JP2005249594A - Measuring method for load on rolling element and bearing for measuring load - Google Patents

Measuring method for load on rolling element and bearing for measuring load Download PDF

Info

Publication number
JP2005249594A
JP2005249594A JP2004060719A JP2004060719A JP2005249594A JP 2005249594 A JP2005249594 A JP 2005249594A JP 2004060719 A JP2004060719 A JP 2004060719A JP 2004060719 A JP2004060719 A JP 2004060719A JP 2005249594 A JP2005249594 A JP 2005249594A
Authority
JP
Japan
Prior art keywords
load
bearing
rolling element
measuring
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004060719A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
高志 山本
Yukio Sato
幸夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004060719A priority Critical patent/JP2005249594A/en
Publication of JP2005249594A publication Critical patent/JP2005249594A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method for load on a rolling element and a bearing for measuring the load capable of accurately measuring the load on the rolling element at the bearing which contact angle varies when an axial load is acting on. <P>SOLUTION: In a rolling inner wheel 13 or an outer wheel 11, a notch groove 16 whose groove bottom surface angle 17 is set rectangular to the line 18 of mean value α1 of an initial contact angle α0 and a contact angle α2 at the time of maximum axial loading, is formed. On the groove bottom surface 17 of the notched groove 16, two sheets of 2-axis strain gauges 19, 19 are pasted. The axial direction position for pasting the strain gauges 19, 19 is a position evenly split in the axial direction for the mean value line 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、転動体荷重測定方法及び荷重測定用軸受に関し、より詳細にはアキシアル荷重を受けた際に、接触角がアキシアル荷重の大きさによって変化する軸受の転動体の負荷荷重を測定する転動体荷重測定方法及び荷重測定用軸受に関する。   The present invention relates to a rolling element load measuring method and a load measuring bearing. More specifically, the present invention relates to a rolling element that measures the load of a rolling element of a bearing whose contact angle varies depending on the magnitude of the axial load when an axial load is applied. The present invention relates to a moving body load measuring method and a load measuring bearing.

走行減速機の主軸受け用軸受のような軸受は、大きなモーメント荷重を受けるため2個の軸受で予圧を与えて使用される場合が多く、軸受の転がり疲れ寿命が問題になる。軸受の転がり疲れ寿命は、予圧の設定と荷重のかかり方(2個の軸受への負荷配分等)が影響するために、実際の転動体荷重分布を把握し、寿命が長くなるように予圧量を設定することが重要である。そのため転動体荷重やその分布を正確に測定する方法が必要である。   Bearings such as the main bearing of a traveling speed reducer receive a large moment load and are often used with two bearings preloaded, and the rolling fatigue life of the bearing becomes a problem. Since the rolling fatigue life of a bearing is affected by the setting of the preload and how the load is applied (load distribution to the two bearings, etc.), the actual rolling element load distribution is grasped, and the amount of preload is set so that the life is extended. It is important to set Therefore, a method for accurately measuring the rolling element load and its distribution is necessary.

従来の転動体荷重測定方法の一例として、円すいころ軸受を用いたものが知られている(例えば、特許文献1参照)。図8に示すように、特許文献1に開示された転動体荷重測定方法は、円すいころ軸受1の内輪2或いは外輪3に切欠き部4を形成する。切欠き部4の底面5は、内輪2或いは外輪3ところ6との接触線M−Mと平行となる直線L−Lとし、また切欠き部4の底面5に接着したひずみゲージ7の幅を、ころ6の長さに対して適当に広くしている。これにより、内輪2或いは外輪3が傾き、円すいころ軸受1に負荷される荷重作用線がころ6の中心からずれる場合でも、軸受1に負荷された荷重をころ6に作用する荷重の大きさに比例したひずみ量として検出できるようにしている。そして、検出されたひずみ量をもとに軸受回転時において、実際に円すいころ軸受1に負荷されるスラスト荷重やラジアル荷重を正確に知ることができる。
特公昭52−10027号公報(第1−3頁、第3図)
As an example of a conventional rolling element load measuring method, one using a tapered roller bearing is known (for example, see Patent Document 1). As shown in FIG. 8, the rolling element load measuring method disclosed in Patent Document 1 forms a notch 4 in the inner ring 2 or the outer ring 3 of the tapered roller bearing 1. The bottom surface 5 of the notch 4 is a straight line L-L that is parallel to the contact line MM with the inner ring 2 or the outer ring 3 and the width of the strain gauge 7 bonded to the bottom surface 5 of the notch 4. The width of the roller 6 is appropriately widened. Thereby, even when the inner ring 2 or the outer ring 3 is inclined and the load acting line applied to the tapered roller bearing 1 is deviated from the center of the roller 6, the load applied to the bearing 1 is increased to the magnitude of the load acting on the roller 6. It can be detected as a proportional strain amount. Then, it is possible to accurately know the thrust load and radial load actually applied to the tapered roller bearing 1 during the rotation of the bearing based on the detected strain amount.
Japanese Patent Publication No.52-10027 (page 1-3, Fig. 3)

ところで、上記の転動体荷重測定方法では、円すいころ軸受1を測定しており、荷重がかかっても接触角に変化がないので、ひずみゲージ7を切欠き部4の底面5に単純に配置していた。しかしながら、アンギュラ玉軸受のように、アキシアル荷重がかかる場合、荷重の大きさによって接触角が変化するために、ひずみの検出精度が低下するという問題があった。   By the way, in the above-mentioned rolling element load measuring method, the tapered roller bearing 1 is measured, and the contact angle does not change even when a load is applied. Therefore, the strain gauge 7 is simply arranged on the bottom surface 5 of the notch 4. It was. However, when an axial load is applied as in the case of an angular ball bearing, the contact angle changes depending on the magnitude of the load.

本発明は、上記事情に鑑みてなされたものであって、その目的は、アキシアル荷重がかかって接触角が変化する軸受の転動体の負荷荷重を精度良く測定することができる転動体荷重測定方法及び荷重測定用軸受を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is a rolling element load measuring method capable of accurately measuring the load load of a rolling element of a bearing in which an axial load is applied and the contact angle changes. And providing a load measuring bearing.

本発明の上記目的は、以下の構成により達成される。
(1) 内輪と、外輪と、該内輪と外輪間に配置された複数の転動体とを備え、アキシアル荷重を受けた際に、接触角が該アキシアル荷重の大きさによって変化する軸受の前記転動体の負荷荷重を測定する転動体荷重測定方法であって、
回転する前記内輪或いは外輪に、溝底面の角度が、初期の接触角と最大アキシアル荷重負荷時の接触角との中央値の線に対して直角に設定された切欠き溝を形成し、
前記切欠き溝の前記溝底面に2枚の2軸ひずみゲージを貼付し、該ひずみゲージを貼付ける軸方向位置が、前記中央値の線に対して軸方向に均等振り分けされた位置であることを特徴とする請求項1に記載の転動体荷重測定方法。
(2) 前記ひずみゲージにより検出されたひずみ量は、無線システム或いはスリップリングを用いて信号伝達されることを特徴とする(1)に記載の転動体荷重測定方法。
(3) 内輪と、外輪と、該内輪と外輪間に配置された複数の転動体とを備え、アキシアル荷重を受けた際に、接触角が該アキシアル荷重の大きさによって変化する軸受の前記転動体の負荷荷重を測定する荷重測定用軸受であって、
回転する前記内輪或いは外輪には、溝底面の角度が、初期の接触角と最大アキシアル荷重負荷時の接触角との中央値の線に対して直角に設定された切欠き溝が形成されており、
前記切欠き溝の前記溝底面に2枚の2軸ひずみゲージを貼付するとともに、該ひずみゲージを貼付ける軸方向位置が、前記中央値の線に対して軸方向に均等振り分けされた位置であることを特徴とする荷重測定用軸受。
The above object of the present invention is achieved by the following configurations.
(1) The bearing has an inner ring, an outer ring, and a plurality of rolling elements arranged between the inner ring and the outer ring, and the bearing angle changes according to the magnitude of the axial load when an axial load is applied. A rolling element load measuring method for measuring a load of a moving object,
In the rotating inner ring or outer ring, a notch groove is formed in which the angle of the groove bottom surface is set to be perpendicular to the median line between the initial contact angle and the contact angle at the time of maximum axial load,
Two biaxial strain gauges are affixed to the groove bottom surface of the notch groove, and the axial position where the strain gauge is affixed is a position that is equally distributed in the axial direction with respect to the median line. The rolling element load measuring method according to claim 1.
(2) The rolling element load measuring method according to (1), wherein the strain amount detected by the strain gauge is transmitted as a signal using a wireless system or a slip ring.
(3) The bearing includes an inner ring, an outer ring, and a plurality of rolling elements disposed between the inner ring and the outer ring, and the bearing angle changes according to the magnitude of the axial load when an axial load is applied. A load measuring bearing for measuring a load of a moving body,
The rotating inner ring or outer ring is formed with a notch groove in which the angle of the groove bottom surface is set to be perpendicular to the median line between the initial contact angle and the contact angle at the time of maximum axial load. ,
Two biaxial strain gauges are affixed to the groove bottom surface of the notch groove, and the axial position where the strain gauge is affixed is a position that is equally distributed in the axial direction with respect to the median line. A load measuring bearing.

本発明の転動体荷重測定方法によれば、切欠き溝の溝底面が、初期接触角と最大アキシアル荷重負荷時の接触角との中央値の線に対して直角に設定されており、切欠き溝の溝底面に貼付けた2枚の2軸ひずみゲージの軸方向位置が、この中央値の線に対して軸方向に均等振り分けされた位置であるために、ひずみゲージを貼った2箇所の位置の範囲内に、アキシアル荷重がかかった時の接触位置が必ず配置されるようになる。従って、2箇所のいずれのひずみゲージからもアキシアル荷重負荷によるひずみを検出でき、精度の良い測定ができる。それにより、軸受に作用している荷重の把握を行え、荷重条件に適した軸受仕様を設計することができる。   According to the rolling element load measuring method of the present invention, the groove bottom surface of the notch groove is set at a right angle to the median line of the initial contact angle and the contact angle at the time of maximum axial load. Since the axial position of the two biaxial strain gauges affixed to the groove bottom surface of the groove is a position that is evenly distributed in the axial direction with respect to this median line, the two positions where the strain gauges are affixed Within this range, the contact position when an axial load is applied is always arranged. Therefore, the strain due to the axial load can be detected from any of the two strain gauges, and measurement with high accuracy can be performed. Thereby, the load acting on the bearing can be grasped, and a bearing specification suitable for the load condition can be designed.

また、本発明の転動体荷重測定方法によれば、ひずみゲージにより検出されたひずみ量が、無線システム或いはスリップリングを用いて信号伝達されるために、回転輪側での転動体荷重を測定することができ、それによって、負荷圏内の各位置での転動体荷重や負荷圏範囲が分かり、荷重のかかり方を調べるのに好適である。   In addition, according to the rolling element load measuring method of the present invention, since the amount of strain detected by the strain gauge is transmitted using a wireless system or a slip ring, the rolling element load on the rotating wheel side is measured. Thus, the rolling element load and the load area range at each position in the load area can be known, which is suitable for examining how the load is applied.

本発明の荷重測定用軸受によれば、切欠き溝の溝底面が、初期接触角と最大アキシアル荷重負荷時の接触角との中央値に対して直角に設定されており、切欠き溝の溝底面に貼付けた2枚の2軸ひずみゲージの軸方向位置が、この中央値の線に対して軸方向に均等振り分けされた位置であるため、ひずみゲージを貼った2箇所の位置の範囲内に、アキシアル荷重がかかった時の接触位置が必ず配置されるようになる。従って、上記のような荷重測定用軸受を用いることで、2箇所のいずれのひずみゲージからもアキシアル荷重負荷によるひずみ量を検出でき、精度の良い測定ができる。   According to the load measuring bearing of the present invention, the groove bottom surface of the notch groove is set at right angles to the median value of the initial contact angle and the contact angle at the time of maximum axial load, and the groove of the notch groove Since the axial positions of the two biaxial strain gauges attached to the bottom surface are equally distributed in the axial direction with respect to the median line, they are within the range of the two positions where the strain gauges are attached. The contact position when an axial load is applied is always arranged. Therefore, by using the load measuring bearing as described above, the strain amount due to the axial load load can be detected from any of the two strain gauges, and the measurement can be performed with high accuracy.

以下、本発明の実施形態に係る転動体荷重測定方法及び荷重測定用軸受を図面に基づいて詳細に説明する。   Hereinafter, a rolling element load measuring method and a load measuring bearing according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は本発明に係る一実施形態の転動体荷重測定方法に用いる荷重測定用軸受を示す断面図、図2は図1に示す荷重測定用軸受の正面図、図3は図1に示す荷重測定用軸受を用いた転動体荷重測定試験機の側面図、図4は転動体が切欠き溝を通過したときのひずみ波形図、図5は図1に示す荷重測定用軸受を用いて行う転動体荷重測定方法の測定系に無線システムを使った場合のブロック図、図6は図1に示す荷重測定用軸受を用いて行う転動体荷重測定方法の測定系にスリップリングを使った場合のブロック図、図7は荷重測定用軸受の変形例を示す断面図である。   1 is a cross-sectional view showing a load measuring bearing used in a rolling element load measuring method according to an embodiment of the present invention, FIG. 2 is a front view of the load measuring bearing shown in FIG. 1, and FIG. 3 is a load shown in FIG. FIG. 4 is a side view of a rolling element load measuring tester using a measuring bearing, FIG. 4 is a strain waveform diagram when the rolling element passes through a notch groove, and FIG. 5 is a rolling diagram using the load measuring bearing shown in FIG. FIG. 6 is a block diagram when a wireless system is used as a measurement system for a moving body load measurement method. FIG. 6 is a block diagram when a slip ring is used as a measurement system for a rolling element load measurement method performed using the load measurement bearing shown in FIG. FIG. 7 is a cross-sectional view showing a modification of the load measuring bearing.

図1に示すように、本発明の一実施形態である荷重測定用軸受10は、アンギュラ玉軸受であって、内周面に外輪軌道面12を有するカウンターボアタイプである外輪11と、外周面に内輪軌道面14を有するカウンターボアタイプである内輪13と、これら外輪軌道面12と内輪軌道面14との間に接触角を持って周方向に転動自在に組み込まれた複数の転動体である玉15と、これら複数の玉15を周方向に所定の間隔で保持する保持器(図示せず)とを備えている。   As shown in FIG. 1, a load measuring bearing 10 according to an embodiment of the present invention is an angular ball bearing, and includes an outer ring 11 that is a counter bore type having an outer ring raceway surface 12 on an inner peripheral surface, and an outer peripheral surface. A ball which is a counter bore type having an inner ring raceway surface 14 and a plurality of rolling elements incorporated in a circumferential direction with a contact angle between the outer ring raceway surface 12 and the inner ring raceway surface 14. 15 and a cage (not shown) that holds the plurality of balls 15 in the circumferential direction at a predetermined interval.

図1及び図2に示されるように、外輪11の外径面には、その1箇所に周方向長さL1の幅を有する切欠き溝16が形成されている。切欠き溝16は、溝底面17の角度が、アキシアル荷重が負荷されていない初期接触角α0と最大アキシアル荷重負荷時の接触角α2との中央値α1の線18に対して直角に設定されている。そして、切欠き溝16の溝底面17の周方向中央部には2枚の2軸ひずみゲージ19,19が貼付けられている。ひずみゲージ19,19は、軸方向位置が、初期の接触角α0と最大アキシアル荷重負荷時の接触角α2との中央値α1の線18に対して軸方向に均等振り分けされた位置に設定されている。   As shown in FIGS. 1 and 2, a notch groove 16 having a width of the circumferential length L <b> 1 is formed at one location on the outer diameter surface of the outer ring 11. In the notch groove 16, the angle of the groove bottom surface 17 is set to be perpendicular to the line 18 having a median value α1 between the initial contact angle α0 when no axial load is applied and the contact angle α2 when the maximum axial load is applied. Yes. Two biaxial strain gauges 19 and 19 are attached to the central portion in the circumferential direction of the groove bottom surface 17 of the notch groove 16. The strain gauges 19 and 19 are set at positions where the axial positions are equally distributed in the axial direction with respect to the line 18 having a median value α1 between the initial contact angle α0 and the contact angle α2 when the maximum axial load is applied. Yes.

このように構成された2つの荷重測定用軸受10,10は、図3に示すように、転動体荷重測定試験機50に設置されて、軸受10,10の転動体15,15の負荷荷重が測定される。転動体荷重測定試験機50は、ハウジング51と、固定軸52と、L型台座53と、駆動軸54と、負荷軸受55と、ロードセル56と、負荷装置57とを備える。   As shown in FIG. 3, the two load measuring bearings 10, 10 configured in this way are installed in a rolling element load measuring test machine 50, and load loads of the rolling elements 15, 15 of the bearings 10, 10 are reduced. Measured. The rolling element load measuring and testing machine 50 includes a housing 51, a fixed shaft 52, an L-shaped pedestal 53, a drive shaft 54, a load bearing 55, a load cell 56, and a load device 57.

駆動軸54は、駆動モータ(図示せず)に連結されたタイミングベルト(図示せず)が掛け渡されたタイミングプーリ58を一端部に備えており、駆動軸54は、駆動モータによって他端部に固定されたハウジング51とともに回転する。   The drive shaft 54 includes a timing pulley 58 that spans a timing belt (not shown) connected to a drive motor (not shown) at one end, and the drive shaft 54 is connected to the other end by the drive motor. Rotates with the housing 51 fixed to the

負荷軸受箱55は、一対の円すいころ軸受からなり、内輪59,59が駆動軸54に外嵌され、外輪60,60が負荷軸受箱55に内嵌されている。負荷軸受箱55は、負荷軸受箱55がロードセル56を介して負荷装置57に結合されている。負荷装置57は、L型台座53上に配置されており、油圧シリンダ62を内蔵している。   The load bearing box 55 includes a pair of tapered roller bearings. Inner rings 59 and 59 are fitted on the drive shaft 54, and outer rings 60 and 60 are fitted on the load bearing box 55. The load bearing box 55 is coupled to a load device 57 via a load cell 56. The load device 57 is disposed on the L-shaped pedestal 53 and incorporates a hydraulic cylinder 62.

荷重測定用軸受10,10は、内輪13,13をL型台座53に固定された固定軸52に外嵌し、外輪11、11をハウジング51に内嵌させて、背面組合せで転動体荷重測定試験機50に配置される。   The load measuring bearings 10 and 10 have inner rings 13 and 13 fitted on a fixed shaft 52 fixed to an L-shaped pedestal 53, and outer rings 11 and 11 fitted on a housing 51, and rolling element load measurement is performed with a rear combination. Arranged on the testing machine 50.

このように構成された転動体荷重測定試験機50では、ラジアル荷重とアキシアル荷重が合成された合成荷重がロードセル56を介して負荷装置57から負荷軸受箱55に負荷されるとともに、駆動モータによってハウジング51が駆動軸54とともに回転することにより、荷重測定用軸受10,10の外輪11,11が合成荷重を受けながら回転される。荷重測定用軸受10,10の外輪11,11が回転されることにより、外輪11の切欠き溝16が玉15を通過する際に、その玉15に負荷された荷重に伴う切欠き溝16のひずみ量がひずみゲージ19,19によって検出される。即ち、図4に示すように、玉15が切欠き溝16を通過するたびに、ピークとなるひずみ量が検出される。   In the rolling element load measuring and testing machine 50 configured as described above, a combined load obtained by combining the radial load and the axial load is loaded from the load device 57 to the load bearing box 55 via the load cell 56, and the housing is driven by the drive motor. By rotating 51 together with the drive shaft 54, the outer rings 11, 11 of the load measuring bearings 10, 10 are rotated while receiving a combined load. By rotating the outer rings 11 and 11 of the load measuring bearings 10 and 10, when the notch groove 16 of the outer ring 11 passes through the ball 15, the notch groove 16 associated with the load applied to the ball 15 is changed. The amount of strain is detected by strain gauges 19 and 19. That is, as shown in FIG. 4, every time the ball 15 passes through the notch groove 16, a peak strain amount is detected.

検出されたひずみ量は、計測装置70(図5に示す)に伝達される。図5に示すように、計測装置70は、無線システムであって、トランスミッタ71と、送信アンテナ72と、受信アンテナ73と、受信機74と、ハウジング51の回転数を検出するための回転パルス検出器75と、アンプ76と、データレコーダ77と、モニタ装置78と、から構成されている。トランスミッタ71と送信アンテナ72とは、ハウジング51に装備される。   The detected strain amount is transmitted to the measuring device 70 (shown in FIG. 5). As shown in FIG. 5, the measurement device 70 is a wireless system, and a rotation pulse detection for detecting the number of rotations of a transmitter 71, a transmission antenna 72, a reception antenna 73, a receiver 74, and a housing 51. It comprises an instrument 75, an amplifier 76, a data recorder 77, and a monitor device 78. The transmitter 71 and the transmission antenna 72 are mounted on the housing 51.

計測装置70は、ひずみゲージ19,19を組み込んだ転動体荷重検出ブリッジによりひずみ量を電圧信号として検出し、トランスミッタ71により無線信号に変換されて送信アンテナ72から発信され、受信アンテナ73を経由して受信機74によって受信され、ひずみ量が測定される。そして、受信機74で測定されたひずみ量がデータレコーダ77に取り込まれて保存されるとともに、モニタ装置78によって画像として表示される。このとき、回転数データが、回転パルス検出器75において発生した電気信号をアンプ76によって増幅したうえでデータレコーダ77及びモニタ装置78に与えられているので、回転数に対するひずみ量に基づいて相当荷重を演算処理することにより、転動体荷重を算出することができる。これにより、事前に計測した転動体荷重とひずみの関係である校正線図と整合性のある転動体荷重を得ることができる。   The measuring device 70 detects the amount of strain as a voltage signal by the rolling element load detection bridge incorporating the strain gauges 19, 19, is converted into a radio signal by the transmitter 71, is transmitted from the transmission antenna 72, and passes through the reception antenna 73. Is received by the receiver 74 and the amount of distortion is measured. Then, the distortion amount measured by the receiver 74 is captured and stored in the data recorder 77 and displayed as an image by the monitor device 78. At this time, since the rotational speed data is supplied to the data recorder 77 and the monitor device 78 after the electric signal generated in the rotational pulse detector 75 is amplified by the amplifier 76, the equivalent load is based on the amount of strain with respect to the rotational speed. Can be calculated to calculate the rolling element load. Thereby, it is possible to obtain a rolling element load that is consistent with a calibration diagram that is a relationship between the rolling element load and strain measured in advance.

なお、図6に示すように、図5に示した無線システムの計測装置70に代えて、スリップリング81を使った計測装置80を用いることもできる。計測装置80は、スリップリング81と、動ひずみ計82と、回転パルス検出器83と、アンプ84と、データレコーダ85と、モニタ装置86とから構成されている。   As shown in FIG. 6, a measuring device 80 using a slip ring 81 may be used instead of the measuring device 70 of the wireless system shown in FIG. The measuring device 80 includes a slip ring 81, a dynamic strain meter 82, a rotation pulse detector 83, an amplifier 84, a data recorder 85, and a monitor device 86.

計測装置80は、ひずみゲージ19,19を組み込んだ転動体荷重検出ブリッジによりひずみ量を電圧信号として検出し、スリップリング81を介して動ひずみ計82に伝達される。そして、動ひずみ計82によって測定されたひずみ量がデータレコーダ85に取り込まれて保存されるとともに、モニタ装置86によって画像として表示される。このとき、回転数データが、回転パルス検出器83において発生した電気信号をアンプ84によって増幅したうえでデータレコーダ85及びモニタ装置86に与えられているので、回転数に対するひずみ量に基づいて相当荷重を演算処理することにより、転動体荷重を算出することができる。このようにしても、事前に計測した転動体荷重とひずみの関係である校正線図と整合性のある転動体荷重を得ることができる。   The measuring device 80 detects the amount of strain as a voltage signal by a rolling element load detection bridge incorporating the strain gauges 19, 19, and is transmitted to the dynamic strain meter 82 via the slip ring 81. Then, the strain amount measured by the dynamic strain meter 82 is captured and stored in the data recorder 85 and is displayed as an image by the monitor device 86. At this time, since the rotational speed data is supplied to the data recorder 85 and the monitor device 86 after the electric signal generated in the rotational pulse detector 83 is amplified by the amplifier 84, the equivalent load is based on the amount of strain with respect to the rotational speed. Can be calculated to calculate the rolling element load. Even in this case, it is possible to obtain a rolling element load that is consistent with a calibration diagram that is a relationship between the rolling element load and strain measured in advance.

次に、図7を参照して、本実施形態に係る荷重測定用軸受の変形例について説明する。   Next, a modification of the load measuring bearing according to the present embodiment will be described with reference to FIG.

図7に示すように、本変形例の荷重測定用軸受90は、自動調心ころ軸受であって、内周面に球面状の外輪軌道面92を有する外輪91と、外周面に2列の内輪軌道面94,94を有する内輪93と、これら外輪軌道面92と内輪軌道面94,94との間に周方向に転動自在に組み込まれた複列の複数の転動体である、たる形のころ95と、複列の複数のころ95を転動自在に保持する保持器96とを備えている。   As shown in FIG. 7, the load measuring bearing 90 of this modification is a self-aligning roller bearing, and includes an outer ring 91 having a spherical outer ring raceway surface 92 on the inner peripheral surface and two rows on the outer peripheral surface. An inner ring 93 having inner ring raceway surfaces 94, 94, and a plurality of double-row rolling elements that are rotatably incorporated between the outer ring raceway surface 92 and the inner ring raceway surfaces 94, 94 in the circumferential direction. And a retainer 96 that holds a plurality of rows of rollers 95 in a rollable manner.

外輪91の外径面には、複列のころ95,95に対応した2箇所の対称位置に切欠き溝97,97が形成されている。切欠き溝97,97は、溝底面98,98の角度が、初期の接触角α0と最大アキシアル荷重負荷時の接触角α2との中央値α1の線100に対して直角に設定されている。そして、この溝底面98,98にそれぞれ2枚の2軸ひずみゲージ99,99が貼付けられている。ひずみゲージ99,99は、軸方向位置が、初期の接触角α0と最大アキシアル荷重負荷時の接触角α2との中央値α1の線100に対して軸方向に均等振り分けされた位置に設定されている。   On the outer diameter surface of the outer ring 91, notched grooves 97 and 97 are formed at two symmetrical positions corresponding to the double-row rollers 95 and 95. In the notched grooves 97, 97, the angle of the groove bottom surfaces 98, 98 is set to be perpendicular to the line 100 having a median value α1 between the initial contact angle α0 and the contact angle α2 when the maximum axial load is applied. Two biaxial strain gauges 99 and 99 are attached to the groove bottom surfaces 98 and 98, respectively. The strain gauges 99 and 99 are set so that their axial positions are equally distributed in the axial direction with respect to the line 100 having a median value α1 between the initial contact angle α0 and the contact angle α2 when the maximum axial load is applied. Yes.

本変形例の荷重測定用軸受90は、上述した荷重測定用軸受10と同様にして転動体荷重測定試験機50に組み付けられて用いられ、荷重測定用軸受10と同様の作用・効果を奏することができる。   The load measuring bearing 90 of this modification is used by being assembled in the rolling element load measuring test machine 50 in the same manner as the load measuring bearing 10 described above, and has the same functions and effects as the load measuring bearing 10. Can do.

上述したように、転動体荷重測定方法によれば、切欠き溝16の溝底面17が、初期接触角α0と最大アキシアル荷重負荷時の接触角α2との中央値α1の線18に対して直角に設定されており、切欠き溝16の溝底面17に貼付けた2枚の2軸ひずみゲージ19,19の軸方向位置が、この中央値の線18に対して軸方向に均等振り分けされた位置であるために、ひずみゲージ19,19を貼った2箇所の位置の範囲内に、アキシアル荷重がかかった時の接触位置が必ず配置されるようになる。従って、2箇所のいずれのひずみゲージ19,19からもアキシアル荷重負荷によるひずみを検出でき、精度の良い測定ができる。それにより、軸受に作用している荷重の把握を行え、荷重条件に適した軸受仕様を設計することができる。   As described above, according to the rolling element load measuring method, the groove bottom surface 17 of the notch groove 16 is perpendicular to the line 18 having a median value α1 between the initial contact angle α0 and the contact angle α2 when the maximum axial load is applied. The positions of the two biaxial strain gauges 19 and 19 attached to the groove bottom surface 17 of the notch groove 16 are equally distributed in the axial direction with respect to the median line 18. For this reason, the contact position when the axial load is applied is always arranged within the range of the two positions where the strain gauges 19, 19 are attached. Therefore, the strain due to the axial load can be detected from any of the two strain gauges 19 and 19, and measurement with high accuracy can be performed. Thereby, the load acting on the bearing can be grasped, and a bearing specification suitable for the load condition can be designed.

また、転動体荷重測定方法によれば、検出されたひずみ量が、無線システムを用いた計測装置70或いはスリップリング81を用いた計測装置80によって信号伝達されるために、回転輪側の転動体荷重を測定でき、負荷圏内の各位置での転動体荷重や負荷圏範囲が分かるので、荷重のかかり方を調べるのに好適である。   Further, according to the rolling element load measuring method, since the detected strain amount is transmitted by the measuring device 70 using the wireless system or the measuring device 80 using the slip ring 81, the rolling element on the rotating wheel side is used. Since the load can be measured and the rolling element load and the load area range at each position within the load area can be known, it is suitable for examining how the load is applied.

また、荷重測定用軸受10,90によれば、切欠き溝16,97,97の溝底面17,98,98が、初期接触角α0と最大アキシアル荷重負荷時の接触角α2との中央値α1の線18,100に対して直角に設定されており、切欠き溝16,97,97の溝底面17,98,98に貼付けた2枚の2軸ひずみゲージ19,19,99,99の軸方向位置が、初期接触角α0と最大アキシアル荷重負荷時の接触角α2との中央値α1の線に対して軸方向に均等振り分けされた位置であるために、ひずみゲージ19,19,99,99を貼った2箇所の位置の範囲内に、アキシアル荷重がかかった時の接触位置が必ず配置されるようになる。従って、このような荷重測定用軸受10,90を用いることで、2箇所のいずれのひずみゲージ19,19,99,99からもアキシアル荷重負荷によるひずみを検出でき、精度の良い測定ができる。   Further, according to the load measuring bearings 10, 90, the groove bottom surfaces 17, 98, 98 of the notched grooves 16, 97, 97 have a median value α1 between the initial contact angle α0 and the contact angle α2 when the maximum axial load is applied. The axes of two biaxial strain gauges 19, 19, 99, 99 affixed to the groove bottom surfaces 17, 98, 98 of the notched grooves 16, 97, 97 Since the directional position is a position that is equally distributed in the axial direction with respect to the line of the median value α1 of the initial contact angle α0 and the contact angle α2 when the maximum axial load is applied, the strain gauges 19, 19, 99, 99 The contact position when an axial load is applied is always placed within the range of the two positions where the mark is pasted. Therefore, by using such load measuring bearings 10, 90, strain due to the axial load can be detected from any of the two strain gauges 19, 19, 99, 99, and measurement with high accuracy can be performed.

なお、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良等が可能である。
本実施形態の転がり軸受は外輪回転としたが、内輪回転の場合には、内輪の内径面に切欠き溝を設けて、溝底面に2枚の2軸ひずみゲージを貼付け、内輪を回転させることにより、転動体荷重を計測することもできる。
In addition, this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
Although the rolling bearing of this embodiment is an outer ring rotation, in the case of an inner ring rotation, a notch groove is provided on the inner surface of the inner ring, and two biaxial strain gauges are attached to the groove bottom surface to rotate the inner ring. Thus, the rolling element load can be measured.

本発明に係る一実施形態の転動体荷重測定方法に用いた荷重測定用軸受を示す断面図である。It is sectional drawing which shows the bearing for load measurement used for the rolling element load measuring method of one Embodiment which concerns on this invention. 図1に示した荷重測定用軸受の正面図である。FIG. 2 is a front view of the load measuring bearing shown in FIG. 1. 図1に示した荷重測定用軸受を用いた転動体荷重測定試験機の一部破断側面図である。It is a partially broken side view of the rolling element load measuring test machine using the load measuring bearing shown in FIG. 転動体が切欠き溝を通過したときのひずみ波形図である。It is a distortion waveform figure when a rolling element passes the notch groove. 図1に示した荷重測定用軸受を用いて行う転動体荷重測定方法の測定系に無線システムを使った場合のブロック図である。It is a block diagram at the time of using a radio | wireless system for the measurement system of the rolling element load measuring method performed using the load measuring bearing shown in FIG. 図1に示した荷重測定用軸受を用いて行う転動体荷重測定方法の測定系にスリップリングを使った場合のブロック図である。It is a block diagram at the time of using a slip ring for the measuring system of the rolling element load measuring method performed using the bearing for load measurement shown in FIG. 荷重測定用軸受の変形例を示す断面図である。It is sectional drawing which shows the modification of the load measuring bearing. 従来の転動体荷重測定方法に用いた荷重測定用軸受を示す断面図である。It is sectional drawing which shows the bearing for load measurement used for the conventional rolling element load measuring method.

符号の説明Explanation of symbols

10,90 荷重測定用軸受
11,91 外輪
12,92 外輪軌道面
13,93 内輪
14,94 内輪軌道面
16,97 切欠き溝
17,98 溝底面
19,99 ひずみゲージ
70,80 計測装置
DESCRIPTION OF SYMBOLS 10,90 Load measuring bearing 11,91 Outer ring 12,92 Outer ring raceway surface 13,93 Inner ring 14,94 Inner ring raceway surface 16,97 Notch groove 17,98 Groove bottom surface 19,99 Strain gauge 70,80 Measuring device

Claims (3)

内輪と、外輪と、該内輪と外輪間に配置された複数の転動体とを備え、アキシアル荷重を受けた際に、接触角が該アキシアル荷重の大きさによって変化する軸受の前記転動体の負荷荷重を測定する転動体荷重測定方法であって、
回転する前記内輪或いは外輪に、溝底面の角度が、初期の接触角と最大アキシアル荷重負荷時の接触角との中央値の線に対して直角に設定された切欠き溝を形成し、
前記切欠き溝の前記溝底面に2枚の2軸ひずみゲージを貼付し、該ひずみゲージを貼付ける軸方向位置が、前記中央値の線に対して軸方向に均等振り分けされた位置であることを特徴とする請求項1に記載の転動体荷重測定方法。
Load of the rolling element of the bearing having an inner ring, an outer ring, and a plurality of rolling elements disposed between the inner ring and the outer ring, the contact angle of which varies depending on the magnitude of the axial load when receiving an axial load. A rolling element load measuring method for measuring a load,
In the rotating inner ring or outer ring, a notch groove is formed in which the angle of the groove bottom surface is set to be perpendicular to the median line between the initial contact angle and the contact angle at the time of maximum axial load,
Two biaxial strain gauges are affixed to the groove bottom surface of the notch groove, and the axial position where the strain gauge is affixed is a position that is equally distributed in the axial direction with respect to the median line. The rolling element load measuring method according to claim 1.
前記ひずみゲージにより検出されたひずみ量は、無線システム或いはスリップリングを用いて信号伝達されることを特徴とする請求項1に記載の転動体荷重測定方法。   The rolling element load measuring method according to claim 1, wherein the amount of strain detected by the strain gauge is transmitted using a wireless system or a slip ring. 内輪と、外輪と、該内輪と外輪間に配置された複数の転動体とを備え、アキシアル荷重を受けた際に、接触角が該アキシアル荷重の大きさによって変化する軸受の前記転動体の負荷荷重を測定する荷重測定用軸受であって、
回転する前記内輪或いは外輪には、溝底面の角度が、初期の接触角と最大アキシアル荷重負荷時の接触角との中央値の線に対して直角に設定された切欠き溝が形成されており、
前記切欠き溝の前記溝底面に2枚の2軸ひずみゲージを貼付するとともに、該ひずみゲージを貼付ける軸方向位置が、前記中央値の線に対して軸方向に均等振り分けされた位置であることを特徴とする荷重測定用軸受。
Load of the rolling element of the bearing having an inner ring, an outer ring, and a plurality of rolling elements disposed between the inner ring and the outer ring, the contact angle of which varies depending on the magnitude of the axial load when receiving an axial load. A load measuring bearing for measuring a load,
The rotating inner ring or outer ring has a notch groove in which the angle of the groove bottom surface is set to be perpendicular to the median line between the initial contact angle and the contact angle at the time of maximum axial load. ,
Two biaxial strain gauges are affixed to the groove bottom surface of the notch groove, and the axial position where the strain gauge is affixed is a position that is equally distributed in the axial direction with respect to the median line. A load measuring bearing.
JP2004060719A 2004-03-04 2004-03-04 Measuring method for load on rolling element and bearing for measuring load Pending JP2005249594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060719A JP2005249594A (en) 2004-03-04 2004-03-04 Measuring method for load on rolling element and bearing for measuring load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060719A JP2005249594A (en) 2004-03-04 2004-03-04 Measuring method for load on rolling element and bearing for measuring load

Publications (1)

Publication Number Publication Date
JP2005249594A true JP2005249594A (en) 2005-09-15

Family

ID=35030202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060719A Pending JP2005249594A (en) 2004-03-04 2004-03-04 Measuring method for load on rolling element and bearing for measuring load

Country Status (1)

Country Link
JP (1) JP2005249594A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929674A1 (en) * 2008-04-03 2009-10-09 Snr Roulements Soc Par Actions Antifriction bearing for wheel of motor vehicle, has fixed element including instrumented zone that forms flat spot extending along straight line passing through center of contact surface of rolling bodies deforming free surface
JP2012042320A (en) * 2010-08-19 2012-03-01 Railway Technical Research Institute Method and device for measuring load distribution of rolling bearing, outer ring of which strain sensor is mounted on
EP3114449A1 (en) * 2014-03-05 2017-01-11 Schaeffler Technologies AG & Co. KG Component with at least one measuring element comprising a sensor
JP2017044312A (en) * 2015-08-28 2017-03-02 日本精工株式会社 Bearing with sensor and state monitoring system
JP2018145998A (en) * 2017-03-02 2018-09-20 日本精工株式会社 Device for monitoring state of rolling bearing
CN110174045A (en) * 2019-06-24 2019-08-27 南京高速齿轮制造有限公司 Gear case planet wheel bearing inner race strain measurement system
WO2023277193A1 (en) 2021-07-02 2023-01-05 ミネベアミツミ株式会社 Rolling bearing
JP7563253B2 (en) 2021-03-11 2024-10-08 株式会社ジェイテクト Measurement system, acquisition device, acquisition method, conversion information acquisition method, manufacturing method, and computer program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929674A1 (en) * 2008-04-03 2009-10-09 Snr Roulements Soc Par Actions Antifriction bearing for wheel of motor vehicle, has fixed element including instrumented zone that forms flat spot extending along straight line passing through center of contact surface of rolling bodies deforming free surface
JP2012042320A (en) * 2010-08-19 2012-03-01 Railway Technical Research Institute Method and device for measuring load distribution of rolling bearing, outer ring of which strain sensor is mounted on
EP3114449A1 (en) * 2014-03-05 2017-01-11 Schaeffler Technologies AG & Co. KG Component with at least one measuring element comprising a sensor
JP2017044312A (en) * 2015-08-28 2017-03-02 日本精工株式会社 Bearing with sensor and state monitoring system
JP2018145998A (en) * 2017-03-02 2018-09-20 日本精工株式会社 Device for monitoring state of rolling bearing
CN110174045A (en) * 2019-06-24 2019-08-27 南京高速齿轮制造有限公司 Gear case planet wheel bearing inner race strain measurement system
JP7563253B2 (en) 2021-03-11 2024-10-08 株式会社ジェイテクト Measurement system, acquisition device, acquisition method, conversion information acquisition method, manufacturing method, and computer program
WO2023277193A1 (en) 2021-07-02 2023-01-05 ミネベアミツミ株式会社 Rolling bearing
WO2023276365A1 (en) * 2021-07-02 2023-01-05 ミネベアミツミ株式会社 Rolling bearing
CN117545935A (en) * 2021-07-02 2024-02-09 美蓓亚三美株式会社 Rolling bearing

Similar Documents

Publication Publication Date Title
JP2511841B2 (en) Roller bearing with load measurement
EP1849013B1 (en) Bearing with cage mounted sensors
JP3648919B2 (en) Bearing preload measuring method and measuring apparatus
US8522621B2 (en) Measurement bearing, in particular for a wheel set of a rail vehicle
US20100299926A1 (en) Method and apparatus for setting the bearing play or the prestress of anti-friction bearing arrangements
US7245123B2 (en) Rolling element bearing unit with sensor and hub unit with sensor
US20060245677A1 (en) Device for determining axial force, bearing unit having a device for determining axial force, and method determining axial force
WO2001023862A1 (en) System for monitoring the operating conditions of bearings
JPH0961268A (en) Load measuring apparatus for bearing
CN107091631B (en) bearing gauge device
EP1674843B1 (en) Sensor-equipped rolling bearing unit
JP2009257879A (en) Thrust bearing rotary torque detector
JP2005249594A (en) Measuring method for load on rolling element and bearing for measuring load
US9353797B2 (en) Bearing ring for a bearing, in particular for a rolling or sliding bearing
US6772648B2 (en) Method and apparatus for determining bearing parameters
JP2008070305A (en) Method of measuring radial clearance of single-row radial ball bearing
JP2006200953A (en) System for constant velocity universal joint-driveshaft measurement
JP2762636B2 (en) Method and apparatus for measuring rotational accuracy of rolling bearing
JP5831338B2 (en) Apparatus and method for measuring induced axial load
JP2004084739A (en) Bearing device and sensing system
JP2009008593A (en) Torque measuring device of tapered roller bearing
JPH112239A (en) Device to measure various property of rolling bearing
JP3358366B2 (en) Load measuring device for rolling bearings
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2004108406A (en) Method and device for measuring rotational accuracy of rolling bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327