JP5172445B2 - Thrust bearing rotational torque detector - Google Patents

Thrust bearing rotational torque detector Download PDF

Info

Publication number
JP5172445B2
JP5172445B2 JP2008105860A JP2008105860A JP5172445B2 JP 5172445 B2 JP5172445 B2 JP 5172445B2 JP 2008105860 A JP2008105860 A JP 2008105860A JP 2008105860 A JP2008105860 A JP 2008105860A JP 5172445 B2 JP5172445 B2 JP 5172445B2
Authority
JP
Japan
Prior art keywords
thrust bearing
rotational torque
intermediate member
rotating member
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008105860A
Other languages
Japanese (ja)
Other versions
JP2009257879A (en
Inventor
弘光 河合
光介 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2008105860A priority Critical patent/JP5172445B2/en
Publication of JP2009257879A publication Critical patent/JP2009257879A/en
Application granted granted Critical
Publication of JP5172445B2 publication Critical patent/JP5172445B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スラスト軸受の回転トルクを測定する試験装置に関し、特に、コンプレッサ等のスラスト軸受に掛かる実機荷重条件に近い偏荷重を再現する技術に関するものである。   The present invention relates to a test apparatus for measuring the rotational torque of a thrust bearing, and more particularly to a technique for reproducing an offset load close to an actual load condition applied to a thrust bearing such as a compressor.

スラスト軸受の回転トルク評価として、これまでは、供試スラスト軸受の軌道輪に均一なスラスト荷重を付与して、回転トルクを検出していた。このような均一荷重を付与する従来一般のスラスト軸受回転トルク検出装置として、図10に示すような装置が知られている。この装置は、回転部材Aと、回転部材Aと対向するトルク検出部材Bと、トルク検出部材Bに荷重を与える機構Cとを備える。またトルク検出部材Bは、これら回転部材Aおよびトルク検出部材B間に取り付けられる供試スラスト軸受Sの回転トルクを検出する手段Gを有する。そして、これら回転部材Aとトルク検出部材Bとに、供試スラスト軸受Sの軌道輪の一方と他方をそれぞれ取り付けて、回転部材Aを矢印の向きに回転させるとともに矢印で示すスラスト荷重を与えることで、スラスト軸受Sの回転トルクを検出するものである。この装置によれば、軌道輪の接触応力が均一な荷重を軸方向に与えてスラスト軸受Sの回転トルクを測定することができる。   As an evaluation of the rotational torque of the thrust bearing, until now, a uniform thrust load was applied to the raceway ring of the test thrust bearing to detect the rotational torque. An apparatus as shown in FIG. 10 is known as a conventional general thrust bearing rotational torque detection apparatus that applies such a uniform load. This apparatus includes a rotating member A, a torque detecting member B facing the rotating member A, and a mechanism C that applies a load to the torque detecting member B. The torque detection member B has means G for detecting the rotational torque of the test thrust bearing S attached between the rotation member A and the torque detection member B. Then, one and the other of the race rings of the test thrust bearing S are attached to the rotating member A and the torque detecting member B, respectively, and the rotating member A is rotated in the direction of the arrow and a thrust load indicated by the arrow is given. Thus, the rotational torque of the thrust bearing S is detected. According to this apparatus, it is possible to measure the rotational torque of the thrust bearing S by applying a load with uniform contact stress of the raceway in the axial direction.

一方で、スラスト軸受の使用方法も多様化してきており、実際は、スラスト軸受に接触応力が異なる不均一な荷重が付与される場合も多い。   On the other hand, the usage methods of thrust bearings have also been diversified, and in fact, in many cases, uneven loads with different contact stresses are applied to the thrust bearings.

このような偏荷重を供試スラスト軸受に付与する試験装置しては従来、例えば、特開2003−120664号公報(特許文献1)に記載のごときものが知られている。   Conventionally, as a test apparatus for imparting such a biased load to a test thrust bearing, for example, one described in Japanese Patent Application Laid-Open No. 2003-120664 (Patent Document 1) is known.

特許文献1に記載の試験装置は、荷重伝達部材を回転主軸の軸心から偏心した位置に設け、この荷重伝達部材を介して供試スラスト軸受のスラストレースに偏荷重を付与して、スラスト軸受の回転性能を試験するものである。
特開2003−120664号公報
In the test apparatus described in Patent Document 1, the load transmission member is provided at a position eccentric from the axis of the rotation main shaft, and an eccentric load is applied to the thrust trace of the test thrust bearing via the load transmission member. This is to test the rotation performance.
JP 2003-120664 A

しかし、上記従来のような試験装置にあっては、以下に説明するような問題を生ずる。つまり特許文献1に記載の試験装置は、周方向の特定の位置に荷重伝達部材を介在させる必要があることから、部品点数および組立工数が増加してしまう。また、回転トルクを検出することができなかった。   However, the conventional test apparatus has the following problems. That is, in the test apparatus described in Patent Document 1, since it is necessary to interpose a load transmission member at a specific position in the circumferential direction, the number of parts and the number of assembly steps increase. Further, the rotational torque could not be detected.

また、図10に示すような従来一般の試験装置にあっては、機構Cが静圧エアーを使用することから、均一荷重を付与する間は、静圧エアーの回転バランスが崩れることがなく、安定した回転トルクを検出することができる。しかしながら、機構Cが偏荷重を付与すれば、静圧エアーの回転バランスが崩れてしまい、安定した回転トルクを検出することができない。また偏荷重が大きい場合には、静圧部のエアーが押し潰されて回転トルクの検出が困難となる場合がある。   Further, in the conventional general test apparatus as shown in FIG. 10, since the mechanism C uses static pressure air, the rotation balance of the static pressure air is not lost while applying a uniform load, A stable rotational torque can be detected. However, if the mechanism C applies an unbalanced load, the rotational balance of the static pressure air is lost, and stable rotational torque cannot be detected. In addition, when the uneven load is large, the air in the static pressure portion may be crushed and it may be difficult to detect the rotational torque.

本発明は、上述の実情に鑑み、組立工数を増やすことなく、コンプレッサ等のスラスト軸受に掛かる実機荷重を付与することが可能であって、安定した回転トルクを検出することができるスラスト軸受回転トルク検出装置を提案することを目的とするものである。   In view of the above-described circumstances, the present invention is capable of applying an actual machine load applied to a thrust bearing such as a compressor without increasing the number of assembly steps, and capable of detecting a stable rotational torque. The object is to propose a detection device.

この目的のため本発明によるスラスト軸受回転トルク検出装置は、供試スラスト軸受の回転トルクを検出するスラスト軸受回転トルク検出装置を前提とし、回転軸の一端側に連結されて回転軸とともに回転し、第1スラスト軸受の一方側と接触してスラスト荷重を付与するための第1回転部材と、回転軸の他端側に軸方向ストローク可能に連結されて回転軸とともに回転し、第2スラスト軸受の一方側と接触してスラスト荷重を付与するための第2回転部材と、回転軸が貫通する中心孔を備えた円盤形状であり、第1回転部材および第2回転部材との間に配置されて、第1回転部材と対向する側の端面に第1スラスト軸受の他方側と接触してスラスト荷重を付与するための座面を有し、前記第2回転部材と対向する側の端面に第2スラスト軸受の他方側と接触してスラスト荷重を付与するための座面を有する中間部材と、第2回転部材に軸方向荷重を付与する荷重付与機構と、中間部材と連結されて、前記第1スラスト軸受および前記第2スラスト軸受から中間部材に入力される回転トルクを検出する手段とを備え、中間部材の第1回転部材側の座面と第2回転部材側の座面との間の軸方向厚みが、1の部位と他の部位とで異なる。 For this purpose, the thrust bearing rotational torque detection device according to the present invention is based on the thrust bearing rotational torque detection device that detects the rotational torque of the test thrust bearing, and is connected to one end side of the rotational shaft and rotates together with the rotational shaft. A first rotating member for contacting with one side of the first thrust bearing to apply a thrust load; and connected to the other end side of the rotating shaft so as to be capable of axial stroke and rotating together with the rotating shaft; It is a disk shape provided with the 2nd rotating member for giving a thrust load in contact with one side, and the center hole which a rotating shaft penetrates, and is arranged between the 1st rotating member and the 2nd rotating member. The end surface on the side facing the first rotating member has a seat surface for applying a thrust load by contacting the other side of the first thrust bearing, and the second end surface on the side facing the second rotating member. Thrust shaft An intermediate member having a seating surface for applying a thrust load in contact with the other side, and the load imparting mechanism that imparts an axial load to the second rotary member, is coupled with the intermediate member, said first thrust bearing And a means for detecting rotational torque input to the intermediate member from the second thrust bearing, and an axial thickness between the seat surface on the first rotating member side and the seat surface on the second rotating member side of the intermediate member There, Ru different in one of the site and the other sites.

かかる本発明によれば、座面の凹凸形状を適宜選択することによって、様々な偏荷重を供試スラスト軸受に付与することが可能となり、実際の荷重条件に近い偏荷重を再現することができる。また、径方向で接触応力が異なるスラスト荷重をも供試スラスト軸受に付与することが可能となり、スラスト軸受のたわみやミスアライメントを考慮して回転トルクを検出することができる。しかも、荷重付与機構自体が偏荷重を付与する構造ではないため回転バランスが崩れることなく、安定した回転トルクの検出が可能となる。また、荷重伝達部材を、別途用いる必要がないことから、組立工数の増加を回避しつつ、安定した回転トルクを検出することができる。さらに、2個のスラスト軸受の回転トルクを同時に検出することから偏荷重を付与しても回転バランスが良く、安定した回転トルクを検出することができるとともに、検出精度が向上する。   According to the present invention, by appropriately selecting the uneven shape of the seating surface, it is possible to apply various uneven loads to the test thrust bearing, and it is possible to reproduce the uneven load close to the actual load condition. . In addition, it is possible to apply a thrust load having a different contact stress in the radial direction to the test thrust bearing, and it is possible to detect the rotational torque in consideration of the deflection and misalignment of the thrust bearing. In addition, since the load application mechanism itself is not a structure that applies an offset load, the rotation balance is not lost, and stable rotation torque can be detected. Moreover, since it is not necessary to use a load transmission member separately, it is possible to detect a stable rotational torque while avoiding an increase in the number of assembly steps. Further, since the rotational torques of the two thrust bearings are detected at the same time, the rotational balance is good even when an unbalanced load is applied, stable rotational torque can be detected, and detection accuracy is improved.

なお、スラスト軸受の両側に配置された一対の軌道輪が、互いに形状が異なる前面軌道輪および背面軌道輪からなる場合、以下に説明するようにスラスト軸受回転トルク検出装置に第1・第2スラスト軸受を取り付けるとよい。すなわち、中間部材の第1回転部材側の座面は、第1スラスト軸受の背面軌道輪と接触してこれを固定するためのものであり、中間部材の第2回転部材側の座面は、第2スラスト軸受の背面軌道輪と接触してこれを固定するためのものである。かかる実施形態によれば、1個の中間部材が2個のスラスト軸受の背面軌道輪と接触することから、2個のスラスト軸受を背面合わせで配置することが可能になり、第1スラスト軸受と第2スラスト軸受との軸方向の荷重バランスが崩れることを回避して安定した回転トルクを検出することができるとともに、検出精度が向上する。   When the pair of bearing rings arranged on both sides of the thrust bearing is composed of a front bearing ring and a rear bearing ring having different shapes, the first and second thrusts are included in the thrust bearing rotational torque detector as described below. A bearing is recommended. That is, the seat surface on the first rotating member side of the intermediate member is for contacting and fixing the back raceway of the first thrust bearing, and the seat surface on the second rotating member side of the intermediate member is This is for contacting and fixing the rear raceway ring of the second thrust bearing. According to this embodiment, since one intermediate member contacts the back raceway of two thrust bearings, it becomes possible to arrange the two thrust bearings back to back, and the first thrust bearing and A stable rotational torque can be detected while avoiding the collapse of the axial load balance with the second thrust bearing, and the detection accuracy is improved.

中間部材は一実施形態に限定されるものではなく、中間部材の第1回転部材側の座面と第2回転部材側の座面との間の軸方向厚みが、周方向におけるすべての部位で等しく、径方向における1の部位と他の部位とで異なってもよい。かかる実施形態によれば、例えば内径方向に向かうにつれて軸方向厚みを大きくすることにより、軌道輪の接触応力を内径方向に向かうにつれて大きくすることが可能になり、このような荷重条件での回転トルクを検出することができる。   The intermediate member is not limited to one embodiment, and the axial thickness between the seating surface on the first rotating member side and the seating surface on the second rotating member side of the intermediate member is the same in all parts in the circumferential direction. Equally, one part in the radial direction may be different from another part. According to this embodiment, for example, by increasing the axial thickness toward the inner diameter direction, it becomes possible to increase the contact stress of the raceway toward the inner diameter direction, and the rotational torque under such a load condition Can be detected.

あるいは中間部材の第1回転部材側の座面と第2回転部材側の座面との間の軸方向厚みが、周方向における1の部位と他の部位とで異なってもよい。かかる実施形態によれば、軌道輪の特定の周方向部位に荷重を付与してスラスト軸受に偏荷重を付与することが可能になり、このような荷重条件での回転トルクを検出することができる。   Alternatively, the axial thickness between the seating surface on the first rotating member side and the seating surface on the second rotating member side of the intermediate member may be different between one site and the other site in the circumferential direction. According to such an embodiment, it becomes possible to apply a load to a specific circumferential portion of the bearing ring to apply an eccentric load to the thrust bearing, and to detect rotational torque under such a load condition. .

ここで好ましくは、中間部材の一端面が有する座面の凹凸形状と、他端面が有する座面の凹凸形状とが同じであり、かつ周方向において同位相である。かかる実施形態によれば、2個のスラスト軸受の荷重条件を同一にすることが可能となり、回転バランスが崩れることを回避して、安定した回転トルクを検出することができるとともに、検出精度が向上する。   Preferably, the uneven shape of the seating surface of the one end surface of the intermediate member is the same as the uneven shape of the seating surface of the other end surface, and has the same phase in the circumferential direction. According to this embodiment, it is possible to make the load conditions of the two thrust bearings the same, and it is possible to detect the stable rotational torque while avoiding the rotation balance being lost, and the detection accuracy is improved. To do.

中間部材の座面は一実施形態に限定されるものではなく、回転軸を中心とする扇型の突出部を有してもよい。かかる実施形態によれば、2個のスラスト軸受にそれぞれ付与する偏荷重を同一にすることが可能となり、回転バランスが崩れることを回避して、安定した回転トルクを検出することができるとともに、検出精度が向上する。   The seating surface of the intermediate member is not limited to one embodiment, and may have a fan-shaped protrusion centered on the rotation axis. According to such an embodiment, it is possible to make the unbalanced loads to be applied to the two thrust bearings the same, to avoid the rotation balance being lost, and to detect a stable rotational torque, and to detect it. Accuracy is improved.

中間部材は一実施形態に限定されるものではなく、中間部材の第1回転部材側の座面と第2回転部材側の座面との間の軸方向厚みが一定であってもよい。かかる実施形態によれば、本発明の検出装置において、均一荷重付与時の回転トルクも検出することができる。   The intermediate member is not limited to one embodiment, and the axial thickness between the seat surface on the first rotating member side and the seat surface on the second rotating member side of the intermediate member may be constant. According to this embodiment, in the detection device of the present invention, it is also possible to detect rotational torque when a uniform load is applied.

好ましくは、中間部材の中心孔と、回転軸との間には、ラジアル転がり軸受が設けられ、この回転軸の外周面はラジアル転がり軸受の内輪と隙間を伴って嵌っている。かかる実施形態によれば、ラジアル転がり軸受にスラスト荷重が付与されることを回避して、ラジアル転がり軸受の回転トルクが中間部材に殆ど伝達することなく回転トルクの検出精度が向上する。   Preferably, a radial rolling bearing is provided between the central hole of the intermediate member and the rotating shaft, and the outer peripheral surface of the rotating shaft is fitted with an inner ring of the radial rolling bearing with a gap. According to this embodiment, the thrust load is not applied to the radial rolling bearing, and the rotational torque of the radial rolling bearing is hardly transmitted to the intermediate member, and the detection accuracy of the rotational torque is improved.

このように本発明は、スラスト軸受の回転トルクを検出するスラスト軸受回転トルク検出装置を前提とし、回転軸の一端側に連結されて回転軸とともに回転し、第1スラスト軸受の一方側と接触するための第1回転部材と、回転軸の他端側に軸方向ストローク可能に連結されて回転軸とともに回転し、第2スラスト軸受の一方側と接触するための第2回転部材と、回転軸が貫通する中心孔を備えた円盤形状であり、第1回転部材および第2回転部材との間に配置されて、第1回転部材と対向する側の端面に前記第1スラスト軸受の他方側と接触するための座面を有し、前記第2回転部材と対向する側の端面に前記第2スラスト軸受の他方側と接触するための座面を有する中間部材と、第2回転部材に軸方向荷重を付与する荷重付与機構と、中間部材と連結されて、前記第1スラスト軸受および前記第2スラスト軸受から中間部材に入力される回転トルクを検出する手段とを備える。したがって、座面の凹凸形状を適宜選択することによって、片斜板タイプの斜板式コンプレッサなどの実機においてスラスト軸受に付与される偏荷重を再現することが可能となり、回転バランスが崩れることなく、スラスト軸受の回転トルクを安定して測定することができる。   As described above, the present invention is based on the thrust bearing rotational torque detecting device that detects the rotational torque of the thrust bearing, is connected to one end side of the rotating shaft, rotates together with the rotating shaft, and comes into contact with one side of the first thrust bearing. A first rotating member for rotation, a second rotating member connected to the other end side of the rotating shaft so as to be capable of axial stroke and rotating together with the rotating shaft, and contacting one side of the second thrust bearing; It is a disk shape provided with a central hole that penetrates, is disposed between the first rotating member and the second rotating member, and contacts the other side of the first thrust bearing on the end surface facing the first rotating member. An intermediate member having a seating surface for contacting the other side of the second thrust bearing on an end surface facing the second rotating member, and an axial load on the second rotating member. A load applying mechanism for applying It is connected to the member, and means for detecting a rotational torque input from the first thrust bearing and the second thrust bearing on the intermediate member. Therefore, by appropriately selecting the uneven shape of the seating surface, it is possible to reproduce the eccentric load applied to the thrust bearing in an actual machine such as a swash plate type swash plate compressor, and without causing a loss of rotational balance, The rotational torque of the bearing can be measured stably.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。図1は、本実施例になるスラスト軸受回転トルク検出装置を示す縦断面図である。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings. FIG. 1 is a longitudinal sectional view showing a thrust bearing rotational torque detecting device according to this embodiment.

スラスト軸受回転トルク検出装置21は、供試スラスト軸受12の回転トルクを検出する。供試スラスト軸受12は、両側にそれぞれ軌道輪を備えているものの他、一方側のみに軌道輪を備えているものであってもよく、いずれの側にも軌道輪を備えておらず、転動体および保持器から構成されるものであってもよい。本実施例では、一対の軌道輪13,13を備えた供試スラスト軸受12の場合を主に説明する。回転軸22は、図示しない駆動源によって細い矢印で示す方向に回転する。回転軸22の一端側は、外径方向に拡幅するフランジ23を備える。このフランジ23の端面に第1の回転部材24を固着する。つまり第1回転部材24は回転軸22の一端側と連結し、回転軸22とともに回転する。またフランジ23は回転軸22から第1回転部材24が抜け出ることを防止する。   The thrust bearing rotational torque detection device 21 detects the rotational torque of the test thrust bearing 12. The test thrust bearing 12 may be provided with a bearing ring on both sides, or may be provided with a bearing ring on only one side. It may be composed of a moving body and a cage. In the present embodiment, the case of the test thrust bearing 12 having a pair of race rings 13 will be mainly described. The rotating shaft 22 is rotated in a direction indicated by a thin arrow by a driving source (not shown). One end side of the rotating shaft 22 includes a flange 23 that widens in the outer diameter direction. The first rotating member 24 is fixed to the end surface of the flange 23. That is, the first rotating member 24 is connected to one end side of the rotating shaft 22 and rotates together with the rotating shaft 22. Further, the flange 23 prevents the first rotating member 24 from coming off the rotating shaft 22.

回転軸22の他端側には、第2の回転部材25を、軸方向ストローク可能に連結する。第2回転部材25は、回転軸22とともに回転する。   A second rotating member 25 is connected to the other end side of the rotating shaft 22 so as to be capable of axial stroke. The second rotating member 25 rotates together with the rotating shaft 22.

これら第1回転部材24と第2回転部材25との間には、中間部材26を配設する。中間部材26は、回転軸22が貫通する中心孔27を中央に備えた環状の円盤部材である。   An intermediate member 26 is disposed between the first rotating member 24 and the second rotating member 25. The intermediate member 26 is an annular disk member having a central hole 27 through which the rotary shaft 22 passes in the center.

スラスト軸受回転トルク検出装置21は、第2回転部材25の軸方向両側のうち中間部材26が位置する側と反対側に、荷重付与機構32を備える。荷重付与機構32は第2回転部材25に軸方向荷重を付与し、第2回転部材25を第1回転部材へ向けて矢印の向きに押圧する。これにより、第1回転部材24および第2回転部材25間を挟圧して、第1回転部材24および中間部材26間と、第2回転部材25および中間部材26間とにスラスト荷重を付与する。   The thrust bearing rotational torque detection device 21 includes a load applying mechanism 32 on the opposite side to the side where the intermediate member 26 is located, on both axial sides of the second rotating member 25. The load applying mechanism 32 applies an axial load to the second rotating member 25 and presses the second rotating member 25 toward the first rotating member in the direction of the arrow. Thus, a thrust load is applied between the first rotating member 24 and the intermediate member 26 and between the second rotating member 25 and the intermediate member 26 by pinching between the first rotating member 24 and the second rotating member 25.

回転部材24,25の双方は、中間部材26との間に供試体となるスラスト軸受12を取り付けるための端面24m、25nをそれぞれ有する。それぞれの端面24m、25nは、内径側にある回転部材24,25の端面24c,25cよりも軸方向に段差を伴って窪んでおり、スラスト軸受12を取り付けるための空間を確保するとともに、軸線Oと同軸にスラスト軸受12を取り付けることを容易にする。   Both of the rotating members 24 and 25 have end faces 24m and 25n for mounting the thrust bearing 12 serving as a specimen between the intermediate members 26, respectively. Each of the end surfaces 24m and 25n is recessed with a step in the axial direction from the end surfaces 24c and 25c of the rotating members 24 and 25 on the inner diameter side, ensuring a space for mounting the thrust bearing 12, and the axis O It is easy to attach the thrust bearing 12 coaxially.

荷重付与機構32が作動する間、同じ形状の2個のスラスト軸受12にスラスト荷重を付与する。つまり円盤形状の第1回転部材24の両端面のうち中間部材26側の端面24mは、第1スラスト軸受12mの軌道輪13の一方と接触して、第1スラスト軸受12mにスラスト荷重を付与する。座面25nも同様の構成であり、荷重付与機構32が作動する間、円盤形状の第2回転部材25の両端面のうち中間部材26側の端面25nは、第2スラスト軸受12nの軌道輪13の一方と接触して、第2スラスト軸受12nにスラスト荷重を付与する。   While the load application mechanism 32 operates, a thrust load is applied to the two thrust bearings 12 having the same shape. That is, the end surface 24m on the intermediate member 26 side of both end surfaces of the disk-shaped first rotating member 24 comes into contact with one of the race rings 13 of the first thrust bearing 12m and applies a thrust load to the first thrust bearing 12m. . The seat surface 25n has the same configuration, and during the operation of the load applying mechanism 32, the end surface 25n on the intermediate member 26 side of both end surfaces of the disk-shaped second rotating member 25 is the raceway ring 13 of the second thrust bearing 12n. A thrust load is applied to the second thrust bearing 12n.

中間部材26は、軸方向両側の端面に、軌道輪13の他方と接触してこの軌道輪13からのスラスト反力を受け止めるための座面26m、26nをそれぞれ有する。   The intermediate member 26 has seat surfaces 26m and 26n on the end surfaces on both sides in the axial direction for contacting the other of the races 13 and receiving the thrust reaction force from the races 13, respectively.

また中間部材26は、径方向に延在するロッド29を介して、検出部28と連結する。検出部28は、中間部材26の外周縁から延びるロッド29の先端を監視して、第1および第2スラスト軸受12m,12nの各軌道輪13から両座面26m、26nに入力される回転トルクを測定する。これら中間部材26およびロッド29は、回転軸22とともに回転するものではないが、回転トルクの測定のために若干の回動を許容される。   The intermediate member 26 is connected to the detection unit 28 via a rod 29 extending in the radial direction. The detection unit 28 monitors the tip of the rod 29 extending from the outer peripheral edge of the intermediate member 26, and the rotational torque input from the raceway rings 13 of the first and second thrust bearings 12m and 12n to the both seating surfaces 26m and 26n. Measure. The intermediate member 26 and the rod 29 do not rotate together with the rotary shaft 22 but are allowed to rotate slightly for measuring the rotational torque.

次に、供試スラスト軸受12(12m,12n)の回転トルクの測定につき説明する。本実施例のスラスト軸受回転トルク検出装置21は、2個のスラスト軸受12(12m,12n)の回転トルクを同時に検出するものである。まず第1スラスト軸受12mについては、座面24mに軌道輪13の一方を接触させてこれを固定し、座面26mに軌道輪13の他方を接触させてこれを固定して、第1回転部材24と中間部材26との間に第1スラスト軸受12mを取り付ける。同様に第2スラスト軸受12nについても、座面25nに軌道輪13の一方を接触させてこれを固定し、座面26nに軌道輪13の他方を接触させてこれを固定して、第2回転部材25と中間部材26との間に第2スラスト軸受12nを取り付ける。次に、荷重付与機構32が第2回転部材25に荷重を付与して、第2回転部材25を第1回転部材24に向けて押圧し、2個のスラスト軸受12(12m,12n)にスラスト荷重を付与する。同時に回転軸22を回転させて、軌道輪13の一方と他方とを相対回転させる。このとき、中間部材26の両側に取り付けられた2個のスラスト軸受12から、中間部材26に回転トルクが入力される。   Next, measurement of the rotational torque of the test thrust bearing 12 (12m, 12n) will be described. The thrust bearing rotational torque detection device 21 of this embodiment detects the rotational torque of the two thrust bearings 12 (12m, 12n) simultaneously. First, with respect to the first thrust bearing 12m, one of the race rings 13 is brought into contact with the seating surface 24m and fixed, and the other of the race rings 13 is brought into contact with the seating surface 26m to fix it. The first thrust bearing 12m is attached between the intermediate member 26 and the intermediate member 26. Similarly, with respect to the second thrust bearing 12n, one of the race rings 13 is brought into contact with the seat surface 25n and fixed, and the other of the race rings 13 is brought into contact with the seat surface 26n to fix it. The second thrust bearing 12n is attached between the member 25 and the intermediate member 26. Next, the load applying mechanism 32 applies a load to the second rotating member 25, presses the second rotating member 25 toward the first rotating member 24, and thrusts the two thrust bearings 12 (12m, 12n). Apply a load. At the same time, the rotating shaft 22 is rotated to relatively rotate one and the other of the race rings 13. At this time, rotational torque is input to the intermediate member 26 from the two thrust bearings 12 attached to both sides of the intermediate member 26.

そして、検出部28が検出した回転トルクを2分して、1個のスラスト軸受12当りの回転トルクを算出する。なおスラスト軸受12が軌道輪13を備えない場合、座面をスラスト軸受12の転動体(ころまたは玉)に接触させるとよい。   Then, the rotational torque detected by the detection unit 28 is divided into two, and the rotational torque per thrust bearing 12 is calculated. In addition, when the thrust bearing 12 is not provided with the bearing ring 13, it is good to make a seat surface contact the rolling element (roller or ball) of the thrust bearing 12.

荷重付与機構32から第2回転部材25に入力する軸方向荷重は、その中心および方向が軸線Oと一致する。図2は中間部材26の一例を示し、(a)は正面図、(b)は縦断面図である。この一例では、座面26mおよび座面26nを回転軸線に垂直な平面とし、円盤形状になる中間部材26の両座面26m,26n間の軸方向厚みを一定にする。これにより、スラスト軸受12に均一荷重を付与することができる。   The center direction and the direction of the axial load input from the load applying mechanism 32 to the second rotating member 25 coincide with the axis O. FIG. 2 shows an example of the intermediate member 26, where (a) is a front view and (b) is a longitudinal sectional view. In this example, the seating surface 26m and the seating surface 26n are planes perpendicular to the rotation axis, and the axial thickness between the seating surfaces 26m and 26n of the intermediate member 26 having a disk shape is made constant. Thereby, a uniform load can be applied to the thrust bearing 12.

図3は中間部材26の他の例を示し、(a)は正面図、(b)は縦断面図である。この実施例では、座面26mおよび座面26nの一部26eを他の部分26fよりも軸方向に寸法Dだけそれぞれ突出させる。このように座面26m,26nの凹凸形状を後述するように適宜選定することにより、軌道輪13のうち突出部26eと接触する部位の接触応力を大きくすることが可能になり、偏荷重をスラスト軸受12に付与することができる。そして、実際の荷重分布に合わせた凹凸形状とすることにより、実機での回転トルクの確認が可能となる。偏荷重が付与されるスラスト軸受として、例えば、特開2006−200719号公報の図32および図33に示すスラスト軸受がある。特開2006−200719号公報は、片斜板タイプの斜板式コンプレッサにおけるカーエアコン・コンプレッサ用スラスト軸受を開示するものである。ここで、連結部材と斜板との間、あるいはピストンサポートとジャーナルとの間に介在するスラスト軸受には、ピストンの往復運動の際に、偏荷重が付与される。   3A and 3B show another example of the intermediate member 26, where FIG. 3A is a front view and FIG. 3B is a longitudinal sectional view. In this embodiment, the seat surface 26m and a part 26e of the seat surface 26n are projected in the axial direction by a dimension D from the other portion 26f. Thus, by appropriately selecting the concave and convex shapes of the seating surfaces 26m and 26n as will be described later, it becomes possible to increase the contact stress of the portion of the bearing ring 13 that contacts the protruding portion 26e, and the uneven load is thrust. It can be applied to the bearing 12. And it becomes possible to confirm the rotational torque in an actual machine by making it the uneven | corrugated shape matched with actual load distribution. As a thrust bearing to which an unbalanced load is applied, for example, there is a thrust bearing shown in FIGS. 32 and 33 of JP-A-2006-200719. Japanese Patent Laying-Open No. 2006-200719 discloses a thrust bearing for a car air conditioner / compressor in a swash plate type swash plate compressor. Here, an eccentric load is applied to the thrust bearing interposed between the connecting member and the swash plate or between the piston support and the journal when the piston reciprocates.

吸入、圧縮、排出のサイクルを繰り返すピストンを内部に備え、特開2006−200719に開示された斜板式コンプレッサを実機とする場合、本実施例のスラスト軸受回転トルク検出装置21によれば、この実機に使用されるスラスト軸受に付与される偏荷重を再現することができ、しかも安定した回転トルクを測定することができる。   When a piston that repeats the cycle of suction, compression, and discharge is provided inside, and the swash plate compressor disclosed in Japanese Patent Application Laid-Open No. 2006-200719 is used as the actual machine, the thrust bearing rotational torque detecting device 21 of the present embodiment uses this actual machine. It is possible to reproduce the eccentric load applied to the thrust bearing used in the above, and to measure a stable rotational torque.

また本実施例のスラスト軸受回転トルク検出装置21は、中間部材26で偏荷重を付与するものであって、静圧エアーで偏荷重を付与するものではないことから、安定した回転トルクを検出することができる。   Further, the thrust bearing rotational torque detecting device 21 according to the present embodiment detects a stable rotational torque because the intermediate member 26 applies an uneven load and does not apply an uneven load with static air. be able to.

さらに本実施例のスラスト軸受回転トルク検出装置21によれば、中間部材26を取り替えることで、様々な偏荷重をスラスト軸受12に付与することが可能になり、スラスト軸受12が使用される実機に近い荷重条件で回転トルクを検出することができる。また、特許文献1のような荷重伝達部材を周方向の特定の位置に介在させるものではなく、組立が容易になる。   Furthermore, according to the thrust bearing rotational torque detection device 21 of the present embodiment, by replacing the intermediate member 26, it becomes possible to apply various uneven loads to the thrust bearing 12, and in the actual machine in which the thrust bearing 12 is used. Rotational torque can be detected under close load conditions. Further, the load transmitting member as in Patent Document 1 is not interposed at a specific position in the circumferential direction, and assembly is facilitated.

図4は、スラスト軸受回転トルク検出装置21に取り付けた2個のスラスト軸受12を拡大して示す縦断面図である。中央孔を備えたスラスト軸受12につき説明すると、軸方向の厚みを備えた環状の円盤を、互いに向き合うよう同軸配置しての一対の軌道輪13とし、これら軌道輪の間には、複数のころと、これら複数のころを周方向等間隔に保持する保持器とを収容した公知のものである。あるいは、スラスト軸受であれば、他の構造であってもよい。ころが転走しない側になる軌道輪13の外側表面13gは、軸方向に垂直な平面を形成する。   FIG. 4 is an enlarged longitudinal sectional view showing the two thrust bearings 12 attached to the thrust bearing rotational torque detector 21. The thrust bearing 12 having the central hole will be described. An annular disk having an axial thickness is formed into a pair of race rings 13 arranged coaxially so as to face each other, and a plurality of rollers are provided between these race rings. And a cage that holds the plurality of rollers at equal intervals in the circumferential direction. Alternatively, other structures may be used as long as they are thrust bearings. The outer surface 13g of the race 13 on the side where the rollers do not roll forms a plane perpendicular to the axial direction.

一対の軌道輪13,13が、互いに形状が異なる前面軌道輪13aおよび背面軌道輪13bからなる場合、図4の縦断面図に示すように、中間部材26の軸方向両側の座面26m,26nは、これら2個のスラスト軸受12の背面軌道輪13bとそれぞれ接触するよう、スラスト軸受回転トルク検出装置21にスラスト軸受12を取り付けるのがよい。図1および図4に示すように、2個のスラスト軸受12,12を背中合わせに取り付けることによって、軸方向両側から中間部材26に入力される回転トルクが等しくなり、スラスト軸受12の荷重バランスを崩すことなく、安定した回転トルクを測定することができる。   In the case where the pair of raceways 13 and 13 includes a front raceway ring 13a and a back raceway ring 13b having different shapes, as shown in the longitudinal sectional view of FIG. 4, seat surfaces 26m and 26n on both sides in the axial direction of the intermediate member 26. The thrust bearing 12 is preferably attached to the thrust bearing rotational torque detecting device 21 so as to come into contact with the back raceway rings 13b of the two thrust bearings 12, respectively. As shown in FIGS. 1 and 4, by attaching the two thrust bearings 12 and 12 back to back, the rotational torque input to the intermediate member 26 from both sides in the axial direction becomes equal, and the load balance of the thrust bearing 12 is lost. Therefore, a stable rotational torque can be measured.

ここで付言すると、前面軌道輪13aの内周縁は、背面軌道輪13bに向かって軸方向に延出する。背面軌道輪13bは環状の薄肉円盤であり、軸方向には延出しない。なお図5に示すように、軸方向一方の座面26mに背面軌道輪13bを固定し、軸方向他方の座面26nに前面軌道輪13aを固定すれば、スラスト軸受12,12を背面合わせに取り付けることにならず、安定した回転トルクを測定することができない場合がある。   In other words, the inner peripheral edge of the front raceway 13a extends in the axial direction toward the rear raceway 13b. The back raceway 13b is an annular thin disk and does not extend in the axial direction. As shown in FIG. 5, if the rear raceway 13b is fixed to one seating surface 26m in the axial direction and the front raceway ring 13a is fixed to the other seating surface 26n in the axial direction, the thrust bearings 12 and 12 are back-to-back. There is a case where it is not attached and a stable rotational torque cannot be measured.

なお図示はしなかったが、スラスト軸受回転トルク検出装置21で一方側のみに軌道輪を備えるスラスト軸受の回転トルクを検出する場合や、軌道輪を備えないスラスト軸受の回転トルクを検出する場合も、中間部材26に関して第1スラスト軸受12mと第2スラスト軸受12nとが対称に配置されるよう、これらスラスト軸受12,12をスラスト軸受回転トルク検出装置21に取り付ける。   Although not shown, the thrust bearing rotational torque detector 21 detects the rotational torque of a thrust bearing having a bearing ring only on one side, or the case of detecting the rotational torque of a thrust bearing without a bearing ring. The thrust bearings 12 and 12 are attached to the thrust bearing rotational torque detector 21 so that the first thrust bearing 12m and the second thrust bearing 12n are arranged symmetrically with respect to the intermediate member 26.

図6は中間部材26の他の例を示し、(a)は軸線O方向から見た正面図、(b)は軸線Oを含む面で切断した縦断面図である。この実施例では、円盤状の中間部材26の両座面26m,26nの軸方向厚みが、周方向におけるすべての部位で等しく、径方向における1の部位と他の部位とで異なる。具体的には、軸線Oを含む断面において座面26mおよび座面26nを軸方向内側に向かって窪んだ曲線で形成し、外径側に向かうにつれて軸方向厚みを大きくして、座面26m,26nの凹凸形状をそれぞれ、内径側ほど窪んだ形状とする。あるいは図7の縦断面図に示すように、軸線Oを含む断面において座面26m,26nを直線で形成し、外径側に向かうにつれて軸方向厚みを大きくして、座面26m,26nの凹凸形状をそれぞれ、内径側ほど窪んだ形状としてもよい。図6および図7に示す中間部材26によれば、内径側ほど軌道輪13の接触応力が小さくなる。これにより、スラスト軸受12の径方向撓みや、中間部材26の径方向撓みや、スラスト軸受12または中間部材26のミスアライメントを考慮して回転トルクを検出することができる。   6A and 6B show another example of the intermediate member 26, where FIG. 6A is a front view seen from the direction of the axis O, and FIG. 6B is a longitudinal sectional view cut along a plane including the axis O. FIG. In this embodiment, the axial thicknesses of both seating surfaces 26m, 26n of the disk-shaped intermediate member 26 are the same in all the parts in the circumferential direction, and are different in one part and the other parts in the radial direction. Specifically, in the cross section including the axis O, the seating surface 26m and the seating surface 26n are formed by curves that are recessed toward the inner side in the axial direction, and the axial thickness is increased toward the outer diameter side. Each of the 26n uneven shapes is formed to be recessed toward the inner diameter side. Alternatively, as shown in the longitudinal sectional view of FIG. 7, the seating surfaces 26 m and 26 n are formed in a straight line in the cross section including the axis O, and the axial thickness is increased toward the outer diameter side. Each of the shapes may be recessed toward the inner diameter side. According to the intermediate member 26 shown in FIG. 6 and FIG. 7, the contact stress of the race 13 becomes smaller toward the inner diameter side. Thereby, the rotational torque can be detected in consideration of the radial deflection of the thrust bearing 12, the radial deflection of the intermediate member 26, and the misalignment of the thrust bearing 12 or the intermediate member 26.

図8も中間部材26の他の例を示し、(a)は正面図、(b)は縦断面図である。この実施例でも、円盤状の中間部材26の両座面26m,26nの軸方向厚みが、周方向におけるすべての部位で等しく、径方向における1の部位と他の部位とで異なる、具体的には、軸線Oを含む断面において座面26mおよび座面26nを軸方向外側に向かって膨らんだ曲線で形成し、外径側に向かうにつれて軸方向厚みを小さくして、座面26m,26nの凹凸形状をそれぞれ、内径側ほど膨らんだ形状とする。あるいは図9の縦断面図に示すように、軸線Oを含む断面において座面26m,26nを直線で形成し、外径側に向かうにつれて軸方向厚みを小さくして、座面26m,26nの凹凸形状をそれぞれ、内径側ほど突出した形状としてもよい。図8および図9に示す中間部材26によれば、内径側ほど軌道輪13の接触応力が大きくなる。これにより、スラスト軸受12の径方向撓みや、中間部材26の径方向撓みや、スラスト軸受12または中間部材26のミスアライメントを考慮して回転トルクを検出することができる。なお座面26mおよび座面26nの形状は、図6〜図9に示すように軸線O方向に直角な直線に関して対称とする必要がある。軸方向の一方の座面26mと他方の座面26nとで凹凸形状が異なると、スラスト軸受12のスラスト荷重が第1スラスト軸受12mと第2スラスト軸受12nとで異なるものとなり、回転バランスが崩れ、安定した回転トルク測定が困難になるためである。   FIG. 8 also shows another example of the intermediate member 26, where (a) is a front view and (b) is a longitudinal sectional view. Also in this embodiment, the axial thicknesses of the both seating surfaces 26m, 26n of the disk-shaped intermediate member 26 are the same in all the parts in the circumferential direction, and are different in one part and other parts in the radial direction. Is formed in a cross-section including the axis O with a curved surface in which the seating surface 26m and the seating surface 26n swell outward in the axial direction, and the axial thickness decreases toward the outer diameter side, and the unevenness of the seating surfaces 26m and 26n. Each of the shapes is a shape that swells toward the inner diameter side. Alternatively, as shown in the longitudinal cross-sectional view of FIG. 9, the seat surfaces 26m and 26n are formed in a straight line in the cross section including the axis O, and the axial thickness is reduced toward the outer diameter side so that the unevenness of the seat surfaces 26m and 26n. Each of the shapes may be a shape protruding toward the inner diameter side. According to the intermediate member 26 shown in FIGS. 8 and 9, the contact stress of the race 13 is increased toward the inner diameter side. Thereby, the rotational torque can be detected in consideration of the radial deflection of the thrust bearing 12, the radial deflection of the intermediate member 26, and the misalignment of the thrust bearing 12 or the intermediate member 26. The shapes of the seating surface 26m and the seating surface 26n must be symmetric with respect to a straight line perpendicular to the direction of the axis O as shown in FIGS. If the uneven shape is different between the one seat surface 26m and the other seat surface 26n in the axial direction, the thrust load of the thrust bearing 12 is different between the first thrust bearing 12m and the second thrust bearing 12n, and the rotational balance is lost. This is because stable rotational torque measurement becomes difficult.

スラスト軸受12が使用される実機を忠実に再現する場合は、図6(b)および図8(b)に示す他、座面26m,26nが実機の接触応力の変化に応じた凹凸形状である中間部材26を使用するとよい。例えば、座面26m,26nの断面が、単一円弧の断面であったり、幾つかの異なる円弧をつなげ合わせた複合円弧の断面であったりする中間部材26を使用するとよい。   When faithfully reproducing an actual machine in which the thrust bearing 12 is used, the seating surfaces 26m and 26n have an uneven shape corresponding to a change in the contact stress of the actual machine, as shown in FIGS. 6B and 8B. An intermediate member 26 may be used. For example, it is preferable to use the intermediate member 26 in which the cross sections of the seating surfaces 26m and 26n are cross sections of a single arc, or a cross section of a composite arc obtained by connecting several different arcs.

なお簡易的に、スラスト軸受12の取り付け誤差による影響を判断するには、図7および図9に示すように、座面26m,26nが直線の断面になる中間部材26を使用するとよい。   In order to simply determine the influence of the mounting error of the thrust bearing 12, it is preferable to use an intermediate member 26 having seating surfaces 26m and 26n having straight cross sections as shown in FIGS.

次に、偏荷重をスラスト軸受12に付与することにつき詳細に説明する。   Next, the application of an offset load to the thrust bearing 12 will be described in detail.

前述した図3に示す実施例では、円盤形状の中間部材26の両座面26m,26n間の軸方向厚みが、周方向における突出部26eと非突出部26fとで異なる。具体的には、突出部26eを非突出部26fよりも軸線O方向に寸法Dだけ突出させて座面26m,26nの凹凸形状を形成する。そして、スラスト軸受12のうち突出部26eと接触する部位のみに荷重を付与し、スラスト軸受12のうち非突出部26fと向き合って接触しない箇所には付与しない。   In the embodiment shown in FIG. 3 described above, the axial thickness between both seating surfaces 26m, 26n of the disk-shaped intermediate member 26 is different between the projecting portion 26e and the non-projecting portion 26f in the circumferential direction. Specifically, the protrusions 26e are protruded by a dimension D in the direction of the axis O from the non-protrusion portions 26f to form the uneven shapes of the seating surfaces 26m and 26n. Then, a load is applied only to a portion of the thrust bearing 12 that contacts the protruding portion 26e, and is not applied to a portion of the thrust bearing 12 that does not contact and face the non-projecting portion 26f.

これにより、スラスト軸受12に偏荷重を付与することができる。したがって、座面26m,26nの突出させる部位を適宜選定することにより、スラスト軸受12が実際に使用される実機の荷重条件を再現することができる。   Thereby, an eccentric load can be applied to the thrust bearing 12. Therefore, the load conditions of the actual machine in which the thrust bearing 12 is actually used can be reproduced by appropriately selecting the projecting portions of the seating surfaces 26m and 26n.

好ましくは、円盤形状の中間部材26の一端面が有する座面26mの凹凸形状と、他端面が有する座面26nの凹凸形状とを同じとし、かつ周方向において同位相とする。つまり、一方側26mの軸方向突出量と他方側26nの軸方向突出量とを、すべての周方向部位において同じにする。具体的には、例えば図3に示すように、座面26mおよび座面26nは両方とも、同形状になる扇型の突出部26eを有する。突出量は両座面26m,26nとも寸法Dである。そして、座面26mの突出部26eと座面26nの突出部26eとは周方向位置において一致する。これによりスラスト軸受12に付与する偏荷重の回転バランスが崩れることなく、回転トルクを安定して検出することができる。特に両座面26m,26nの凹凸形状が複雑な場合には、両座面26m,26nの凹凸形状が同じであり、かつ周方向において同位相であることが、安定した回転トルクの検出に資する。   Preferably, the concave / convex shape of the seating surface 26m provided on one end surface of the disc-shaped intermediate member 26 and the concave / convex shape of the seating surface 26n provided on the other end surface are the same and have the same phase in the circumferential direction. That is, the axial protrusion amount on the one side 26m and the axial protrusion amount on the other side 26n are the same in all the circumferential portions. Specifically, for example, as shown in FIG. 3, both the seating surface 26m and the seating surface 26n have fan-shaped protrusions 26e having the same shape. The amount of protrusion is dimension D for both seating surfaces 26m and 26n. And the protrusion part 26e of the seat surface 26m and the protrusion part 26e of the seat surface 26n correspond in the circumferential direction position. As a result, the rotational torque can be stably detected without losing the rotational balance of the eccentric load applied to the thrust bearing 12. In particular, when the concave and convex shapes of both seat surfaces 26m and 26n are complex, the concave and convex shapes of both seat surfaces 26m and 26n are the same and have the same phase in the circumferential direction, which contributes to stable rotation torque detection. .

なお、中間部材26の中心孔27内周面と、この中心孔27を貫通する回転軸22の外周面との間に、ラジアル転がり軸受30を設けると、回転軸22が中間部材26を案内してスラスト軸受回転トルク検出装置21内における中間部材26のアライメントが向上し、中間部材26を安定して支持することができる。この場合、好ましくは回転軸22の外周面はラジアル転がり軸受30の内輪31と隙間を伴って緩く嵌っているのがよい。また、回転軸22の外周面には、内輪31の軸方向両側でカラー33を設け、内輪31が回転軸22から抜け出ることを防止する。これにより、検出部28がラジアル転がり軸受30の回転トルクを検出することを回避して、スラスト軸受12の回転トルクを安定して検出することができるとともに、検出精度が向上する。   If a radial rolling bearing 30 is provided between the inner peripheral surface of the central hole 27 of the intermediate member 26 and the outer peripheral surface of the rotary shaft 22 passing through the central hole 27, the rotary shaft 22 guides the intermediate member 26. Thus, the alignment of the intermediate member 26 in the thrust bearing rotational torque detector 21 is improved, and the intermediate member 26 can be stably supported. In this case, it is preferable that the outer peripheral surface of the rotary shaft 22 is loosely fitted with a gap with the inner ring 31 of the radial rolling bearing 30. Further, collars 33 are provided on the outer peripheral surface of the rotating shaft 22 on both sides in the axial direction of the inner ring 31 to prevent the inner ring 31 from slipping out of the rotating shaft 22. Thus, the detection unit 28 can avoid detecting the rotational torque of the radial rolling bearing 30 and can stably detect the rotational torque of the thrust bearing 12, and the detection accuracy is improved.

これまで説明した図6(b)、図8(b)等に示す軸方向厚み変化は、本発明の理解を容易にするために誇張して描いたものであり、実際の厚み変化は、肉眼では判別し難いほど僅かである。   The axial thickness changes shown in FIGS. 6B and 8B described so far are exaggerated for easy understanding of the present invention. However, it is so small that it is difficult to distinguish.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

本発明に係るスラスト軸受回転トルク検出装置は、スラスト軸受の回転トルクを検出する技術に有効に利用される。   The thrust bearing rotational torque detection device according to the present invention is effectively used in a technique for detecting the rotational torque of a thrust bearing.

本発明の一実施例になるスラスト軸受回転トルク検出装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the thrust bearing rotational torque detection apparatus which becomes one Example of this invention. 同実施例の中間部材を例示するものであり、(a)は正面図、(b)は縦断面図である。The intermediate member of the Example is illustrated, (a) is a front view, (b) is a longitudinal cross-sectional view. 同実施例の中間部材を例示するものであり、(a)は正面図、(b)は縦断面図である。The intermediate member of the Example is illustrated, (a) is a front view, (b) is a longitudinal cross-sectional view. 同実施例に取り付ける供試スラスト軸受を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the test thrust bearing attached to the Example. 同実施例に取り付ける供試スラスト軸受の向きを説明するための参考図である。It is a reference figure for demonstrating the direction of the sample thrust bearing attached to the Example. 同実施例の中間部材を例示するものであり、(a)は正面図、(b)は縦断面図である。The intermediate member of the Example is illustrated, (a) is a front view, (b) is a longitudinal cross-sectional view. 図6に示す中間部材の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the intermediate member shown in FIG. 本発明の一実施例になる中間部材を例示するものであり、(a)は正面図、(b)は縦断面図である。The intermediate member which becomes one Example of this invention is illustrated, (a) is a front view, (b) is a longitudinal cross-sectional view. 図8に示す中間部材の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the intermediate member shown in FIG. 従来一般のスラスト軸受回転トルク検出装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional general thrust bearing rotational torque detection apparatus.

符号の説明Explanation of symbols

12 供試スラスト軸受、12m 第1スラスト軸受、12n 第2スラスト軸受、13 軌道輪、21 スラスト軸受回転トルク検出装置、22 回転軸、24 第1回転部材、24m 端面、25 第2回転部材、25n 端面、26 中間部材、26m 座面、26n 座面、27 中心孔、28 検出部、30 ラジアル転がり軸受、31 ラジアル転がり軸受の内輪、32 荷重付与機構。   12 Test Thrust Bearing, 12m First Thrust Bearing, 12n Second Thrust Bearing, 13 Race Wheel, 21 Thrust Bearing Rotation Torque Detection Device, 22 Rotating Shaft, 24 First Rotating Member, 24m End Face, 25 Second Rotating Member, 25n End surface, 26 Intermediate member, 26m Seat surface, 26n Seat surface, 27 Center hole, 28 Detecting portion, 30 Radial rolling bearing, 31 Inner ring of radial rolling bearing, 32 Load applying mechanism.

Claims (7)

スラスト軸受の回転トルクを検出するスラスト軸受回転トルク検出装置であって、
回転軸の一端側に連結されて回転軸とともに回転し、第1スラスト軸受の一方側と接触してスラスト荷重を付与するための第1回転部材と、
回転軸の他端側に軸方向ストローク可能に連結されて回転軸とともに回転し、第2スラスト軸受の一方側と接触してスラスト荷重を付与するための第2回転部材と、
前記回転軸が貫通する中心孔を備えた円盤形状であり、前記第1回転部材および前記第2回転部材との間に配置されて、第1回転部材と対向する側の端面に前記第1スラスト軸受の他方側と接触してスラスト荷重を付与するための座面を有し、前記第2回転部材と対向する側の端面に前記第2スラスト軸受の他方側と接触してスラスト荷重を付与するための座面を有する中間部材と、
第2回転部材に軸方向荷重を付与する荷重付与機構と、
前記中間部材と連結されて、前記第1スラスト軸受および前記第2スラスト軸受から中間部材に入力される回転トルクを検出する手段とを備え
前記中間部材の第1回転部材側の座面と第2回転部材側の座面との間の軸方向厚みが、1の部位と他の部位とで異なる、スラスト軸受回転トルク検出装置。
A thrust bearing rotational torque detector for detecting rotational torque of a thrust bearing,
A first rotating member connected to one end of the rotating shaft and rotating together with the rotating shaft to contact one side of the first thrust bearing and apply a thrust load ;
A second rotating member that is connected to the other end side of the rotating shaft so as to be capable of axial stroke and rotates together with the rotating shaft, and contacts with one side of the second thrust bearing to apply a thrust load ;
It is a disk shape provided with a central hole through which the rotating shaft passes, and is disposed between the first rotating member and the second rotating member, and the first thrust is formed on an end surface facing the first rotating member. A bearing surface for applying a thrust load in contact with the other side of the bearing is provided, and an end surface on the side facing the second rotating member is contacted with the other side of the second thrust bearing to apply the thrust load . An intermediate member having a seating surface for
A load applying mechanism for applying an axial load to the second rotating member;
Means connected to the intermediate member for detecting rotational torque input to the intermediate member from the first thrust bearing and the second thrust bearing ;
A thrust bearing rotational torque detecting device , wherein an axial thickness between a seating surface on the first rotating member side and a seating surface on the second rotating member side of the intermediate member is different between one part and another part .
前記第1スラスト軸受および前記第2スラスト軸受はそれぞれ、前記一方側および前記他方側に軌道輪を備え、
これら一対の軌道輪は、互いに形状が異なる前面軌道輪および背面軌道輪からなり、
前記中間部材の第1回転部材側の座面は、第1スラスト軸受の背面軌道輪と接触してこれを固定するためのものであり、
前記中間部材の第2回転部材側の座面は、第2スラスト軸受の背面軌道輪と接触してこれを固定するためのものである、請求項1に記載のスラスト軸受回転トルク検出装置。
The first thrust bearing and the second thrust bearing each include a bearing ring on the one side and the other side,
These pair of races are composed of a front race and a rear race with different shapes,
The seat surface on the first rotating member side of the intermediate member is for contacting and fixing the rear raceway ring of the first thrust bearing,
2. The thrust bearing rotational torque detection device according to claim 1, wherein a seating surface of the intermediate member on a second rotating member side is for contacting and fixing a rear raceway ring of a second thrust bearing.
前記中間部材の第1回転部材側の座面と第2回転部材側の座面との間の軸方向厚みが、周方向におけるすべての部位で等しく、径方向における1の部位と他の部位とで異なる、請求項1または2に記載のスラスト軸受回転トルク検出装置。   The axial thickness between the seating surface on the first rotating member side and the seating surface on the second rotating member side of the intermediate member is equal in all parts in the circumferential direction, and one part in the radial direction and other parts The thrust bearing rotational torque detection device according to claim 1, wherein the thrust bearing rotation torque detection device is different. 前記中間部材の第1回転部材側の座面と第2回転部材側の座面との間の軸方向厚みが、周方向における1の部位と他の部位とで異なる、請求項1または2に記載のスラスト軸受回転トルク検出装置。   The axial thickness between the seating surface on the first rotating member side and the seating surface on the second rotating member side of the intermediate member is different between one part and another part in the circumferential direction. The thrust bearing rotational torque detection device as described. 前記中間部材の一端面が有する座面の凹凸形状と、他端面が有する座面の凹凸形状とが同じであり、かつ周方向において同位相である、請求項4に記載のスラスト軸受回転トルク検出装置。   5. The thrust bearing rotational torque detection according to claim 4, wherein the uneven shape of the seating surface of the one end surface of the intermediate member is the same as the uneven shape of the seating surface of the other end surface, and is in the same phase in the circumferential direction. apparatus. 前記中間部材の座面は、前記回転軸を中心とする扇型の突出部を有する、請求項5に記載のスラスト軸受回転トルク検出装置。   The thrust bearing rotational torque detection device according to claim 5, wherein the seating surface of the intermediate member has a fan-shaped protrusion centered on the rotation shaft. 前記中間部材の中心孔と、前記回転軸との間には、ラジアル転がり軸受が設けられ、
前記回転軸の外周面は前記ラジアル転がり軸受の内輪と隙間を伴って嵌っている、請求項1〜のいずれかに記載のスラスト軸受回転トルク検出装置。
A radial rolling bearing is provided between the central hole of the intermediate member and the rotating shaft,
The thrust bearing rotational torque detection device according to any one of claims 1 to 6 , wherein an outer peripheral surface of the rotary shaft is fitted with an inner ring of the radial rolling bearing with a gap.
JP2008105860A 2008-04-15 2008-04-15 Thrust bearing rotational torque detector Expired - Fee Related JP5172445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105860A JP5172445B2 (en) 2008-04-15 2008-04-15 Thrust bearing rotational torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105860A JP5172445B2 (en) 2008-04-15 2008-04-15 Thrust bearing rotational torque detector

Publications (2)

Publication Number Publication Date
JP2009257879A JP2009257879A (en) 2009-11-05
JP5172445B2 true JP5172445B2 (en) 2013-03-27

Family

ID=41385492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105860A Expired - Fee Related JP5172445B2 (en) 2008-04-15 2008-04-15 Thrust bearing rotational torque detector

Country Status (1)

Country Link
JP (1) JP5172445B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076178A (en) * 2013-01-18 2013-05-01 燕山大学 Experimental machine for evaluating impact-loading type tribological performance of joint bearing
CN104897402B (en) * 2015-05-27 2017-11-03 西安交通大学 The rolling bearing static and dynamic performance testing machine supported using hybrid bearing
CN106289782A (en) * 2016-10-20 2017-01-04 哈尔滨理工大学 A kind of Thrust Bearing Test Rig hydraulic loading device
KR102320556B1 (en) * 2020-02-07 2021-11-01 엘지전자 주식회사 Apparatus for Testing Air Foil Bearings
KR102320557B1 (en) * 2020-02-07 2021-11-01 엘지전자 주식회사 Apparatus for Testing Air Foil Bearings
CN111879515B (en) * 2020-08-15 2022-07-29 温岭市微米自动化设备有限公司 Bearing defect detection equipment
CN111855206B (en) * 2020-08-15 2022-08-02 温岭市微米自动化设备有限公司 Bearing fatigue detection equipment and detection method thereof
CN112611562B (en) * 2020-12-14 2023-06-20 人本股份有限公司 Bearing axial load rotation moment auxiliary detection device
CN112595513B (en) * 2020-12-28 2022-11-18 湖南崇德科技股份有限公司 Integrated bearing test bench

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661133B2 (en) * 1994-08-19 2005-06-15 日本精工株式会社 Rolling bearing for compressor
JP3359501B2 (en) * 1995-07-24 2002-12-24 日本精工株式会社 Tapered roller bearing for pinion shaft support of differential gear
JP2003120664A (en) * 2001-10-10 2003-04-23 Nsk Ltd Testing device for rolling bearing
JP2006184169A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Rolling fatigue evaluation method of steel ball for bearing, and thrust type rolling fatigue tester

Also Published As

Publication number Publication date
JP2009257879A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5172445B2 (en) Thrust bearing rotational torque detector
CN103389207A (en) Method of inspecting wheel hub unit
JP6686388B2 (en) Rolling bearing with sensor
CN106089991B (en) Method for preloading a hub bearing unit
JP2010185680A (en) Axial load application apparatus
US10151342B2 (en) Rolling bearing arrangement having a strain sensor device
JP2007298080A (en) Double row roller bearing with displacement sensor and abnormality diagnostic method for double row roller bearing
JP2007212179A (en) Support device for measuring characteristics of rolling bearing, and characteristics measuring device of the rolling bearing
JP2022035500A (en) Bearing gap measurement device
US11644373B2 (en) Piezoelectric strain sensor unit for a rolling bearing
JP2003050169A (en) Real-time bearing load sensing
JP4650510B2 (en) Prediction method of abnormal noise by fretting
JP2014095648A (en) Friction tester of rolling bearing
JP2009069104A (en) Bearing with sensor for wheel
US20200332861A1 (en) Reduction gear
JP2006342830A (en) Preload applying method of double-row tapered roller bearing unit
JP2005249594A (en) Measuring method for load on rolling element and bearing for measuring load
JP2003089302A (en) Magnetic encoder and bearing for wheel having it
JP5142683B2 (en) Wheel bearing with sensor
JP2019015566A (en) Tester for eccentric rotating component
JP2010090982A (en) Wheel bearing with sensor
JP2003172371A (en) Method for measuring axial force of inner ring of rolling bearing unit for supporting wheel
JP5228607B2 (en) Preload measurement method for rolling bearing device
JP5131060B2 (en) Pulsar ring, its manufacturing method, and axle bearing device using this pulsar ring
JP2009128264A (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees