JP2000170774A - Conical roller bearing and gear shaft support device for vehicle - Google Patents

Conical roller bearing and gear shaft support device for vehicle

Info

Publication number
JP2000170774A
JP2000170774A JP10341953A JP34195398A JP2000170774A JP 2000170774 A JP2000170774 A JP 2000170774A JP 10341953 A JP10341953 A JP 10341953A JP 34195398 A JP34195398 A JP 34195398A JP 2000170774 A JP2000170774 A JP 2000170774A
Authority
JP
Japan
Prior art keywords
tapered roller
inner ring
small
roller bearing
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10341953A
Other languages
Japanese (ja)
Inventor
Takashi Tsujimoto
崇 辻本
Yuji Okamoto
裕二 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP10341953A priority Critical patent/JP2000170774A/en
Priority to US09/448,941 priority patent/US6328477B1/en
Priority to FR9914907A priority patent/FR2786543B1/en
Priority to DE19956971.1A priority patent/DE19956971B4/en
Publication of JP2000170774A publication Critical patent/JP2000170774A/en
Priority to US09/886,378 priority patent/US6447168B2/en
Priority to US10/200,777 priority patent/US20020186908A1/en
Priority to US10/649,764 priority patent/US7090405B2/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Of Transmissions (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conical roller bearing and a gear shaft support device for vehicle which have little torque loss by a friction and little heating, and can reduce the running-in time. SOLUTION: While the curvature radius R of the large end face 18 of a conical roller 16 is made in the value in the scope R/RBASE=0.75 to 0.87, when the distance from the top of the conical angle of the conical roller 16 to the large brim surface 13 of an inner ring 15 is made RBASE, the small brim surface 14 of the inner ring 15 is formed by a surface parallel to the small end face 19 of the conical roller 16. As a result, a torque loss owing to a sliding friction between the large brim surface 13 of the inner ring 15, and the large end face 18 of the conical roller 16, and a heating are reduced, so as to prevent the generation of a seizure. Furthermore, the running-in time when a bearing is installed is made possible to reduce.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、円錐ころ軸受と
車両用歯車軸支持装置に関するものである。
The present invention relates to a tapered roller bearing and a vehicle gear shaft support device.

【0002】[0002]

【従来の技術】円錐ころ軸受は、ラジアル荷重とアキシ
ャル荷重、およびそれらの合成荷重を負荷するのに適し
た軸受で、負荷能力も大きいため、自動車や建設機械等
におけるデファレンシャルやトランスミッション等の動
力伝達装置の歯車軸支持用に多く用いられている。
2. Description of the Related Art A tapered roller bearing is a bearing suitable for applying a radial load, an axial load, and a combined load thereof. Since the load capacity is large, power transmission of a differential or a transmission in an automobile, a construction machine, or the like is performed. It is often used for gear shaft support of equipment.

【0003】図1は、本願の実施形態の一つである円錐
ころ軸受で歯車軸が支持された、自動車のデファレンシ
ャルを示す。このデファレンシャルは、ハウジング1に
2つの円錐ころ軸受2、3で回転自在に支持されたドラ
イブピニオン4と、このドライブピニオン4に噛み合う
リングギヤ5と、このリングギヤ5が取り付けられ、一
対の円錐ころ軸受6でハウジング1に回転自在に支持さ
れた差動歯車ケース7と、この差動歯車ケース7の中に
配設されたピニオン8と、ピニオン8と噛み合う一対の
サイドギヤ9とで基本的に構成され、これらがギヤオイ
ルの封入されたハウジング1内に収納されている。この
ギヤオイルは前記各円錐ころ軸受2、3、6の潤滑油に
もなっている。
FIG. 1 shows a differential of an automobile in which a gear shaft is supported by a tapered roller bearing according to an embodiment of the present invention. The differential includes a drive pinion 4 rotatably supported by two tapered roller bearings 2, 3 in a housing 1, a ring gear 5 meshing with the drive pinion 4, and a ring gear 5 attached thereto, and a pair of tapered roller bearings 6. A differential gear case 7 rotatably supported by the housing 1, a pinion 8 disposed in the differential gear case 7, and a pair of side gears 9 meshing with the pinion 8. These are housed in a housing 1 in which gear oil is sealed. This gear oil also serves as lubricating oil for the tapered roller bearings 2, 3, and 6.

【0004】図6は、従来の円錐ころ軸受の一形態を示
す。この円錐ころ軸受は、円錐状の軌道面21を有する
外輪22と、円錐状の軌道面23を有し、この軌道面2
3の大径側に大鍔面24、小径側に小鍔面25が設けら
れた内輪26と、外輪22と内輪26の各軌道面21、
23の間に転動自在に配列された複数の円錐ころ27
と、円錐ころ27を所定の円周方向間隔に保持する保持
器28とで構成されている。なお、内輪26の大鍔面2
4と小鍔面25間の距離は、円錐ころ27の長さよりも
わずかに長く設計されている。
FIG. 6 shows an embodiment of a conventional tapered roller bearing. The tapered roller bearing has an outer race 22 having a conical raceway surface 21 and a conical raceway surface 23.
3, an inner ring 26 provided with a large flange surface 24 on the large diameter side and a small flange surface 25 on the small diameter side, and respective raceway surfaces 21 of the outer ring 22 and the inner ring 26;
23, a plurality of tapered rollers 27 that are arranged to be able to roll freely.
And a retainer 28 that holds the tapered rollers 27 at a predetermined circumferential interval. In addition, the large collar surface 2 of the inner ring 26
The distance between 4 and the small flange surface 25 is designed to be slightly longer than the length of the tapered rollers 27.

【0005】前記円錐ころ27は、外輪22と内輪26
の各軌道面21、23と線接触し、円錐ころ27および
各軌道面21、23の各円錐角頂点が、円錐ころ軸受の
中心線上の一点Oで一致するように設計されている。こ
れにより、円錐ころ27は各軌道面21、23に沿って
転がり運動をすることができる。
[0005] The tapered roller 27 comprises an outer ring 22 and an inner ring 26.
Are designed to be in line contact with the respective raceway surfaces 21 and 23, and that the apex of each conical angle of the tapered roller 27 and each raceway surface 21 and 23 coincide at one point O on the center line of the tapered roller bearing. As a result, the tapered rollers 27 can roll along the respective raceway surfaces 21 and 23.

【0006】円錐ころ軸受では、前記各軌道面21、2
3の円錐角が異なるので、各軌道面21、23から円錐
ころ27に加わる荷重の合力が、円錐ころ27を前記内
輪26の大鍔面24側に押す方向に作用する。したがっ
て、円錐ころ27は、軸受使用時に大端面29が大鍔面
24に押し付けられて案内され、大端面29と大鍔面2
4とは辷り接触する。
In the tapered roller bearing, each of the raceway surfaces 21, 2
Since the cone angles of No. 3 are different, the resultant of the loads applied to the tapered rollers 27 from the respective raceway surfaces 21 and 23 acts in the direction of pushing the tapered rollers 27 toward the large collar surface 24 of the inner ring 26. Therefore, the tapered roller 27 is guided by the large end surface 29 being pressed against the large flange surface 24 when the bearing is used, and the large end surface 29 and the large collar surface 2 are guided.
4 makes sliding contact.

【0007】一方、前記内輪26の大鍔面24と小鍔面
25間の距離は円錐ころ27の長さよりもわずかに長く
設計されているので、図7に拡大して示すように、小鍔
面25は円錐ころ27の小端面30とは接触せず、両者
の間にはわずかな隙間が存在する。また、小鍔面25
は、円錐ころ27の小端面30に対して外側に傾斜した
面で形成され、軸受製造工程において、これらの互いに
接触しない小鍔面25と小端面30については研削仕上
げを行っていない。
On the other hand, since the distance between the large flange surface 24 and the small flange surface 25 of the inner ring 26 is designed to be slightly longer than the length of the tapered rollers 27, as shown in FIG. The surface 25 does not contact the small end surface 30 of the tapered roller 27, and there is a slight gap between the two. In addition, 25
Is formed as a surface inclined outward with respect to the small end surface 30 of the tapered roller 27, and the small flange surface 25 and the small end surface 30 that are not in contact with each other are not ground in the bearing manufacturing process.

【0008】上記のような円錐ころ軸受を装着部位に取
り付ける際には、まず図8(a)に示すように、内輪2
6、複数の円錐ころ27および保持器28より成る組み
付け体を、前記円錐ころ27の大端面29を上に向けた
状態で、外輪22の軌道面21に上方から挿入する。こ
のとき、複数の円錐ころ27は、内輪26と保持器28
に対する自由度を有するため、正規の位置には座らず、
その小端面30が内輪26の小鍔面25に接触し、大端
面29と内輪26の大鍔面24との間にδの隙間が生じ
た初期組立状態になる。
When the tapered roller bearing as described above is mounted on a mounting portion, first, as shown in FIG.
6. The assembled body including the plurality of tapered rollers 27 and the retainer 28 is inserted into the raceway surface 21 of the outer race 22 from above with the large end surface 29 of the tapered rollers 27 facing upward. At this time, the plurality of tapered rollers 27 are
Because you have the freedom to
The small end face 30 comes into contact with the small flange face 25 of the inner ring 26, and the initial assembly state is established in which a gap of δ is generated between the large end face 29 and the large collar face 24 of the inner ring 26.

【0009】つぎに、前記初期組立状態の円錐ころ軸受
を相手装置の装着部位に仮組み付けし、図8(b)に示
すように、内輪26の端面にアキシャル荷重Fa を付与
しながら、50〜100rpm程度の低速回転で馴らし
運転すると、円錐ころ27は内輪26の大鍔面24側へ
隙間δ分だけ軸方向移動し、図8(c)に示すように、
大端面29が内輪26の大鍔面24に接触して、軸受使
用時の正規の位置に落ち着き、小端面30と内輪26の
小鍔面25の間にδの隙間が生じた状態になる。このの
ち、円錐ころ軸受は軸方向に所定の負荷で予圧される。
この予圧は軸受使用中の円錐ころ27の軸方向移動を防
止し、円錐ころ27を外輪22および内輪26の各軌道
面21、23と安定して線接触させるために行われる。
この予圧力の管理は、軸トルクを測定することにより行
われ、軸トルクが所定の値となったときに予圧作業が完
了される。
[0009] Next, the initial assembled state the tapered roller bearing is temporarily assembled to the mounting site of the other unit, as shown in FIG. 8 (b), while applying an axial load F a on the end face of the inner ring 26, 50 When the running-in operation is performed at a low speed rotation of about 100 rpm, the tapered roller 27 moves axially toward the large flange surface 24 of the inner ring 26 by the gap δ, and as shown in FIG.
The large end surface 29 comes into contact with the large flange surface 24 of the inner ring 26 and settles at a regular position when the bearing is used, and a gap of δ is generated between the small end surface 30 and the small collar surface 25 of the inner ring 26. Thereafter, the tapered roller bearing is preloaded with a predetermined load in the axial direction.
This preload is performed to prevent the tapered rollers 27 from moving in the axial direction during use of the bearing, and to make the tapered rollers 27 stably come into line contact with the raceways 21 and 23 of the outer ring 22 and the inner ring 26.
The management of the preload is performed by measuring the shaft torque. When the shaft torque reaches a predetermined value, the preload operation is completed.

【0010】[0010]

【発明が解決しようとする課題】上述した円錐ころ軸受
は、円錐ころの大端面が内輪の大鍔面と辷り接触するた
め、高速高負荷で回転するデファレンシャル等の歯車軸
の支持に用いると、この辷り摩擦による摩擦トルクが大
きくなり、さらに摩擦発熱で軸受部が温度上昇して潤滑
油としてのギヤオイルの粘度が低下し、油膜不足による
問題が生じることがある。
The tapered roller bearing described above is used for supporting a gear shaft such as a differential rotating at high speed and high load because the large end surface of the tapered roller is in sliding contact with the large flange surface of the inner ring. The friction torque increases due to the sliding friction, and the temperature of the bearing increases due to the frictional heat, and the viscosity of the gear oil as the lubricating oil decreases, which may cause a problem due to an insufficient oil film.

【0011】また、上述した円錐ころ軸受の装着部位へ
の取り付け作業では、図8(a)に示した初期組立状態
での円錐ころ27大端面29と内輪26大鍔面24との
隙間が大きいと、円錐ころ27が図8(c)に示した正
規の位置に落ち着くまでの馴らし運転時間が長くなる問
題がある。
In the above-described operation of mounting the tapered roller bearing on the mounting portion, the clearance between the large end surface 29 of the tapered roller 27 and the large flange surface 24 of the inner ring 26 in the initial assembly state shown in FIG. Then, there is a problem in that the running-in operation time until the tapered rollers 27 settle in the regular position shown in FIG.

【0012】さらに、図7に示したように、内輪26の
小鍔面25は、円錐ころ27の小端面30に対して外側
に傾斜した面で形成されているため、以下の理由で前記
初期組立状態での大端面29と大鍔面24との隙間がば
らつき、全ての円錐ころ27が正規の位置に落ち着くま
での前記馴らし運転時間がさらに長くなる問題もある。
Further, as shown in FIG. 7, the small collar surface 25 of the inner ring 26 is formed as a surface inclined outward with respect to the small end surface 30 of the tapered roller 27. There is also a problem that the gap between the large end surface 29 and the large flange surface 24 in the assembled state varies, and the running-in operation time until all the tapered rollers 27 settle to the proper position is further increased.

【0013】一般に、円錐ころの小端面は鍛造面のまま
であり、面取り寸法、形状にはばらつきが大きい。この
面取り寸法、形状のばらつきは円錐ころ相互間だけでな
く、一つの円錐ころの円周方向にも存在する。図7中に
実線と点線で示すように、小端面30の面取り寸法、形
状が異なると、実線で示す小端面30の場合は、前記初
期組立状態で小端面30上のP1点が小鍔面25上のQ
1点と接触し、円錐ころ27が正規の位置に落ち着いた
ときの小端面30と小鍔面25の隙間δはδ1となる。
一方点線で示す小端面30の場合は、初期組立状態でP
2点がQ2点と接触し、円錐ころ27が正規の位置に落
ち着いたときの前記隙間δはδ2 となる。したがって、
小端面30の面取り寸法、形状の違いで各円錐ころ27
が正規の位置に落ち着くまでの時間にばらつきを生じ、
馴らし運転時間が長くなる。
Generally, the small end surface of the tapered roller remains a forged surface, and the chamfer dimensions and shapes vary greatly. The variation in the chamfer dimension and shape exists not only between the tapered rollers but also in the circumferential direction of one tapered roller. As shown by the solid line and the dotted line in FIG. 7, if the chamfer dimensions and the shape of the small end face 30 are different, in the case of the small end face 30 shown by the solid line, the point P1 on the small end face 30 in the initial assembly state is a small flange face. Q on 25
The gap δ between the small end face 30 and the small flange face 25 when the tapered roller 27 comes into contact with one point and settles at a regular position is δ 1 .
On the other hand, in the case of the small end surface 30 shown by the dotted line, P
2 points in contact with the point Q2, the gap [delta] is the [delta] 2 when the tapered roller 27 has settled into the normal position. Therefore,
Depending on the chamfer dimensions and shape of the small end face 30, each tapered roller 27
Causes a variation in the time it takes for the
The running-in time becomes longer.

【0014】そこで、この発明の課題は、摩擦によるト
ルクロスと発熱が少なく、かつ馴らし運転時間を短縮で
きる円錐ころ軸受と車両用歯車軸支持装置を提供するこ
とである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a tapered roller bearing and a vehicle gear shaft support device that can reduce the torque loss and heat generation due to friction and can shorten the running-in operation time.

【0015】[0015]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明は、円錐状の軌道面を有する外輪と、円
錐状の軌道面を有し、この軌道面の大径側に大鍔面、小
径側に小鍔面が設けられた内輪と、外輪の軌道面と内輪
の軌道面との間に転動自在に配列された複数の円錐ころ
と、円錐ころを所定の円周方向間隔に保持する保持器と
を備え、軸受使用時に円錐ころの大端面が前記内輪の大
鍔面と接触して案内される円錐ころ軸受において、前記
内輪の小鍔面を、前記円錐ころの小端面と平行な面で形
成し、前記円錐ころの大端面の曲率半径をR、円錐ころ
の円錐角の頂点から前記内輪大鍔面までの距離をRBASE
としたとき、R/RBASEを0.75〜0.87の範囲と
した構成を採用したのである。
In order to solve the above-mentioned problems, the present invention has an outer race having a conical raceway surface, a conical raceway surface, and a large-diameter side of the raceway surface. A flange surface, an inner ring provided with a small flange surface on the small diameter side, a plurality of conical rollers arranged to be able to roll freely between a raceway surface of the outer ring and a raceway surface of the inner ring, and the conical rollers in a predetermined circumferential direction. A tapered roller bearing that includes a retainer that holds the roller at an interval, and that guides the large end surface of the tapered roller into contact with the large flange surface of the inner ring when the bearing is used. R is the radius of curvature of the large end face of the tapered roller, and R BASE is the distance from the apex of the cone angle of the tapered roller to the inner ring large collar surface.
Then, the configuration in which R / R BASE is in the range of 0.75 to 0.87 is adopted.

【0016】前記内輪の小鍔面を円錐ころの小端面と平
行な面で形成したのは、以下の理由による。図2(b)
に拡大して示すように、内輪15の小鍔面14を、軌道
面12に配列された円錐ころ16の小端面19と平行な
面とすることにより、前述した初期組立状態での円錐こ
ろ16大端面18と内輪15大鍔面13の隙間(円錐こ
ろ16が正規の位置に落ち着いたときの小端面19と内
輪15小鍔面14の隙間δに等しい)に対する円錐ころ
16小端面19の面取り寸法、形状のばらつきの影響を
排除することができる。すなわち、図2(b)中に点線
で示すように、小端面19の面取り寸法、形状が異なっ
ても、初期組立状態において、互いに平行な小端面19
と小鍔面14とは面接触するため、このときの大端面1
8と大鍔面13の隙間は常に一定となり、各円錐ころ1
6が正規の位置に落ち着くまでの時間のばらつきをなく
し、馴らし運転時間を短縮することができる。
The reason why the small collar surface of the inner ring is formed as a surface parallel to the small end surface of the tapered roller is as follows. FIG. 2 (b)
As shown in the enlarged view, the small collar surface 14 of the inner ring 15 is made to be a surface parallel to the small end surface 19 of the tapered rollers 16 arranged on the raceway surface 12, so that the tapered rollers 16 in the above-mentioned initial assembly state are formed. Chamfer of the tapered roller 16 small end face 19 with respect to the gap between the large end face 18 and the inner ring 15 large flange face 13 (equal to the gap δ between the small end face 19 and the inner ring 15 small collar face 14 when the tapered roller 16 is settled at a regular position). The influence of variations in size and shape can be eliminated. That is, as shown by the dotted lines in FIG. 2B, even if the chamfer dimensions and shapes of the small end faces 19 are different, the small end faces 19 parallel to each other are initially set.
And the small collar surface 14 are in surface contact, and the large end surface 1
8 and the large flange surface 13 are always constant, and each tapered roller 1
It is possible to eliminate the variation in the time required for 6 to settle in the regular position and shorten the running-in time.

【0017】前記円錐ころの大端面の曲率半径Rと円錐
ころの円錐角の頂点から内輪大鍔面までの距離RBASE
の比R/RBASEを0.75〜0.87の範囲としたの
は、以下の理由による。
The ratio R / R BASE between the radius of curvature R of the large end face of the tapered roller and the distance R BASE from the vertex of the cone angle of the tapered roller to the inner ring large flange surface is in the range of 0.75 to 0.87. This is for the following reasons.

【0018】図4は、内輪大鍔面と円錐ころ大端面の間
に形成される油膜厚さtを、Karnaの式を用いて計
算した結果を示す。縦軸は、R/RBASE=0.76のと
きの油膜厚さt0 に対する比t/t0 で示す。油膜厚さ
tはR/RBASE=0.76のとき最大となり、R/R
BASEが0.9を越えると急激に減少する。
FIG. 4 shows the result of calculating the oil film thickness t formed between the inner ring large flange surface and the tapered roller large end surface using Karna's formula. The vertical axis indicates the ratio t / t 0 to the oil film thickness t 0 when R / R BASE = 0.76. The oil film thickness t becomes maximum when R / R BASE = 0.76, and R / R
When BASE exceeds 0.9, it decreases sharply.

【0019】図5は、内輪大鍔面と円錐ころ大端面間の
最大ヘルツ応力pを計算した結果を示す。縦軸は、図4
と同様に、R/RBASE=0.76のときの最大ヘルツ応
力p0 に対する比p/p0 で示す。最大ヘルツ応力p
は、R/RBASEの増大に伴って単調に減少する。
FIG. 5 shows the result of calculating the maximum Hertz stress p between the inner ring large flange surface and the tapered roller large end surface. The vertical axis is shown in FIG.
Similarly to the above, it is indicated by the ratio p / p 0 to the maximum Hertz stress p 0 when R / R BASE = 0.76. Maximum Hertz stress p
Decreases monotonically with increasing R / R BASE .

【0020】前記内輪大鍔面と円錐ころ大端面間の辷り
摩擦によるトルクロスと発熱を低減するためには、油膜
厚さtを厚く、最大ヘルツ応力pを小さくすることが望
ましい。本発明者らは、図4および図5の計算結果を参
考とし、後の表1に示す耐焼付き試験結果に基づいて、
R/RBASEの適正範囲を0.75〜0.87に決定し
た。なお、従来の円錐ころ軸受では、R/RBASEの値は
0.90〜0.97の範囲に設計されている。
In order to reduce torque loss and heat generation due to sliding friction between the inner ring large flange surface and the tapered roller large end surface, it is desirable to increase the oil film thickness t and reduce the maximum Hertz stress p. The present inventors referred to the calculation results of FIGS. 4 and 5, and based on the seizure resistance test results shown in Table 1 below,
The appropriate range of R / R BASE was determined to be 0.75 to 0.87. In the conventional tapered roller bearing, the value of R / R BASE is designed in the range of 0.90 to 0.97.

【0021】前記内輪大鍔面の表面粗さRa を0.05
〜0.20μmの範囲に形成することにより(請求項
2)、前記内輪大鍔面と円錐ころ大端面間の油膜厚さt
との関係で、これらの面間での潤滑状態を適正な状態に
保つことができる。
[0021] The surface roughness R a of the inner ring large rib surface 0.05
The thickness of the oil film between the inner ring large flange surface and the tapered roller large end surface t
Therefore, the lubricating state between these surfaces can be maintained in an appropriate state.

【0022】前記表面粗さRa を0.05μm以上とし
たのは、以下の理由による。図8(b)に示したよう
に、円錐ころ軸受の取り付け時には、内輪26の端面に
アキシャル荷重Fa を付与しながら、50〜100rp
m程度の低速回転で馴らし運転が行われる。表面粗さR
a が0.05μm未満の場合は、この馴らし運転時に、
内輪26の大鍔面24と円錐ころ27の大端面29間の
潤滑状態が、流体潤滑と境界潤滑の混合潤滑になるた
め、摩擦係数が大幅に変動し、前記測定される軸トルク
のばらつきが大きくなり、予圧力の管理精度が悪くな
る。Ra が0.05μm以上の場合は、前記潤滑状態が
境界潤滑となって摩擦係数が安定し、精度のよい予圧力
の管理を行うことができる。100rpmを越える通常
の軸受使用条件下の回転数では、大鍔面24と大端面2
9間に十分な油膜が形成されるため、これらの両面間の
潤滑状態は流体潤滑となって摩擦係数が小さくなる。
The reason for setting the surface roughness Ra to 0.05 μm or more is as follows. As shown in FIG. 8 (b), at the time of installation of tapered roller bearings, while applying an axial load F a on the end face of the inner ring 26, 50~100Rp
The running-in operation is performed at a low speed of about m. Surface roughness R
If a is less than 0.05 μm,
Since the lubrication state between the large flange surface 24 of the inner ring 26 and the large end surface 29 of the tapered roller 27 is a mixed lubrication of fluid lubrication and boundary lubrication, the friction coefficient greatly fluctuates, and the variation in the measured shaft torque is reduced. And the precision of the preload control deteriorates. When Ra is 0.05 μm or more, the lubrication state becomes boundary lubrication, the friction coefficient is stabilized, and accurate preload management can be performed. At a rotational speed under normal bearing operating conditions exceeding 100 rpm, the large flange surface 24 and the large end surface 2
Since a sufficient oil film is formed between the surfaces 9, the lubrication state between these two surfaces is fluid lubrication, and the friction coefficient is reduced.

【0023】前記表面粗さRa を0.20μm以下とし
たのは、Ra が0.20μmを越えると、高速回転領域
で軸受部が温度上昇し、潤滑油が粘度低下したときに、
前記油膜厚さtが不十分となり、焼付きを生じ易くなる
からである。
[0023] was not more than 0.20 [mu] m the surface roughness R a, when R a is more than 0.20 [mu] m, when the bearing unit is increased temperatures, lubricating oil was reduced viscosity at a high speed rotation region,
This is because the oil film thickness t becomes insufficient and seizure easily occurs.

【0024】前記円錐ころの大端面が、前記内輪の大鍔
面と接触したときに形成される、前記内輪の小鍔面と前
記円錐ころの小端面との間の隙間δをδ≦0.4mmの
寸法範囲内に規制することにより(請求項3)、前記馴
らし運転での円錐ころが正規の位置に落ち着くまでに必
要な回転回数を減らし、馴らし運転時間を短縮すること
ができる。隙間δの許容最大値0.4mmは、後述する
馴らし運転試験の結果に基づいて決めたものである。
The gap δ between the small flange surface of the inner ring and the small end surface of the tapered roller, which is formed when the large end surface of the tapered roller contacts the large flange surface of the inner ring, is δ ≦ 0. By restricting the dimension within the range of 4 mm (claim 3), the number of rotations required until the tapered rollers in the running-in operation settle in a proper position can be reduced, and the running-in time can be shortened. The allowable maximum value of 0.4 mm for the gap δ is determined based on the result of a running-in test described later.

【0025】前記内輪の小鍔面を、研削加工面または旋
削加工面とすることにより(請求項4)、前記内輪の小
鍔面と円錐ころの小端面との間の隙間δを精度よく管理
することができる。
By making the small collar surface of the inner ring a grinding surface or a turning surface (Claim 4), the gap δ between the small collar surface of the inner ring and the small end surface of the tapered roller can be accurately controlled. can do.

【0026】また、この発明は、ギヤオイルが封入され
たハウジング内に、歯車軸が円錐ころ軸受により回転自
在に支持された車両用歯車軸支持装置であって、前記円
錐ころ軸受が、円錐状の軌道面を有する外輪と、円錐状
の軌道面を有し、この軌道面の大径側に大鍔面、小径側
に小鍔面が設けられた内輪と、外輪の軌道面と内輪の軌
道面との間に転動自在に配列された複数の円錐ころと、
円錐ころを所定の円周方向間隔に保持する保持器とを備
え、軸受使用時に円錐ころの大端面が前記内輪の大鍔面
と接触して案内されるものにおいて、前記内輪の小鍔面
を、前記円錐ころの小端面と平行な面で形成し、前記円
錐ころの大端面の曲率半径をR、円錐ころの円錐角の頂
点から前記内輪大鍔面までの距離をRBASEとしたとき、
R/RBA SEを0.75〜0.87の範囲とした構成を採
用することにより(請求項5)、歯車軸支持装置の摩擦
によるトルクロスと発熱を低減して耐久性を向上できる
とともに、馴らし運転時間を短縮することができる。
Further, the present invention is a vehicle gear shaft support device in which a gear shaft is rotatably supported by a tapered roller bearing in a housing in which gear oil is sealed, wherein the tapered roller bearing has a conical shape. An outer ring having a raceway surface, an inner ring having a conical raceway surface, a large flange surface on the large diameter side and a small flange surface on the small diameter side of the raceway surface, a raceway surface of the outer ring and a raceway surface of the inner ring A plurality of conical rollers arranged to be able to roll freely between
A retainer for holding the tapered rollers at a predetermined circumferential interval, wherein the large end surface of the tapered rollers is brought into contact with the large flange surface of the inner ring when the bearing is used, and the small flange surface of the inner ring is When formed from a surface parallel to the small end surface of the tapered roller, the radius of curvature of the large end surface of the tapered roller is R, and the distance from the apex of the cone angle of the tapered roller to the inner ring large flange surface is R BASE ,
By adopting a configuration in which the R / R BA SE in the range of from 0.75 to 0.87 (claim 5), it is possible to improve the durability by reducing the heat generation and torque loss due to friction of the gear shaft supporting device, The running-in time can be reduced.

【0027】前記車両用歯車軸支持装置において、前記
内輪の大鍔面の表面粗さRa を0.05〜0.20μm
の範囲に形成することにより(請求項6)、前記内輪大
鍔面と円錐ころ大端面間での潤滑状態を適正な状態に保
ち、歯車軸支持装置の耐久性をさらに高めることができ
る。
[0027] In the gear shaft support system the vehicles, 0.05~0.20Myuemu a surface roughness R a of the large rib surface of the inner ring
(Claim 6), the lubrication state between the inner ring large flange surface and the tapered roller large end surface can be maintained in an appropriate state, and the durability of the gear shaft support device can be further increased.

【0028】前記車両用歯車軸支持装置において、前記
円錐ころの大端面が、前記内輪の大鍔面と接触したとき
に形成される、前記内輪の小鍔面と前記円錐ころの小端
面との間の隙間δをδ≦0.4mmの寸法範囲内に規制
することにより(請求項7)、前記馴らし運転での円錐
ころが正規の位置に落ち着くまでに必要な回転回数を減
らし、馴らし運転時間を短縮することができる。
In the vehicle gear shaft supporting device, the large end surface of the tapered roller may be formed when the large end surface of the tapered roller comes into contact with the large flange surface of the inner ring. By regulating the gap δ between δ to 0.4 mm (claim 7), the number of rotations required for the tapered rollers in the running-in operation to settle in a proper position is reduced, and the running-in time is reduced. Can be shortened.

【0029】前記車両用歯車軸支持装置において、前記
内輪の小鍔面を、研削加工面または旋削加工面とするこ
とにより(請求項8)、前記内輪の小鍔面と円錐ころの
小端面との間の隙間δを精度よく管理することができ
る。
In the vehicle gear shaft support device, the small collar surface of the inner ring may be a grinding surface or a turning surface (Claim 8), so that the small collar surface of the inner ring and the small end surface of the tapered roller may be formed. Can be accurately managed.

【0030】[0030]

【発明の実施の形態】以下、図面に基づいて、この発明
の実施形態を説明する。図1は、前述したように、自動
車のデファレンシャルであり、前記ドライブピニオン4
の軸と、前記リングギヤ5が取り付けられた差動歯車ケ
ース7の軸の支持に、それぞれ実施形態の円錐ころ軸受
2、3、6を用いた歯車軸支持装置が採用されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a differential of an automobile, as described above, and the drive pinion 4.
The gear shaft supporting device using the tapered roller bearings 2, 3, and 6 of the embodiment is adopted to support the shaft of the differential gear case 7 to which the ring gear 5 is attached, and the shaft of the differential gear case 7.

【0031】図2(a)は、代表例として円錐ころ軸受
6を示す。この円錐ころ軸受6は、円錐状の軌道面10
を有する外輪11と、円錐状の軌道面12を有し、この
軌道面12の大径側に大鍔面13、小径側に小鍔面14
が設けられた内輪15と、外輪11と内輪15の各軌道
面10、12の間に転動自在に配列された複数の円錐こ
ろ16と、円錐ころ16を所定の円周方向間隔に保持す
る保持器17とで構成されている。
FIG. 2A shows a tapered roller bearing 6 as a typical example. The tapered roller bearing 6 has a conical raceway surface 10.
And a conical raceway surface 12 having a large flange surface 13 on the large diameter side and a small flange surface 14 on the small diameter side.
Are provided, a plurality of tapered rollers 16 arranged to be able to roll freely between the raceways 10, 12 of the outer ring 11 and the inner ring 15, and the tapered rollers 16 are held at predetermined circumferential intervals. And a retainer 17.

【0032】前記内輪15の小鍔面14は、図2(b)
に拡大して示すように、軌道面12に配列された円錐こ
ろ16の小端面19と平行な研削加工面に仕上げられ、
図中に一点鎖線で示す初期組立状態で円錐ころ16の小
端面19と面接触し、実線で示す円錐ころ16が正規の
位置に落ち着いた状態での円錐ころ16小端面19との
隙間δが、δ≦0.4mmの寸法規制範囲内に入れられ
ている。
The small collar surface 14 of the inner ring 15 is shown in FIG.
As shown in an enlarged manner, the grinding surface is finished in parallel with the small end surface 19 of the tapered rollers 16 arranged on the raceway surface 12,
In the initial assembly state shown by the chain line in the drawing, the small end face 19 of the tapered roller 16 is in surface contact with the small end face 19 of the tapered roller 16, and the gap δ between the tapered roller 16 and the small end face 19 in the state where the tapered roller 16 shown by the solid line is settled at a regular position is formed. , Δ ≦ 0.4 mm.

【0033】図3に示すように、前記円錐ころ16と、
外輪11および内輪15の各軌道面10、12の各円錐
角頂点は、円錐ころ軸受6の中心線上の一点Oで一致
し、円錐ころ16の大端面18の曲率半径Rと、O点か
ら内輪15の大鍔面13までの距離RBASEとの比R/R
BASEは、0.75〜0.87の範囲となるように製造さ
れている。また、大鍔面13は0.12μmの表面粗さ
a に研削加工されている。
As shown in FIG. 3, the tapered rollers 16
The vertices of the cone angles of the raceway surfaces 10 and 12 of the outer ring 11 and the inner ring 15 coincide at one point O on the center line of the tapered roller bearing 6, and the radius of curvature R of the large end surface 18 of the tapered roller 16 and the point O to the inner ring 15 ratio R / R to the distance R BASE to the large brim 13
BASE is manufactured in the range of 0.75 to 0.87. The large flange surface 13 is ground to a surface roughness Ra of 0.12 μm.

【0034】なお、図示はしないが、前記円錐ころ軸受
2、3も同様の構成と仕様で製造されている。
Although not shown, the tapered roller bearings 2 and 3 are manufactured with the same configuration and specifications.

【0035】この実施形態では、前記内輪の小鍔面を研
削加工面としたが、コスト低減のため、旋削加工面とす
ることもできる。また、本発明は種々の形態の円錐ころ
軸受への適用が可能である。
In this embodiment, the small flange surface of the inner ring is a ground surface, but it may be a turned surface for cost reduction. The present invention can be applied to various types of tapered roller bearings.

【0036】以下に実施例および比較例を挙げる。Examples and comparative examples will be described below.

【0037】[0037]

【実施例】図2および図3に示した、円錐ころの大端面
の曲率半径Rが、前記R/RBASE=0.75〜0.87
の範囲に入り、内輪の大鍔面の表面粗さRa が0.12
μmで、小鍔面が円錐ころの小端面と平行な研削加工面
で形成され、前記隙間δがδ≦0.4mmの寸法規制範
囲内に入れられた円錐ころ軸受(表1中の実施例1〜
4)を用意した。軸受の寸法は、いずれも内径40m
m、外径68mmである。
EXAMPLES 2 and 3, the radius of curvature R of the large end faces of tapered rollers, wherein R / R BASE = from 0.75 to .87
It enters the range of the surface roughness R a of the large rib surface of the inner ring is 0.12
The tapered roller bearing in which the small flange surface is formed by a grinding surface parallel to the small end surface of the tapered roller, and the gap δ is within the dimension regulation range of δ ≦ 0.4 mm (Example in Table 1) 1 to
4) was prepared. Bearing dimensions are 40m inside diameter
m, outer diameter 68 mm.

【0038】[0038]

【比較例】前記R/RBASEの値が本願の範囲を外れ、か
つ内輪の小鍔面が円錐ころの小端面に対して外側に傾斜
し、前記隙間δが0.4mmを越える円錐ころ軸受(表
1中の比較例1〜3)を用意した。各軸受の寸法は実施
例と同じである。
[Comparative Example] The value of R / R BASE is out of the range of the present application, and the small collar surface of the inner ring is inclined outward with respect to the small end surface of the tapered roller, and the gap δ exceeds 0.4 mm. (Comparative Examples 1 to 3 in Table 1) were prepared. The dimensions of each bearing are the same as in the embodiment.

【0039】上記実施例および比較例の円錐ころ軸受に
対して、回転試験機を用いた耐焼付き試験を実施した。
また、実施例2と比較例2の円錐ころ軸受に対しては、
馴らし運転試験も行った。馴らし運転試験のサンプル数
は、実施例2に対しては66個、比較例2に対しては1
0個とした。耐焼付き試験の試験条件は以下の通りであ
る。 負荷荷重:19.61kN 回転数 :1000〜3500rpm 潤滑油 :タービンVG56(給油量40ミリリットル
/分、給油温度40℃±3℃)
An anti-seizure test was performed on the tapered roller bearings of the above Examples and Comparative Examples using a rotation tester.
For the tapered roller bearings of Example 2 and Comparative Example 2,
A running-in test was also performed. The number of samples in the running-in test was 66 for Example 2 and 1 for Comparative Example 2.
The number was set to 0. The test conditions for the seizure resistance test are as follows. Load: 19.61 kN Revolution: 1000-3500 rpm Lubricating oil: Turbine VG56 (lubricating amount 40 ml / min, lubricating temperature 40 ° C. ± 3 ° C.)

【0040】[0040]

【表1】 [Table 1]

【0041】各試験結果を表1に示す。耐焼付き試験に
おける焼付きは、内輪の大鍔面と円錐ころの大端面の間
で生じたものである。
Table 1 shows the test results. The seizure in the anti-seizure test occurred between the large collar surface of the inner ring and the large end surface of the tapered rollers.

【0042】実施例の円錐ころ軸受は、いずれも耐焼付
き試験における焼付き発生の限界回転数が2700rp
m以上になっており、内輪大鍔面と円錐ころ大端面間の
摩擦抵抗が少ないことがわかる。一方、比較例の円錐こ
ろ軸受は、焼付き発生の限界回転数が2500rpm以
下になっており、デファレンシャル等の通常の使用条件
下で問題となることがある。大鍔面の表面粗さRa が粗
い比較例3は、同じ曲率半径Rの比較例2よりも低い焼
付き発生限界回転数を示している。
In each of the tapered roller bearings of the examples, the critical rotation speed at which seizure occurs in the seizure resistance test is 2700 rpm.
m, which indicates that the frictional resistance between the inner ring large flange surface and the tapered roller large end surface is small. On the other hand, in the tapered roller bearing of the comparative example, the critical rotation speed at which seizure occurs is 2500 rpm or less, which may cause a problem under normal use conditions such as differential. Surface roughness R a rough Comparative Example 3 of the large rib surface shows a low Seizure limit speed than Comparative Example 2 having the same radius of curvature R.

【0043】また、馴らし運転試験の結果は、比較例で
は円錐ころが正規の位置に落ち着くまでの回転回数の平
均値が6回であるのに対して、実施例では約半分の2.
96回になっている。実施例は回転回数のばらつきの標
準偏差も小さくなっており、馴らし運転時間を安定して
短縮できることがわかる。
The result of the running-in test is that, in the comparative example, the average value of the number of rotations until the tapered roller settles to the normal position is 6 times, whereas in the example, about half of the number of rotations is 2.
96 times. In the example, the standard deviation of the variation in the number of rotations is also small, and it can be seen that the running-in time can be stably reduced.

【0044】[0044]

【発明の効果】以上のように、この発明の円錐ころ軸受
は、円錐ころの大端面の曲率半径Rを、前記R/RBASE
=0.75〜0.87の範囲の値とするとともに、内輪
の小鍔面を円錐ころの小端面と平行な面で形成したの
で、内輪大鍔面と円錐ころ大端面間での辷り摩擦による
トルクロスと発熱を低減して焼付きの発生を防止でき、
かつ馴らし運転時間を短縮して軸受取り付け作業を効率
化することができる。また、車両用歯車軸支持装置の耐
久性を向上させることができる。
As described above, in the tapered roller bearing of the present invention, the radius of curvature R of the large end face of the tapered roller is set to the value of R / R BASE.
= 0.75 to 0.87, and the inner ring small flange surface is formed by a surface parallel to the tapered roller small end surface, so that the sliding friction between the inner ring large flange surface and the tapered roller large end surface. To prevent seizure by reducing torque loss and heat generation.
In addition, the running-in time can be shortened, and the work of mounting the bearing can be made more efficient. Further, the durability of the vehicle gear shaft support device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の歯車軸支持装置が組み込まれたデフ
ァレンシャルの縦断面図
FIG. 1 is a longitudinal sectional view of a differential into which a gear shaft support device according to an embodiment is incorporated.

【図2】aは図1の円錐ころ軸受を示す縦断面図、bは
aの要部拡大断面図
2A is a longitudinal sectional view showing the tapered roller bearing of FIG. 1, and FIG. 2B is an enlarged sectional view of a main part of a.

【図3】図1の円錐ころ軸受の設計仕様を説明する断面
FIG. 3 is a sectional view for explaining the design specifications of the tapered roller bearing of FIG. 1;

【図4】円錐ころ大端面の曲率半径と油膜厚さの関係を
示すグラフ
FIG. 4 is a graph showing a relationship between a radius of curvature of a tapered roller large end face and an oil film thickness.

【図5】円錐ころ大端面の曲率半径と最大ヘルツ応力の
関係を示すグラフ
FIG. 5 is a graph showing the relationship between the radius of curvature of the tapered roller large end face and the maximum Hertz stress;

【図6】従来の円錐ころ軸受を示す一部省略縦断面図FIG. 6 is a partially omitted longitudinal sectional view showing a conventional tapered roller bearing.

【図7】図6の要部拡大断面図FIG. 7 is an enlarged sectional view of a main part of FIG. 6;

【図8】a、b、cは、それぞれ円錐ころ軸受の取り付
け作業を説明する断面図
FIGS. 8A, 8B, and 8C are cross-sectional views each illustrating a mounting operation of a tapered roller bearing.

【符号の説明】[Explanation of symbols]

1 ハウジング 2、3 円錐ころ軸受 4 ドライブピニオン 5 リングギヤ 6 円錐ころ軸受 7 差動歯車ケース 8 ピニオン 9 サイドギヤ 10 軌道面 11 外輪 12 軌道面 13 大鍔面 14 小鍔面 15 内輪 16 円錐ころ 17 保持器 18 大端面 19 小端面 21 軌道面 22 外輪 23 軌道面 24 大鍔面 25 小鍔面 26 内輪 27 円錐ころ 28 保持器 29 大端面 30 小端面 Reference Signs List 1 housing 2, 3 tapered roller bearing 4 drive pinion 5 ring gear 6 tapered roller bearing 7 differential gear case 8 pinion 9 side gear 10 raceway surface 11 outer ring 12 raceway surface 13 large flange surface 14 small flange surface 15 inner ring 16 tapered roller 17 retainer 18 Large end face 19 Small end face 21 Track face 22 Outer ring 23 Track face 24 Large collar face 25 Small collar face 26 Inner ring 27 Tapered roller 28 Cage 29 Large end face 30 Small end face

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3D039 AB01 AC22 AC86 3J101 AA16 AA25 AA32 AA42 AA54 AA62 BA05 BA53 BA57 DA11 FA33 FA46 GA01 GA51  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 3D039 AB01 AC22 AC86 3J101 AA16 AA25 AA32 AA42 AA54 AA62 BA05 BA53 BA57 DA11 FA33 FA46 GA01 GA51

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 円錐状の軌道面を有する外輪と、円錐状
の軌道面を有し、この軌道面の大径側に大鍔面、小径側
に小鍔面が設けられた内輪と、外輪の軌道面と内輪の軌
道面との間に転動自在に配列された複数の円錐ころと、
円錐ころを所定の円周方向間隔に保持する保持器とを備
え、軸受使用時に円錐ころの大端面が前記内輪の大鍔面
と接触して案内される円錐ころ軸受において、前記内輪
の小鍔面が、前記円錐ころの小端面と平行な面で形成さ
れ、前記円錐ころの大端面の曲率半径をR、円錐ころの
円錐角の頂点から前記内輪大鍔面までの距離をRBASE
したとき、R/RBASEを0.75〜0.87の範囲とし
たことを特徴とする円錐ころ軸受。
1. An outer ring having a conical raceway surface, an inner race having a conical raceway surface, a large flange surface provided on a large diameter side of the raceway surface, and a small collar surface provided on a small diameter side of the raceway surface, and an outer ring A plurality of tapered rollers arranged to be able to roll freely between the raceway surface of the inner ring and the raceway surface of the inner ring,
A retainer for holding the tapered rollers at a predetermined circumferential interval, wherein the large end surface of the tapered roller contacts and is guided by the large flange surface of the inner ring when the bearing is used. The surface is formed by a surface parallel to the small end surface of the tapered roller, the radius of curvature of the large end surface of the tapered roller is R, and the distance from the vertex of the cone angle of the tapered roller to the inner ring large flange surface is R BASE . A tapered roller bearing wherein R / R BASE is in the range of 0.75 to 0.87.
【請求項2】 前記内輪の大鍔面の表面粗さRa が0.
05〜0.20μmの範囲に形成された請求項1に記載
の円錐ころ軸受。
2. A surface roughness Ra of a large collar surface of the inner ring is 0.
2. The tapered roller bearing according to claim 1, wherein the tapered roller bearing is formed in a range of 0.5 to 0.20 [mu] m.
【請求項3】 前記円錐ころの大端面が、前記内輪の大
鍔面と接触したときに形成される、前記内輪の小鍔面と
前記円錐ころの小端面との間の隙間δがδ≦0.4mm
の寸法範囲内に規制された請求項1または2に記載の円
錐ころ軸受。
3. A gap δ between the small flange surface of the inner ring and the small end surface of the tapered roller, formed when the large end surface of the tapered roller contacts the large flange surface of the inner ring, is δ ≦. 0.4mm
3. The tapered roller bearing according to claim 1, wherein the tapered roller bearing is restricted to the dimension range described in claim 3.
【請求項4】 前記内輪の小鍔面が、研削加工面または
旋削加工面である請求項1乃至3のいずれかに記載の円
錐ころ軸受。
4. The tapered roller bearing according to claim 1, wherein the small collar surface of the inner ring is a grinding surface or a turning surface.
【請求項5】 ギヤオイルが封入されたハウジング内
に、歯車軸が円錐ころ軸受により回転自在に支持された
車両用歯車軸支持装置であって、前記円錐ころ軸受が、
円錐状の軌道面を有する外輪と、円錐状の軌道面を有
し、この軌道面の大径側に大鍔面、小径側に小鍔面が設
けられた内輪と、外輪の軌道面と内輪の軌道面との間に
転動自在に配列された複数の円錐ころと、円錐ころを所
定の円周方向間隔に保持する保持器とを備え、軸受使用
時に円錐ころの大端面が前記内輪の大鍔面と接触して案
内されるものにおいて、前記内輪の小鍔面が、前記円錐
ころの小端面と平行な面で形成され、前記円錐ころの大
端面の曲率半径をR、円錐ころの円錐角の頂点から前記
内輪大鍔面までの距離をRBASEとしたとき、R/RBA SE
を0.75〜0.87の範囲としたことを特徴とする車
両用歯車軸支持装置。
5. A vehicle gear shaft supporting device in which a gear shaft is rotatably supported by a tapered roller bearing in a housing in which gear oil is sealed, wherein the tapered roller bearing comprises:
An outer ring having a conical raceway surface, an inner ring having a conical raceway surface, a large flange surface on a large diameter side and a small flange surface on a small diameter side of the raceway surface, and a raceway surface and an inner ring of the outer ring A plurality of tapered rollers that are arranged to be able to roll freely between the raceway surfaces, and a retainer that holds the tapered rollers at predetermined intervals in the circumferential direction. In those guided in contact with the large collar surface, the small collar surface of the inner ring is formed by a surface parallel to the small end surface of the tapered roller, and the radius of curvature of the large end surface of the tapered roller is R, When the distance from the apex of the cone angle to the inner ring large collar surface is R BASE , R / R BA SE
In the range of 0.75 to 0.87.
【請求項6】 請求項5において、前記内輪の大鍔面の
表面粗さRa が0.05〜0.20μmの範囲に形成さ
れた車両用歯車軸支持装置。
6. The method of Claim 5, wherein the inner ring of the large rib surface of the surface roughness R a vehicle gear shaft supporting apparatus which is formed in a range of 0.05~0.20Myuemu.
【請求項7】 請求項5または6において、前記円錐こ
ろの大端面が、前記内輪の大鍔面と接触したときに形成
される、前記内輪の小鍔面と前記円錐ころの小端面との
間の隙間δがδ≦0.4mmの寸法範囲内に規制された
車両用歯車軸支持装置。
7. The tapered roller according to claim 5, wherein a large end surface of the tapered roller is formed when the large end surface of the tapered roller comes into contact with a large flange surface of the inner ring. A gear shaft support device for a vehicle, in which a gap δ between them is regulated within a dimension range of δ ≦ 0.4 mm.
【請求項8】 請求項5乃至7のいずれかにおいて、前
記内輪の小鍔面が、研削加工面または旋削加工面である
車両用歯車軸支持装置。
8. The vehicle gear shaft supporting device according to claim 5, wherein the small collar surface of the inner ring is a grinding surface or a turning surface.
JP10341953A 1998-11-27 1998-12-01 Conical roller bearing and gear shaft support device for vehicle Pending JP2000170774A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10341953A JP2000170774A (en) 1998-12-01 1998-12-01 Conical roller bearing and gear shaft support device for vehicle
US09/448,941 US6328477B1 (en) 1998-11-27 1999-11-24 Tapered roller bearings and gear shaft support devices
FR9914907A FR2786543B1 (en) 1998-11-27 1999-11-26 CONICAL ROLLER BEARING AND GEAR SHAFT SUPPORT DEVICE
DE19956971.1A DE19956971B4 (en) 1998-11-27 1999-11-26 Tapered roller bearing and gear shaft bearing device
US09/886,378 US6447168B2 (en) 1998-11-27 2001-06-22 Tapered roller bearings and gear shaft support devices
US10/200,777 US20020186908A1 (en) 1998-11-27 2002-07-24 Tapered roller bearings and gear shaft support devices
US10/649,764 US7090405B2 (en) 1998-11-27 2003-08-28 Tapered roller bearings and gear shaft support devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10341953A JP2000170774A (en) 1998-12-01 1998-12-01 Conical roller bearing and gear shaft support device for vehicle

Publications (1)

Publication Number Publication Date
JP2000170774A true JP2000170774A (en) 2000-06-20

Family

ID=18350052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341953A Pending JP2000170774A (en) 1998-11-27 1998-12-01 Conical roller bearing and gear shaft support device for vehicle

Country Status (1)

Country Link
JP (1) JP2000170774A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623168B2 (en) 2001-01-26 2003-09-23 Koyo Seiko Co., Ltd. Tapered roller bearing
JP2004076932A (en) * 2002-06-18 2004-03-11 Koyo Seiko Co Ltd Rolling bearing, vehicular transmission and differential
JP2004360880A (en) * 2003-06-09 2004-12-24 Koyo Seiko Co Ltd Final speed reducing gear
JP2006112556A (en) * 2004-10-15 2006-04-27 Ntn Corp Conical roller bearing
JP2006349014A (en) * 2005-06-15 2006-12-28 Ntn Corp Tapered roller bearing
JP2008008466A (en) * 2006-06-30 2008-01-17 Nsk Ltd Tapered roller bearing
WO2008015829A1 (en) * 2006-08-01 2008-02-07 Ntn Corporation Tapered roller bearing
US7841773B2 (en) 2004-10-15 2010-11-30 Ntn Corporation Tapered roller bearing
JP2014077481A (en) * 2012-10-10 2014-05-01 Ntn Corp Tapered roller bearing
WO2018151209A1 (en) 2017-02-20 2018-08-23 Ntn株式会社 Tapered roller bearing
WO2018155320A1 (en) 2017-02-21 2018-08-30 Ntn株式会社 Conical roller bearing
WO2019065753A1 (en) 2017-09-28 2019-04-04 Ntn株式会社 Conical roller bearing
WO2019189169A1 (en) * 2018-03-28 2019-10-03 Ntn株式会社 Tapered roller bearing
WO2020040058A1 (en) 2018-08-22 2020-02-27 Ntn株式会社 Tapered roller bearing
US10890213B2 (en) 2017-03-28 2021-01-12 Ntn Corporation Tapered roller bearing
US11746825B2 (en) 2019-09-19 2023-09-05 Ntn Corporation Tapered roller bearing
US11754121B2 (en) 2019-09-19 2023-09-12 Ntn Corporation Tapered roller bearing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489147A (en) * 1977-12-26 1979-07-14 Koyo Seiko Co Ltd Conical roller bearing
JPH04331813A (en) * 1991-04-30 1992-11-19 Ntn Corp Conical roller bearing
JPH0587330U (en) * 1992-04-30 1993-11-26 エヌティエヌ株式会社 Tapered roller bearing
JPH06241235A (en) * 1993-02-17 1994-08-30 Koyo Seiko Co Ltd Roller bearing
JPH0996352A (en) * 1995-07-24 1997-04-08 Nippon Seiko Kk Pinion shaft supporting tapered roller bearing for differential gear
JPH09273548A (en) * 1996-04-05 1997-10-21 Nippon Seiko Kk Conical roller bearing for vehicle
JPH10176720A (en) * 1996-12-17 1998-06-30 Nissan Diesel Motor Co Ltd Lubricating device for conical roller bearing
JPH10184698A (en) * 1996-12-27 1998-07-14 Nippon Seiko Kk Conical roller bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489147A (en) * 1977-12-26 1979-07-14 Koyo Seiko Co Ltd Conical roller bearing
JPH04331813A (en) * 1991-04-30 1992-11-19 Ntn Corp Conical roller bearing
JPH0587330U (en) * 1992-04-30 1993-11-26 エヌティエヌ株式会社 Tapered roller bearing
JPH06241235A (en) * 1993-02-17 1994-08-30 Koyo Seiko Co Ltd Roller bearing
JPH0996352A (en) * 1995-07-24 1997-04-08 Nippon Seiko Kk Pinion shaft supporting tapered roller bearing for differential gear
JPH09273548A (en) * 1996-04-05 1997-10-21 Nippon Seiko Kk Conical roller bearing for vehicle
JPH10176720A (en) * 1996-12-17 1998-06-30 Nissan Diesel Motor Co Ltd Lubricating device for conical roller bearing
JPH10184698A (en) * 1996-12-27 1998-07-14 Nippon Seiko Kk Conical roller bearing

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623168B2 (en) 2001-01-26 2003-09-23 Koyo Seiko Co., Ltd. Tapered roller bearing
JP2004076932A (en) * 2002-06-18 2004-03-11 Koyo Seiko Co Ltd Rolling bearing, vehicular transmission and differential
JP2004360880A (en) * 2003-06-09 2004-12-24 Koyo Seiko Co Ltd Final speed reducing gear
US7841773B2 (en) 2004-10-15 2010-11-30 Ntn Corporation Tapered roller bearing
JP2006112556A (en) * 2004-10-15 2006-04-27 Ntn Corp Conical roller bearing
JP2006349014A (en) * 2005-06-15 2006-12-28 Ntn Corp Tapered roller bearing
JP4484771B2 (en) * 2005-06-15 2010-06-16 Ntn株式会社 Tapered roller bearing design method
JP2008008466A (en) * 2006-06-30 2008-01-17 Nsk Ltd Tapered roller bearing
WO2008015829A1 (en) * 2006-08-01 2008-02-07 Ntn Corporation Tapered roller bearing
JP2008038927A (en) * 2006-08-01 2008-02-21 Ntn Corp Tapered roller bearing
US8152383B2 (en) 2006-08-01 2012-04-10 Ntn Corporation Tapered roller bearing
JP2014077481A (en) * 2012-10-10 2014-05-01 Ntn Corp Tapered roller bearing
US10816034B2 (en) 2017-02-20 2020-10-27 Ntn Corporation Tapered roller bearing
WO2018151209A1 (en) 2017-02-20 2018-08-23 Ntn株式会社 Tapered roller bearing
EP3584459A4 (en) * 2017-02-20 2020-12-16 NTN Corporation Tapered roller bearing
US10968947B2 (en) 2017-02-21 2021-04-06 Ntn Corporation Tapered roller bearing
WO2018155320A1 (en) 2017-02-21 2018-08-30 Ntn株式会社 Conical roller bearing
US10890213B2 (en) 2017-03-28 2021-01-12 Ntn Corporation Tapered roller bearing
WO2019065753A1 (en) 2017-09-28 2019-04-04 Ntn株式会社 Conical roller bearing
US11221040B2 (en) 2017-09-28 2022-01-11 Ntn Corporation Tapered roller bearing
US11668343B2 (en) 2017-09-28 2023-06-06 Ntn Corporation Tapered roller bearing
JP2019173854A (en) * 2018-03-28 2019-10-10 Ntn株式会社 Tapered roller bearing
WO2019189169A1 (en) * 2018-03-28 2019-10-03 Ntn株式会社 Tapered roller bearing
US11293484B2 (en) 2018-03-28 2022-04-05 Ntn Corporation Tapered roller bearing
WO2020040058A1 (en) 2018-08-22 2020-02-27 Ntn株式会社 Tapered roller bearing
US11542982B2 (en) 2018-08-22 2023-01-03 Ntn Corporation Tapered roller bearing
US11746825B2 (en) 2019-09-19 2023-09-05 Ntn Corporation Tapered roller bearing
US11754121B2 (en) 2019-09-19 2023-09-12 Ntn Corporation Tapered roller bearing

Similar Documents

Publication Publication Date Title
JP2000170774A (en) Conical roller bearing and gear shaft support device for vehicle
US7090405B2 (en) Tapered roller bearings and gear shaft support devices
JP2548811B2 (en) Machine parts
US6547443B2 (en) Tapered roller bearing
JP4115940B2 (en) Double row cylindrical roller bearing
EP3511588B1 (en) Sealed bearing
US7048445B2 (en) Cylindrical roller bearing
EP1249623B1 (en) Tapered roller bearing
EP1302636B1 (en) Rotatably supporting device for turbocharger
JP2584623Y2 (en) Tapered roller bearing
EP1632684B1 (en) Tapered roller bearings
US20100183256A1 (en) Angular ball bearing
JPH09273548A (en) Conical roller bearing for vehicle
JP2018105500A (en) Thrust roller bearing and bearing ring for the same
JPH09291942A (en) Radial rolling bearing
JP2000161349A (en) Gear shaft support device for vehicle
JP2011094716A (en) Thrust roller bearing
CN108071683B (en) Tapered roller bearing and power transmission device
JP2003314542A (en) Tapered roller bearing
WO2007049450A1 (en) Tapered roller bearing
US10197094B2 (en) Double-row spherical roller bearing
JP2005003198A (en) Rolling bearing and transmission for hybrid car or fuel cell car using the same
JPH11201172A (en) Tapered roller bearing
KR20040053385A (en) Bevel gear transmission
JP4190781B2 (en) Cylindrical roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010