 ... Area ratio of conductor layer

Claims (7)

複数の樹脂絶縁層を積層した構造を有し、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなり、それぞれの樹脂絶縁層の主面に、導体層として前記製品部内の領域に形成された製品部側導体層と前記枠部内の領域に形成された枠部側導体層とが設けられ、前記製品部内の領域における前記樹脂絶縁層と前記製品部側導体層とを交互に積層した構造を有し、同一の前記樹脂絶縁層を主体として形成され、同一方向に拡径したビアのみによりそれぞれの前記製品部側導体層が接続される多層配線基板の中間製品であって、
前記複数の樹脂絶縁層のうち少なくとも1つの樹脂絶縁層上における前記枠部内の領域に、前記枠部側導体層が存在しない複数のスリット状の非形成領域が前記製品部の外形線に沿って設定された切断予定線の延長線上に配置され、
前記製品形成領域に占める前記製品部側導体層の面積率が同一ではなく、
前記製品形成領域に占める前記製品部側導体層の面積率が大きいものほど、それと同一面内に存在する前記枠部に占める前記枠部側導体層の面積率が小さく設定され、
前記樹脂絶縁層の主面に占める前記導体層の面積率のバラツキを、15%以内に設定した
ことを特徴とする多層配線基板の中間製品。
It has a structure in which a plurality of resin insulation layers are laminated, and is composed of a product forming region in which a plurality of product parts to be products are arranged along the plane direction, and a frame portion surrounding the periphery of the product forming region. The main surface of the resin insulation layer is provided with a product part side conductor layer formed in a region in the product part as a conductor layer and a frame part side conductor layer formed in a region in the frame part, and the region in the product part The product insulation side and the product part side conductor layer are alternately laminated, and each product part side is formed only by vias formed mainly from the same resin insulation layer and having a diameter expanded in the same direction. An intermediate product of a multilayer wiring board to which a conductor layer is connected ,
A plurality of slit-shaped non-formation regions in which the frame portion side conductor layer does not exist in the region in the frame portion on at least one resin insulation layer among the plurality of resin insulation layers along the outline of the product portion It is placed on the extension line of the planned cutting line,
The area ratio of the product part side conductor layer in the product formation region is not the same,
As the area ratio of the product part side conductor layer occupying the product formation region is larger, the area ratio of the frame part side conductor layer occupying the frame part existing in the same plane as it is set,
An intermediate product of a multilayer wiring board, wherein the variation in the area ratio of the conductor layer occupying the main surface of the resin insulation layer is set within 15%.
前記樹脂絶縁層の主面に占める前記導体層の面積率を、全て同一となるように設定したことを特徴とする請求項に記載の多層配線基板の中間製品。 The intermediate product of the multilayer wiring board according to claim 1 , wherein the area ratio of the conductor layer occupying the main surface of the resin insulating layer is set to be the same. 前記枠部に占める前記枠部側導体層の面積率を50%以上に設定したことを特徴とする請求項1または2に記載の多層配線基板の中間製品。 The intermediate product of the multilayer wiring board according to claim 1 or 2 , wherein an area ratio of the frame-side conductor layer occupying the frame portion is set to 50% or more. 記製品形成領域に占める前記製品部側導体層の面積率が大きくなるに従って、前記非形成領域の幅を大きく設定することにより、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定したことを特徴とする請求項1乃至のいずれか1項に記載の多層配線基板の中間製品。 As the area ratio of the product portion side conductor layer to the prior SL product forming region is increased, by setting a large width of the non-forming region, the area ratio of the conductive layer to the main surface of the resin insulating layer The multilayer wiring board according to any one of claims 1 to 3 , wherein the multilayer wiring board is set between a maximum value and a minimum value of an area ratio of the product portion side conductor layer in the product formation region. Intermediate product. 前記枠部側導体層をメッシュ状に形成するとともに、前記製品形成領域に占める前記製品部側導体層の面積率が大きくなるに従って、前記枠部側導体層の線幅を細く設定することにより、前記樹脂絶縁層の主面に占める前記導体層の面積率を、前記製品形成領域に占める前記製品部側導体層の面積率の最高値と最低値との間に設定したことを特徴とする請求項1乃至のいずれか1項に記載の多層配線基板の中間製品。 By forming the frame portion side conductor layer in a mesh shape and setting the line width of the frame portion side conductor layer to be narrow as the area ratio of the product portion side conductor layer occupying in the product formation region is increased, The area ratio of the conductor layer occupying the main surface of the resin insulation layer is set between the maximum value and the minimum value of the area ratio of the product-side conductor layer occupying the product formation region. Item 5. The intermediate product of the multilayer wiring board according to any one of Items 1 to 4 . 複数の樹脂絶縁層を積層した構造を有し、製品となるべき製品部が平面方向に沿って複数配置された製品形成領域と、その製品形成領域の周囲を取り囲む枠部とからなり、それぞれの樹脂絶縁層の主面に、導体層として前記製品部内の領域に形成された製品部側導体層と前記枠部内の領域に形成された枠部側導体層とが設けられ、前記製品部内の領域における前記樹脂絶縁層と前記製品部側導体層とを交互に積層した構造を有し、同一の前記樹脂絶縁層を主体として形成され、同一方向に拡径したビアのみによりそれぞれの前記製品部側導体層が接続され、前記複数の樹脂絶縁層のうち少なくとも1つの樹脂絶縁層上における前記枠部内の領域に、前記枠部側導体層が存在しない複数のスリット状の非形成領域が前記製品部の外形線に沿って設定された切断予定線の延長線上に配置され、前記製品形成領域に占める前記製品部側導体層の面積率が同一ではなく、前記製品形成領域に占める前記製品部側導体層の面積率が大きいものほど、それと同一面内に存在する前記枠部に占める前記枠部側導体層の面積率が小さく設定され、前記樹脂絶縁層の主面に占める前記導体層の面積率のバラツキを、15%以内に設定した多層配線基板の中間製品を準備する準備工程と、
前記製品形成領域から前記枠部を除去するとともに、前記製品形成領域における切断予定線に沿って切断することにより、前記製品部同士を分割する分離工程と
を含むことを特徴とする多層配線基板の製造方法。
It has a structure in which a plurality of resin insulation layers are laminated, and is composed of a product forming region in which a plurality of product parts to be products are arranged along the plane direction, and a frame portion surrounding the periphery of the product forming region. The main surface of the resin insulation layer is provided with a product part side conductor layer formed in a region in the product part as a conductor layer and a frame part side conductor layer formed in a region in the frame part, and the region in the product part The product insulation side and the product part side conductor layer are alternately laminated, and each product part side is formed only by vias formed mainly from the same resin insulation layer and having a diameter expanded in the same direction. A conductor layer is connected, and a plurality of slit-shaped non-formation regions in which the frame-side conductor layer does not exist in the region within the frame portion on at least one resin insulation layer of the plurality of resin insulation layers are the product portion. Along the outline of Disposed on the extension of the constant has been cutting line, wherein no area ratio of the occupied product forming region product portion side conductor layer is the same, a large area ratio of the product portion side conductor layer to the said product forming region The area ratio of the frame-side conductor layer occupying the frame portion existing in the same plane is set smaller, and the variation in the area ratio of the conductor layer occupying the main surface of the resin insulating layer is 15%. A preparation process for preparing an intermediate product of a multilayer wiring board set within
A separation step of dividing the product portions by removing the frame portion from the product formation region and cutting along a planned cutting line in the product formation region. Production method.
前記準備工程は、
片面に金属箔を有する基材上に前記複数の樹脂絶縁層を積層する積層工程と、
前記積層工程後、前記基材を除去して前記金属箔を露出させる基材除去工程と、
前記基材除去工程後、前記金属箔に対するパターニングを行うパターニング工程と、
前記パターニング工程後、最表層の前記樹脂絶縁層の主面に形成された前記導体層上に部品接続用のはんだバンプを形成するはんだバンプ形成工程と
からなることを特徴とする請求項に記載の多層配線基板の製造方法。
The preparation step includes
A laminating step of laminating the plurality of resin insulating layers on a substrate having a metal foil on one side;
Substrate removal step of removing the substrate and exposing the metal foil after the lamination step,
After the base material removal step, a patterning step for patterning the metal foil,
According to claim 6, characterized in that it consists of the following patterning step, the solder bump forming step of forming a solder bump for component connection on the conductor layer formed on the main surface of the outermost layer of the resin insulating layer Manufacturing method of multilayer wiring board.
JP2008142668A 2008-05-30 2008-05-30 Intermediate product of multilayer wiring board, manufacturing method of multilayer wiring board Expired - Fee Related JP5172476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142668A JP5172476B2 (en) 2008-05-30 2008-05-30 Intermediate product of multilayer wiring board, manufacturing method of multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142668A JP5172476B2 (en) 2008-05-30 2008-05-30 Intermediate product of multilayer wiring board, manufacturing method of multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2009290081A JP2009290081A (en) 2009-12-10
JP5172476B2 true JP5172476B2 (en) 2013-03-27

Family

ID=41458989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142668A Expired - Fee Related JP5172476B2 (en) 2008-05-30 2008-05-30 Intermediate product of multilayer wiring board, manufacturing method of multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5172476B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399456B2 (en) 2011-09-30 2014-01-29 イビデン株式会社 Multi-piece substrate manufacturing method and multi-piece substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066251B2 (en) * 1994-08-05 2000-07-17 シャープ株式会社 Printed wiring board
JP2000124612A (en) * 1998-01-19 2000-04-28 Toshiba Corp Wiring board, its manufacturing method, and electrical equipment with wiring board
JP2001284825A (en) * 2000-03-28 2001-10-12 Toshiba Corp Circuit board and manufacturing method of equipment and wiring board using the same
JP4051273B2 (en) * 2002-08-30 2008-02-20 日本特殊陶業株式会社 Wiring board and method of manufacturing wiring board
JP4342366B2 (en) * 2004-04-09 2009-10-14 日本特殊陶業株式会社 Wiring board manufacturing method
JP4349270B2 (en) * 2004-12-08 2009-10-21 パナソニック株式会社 Wiring board and manufacturing method thereof
JP4312758B2 (en) * 2005-12-27 2009-08-12 日本特殊陶業株式会社 Wiring board manufacturing method, intermediate products of wiring board

Also Published As

Publication number Publication date
JP2009290081A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5203045B2 (en) Intermediate product of multilayer wiring board, manufacturing method of multilayer wiring board
JP5566720B2 (en) Multilayer wiring board and manufacturing method thereof
JP5284147B2 (en) Multilayer wiring board
JP5436259B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board
JP5848110B2 (en) Manufacturing method of multilayer wiring board
TWI492688B (en) Method of manufacturing multilayer wiring substrate
JP5172404B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board intermediate product
KR101323541B1 (en) Multilayered wiring substrate
KR101281410B1 (en) Multilayer Wiring Substrate
JP2011138869A (en) Method of manufacturing multilayer wiring substrate, and multilayer wiring substrate
JP2009290080A (en) Intermediate product of multilayer wiring board, and method of manufacturing multilayer wiring board
JP2012094662A (en) Method of manufacturing multilayer wiring board
JP2011243714A (en) Multilayer wiring board
JP2013540368A (en) Printed circuit board and manufacturing method thereof
KR20110098677A (en) Multilayer wiring substrate and method of manufacturing the same
JP5865769B2 (en) Manufacturing method of multilayer wiring board
TWI412302B (en) Intermediate multilayer wiring board product, and method for manufacturing multilayer wiring board
JP5172476B2 (en) Intermediate product of multilayer wiring board, manufacturing method of multilayer wiring board
JP5350829B2 (en) Manufacturing method of wiring board with reinforcing material, wiring board for wiring board with reinforcing material
JP4975664B2 (en) Manufacturing method of multi-cavity wiring board and intermediate product of multi-cavity wiring board
KR20120137300A (en) Method of manufacturing multilayer wiring substrate, and multilayer wiring substrate
JP5449413B2 (en) Multilayer wiring board
JP5269757B2 (en) Multilayer wiring board
TWI507109B (en) A supporting substrate for manufacturing a multilayer wiring board, and a method for manufacturing the multilayer wiring board
JP5679911B2 (en) Multilayer wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees