JP3359501B2 - Tapered roller bearing for pinion shaft support of differential gear - Google Patents

Tapered roller bearing for pinion shaft support of differential gear

Info

Publication number
JP3359501B2
JP3359501B2 JP19434496A JP19434496A JP3359501B2 JP 3359501 B2 JP3359501 B2 JP 3359501B2 JP 19434496 A JP19434496 A JP 19434496A JP 19434496 A JP19434496 A JP 19434496A JP 3359501 B2 JP3359501 B2 JP 3359501B2
Authority
JP
Japan
Prior art keywords
tapered roller
roller bearing
pinion shaft
differential gear
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19434496A
Other languages
Japanese (ja)
Other versions
JPH0996352A (en
Inventor
健一 安部
隆明 白谷
彰 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP19434496A priority Critical patent/JP3359501B2/en
Publication of JPH0996352A publication Critical patent/JPH0996352A/en
Application granted granted Critical
Publication of JP3359501B2 publication Critical patent/JP3359501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/42Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
    • F16H2048/423Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車のデファ
レンシャルギヤ(最終減速機)を構成するピニオン軸を
ケーシング(デフケース)の内側に回転自在に支持する
為の円錐ころ軸受の改良に関する。
The present invention relates to an improvement in a tapered roller bearing for rotatably supporting a pinion shaft constituting a differential gear (final reduction gear) of an automobile inside a casing (differential case).

【0002】[0002]

【従来の技術】自動車の動力伝達系の途中に設けてプロ
ペラシャフトの回転を減速すると同時に回転方向を直角
に変換するデファレンシャルギヤは、図1に示す様に構
成される。ケーシング1の内側前寄り(図1の右寄り)
部分にはピニオン軸2を配設している。このピニオン軸
2の前端部(図1の右端部)で上記ケーシング1の前端
開口部から突出した部分に固設した結合フランジ3に
は、図示しないプロペラシャフトの後端部を連結自在で
ある。又、上記ピニオン軸2の後端部(図1の左端部)
には減速小歯車4を固定し、この減速小歯車4と減速大
歯車5とを互いに噛合させている。この減速大歯車5
は、上記ケーシング1の後部(図1の左部)内側に、回
転のみ自在に支持されている。又、上記ピニオン軸2の
中間部前後2個所位置は、前後1対の円錐ころ軸受6
a、6bにより、上記ケーシング1に対して回転自在に
支持している。
2. Description of the Related Art A differential gear which is provided in the middle of a power transmission system of an automobile to reduce the rotation of a propeller shaft and convert the rotation direction into a right angle at the same time is configured as shown in FIG. Inside front of casing 1 (to the right in FIG. 1)
A pinion shaft 2 is provided in the portion. A rear end of a propeller shaft (not shown) can be connected to a coupling flange 3 fixed to a portion of the front end of the pinion shaft 2 (the right end in FIG. 1) protruding from the front end opening of the casing 1. Also, the rear end of the pinion shaft 2 (the left end in FIG. 1).
, A reduction gear 4 is fixed, and the reduction gear 4 and the reduction gear 5 mesh with each other. This reduction gear 5
Is rotatably supported inside the rear part (left part of FIG. 1) of the casing 1. Further, two positions in the front and rear of the intermediate portion of the pinion shaft 2 correspond to a pair of front and rear tapered roller bearings 6.
The casing 1 is rotatably supported by a and 6b.

【0003】これら各円錐ころ軸受6a、6bは、それ
ぞれ1個ずつの外輪7a、7b及び内輪8a、8bと、
それぞれ複数個ずつの円錐ころ9a、9bとから構成さ
れている。外輪7a、7bの内周面には円錐凹面状の外
輪軌道10a、10bが、内輪8a、8bの外周面には
円錐凸面状の内輪軌道11a、11bが、それぞれ形成
されている。上記外輪7a、7bは上記ケーシング1の
一部に内嵌固定し、上記内輪8a、8bは上記ピニオン
軸2の中間部前後2個所位置に外嵌固定している。
Each of these tapered roller bearings 6a, 6b has one outer ring 7a, 7b and one inner ring 8a, 8b, respectively.
Each is composed of a plurality of tapered rollers 9a and 9b. Conical concave outer raceways 10a and 10b are formed on the inner peripheral surfaces of the outer races 7a and 7b, and conical convex inner raceways 11a and 11b are formed on the outer peripheral surfaces of the inner races 8a and 8b, respectively. The outer races 7a and 7b are internally fitted and fixed to a part of the casing 1, and the inner races 8a and 8b are externally fitted and fixed at two positions in front and rear of an intermediate portion of the pinion shaft 2.

【0004】図2は、この様なデファレンシャルギヤの
ピニオン軸2(図1)を支持する為の円錐ころ軸受6a
(6bも同様)を取り出して示している。従来のデファ
レンシャルギヤに組み込まれている円錐ころ軸受6a
は、上記外輪軌道10aが外輪7aの中心軸に対し傾斜
している角度である接触角αが20度前後であり、円錐
ころ9aの大径側端部の直径Da と円錐ころ9aの長さ
Lとの比Da /Lが0.4〜0.9であり、ころ数係数
kが1.1〜1.3程度であった。又、内輪8aの内径
に就いては、自動車の種類により、又、装着位置の前後
により相違するが、本発明の対象となる円錐ころ軸受の
場合には、凡そ55mm以下である。
FIG. 2 shows a tapered roller bearing 6a for supporting the pinion shaft 2 (FIG. 1) of such a differential gear.
(The same applies to 6b). Tapered roller bearing 6a incorporated in a conventional differential gear
Is the outer ring raceway 10a is longitudinal contact angle α is 20 degrees is an angle which is inclined with respect to the center axis of the outer ring 7a, the length of the diameter D a and the tapered rollers 9a of the large-diameter end of the tapered rollers 9a is the ratio D a / L and L is 0.4 to 0.9, the number coefficient k time was about 1.1 to 1.3. The inner diameter of the inner ring 8a differs depending on the type of automobile and before and after the mounting position. In the case of the tapered roller bearing to which the present invention is applied, the inner diameter is about 55 mm or less.

【0005】尚、上記ころ数係数kとは、外輪軌道10
a(10b)と内輪軌道11a(11b)との間に円錐
ころ9a(9b)が詰まっている程度を表すべく、ピッ
チ円上に等間隔に並んだ円錐ころ9a(9b)の中心同
士を結んだ距離に対する円錐ころ9a(9b)の大径側
端部の直径Da の比率の逆数であり、次式で表される。 k=(dm /Da )・sin (180°/z) 尚、この式中、dm は複数の円錐ころ9a(9b)のピ
ッチ円の(大径側端部での)直径を、zは円錐ころ9a
(9b)の数を、それぞれ表している。k=1とは、円
錐ころ9a(9b)が隙間なく詰っている状態を示し、
kの値が大きくなる程、円錐ころ9a(9b)の数が少
なくなる。
[0005] The roller number coefficient k is defined as the outer ring raceway 10.
a (10b) and the center of the conical rollers 9a (9b) arranged at equal intervals on the pitch circle to indicate the degree of consolidation of the conical rollers 9a (9b) between the inner ring raceway 11a (11b). it is the inverse of the ratio of the diameter D a of the larger diameter end of the tapered rollers 9a (9b) with respect to the distance, is represented by the following formula. k = (d m / D a ) · sin (180 ° / z) where d m is the diameter (at the large-diameter side end) of the pitch circle of the plurality of tapered rollers 9a (9b). z is tapered roller 9a
(9b) represents the number. k = 1 indicates a state in which the tapered rollers 9a (9b) are tightly packed,
As the value of k increases, the number of tapered rollers 9a (9b) decreases.

【0006】[0006]

【発明が解決しようとする課題】上述の様に構成される
従来のデファレンシャルギヤのピニオン軸支持用円錐こ
ろ軸受の場合、疲れ寿命、軸受剛性等、デファレンシャ
ルギヤに組み込まれる円錐ころ軸受に要求される最低限
の性能は十分に満たしているが、回転トルクが必ずしも
十分に小さいとは言えなかった。近年、自動車の省燃費
化に対する要求が強くなっており、上記円錐ころ軸受に
関しても、動力の伝達ロスを低く抑えるべく、回転トル
クをより小さくする事を要求される様になっている。但
し、回転トルクを小さくする事で疲れ寿命や軸受剛性が
低下し過ぎる事は好ましくない。本発明はこの様な事情
に鑑みて、疲れ寿命及び軸受剛性を確保しつつ、回転ト
ルクの小さいデファレンシャルギヤのピニオン軸支持用
円錐ころ軸受を得るべく考えたものである。
In the case of the tapered roller bearing for supporting the pinion shaft of the conventional differential gear configured as described above, the tapered roller bearing incorporated in the differential gear is required in terms of fatigue life, bearing rigidity, and the like. Although the minimum performance was sufficiently satisfied, the rotational torque was not always small enough. In recent years, there has been an increasing demand for fuel efficiency in automobiles, and in the case of the tapered roller bearings as well, it has been required to reduce the rotational torque in order to suppress the power transmission loss. However, it is not preferable that the fatigue life and the bearing rigidity are excessively reduced by reducing the rotational torque. In view of such circumstances, the present invention has been conceived to obtain a tapered roller bearing for supporting a pinion shaft of a differential gear having a small rotational torque while ensuring fatigue life and bearing rigidity.

【0007】[0007]

【発明に至る過程】円錐ころ軸受の疲れ寿命、軸受剛
性、回転トルクに影響する要素として、次の〜に示
した4通りの要素が考えられる。 ころ数係数k 円錐ころの大径側端部の直径Da 円錐ころの大径側端部の直径Da と円錐ころの長さ
Lとの比Da /L 接触角α
Processes leading to the present invention The following four factors can be considered as factors affecting the fatigue life, bearing stiffness, and rotational torque of tapered roller bearings. Roller number coefficient k diameter of the tapered rollers of the large diameter end D a of the tapered rollers of the large diameter side end portion diameter D a and the ratio between the length L of the tapered roller D a / L contact angle α

【0008】そこで、これら〜の各要素が、上記疲
れ寿命、軸受剛性(アキシャル剛性及びラジアル剛
性)、回転トルク(低トルク性)に及ぼす影響に就いて
考察し、その結果を次の表1に示した。この表1中の矢
印は、当該要素が当該性能に及ぼす影響を示しており、
上向きの矢印は、当該要素の値が大きくなる程当該性能
が向上(疲れ寿命が長く、軸受剛性が高く、回転トルク
が低くなって低トルク性が向上)する事を表している。
反対に、下向きの矢印は、当該要素の値が大きくなる程
当該性能が低下(疲れ寿命が短く、軸受剛性が低く、回
転トルクが高くなって低トルク性が低下)する事を表し
ている。更に、この表中の最右欄に記載した数値は、デ
ファレンシャルギヤのピニオン軸支持用円錐ころ軸受と
して、採用可能な値の範囲を示している。ころ数係数k
及び比Da /Lは無次元、直径Da の単位はmm、接触角
αの単位は度(°)である。尚、デファレンシャルギヤ
用の円錐ころ軸受には、使用時にアキシャル方向の荷重
とラジアル方向の荷重とが加わる。次の表1は、これら
両方向の荷重の大きさが同じであるとして作成した。
Therefore, the effects of these elements on the fatigue life, bearing rigidity (axial rigidity and radial rigidity), and rotational torque (low torque property) are considered, and the results are shown in Table 1 below. Indicated. The arrows in Table 1 indicate the effect of the element on the performance.
The upward arrow indicates that the performance is improved (the fatigue life is long, the bearing rigidity is high, the rotational torque is low, and the low torque property is improved) as the value of the element increases.
Conversely, a downward arrow indicates that the performance decreases as the value of the element increases (short fatigue life, low bearing stiffness, high rotational torque, and low torque performance). Further, the numerical values described in the rightmost column in this table show a range of values that can be adopted as the tapered roller bearing for supporting the pinion shaft of the differential gear. Roller number coefficient k
And the ratio D a / L is a unit of dimensionless diameter D a is mm, the contact angle unit of α in degrees (°). An axial load and a radial load are applied to a tapered roller bearing for a differential gear during use. The following Table 1 was prepared assuming that the magnitudes of the loads in these two directions were the same.

【0009】[0009]

【表1】 [Table 1]

【0010】この表1の記載から明らかな様に、ころ数
係数k、比Da /L、直径Da 、接触角αを単純に変化
させる事により、円錐ころ軸受の疲れ寿命、軸受剛性、
回転トルクに関する性能を同時に向上させる事はできな
い。そこで本発明者は、多くの実験を行なって、実用上
十分な疲れ寿命と軸受剛性とを確保し、しかも回転トル
クを低減できるデファレンシャルギヤのピニオン軸支持
用円錐ころ軸受を発明した。
As is clear from the description in Table 1, by simply changing the roller number coefficient k, the ratio D a / L, the diameter D a , and the contact angle α, the fatigue life, the bearing rigidity, and the
It is not possible to improve the performance related to the rotational torque at the same time. Therefore, the inventor of the present invention has conducted many experiments and invented a tapered roller bearing for supporting a pinion shaft of a differential gear capable of securing a practically sufficient fatigue life and bearing stiffness and reducing rotation torque.

【0011】[0011]

【課題を解決するための手段】本発明のデファレンシャ
ルギヤのピニオン軸支持用円錐ころ軸受は、従来から知
られているデファレンシャルギヤのピニオン軸支持用円
錐ころ軸受と同様に、前端部をプロペラシャフトの後端
部に連結自在とし、後端部に減速大歯車と噛合する減速
小歯車を固定したピニオン軸の中間部前後2個所位置を
ケーシングに対して回転自在に支持する。
SUMMARY OF THE INVENTION A tapered roller bearing for supporting a pinion shaft of a differential gear according to the present invention has a front end formed on a propeller shaft in the same manner as a conventionally known tapered roller bearing for supporting a pinion shaft of a differential gear. The pinion shaft is rotatable with respect to the casing at two positions before and after an intermediate portion of a pinion shaft having a rear end portion that is freely connectable and a reduction small gear meshing with the reduction gear wheel fixed to the rear end portion.

【0012】特に、本発明のデファレンシャルギヤのピ
ニオン軸支持用円錐ころ軸受に於いては、接触角αが2
2〜28度であり、円錐ころの大径側端部の直径Da
円錐ころの長さLとの比Da /Lが0.51〜1.0で
あり、複数の円錐ころのピッチ円の直径をdm とし、円
錐ころの数をzとした場合に、k=(dm /Da )・si
n (180°/z)で表されるころ数係数kが1.16
〜1.32である。
Particularly, in the tapered roller bearing for supporting the pinion shaft of the differential gear according to the present invention, the contact angle α is 2
Is 2 to 28 degrees, the ratio D a / L of the diameter D a and the tapered rollers of the length L of the larger diameter end of the tapered rollers is from 0.51 to 1.0, the pitch of the plurality of tapered rollers the diameter of a circle and d m, the number of tapered rollers when the z, k = (d m / D a) · si
The roller number coefficient k represented by n (180 ° / z) is 1.16
~ 1.32.

【0013】[0013]

【作用】上述の様に構成される本発明のデファレンシャ
ルギヤのピニオン軸支持用円錐ころ軸受の場合には、実
用上十分な疲れ寿命及び軸受剛性を確保しつつ、回転ト
ルクを低減できる。従って、デファレンシャルギヤに要
求される性能を確保しつつ、このデファレンシャルギヤ
部分での動力損失を低減して、自動車の省燃費化に寄与
できる。
In the case of the tapered roller bearing for supporting the pinion shaft of the differential gear of the present invention configured as described above, the rotational torque can be reduced while ensuring a practically sufficient fatigue life and bearing rigidity. Therefore, while ensuring the performance required for the differential gear, the power loss at the differential gear portion can be reduced, thereby contributing to fuel saving of the automobile.

【0014】尚、接触角αを26〜28度の範囲に規制
すると同時に比Da /Lを0.7〜1.0の範囲に規制
すれば、上記回転トルクの低減効果がより向上する。
又、接触角αを22〜24度の範囲に規制すると同時に
比Da /Lを0.51〜0.8の範囲に規制すれば、接
触角αを26〜28度の範囲に規制した場合に比べて回
転トルクの低減効果は小さいが、ラジアル剛性を十分に
確保できる。接触角αを24〜26度の範囲に規制すれ
ば、中間の特性を得られる。更に、各円錐ころの大径側
端面と、内輪の大径側外周面に形成された鍔部の片面で
上記大径側端面が摺接する面との表面粗さを、何れも
0.1μRa以下に規制すれば、より回転トルクの低減
を図れると同時に、耐焼き付き性の向上も図れる。
If the contact angle α is controlled in the range of 26 to 28 degrees and the ratio D a / L is controlled in the range of 0.7 to 1.0, the effect of reducing the rotational torque is further improved.
Also, if regulated when regulating the contact angle α in the range of 22 to 24 degrees at the same time the ratio D a / L in the range of 0.51 to 0.8, when regulating the contact angle α in the range of 26 to 28 degrees Although the effect of reducing the rotational torque is smaller than that of, the radial rigidity can be sufficiently secured. If the contact angle α is restricted to the range of 24 to 26 degrees, an intermediate characteristic can be obtained. Further, the surface roughness of the large-diameter end surface of each tapered roller and the surface on which the large-diameter end surface slides on one surface of the flange formed on the large-diameter outer peripheral surface of the inner ring are each 0.1 μRa or less. If not restricted, the rotational torque can be further reduced and, at the same time, the seizure resistance can be improved.

【0015】[0015]

【実施例】本発明の効果を確認する為に、本発明者が行
なった実験の一部に就いて説明する。次の表2及び表3
は、この実験に使用した6種類の円錐ころ軸受の諸元を
示している。このうちのA〜Cの3種類の円錐ころ軸受
は、ピニオン軸2(図1)の中間部前側(図1の右側)
を支持する、比較的小径のものを、D〜Fの3種類の円
錐ころ軸受は、同じく中間部後側(図1の左側)を支持
する、比較的大径のものを、それぞれ示している。又、
A、Dの2種類の円錐ころ軸受は、従来からデファレン
シャルギヤに組み込まれていたものを、B、C、E、F
の4種類の円錐ころ軸受は、本発明に属するものを、そ
れぞれ示している。尚、実験に使用した円錐ころ軸受
は、外輪、内輪、円錐ころの何れの部材も、高炭素クロ
ム軸受鋼であるSUJ 2(JIS G 4805)を
使用した。但し、これら各部材は、クロム鋼であるSC
r 420H、SCr 430H、SCr 440H
(JIS G 4052)、中炭素モリブデン鋼、中炭
素クロムマンガン鋼により構成する事もできる。又、構
成各部材の材料は、必ずしも同一である必要はなく、各
部材ごとに異種材料を組み合わせ使用する事もできる。
EXAMPLES In order to confirm the effects of the present invention, a part of experiments performed by the present inventors will be described. Tables 2 and 3 below
Shows the specifications of the six types of tapered roller bearings used in this experiment. Of these, three types of tapered roller bearings A to C are located at the front of the intermediate portion of the pinion shaft 2 (FIG. 1) (right side in FIG. 1).
, And three types of tapered roller bearings D to F, which also support the rear side of the middle part (the left side in FIG. 1), have relatively large diameters. . or,
The two types of tapered roller bearings A and D are different from those conventionally incorporated in differential gears in B, C, E and F.
The four types of tapered roller bearings described above belong to the present invention. In the tapered roller bearing used in the experiment, SUJ 2 (JIS G 4805), which is a high carbon chromium bearing steel, was used for each of the outer ring, the inner ring, and the tapered rollers. However, these members are made of chrome steel SC
r 420H, SCr 430H, SCr 440H
(JIS G 4052), medium carbon molybdenum steel, medium carbon chromium manganese steel. Further, the materials of the constituent members need not always be the same, and different materials can be used in combination for each member.

【0016】[0016]

【表2】 [Table 2]

【表3】 [Table 3]

【0017】これら表2及び表3に示した6種類の円錐
ころ軸受を含む多数の円錐ころ軸受に就いて、図3に示
す様な実験装置を使用して、疲れ寿命、軸受剛性、回転
トルクを測定した。円錐ころ軸受6a(又は6b)の内
輪8a(又は8b)を外嵌固定したホルダ12は、駆動
軸13の上端部にテーパ嵌合して、この駆動軸13によ
り回転駆動される。又、外輪7a(又は7b)は外側ホ
ルダ14を介してハウジング15の内側に内嵌固定して
いる。このハウジング15内には、給油孔16を通じて
所定の潤滑油を供給自在としている。又、上記ハウジン
グ15の上面には、静圧パッド17を介して、所定のア
キシャル荷重を付与自在としている。更に、上記ハウジ
ング15の外周面に固定した腕片18の先端部と図示し
ない固定の部分との間にはロードセル19を設けて、上
記駆動軸13の回転時に上記ハウジング15に加わる動
トルク(=円錐ころ軸受6a(又は6b)の回転トル
ク)を測定自在としている。尚、動トルクを低減させる
目的は、前述した様に省燃費化を図る為である。従っ
て、省燃費化の面からは影響の少ないラジアル荷重は、
動トルク測定時に付与しなかった。即ち、デファレンシ
ャルギヤの運転時には、スラスト荷重は常に加わったま
まとなるが、大きなラジアル荷重が加わるのは、急加減
速時等、限られた場合であり、運転時間全体に占める割
合は少ない。従って、ラジアル荷重による動トルクの変
化が燃費性能に及ぼす影響はスラスト荷重に比べて小さ
い。そこで、動トルク測定の実験時に付与する荷重は、
スラスト荷重のみとした。
[0017] Studies on the number of tapered roller bearings including six tapered roller bearing shown in these Tables 2 and 3, using the experimental apparatus as shown in FIG. 3, fatigue life, bearing stiffness, The rotation torque was measured. The holder 12 to which the inner race 8a (or 8b) of the tapered roller bearing 6a (or 6b) is externally fitted and fixed is taperedly fitted to the upper end of the drive shaft 13 and is driven to rotate by the drive shaft 13. The outer ring 7a (or 7b) is internally fitted and fixed inside the housing 15 via the outer holder 14. A predetermined lubricating oil can be supplied into the housing 15 through an oil supply hole 16. A predetermined axial load can be applied to the upper surface of the housing 15 via a static pressure pad 17. Further, a load cell 19 is provided between the distal end of the arm piece 18 fixed to the outer peripheral surface of the housing 15 and a fixed portion (not shown), so that the dynamic torque (==) applied to the housing 15 when the drive shaft 13 rotates. The rotation torque of the tapered roller bearing 6a (or 6b) can be measured freely. The purpose of reducing the dynamic torque is to achieve fuel saving as described above. Therefore, the radial load, which has little effect on fuel economy,
It was not applied when measuring dynamic torque. That is, during operation of the differential gear, the thrust load is always applied, but a large radial load is applied only in limited cases such as sudden acceleration / deceleration, and the proportion of the total operation time is small. Therefore, the influence of the change in dynamic torque due to the radial load on the fuel economy performance is smaller than that of the thrust load. Therefore, the load applied at the time of the dynamic torque measurement experiment is
Only the thrust load was used.

【0018】第一の実験結果として、先ず円錐ころ軸受
の内径dと組幅W(図2参照)との積と、この円錐ころ
軸受の動トルク(=回転トルク)との関係を、図4に示
す。この図4は、横軸に上記内径dと組幅Wとの積を、
縦軸に上記駆動軸13(図3)を3000r.p.m.で回転
させた場合に於ける円錐ころ軸受の動トルクを、それぞ
れ表している。又、丸で囲んだA〜Fの符号は、前記表
及び表3の左端欄に対応する。尚、上記積が小さい
程、当該円錐ころ軸受が小型である事を表している。こ
の図4の記載から明らかな通り、本発明のデファレンシ
ャルギヤのピニオン軸支持用円錐ころ軸受は、大きさが
同じ場合には、従来品に比べて動トルクが小さい。
As a first experimental result, FIG. 4 shows the relationship between the product of the inner diameter d of the tapered roller bearing and the set width W (see FIG. 2) and the dynamic torque (= rotation torque) of the tapered roller bearing. Shown in FIG. 4 shows the product of the inner diameter d and the set width W on the horizontal axis.
The ordinate represents the dynamic torque of the tapered roller bearing when the drive shaft 13 (FIG. 3) is rotated at 3000 rpm. The symbols A to F circled correspond to the leftmost columns of Tables 2 and 3 . The smaller the product is, the smaller the tapered roller bearing is. As is apparent from the description of FIG. 4, the tapered roller bearing for supporting the pinion shaft of the differential gear of the present invention has a smaller dynamic torque than the conventional product when the size is the same.

【0019】次に、図5は、A〜Fの各円錐ころ軸受に
就いて、回転速度と動トルクとの関係を求める為に行な
った実験の結果を示している。実験は#90で油温が8
0℃のギヤオイルを600cc/minの割合で供給し、30
0kgf のアキシャル荷重を付与しつつ行なった。この図
5のうち(A)はピニオン軸2の中間部前側を支持する
比較的小径の円錐ころ軸受に就いての実験結果を、
(B)は同じく中間部後側を支持する比較的大径の円錐
ころ軸受に就いての実験結果を、それぞれ示している。
この図5からも、本発明のデファレンシャルギヤのピニ
オン軸支持用円錐ころ軸受が、従来品に比べて動トルク
が小さい事が分る。
FIG. 5 shows the results of an experiment conducted to determine the relationship between the rotation speed and the dynamic torque for each of the tapered roller bearings A to F. Experiment # 90 and oil temperature 8
Supply 0 ° C gear oil at a rate of 600 cc / min.
The test was performed while applying an axial load of 0 kgf. FIG. 5A shows the results of experiments on a relatively small diameter tapered roller bearing that supports the front side of the intermediate portion of the pinion shaft 2.
(B) shows the result of an experiment on a relatively large-diameter tapered roller bearing that also supports the rear side of the intermediate portion.
FIG. 5 also shows that the tapered roller bearing for supporting the pinion shaft of the differential gear of the present invention has a smaller dynamic torque than the conventional product.

【0020】上述の様に、本発明の円錐ころ軸受は、接
触角αと、円錐ころの大径側端部の直径Da と円錐ころ
の長さLとの比Da /Lと、ころ数係数kとを規制する
事により動トルクを小さく抑えられる。この動トルクを
更に低減すると共に、極端な潤滑不良の場合にも焼き付
きが生じない様にすべく、耐焼き付き性を向上させる為
には、各円錐ころの大径側端面と、内輪の大径側外周面
に形成された鍔部の片面で上記大径側端面が摺接する面
との表面粗さを、何れも0.1μRa以下に規制する事
が効果がある。これら両面の表面粗さを規制する事によ
る効果を知る為に行なった実験の結果に就いて、図6〜
7により説明する。
[0020] As described above, the tapered roller bearing of the present invention, the contact angle alpha, the ratio D a / L of the diameter D a and the tapered rollers of the length L of the larger diameter end of the tapered rollers, rollers By limiting the number coefficient k, the dynamic torque can be reduced. In order to further reduce this dynamic torque and improve seizure resistance so that seizure does not occur even in the case of extreme lubrication failure, the large-diameter side end face of each tapered roller and the large diameter of the inner ring It is effective to regulate the surface roughness of one surface of the flange formed on the outer peripheral surface to the surface on which the large-diameter side end surface slides, to 0.1 μRa or less. FIGS. 6 to 6 show the results of experiments performed to determine the effect of regulating the surface roughness of both surfaces.
7 will be described.

【0021】先ず、上記表面粗さが動トルクに及ぼす影
響に就いての実験は、前記表2及び表3中、Bに対応す
る諸元を有する円錐ころ軸受を使用して、#90で油温
が80℃のギヤオイルを600cc/minの割合で供給し、
900kgf のアキシャル荷重を付与しつつ行なった。先
ず、回転速度と動トルクとの関係を示す図6で、破線イ
は上記両面の表面粗さを0.3μRaとした比較例に就
いての実験結果を、実線ロは上記両面の表面粗さを0.
1μRaとしたものに就いての実験結果を、それぞれ表
している。この図6から明らかな通り、上記両面の表面
粗さを何れも0.1μRa以下に規制する事で、実用回
転域での動トルクを大幅に低減できる。尚、前記図4〜
5にその結果を示した実験では、上記両面の粗さを何れ
も0.1μRa以下に規制して行なった。
First, in an experiment on the effect of the surface roughness on dynamic torque, in Tables 2 and 3 , a tapered roller bearing having specifications corresponding to B in Tables 2 and 3 was used. Supply gear oil with a temperature of 80 ° C at a rate of 600 cc / min,
The test was performed while applying an axial load of 900 kgf. First, in FIG. 6 showing the relationship between the rotation speed and the dynamic torque, the broken line A shows the experimental result of the comparative example in which the surface roughness of both surfaces was 0.3 μRa, and the solid line B shows the surface roughness of both surfaces. To 0.
The experimental results for the case of 1 μRa are shown. As is clear from FIG. 6, by regulating the surface roughness of both surfaces to 0.1 μRa or less, the dynamic torque in the practical rotation range can be greatly reduced. In addition, FIG.
In the experiment whose results are shown in FIG. 5, the roughness on both surfaces was regulated to 0.1 μRa or less.

【0022】次に、図7は、上記両面の表面粗さが耐焼
き付き性に及ぼす影響に就いて示している。耐焼き付き
性に就いての実験は、試験すべき円錐ころ軸受に、#9
0のギヤオイルを0.2cc付着させ、1000kgf のア
キシャル荷重を加えつつ4000r.p.m.で回転させて、
焼き付きが発生するまでの時間を測定する事で行なっ
た。この実験の結果を示す図7で、縦軸は焼き付き発生
までの時間(秒)を、横軸は上記両面の2乗平均粗さ
[={(円錐ころの大径側端面の表面粗さ)2 +(鍔部
の片面で上記大径側端面が摺接する面の表面粗さ)2
1/2 ]を、それぞれ表している。この図7に記載した複
数の点のうち、3個の▲印は上記両面の表面粗さを何れ
も0.1μRa以下に規制した円錐ころ軸受に関する実
験結果を、残りの○印は上記両面の表面粗さがこれより
も粗い円錐ころ軸受に関する実験結果を、それぞれ表し
ている。これら図6〜7の記載から明らかな通り、上記
両面の表面粗さを何れも0.1μRa以下に規制する事
により、実用回転域での動トルクを大幅に低減すると同
時に耐焼き付き性を向上させる事ができる。
FIG. 7 shows the effect of the surface roughness of the two surfaces on the seizure resistance. Experiments on anti-seizure properties were carried out on tapered roller bearings to be tested with # 9.
0.2cc of 0 gear oil is applied, and it is rotated at 4000rpm while applying an axial load of 1000kgf.
The measurement was performed by measuring the time until image sticking occurred. In FIG. 7 showing the results of this experiment, the vertical axis represents the time (sec) until the occurrence of image sticking, and the horizontal axis represents the root-mean-square roughness of both surfaces [= {(surface roughness of the large-diameter end surface of the tapered roller). 2 + (Surface roughness of the surface on one side of the flange where the large-diameter end surface slides) 2
1/2 ], respectively. Of the plurality of points described in FIG. 7, three triangles indicate the results of experiments on the tapered roller bearings in which the surface roughness on both sides was regulated to 0.1 μRa or less, and the remaining circles indicate the results on the both sides. The results of experiments on tapered roller bearings having a coarser surface roughness are shown. As is clear from the description of FIGS. 6 and 7, by regulating the surface roughness of both surfaces to 0.1 μRa or less, the dynamic torque in the practical rotation range is greatly reduced and the seizure resistance is improved. Can do things.

【0023】上述した様に、本発明のデファレンシャル
ギヤのピニオン軸支持用円錐ころ軸受は、従来から知ら
れているデファレンシャルギヤのピニオン軸支持用円錐
ころ軸受に比べて動トルクを低減する事ができるが、疲
れ寿命及び軸受剛性に就いても、実用上十分な値を確保
できる。これら疲れ寿命及び軸受剛性に就いては、前記
表2及び表3に記載した様な軸受諸元が分れば、計算に
より求める事ができる。
As described above, the tapered roller bearing for supporting the pinion shaft of the differential gear according to the present invention can reduce the dynamic torque as compared with the conventionally known tapered roller bearing for supporting the pinion shaft of the differential gear. However, practically sufficient values can be ensured for fatigue life and bearing rigidity. The fatigue life and the bearing rigidity can be obtained by calculation if the bearing data as described in Tables 2 and 3 are known.

【0024】図8は、前記表2及び表3に記載されたA
〜Fの6種類の円錐ころ軸受の疲れ寿命を計算により求
めた結果を示している。縦軸は、従来品であるA、D両
円錐ころ軸受の疲れ寿命を1とし、他の円錐ころ軸受の
寿命をこれらA、D両円錐ころ軸受の寿命に対する割合
として記載している。この図8から明らかな通り、本発
明のデファレンシャルギヤのピニオン軸支持用円錐ころ
軸受は、従来品とほぼ同等の疲れ寿命を確保できる。
FIG. 8 is a graph showing the values of A shown in Tables 2 and 3 above.
The results obtained by calculating the fatigue life of the six types of tapered roller bearings No. to No. F are shown. The vertical axis indicates the fatigue life of the conventional A and D double tapered roller bearings as 1, and the life of the other tapered roller bearings as a percentage of the life of these A and D double tapered roller bearings. As is apparent from FIG. 8, the tapered roller bearing for supporting the pinion shaft of the differential gear according to the present invention can secure the same fatigue life as the conventional product.

【0025】次に、図9は前記表2及び表3に記載され
たA〜Fの6種類の円錐ころ軸受を、AとDとの組み合
わせ、BとEとの組み合わせ、CとFとの組み合わせ
で、それぞれピニオン軸2(図1)の中間部前後2個所
位置に装着し、このピニオン軸2を回転自在に支持した
状態での、アキシャル軸受剛性を計算により求めた結果
を示している。縦軸は、従来品であるA、D両円錐ころ
軸受によりピニオン軸2を支持した場合のアキシャル軸
受剛性(変位量)を1とし、他の円錐ころ軸受を組み合
わせた場合のアキシャル軸受剛性をこれらA、D両円錐
ころ軸受を組み合わせた場合のアキシャル軸受剛性に対
する割合として記載している。尚、縦軸の値は、所定の
アキシャル荷重を付与した場合に於ける変位量の比とし
て表しているので、数値が低い程軸受剛性は高い。この
図9から明らかな通り、本発明のデファレンシャルギヤ
のピニオン軸支持用円錐ころ軸受によりピニオン軸2を
支持した場合には、従来の場合と同等若しくはそれ以上
のアキシャル軸受剛性を得られる。
Next, FIG. 9 shows the six types of tapered roller bearings A to F described in Tables 2 and 3 above, in which a combination of A and D, a combination of B and E, and a combination of C and F The combination shows the axial bearing stiffness in a state where the pinion shaft 2 (FIG. 1) is mounted at two positions before and after the intermediate portion and the pinion shaft 2 is rotatably supported. The vertical axis represents the axial bearing stiffness (displacement) when the pinion shaft 2 is supported by the conventional A and D double tapered roller bearings, and the axial bearing stiffness when the other tapered roller bearings are combined. It is described as a ratio to the axial bearing stiffness when the double tapered roller bearings A and D are combined. Since the value on the vertical axis is expressed as a ratio of the amount of displacement when a predetermined axial load is applied, the lower the numerical value, the higher the bearing rigidity. As is apparent from FIG. 9, when the pinion shaft 2 is supported by the tapered roller bearing for supporting the pinion shaft of the differential gear of the present invention, an axial bearing rigidity equal to or higher than that of the conventional case can be obtained.

【0026】次に、図10は、図9と同様の条件で、ラ
ジアル軸受剛性を計算した結果を示している。上記図9
の場合と同様に、縦軸の値は所定のラジアル荷重を付与
した場合に於ける変位量の比として表しているので、数
値が低い程軸受剛性は高い。この図10から明らかな通
り、本発明のデファレンシャルギヤのピニオン軸支持用
円錐ころ軸受によりピニオン軸2を支持した場合には、
従来の場合よりもラジアル軸受剛性が低くなる。従っ
て、B、E両円錐ころ軸受を組み合わせた場合には、従
来のA、D両円錐ころ軸受を組み合わせた場合と同様
に、高出力エンジン搭載車のデファレンシャルギヤに実
施できるが、C、F両円錐ころ軸受を組み合わせた場合
には、出力の小さなエンジンを搭載した自動車のデファ
レンシャルギヤに実施できる。
Next, FIG. 10 shows the result of calculating the radial bearing stiffness under the same conditions as in FIG. FIG. 9 above
Similarly to the above case, the value on the vertical axis is expressed as a ratio of the amount of displacement when a predetermined radial load is applied, so that the lower the numerical value, the higher the bearing rigidity. As apparent from FIG. 10, when the pinion shaft 2 is supported by the tapered roller bearing for supporting the pinion shaft of the differential gear of the present invention,
Radial bearing rigidity is lower than in the conventional case. Therefore, when the B and E double tapered roller bearings are combined, as in the case of combining the conventional A and D double tapered roller bearings, the present invention can be applied to a differential gear of a vehicle equipped with a high-power engine. When a tapered roller bearing is combined, the present invention can be applied to a differential gear of an automobile equipped with a low-output engine.

【0027】以上に説明した各実験を含む前記多くの実
験の結果を考慮する事により、本発明者は、接触角を2
2〜28度の範囲に、円錐ころ軸受を構成する円錐ころ
の大径側端部の直径Da とこの円錐ころの長さLとの比
a /Lを0.51〜1.0の範囲に、ころ数係数kを
1.16〜1.32の範囲に、それぞれ規制した、特有
の構造を持つ円錐ころ軸受が、デファレンシャルギヤの
ピニオン軸を支持する為の円錐ころ軸受として特に有用
な作用・効果を得られると考えるに至った。そこで、次
の表のG1〜G8に表した様に、上記3種類(前記
)の限定要素に関し、それぞれ上記した上限値と下
限値とを組み合わせた8種類の試料に就いて、デファレ
ンシャルギヤのピニオン軸を支持する為の円錐ころ軸受
に必要な性能を測定したところ、十分な性能を得られる
事が分った。
By considering the results of many of the experiments described above, including each of the experiments described above, the inventor has determined that the contact angle may be 2
In the range of 2 to 28 degrees, the ratio D a / L of the diameter D a of the larger diameter end of the tapered rollers which constitute the tapered roller bearing and the length L of the tapered roller of 0.51 to 1.0 A tapered roller bearing having a specific structure in which the roller number coefficient k is restricted to a range of 1.16 to 1.32 is particularly useful as a tapered roller bearing for supporting a pinion shaft of a differential gear. We came to think that action and effect could be obtained. Then, as shown in G1 to G8 in Table 4 below, with respect to the above three types of limiting elements (above), eight types of samples obtained by combining the above-described upper limit and lower limit, respectively, were used. The required performance of the tapered roller bearing for supporting the pinion shaft was measured, and it was found that sufficient performance could be obtained.

【0028】[0028]

【表4】 [Table 4]

【0029】上述の説明及び上記表の記載から、本発
明の範囲は、この表のG1〜G8で表される8個の点
をその頂点とする平行6面体(例えば直方体乃至は立方
体)の内側で表される事が分る。又、これらG1〜G8
で規定した8種類の試料に就いて、各円錐ころの大径側
端面と、内輪の大径側外周面に形成された鍔部の片面で
上記大径側端面が摺接する面との表面粗さを、何れも
0.1μRa以下に規制すれば、前記B、C、E、Fと
同様に、良好な結果を得られる事も分った。
From the above description and the description in Table 4 , the scope of the present invention is a parallelepiped (for example, a rectangular parallelepiped or a cube) whose eight vertices are represented by G1 to G8 in Table 4. You can see that it is represented inside. In addition, these G1 to G8
The surface roughness between the large-diameter end face of each tapered roller and the surface on which the large-diameter end face slides on one side of the flange formed on the large-diameter outer peripheral face of the inner ring for the eight types of samples specified in. It was also found that good results could be obtained, as in the case of B, C, E, and F, if all were regulated to 0.1 μRa or less.

【0030】[0030]

【発明の効果】本発明のデファレンシャルギヤのピニオ
ン軸支持用円錐ころ軸受は、以上に述べた通り構成され
作用するので、デファレンシャルギヤに要求される性能
を確保しつつ、このデファレンシャルギヤ部分での動力
損失を低減して、自動車の省燃費化に寄与できる。
As described above, the tapered roller bearing for supporting the pinion shaft of the differential gear according to the present invention is constructed and operates as described above. Therefore, while maintaining the performance required for the differential gear, the power at the differential gear portion is ensured. Loss can be reduced, which contributes to fuel efficiency of automobiles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】デファレンシャルギヤの1例を示す縦断側面
図。
FIG. 1 is a vertical sectional side view showing an example of a differential gear.

【図2】円錐ころ軸受の1例を示す半部断面図。FIG. 2 is a half sectional view showing an example of a tapered roller bearing.

【図3】実験装置の縦断面図。FIG. 3 is a longitudinal sectional view of the experimental apparatus.

【図4】円錐ころ軸受の大きさと動トルクとの関係を示
す図。
FIG. 4 is a diagram showing the relationship between the size of a tapered roller bearing and dynamic torque.

【図5】回転速度と動トルクとの関係を示す線図。FIG. 5 is a diagram showing a relationship between a rotation speed and a dynamic torque.

【図6】摺接面の表面粗さが動トルクに及ぼす影響を示
す、回転速度と動トルクとの関係を示す線図。
FIG. 6 is a diagram showing the relationship between the rotational speed and the dynamic torque, showing the effect of the surface roughness of the sliding contact surface on the dynamic torque.

【図7】摺接面の表面粗さが耐焼き付き性に及ぼす影響
を示す線図。
FIG. 7 is a diagram showing the effect of the surface roughness of the sliding contact surface on seizure resistance.

【図8】疲れ寿命の比を示すグラフ。FIG. 8 is a graph showing the ratio of fatigue life.

【図9】アキシャル軸受剛性の比を示すグラフ。FIG. 9 is a graph showing the ratio of axial bearing stiffness.

【図10】ラジアル軸受剛性の比を示すグラフ。FIG. 10 is a graph showing a ratio of radial bearing rigidity.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 ピニオン軸 3 結合フランジ 4 減速小歯車 5 減速大歯車 6a、6b 円錐ころ軸受 7a、7b 外輪 8a、8b 内輪 9a、9b 円錐ころ 10a、10b 外輪軌道 11a、11b 内輪軌道 12 ホルダ 13 駆動軸 14 外側ホルダ 15 ハウジング 16 給油孔 17 静圧パッド 18 腕片 19 ロードセル DESCRIPTION OF SYMBOLS 1 Casing 2 Pinion shaft 3 Connection flange 4 Reduction gear 5 Reduction large gear 6a, 6b Tapered roller bearing 7a, 7b Outer ring 8a, 8b Inner ring 9a, 9b Tapered roller 10a, 10b Outer ring track 11a, 11b Inner ring track 12 Holder 13 Drive shaft 14 outer holder 15 housing 16 oil supply hole 17 static pressure pad 18 arm piece 19 load cell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石丸 彰 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 (56)参考文献 実開 平1−156353(JP,U) 実開 昭58−58115(JP,U) 実開 昭49−130247(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16H 57/02 302 F16C 19/34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Ishimaru 1-5-50 Kumeinuma Shinmei, Fujisawa-shi, Kanagawa Nippon Seiko Co., Ltd. (56) References JP-A 1-156353 (JP, U) JP-A 58-58115 (JP, U) Actually open Showa 49-130247 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F16H 57/02 302 F16C 19/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 前端部をプロペラシャフトの後端部に連
結自在とし、後端部に減速大歯車と噛合する減速小歯車
を固定したピニオン軸の中間部前後2個所位置をケーシ
ングに対して回転自在に支持するデファレンシャルギヤ
のピニオン軸支持用円錐ころ軸受に於いて、接触角αが
22〜28度であり、円錐ころの大径側端部の直径Da
と円錐ころの長さLとの比Da /Lが0.51〜1.0
であり、複数の円錐ころのピッチ円の直径をdm とし、
円錐ころの数をzとした場合に、k=(dm /Da )・
sin (180°/z)で表されるころ数係数kが1.1
6〜1.32である事を特徴とするデファレンシャルギ
ヤのピニオン軸支持用円錐ころ軸受。
1. A front end part is freely connectable to a rear end part of a propeller shaft, and a rear end part is fixed with a reduction gear that meshes with a reduction gear. in supporting the pinion shaft for a tapered roller bearing of differential gear which rotatably supports a contact angle α is 22 to 28 degrees, the diameter D a of the larger diameter end of the tapered rollers
And the ratio D a / L of the tapered roller to the length L is 0.51 to 1.0
, And the diameter of the pitch circle of the plurality of tapered rollers and d m,
When the number of tapered rollers is z, k = (d m / D a ) ·
The roller number coefficient k represented by sin (180 ° / z) is 1.1
6. A tapered roller bearing for supporting a pinion shaft of a differential gear, wherein the diameter of the tapered roller bearing is 6 to 1.32.
【請求項2】 接触角αが26〜28度であり、比Da
/Lが0.7〜1.0である、請求項1に記載したデフ
ァレンシャルギヤのピニオン軸支持用円錐ころ軸受。
2. The contact angle α is 26 to 28 degrees and the ratio D a
The tapered roller bearing for supporting a pinion shaft of a differential gear according to claim 1, wherein / L is 0.7 to 1.0.
【請求項3】 接触角αが22〜24度であり、比Da
/Lが0.51〜0.8である、請求項1に記載したデ
ファレンシャルギヤのピニオン軸支持用円錐ころ軸受。
3. The contact angle α is 22 to 24 degrees and the ratio D a
The tapered roller bearing for supporting a pinion shaft of a differential gear according to claim 1, wherein / L is 0.51 to 0.8.
【請求項4】 各円錐ころの大径側端面と、内輪の大径
側外周面に形成された鍔部の片面で上記大径側端面が摺
接する面との表面粗さが、何れも0.1μRa以下であ
る、請求項1〜3の何れかに記載したデファレンシャル
ギヤのピニオン軸支持用円錐ころ軸受。
4. The surface roughness of the large-diameter end surface of each tapered roller and the surface of the flange portion formed on the large-diameter outer peripheral surface of the inner ring on which the large-diameter end surface slides are all zero. The tapered roller bearing for supporting a pinion shaft of a differential gear according to any one of claims 1 to 3, wherein the diameter of the tapered roller bearing is 0.1 μRa or less.
JP19434496A 1995-07-24 1996-07-24 Tapered roller bearing for pinion shaft support of differential gear Expired - Lifetime JP3359501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19434496A JP3359501B2 (en) 1995-07-24 1996-07-24 Tapered roller bearing for pinion shaft support of differential gear

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-186880 1995-07-24
JP18688095 1995-07-24
JP19434496A JP3359501B2 (en) 1995-07-24 1996-07-24 Tapered roller bearing for pinion shaft support of differential gear

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000182734A Division JP2001012461A (en) 1995-07-24 2000-06-19 Tapered roller bearing for supporting pinion shaft of differential gear

Publications (2)

Publication Number Publication Date
JPH0996352A JPH0996352A (en) 1997-04-08
JP3359501B2 true JP3359501B2 (en) 2002-12-24

Family

ID=26504029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19434496A Expired - Lifetime JP3359501B2 (en) 1995-07-24 1996-07-24 Tapered roller bearing for pinion shaft support of differential gear

Country Status (1)

Country Link
JP (1) JP3359501B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170774A (en) * 1998-12-01 2000-06-20 Ntn Corp Conical roller bearing and gear shaft support device for vehicle
JP2000161349A (en) * 1998-11-30 2000-06-13 Ntn Corp Gear shaft support device for vehicle
JP2003343552A (en) 2002-05-27 2003-12-03 Koyo Seiko Co Ltd Cone roller bearing
JP2004076932A (en) * 2002-06-18 2004-03-11 Koyo Seiko Co Ltd Rolling bearing, vehicular transmission and differential
JP5113384B2 (en) * 2004-04-14 2013-01-09 株式会社ジェイテクト Tapered roller bearing, tapered roller bearing device and vehicle pinion shaft support device using the same
EP1614914B1 (en) 2004-07-05 2014-01-15 NTN Corporation Tapered roller bearing
JP2007051715A (en) 2005-08-18 2007-03-01 Jtekt Corp Tapered roller bearing, tapered roller bearing device, and vehicular pinion shaft supporting device using it
JP2008038927A (en) 2006-08-01 2008-02-21 Ntn Corp Tapered roller bearing
WO2008081670A1 (en) * 2006-12-28 2008-07-10 Ntn Corporation Tapered roller bearing
JP5112830B2 (en) * 2006-12-28 2013-01-09 Ntn株式会社 Tapered roller bearings
JP5289746B2 (en) * 2007-09-18 2013-09-11 Ntn株式会社 Tapered roller bearing
WO2009062530A1 (en) 2007-11-14 2009-05-22 Ab Skf Pinion bearing unit
JP5172445B2 (en) * 2008-04-15 2013-03-27 Ntn株式会社 Thrust bearing rotational torque detector
JP2010286120A (en) * 2010-08-17 2010-12-24 Jtekt Corp Design method for tapered roller bearing
DE102019110299A1 (en) * 2019-04-18 2020-10-22 Schaeffler Technologies AG & Co. KG Tapered roller bearings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130247U (en) * 1973-03-12 1974-11-08
US4065191A (en) * 1976-05-13 1977-12-27 Skf Industries, Inc. Roller skew control for tapered roller bearings
JPS5858115U (en) * 1981-10-16 1983-04-20 三菱重工業株式会社 conical roller bearing
JPS6131715A (en) * 1984-07-23 1986-02-14 Toyota Motor Corp Conical roller bearing
JPH0615158Y2 (en) * 1988-04-20 1994-04-20 三菱自動車工業株式会社 Structure of differential cover

Also Published As

Publication number Publication date
JPH0996352A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
JP2001012461A (en) Tapered roller bearing for supporting pinion shaft of differential gear
JP3359501B2 (en) Tapered roller bearing for pinion shaft support of differential gear
JP5375969B2 (en) Rotation support device for pinion shaft
US20020044707A1 (en) Tapered roller bearing
US8794843B2 (en) Rotation support device for pinion shaft
JPH109259A (en) Bearing unit for supporting pinion shaft of differential gear
JP2008106869A (en) Ball bearing
EP1367275A1 (en) Tapered roller bearing
KR100642589B1 (en) Rolling bearing unit for supporting wheel
JPH109258A (en) Bearing unit for supporting pinion shaft of differential gear
JP2003314542A (en) Tapered roller bearing
JP2005172113A (en) Tapered roller bearing
US20200158166A1 (en) Automotive differential gear and automotive transmission
JPS6128121Y2 (en)
JP2004108429A (en) Tapered roller bearing
JPH07217661A (en) Thrust ball bearing
JP2002070874A (en) Rotational supporting apparatus
JP3937556B2 (en) Double row tapered roller bearing device
JP2006044375A (en) Electric power steering device
US11920634B2 (en) Wheel hub assembly
WO2018221080A1 (en) Pinion shaft support bearing
WO2024019009A1 (en) Bearing device for vehicle wheel
JP2007321911A (en) Cage for bearing
JP2011226551A (en) Tapered roller bearing set
JPH084759A (en) Thrust bearing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

EXPY Cancellation because of completion of term