JP2018145998A - Device for monitoring state of rolling bearing - Google Patents

Device for monitoring state of rolling bearing Download PDF

Info

Publication number
JP2018145998A
JP2018145998A JP2017039858A JP2017039858A JP2018145998A JP 2018145998 A JP2018145998 A JP 2018145998A JP 2017039858 A JP2017039858 A JP 2017039858A JP 2017039858 A JP2017039858 A JP 2017039858A JP 2018145998 A JP2018145998 A JP 2018145998A
Authority
JP
Japan
Prior art keywords
rolling bearing
strain
rolling
bearing
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017039858A
Other languages
Japanese (ja)
Other versions
JP6953747B2 (en
Inventor
柳沢 知之
Tomoyuki Yanagisawa
知之 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2017039858A priority Critical patent/JP6953747B2/en
Publication of JP2018145998A publication Critical patent/JP2018145998A/en
Application granted granted Critical
Publication of JP6953747B2 publication Critical patent/JP6953747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device for monitoring a state of a rolling bearing that can monitor an operational state of a rolling bearing for finding a plurality of pieces of information from a datum that is monitored by a sensor.SOLUTION: A device for monitoring a state of a rolling bearing includes: a strain gauge 30 disposed in an outer ring 21 to detect strain of the outer ring 21 caused by passage of a roller 23; and a calculation part 40 for monitoring a state of a rolling bearing 20 from a strain observation waveform of the outer ring 21 that is monitored by the strain gauge 30.SELECTED DRAWING: Figure 1

Description

本発明は、転がり軸受の状態監視装置に関し、より詳細には、転動体の通過に伴って観測される固定輪のひずみ波形から転がり軸受の運転状態を監視する転がり軸受の状態監視装置に関する。   The present invention relates to a rolling bearing state monitoring device, and more particularly, to a rolling bearing state monitoring device that monitors an operational state of a rolling bearing from a strain waveform of a fixed ring observed as a rolling element passes.

特許文献1には、磁気センサにより転動体の磁ひずみを計測して軸受の荷重、回転数、及び回転速度を検知するようにした転がり軸受が開示されている。また、特許文献2には、回転体に作用するトルクにより変形する部材の歪量を歪ゲージで電気信号として検出し、該電気信号の振幅から回転体に作用するトルクを算出すると共に、電気信号の変動周期に基づいて回転体の回転数を算出することで、1つの歪ゲージの電気信号からトルクと回転数の両方を検出するようにした回転状態検出装置が開示されている。   Patent Document 1 discloses a rolling bearing in which the magnetostriction of a rolling element is measured by a magnetic sensor to detect the load, rotation speed, and rotation speed of the bearing. In Patent Document 2, the amount of strain of a member deformed by the torque acting on the rotating body is detected as an electric signal by a strain gauge, and the torque acting on the rotating body is calculated from the amplitude of the electric signal. A rotational state detection device is disclosed in which both the torque and the rotational speed are detected from the electrical signal of one strain gauge by calculating the rotational speed of the rotating body based on the fluctuation period.

特開2004−84737号公報JP 2004-84737 A 特開2012−202791号公報JP 2012-202791 A

特許文献1に記載の転がり軸受では、所定以上の磁ひずみ定数を有する金属をセラミックスに分散させて転動体を形成し、転動体の磁ひずみを磁気センサで計測することで、パルサーリングを装着することなく軸受の荷重、回転数、回転速度を検知可能として、転がり軸受の構成の大幅な簡素化と小型化を図っている。しかしながら、ベース材料であるセラミックに磁ひずみ定数を有する金属を分散させて転動体を形成するので、一般的な転がり軸受に適用することができない。また、コストの上昇や、衝撃がある部位には使用できないなどの問題があり、改善の余地があった。   In the rolling bearing described in Patent Document 1, a pulsar ring is mounted by forming a rolling element by dispersing a metal having a magnetostriction constant greater than a predetermined value in ceramics and measuring the magnetostriction of the rolling element with a magnetic sensor. The configuration of the rolling bearing can be greatly simplified and miniaturized by making it possible to detect the load, rotation speed, and rotation speed of the bearing without any problems. However, since a rolling element is formed by dispersing a metal having a magnetostriction constant in ceramic as a base material, it cannot be applied to a general rolling bearing. In addition, there are problems such as an increase in cost and inability to use the part where there is an impact, and there is room for improvement.

また、特許文献2では、ころの通過周期からころの回転数(公転数)を求めているが、転がり軸受の運転状態を監視するものではない。   Moreover, in patent document 2, although the rotation speed (revolution number) of a roller is calculated | required from the passage period of a roller, the driving | running state of a rolling bearing is not monitored.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、センサで観測される1つのデータから複数の情報を求めて転がり軸受の運転状態を監視することができる転がり軸受の状態監視装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to determine the state of a rolling bearing capable of monitoring the operating state of the rolling bearing by obtaining a plurality of information from one data observed by a sensor. It is to provide a monitoring device.

本発明の上記目的は、下記の構成により達成される。
(1) 固定輪と、回転輪と、前記固定輪と前記回転輪との間に転動自在に配設された複数の転動体と、を有する転がり軸受の状態監視装置であって、
前記固定輪に配設されて、前記転動体の通過による前記固定輪のひずみを検出するひずみゲージと、
前記ひずみゲージにより観測される前記固定輪のひずみ観測波形から前記転がり軸受の状態を監視する演算部と、
を備えることを特徴とする転がり軸受の状態監視装置。
(2) 前記演算部は、前記ひずみ観測波形の周期から前記転動体の公転数を求め、さらに式(1)から前記回転輪の回転数を算出することを特徴とする(1)に記載の転がり軸受の状態監視装置。

Figure 2018145998
ただし、nc:転動体の公転数、Dw:転動体直径、α:接触角、Dpw:転動体ピッチ径、ni:回転輪の回転数
(3) 前記演算部は、前記ひずみ観測波形の振幅から前記転がり軸受に作用するラジアル荷重を算出することを特徴とする(1)又は(2)に記載の転がり軸受の状態監視装置。
(4) 前記転がり軸受は、玉軸受であり、
前記演算部は、前記ひずみ観測波形の周期から求められた前記転動体の公転数に基づいて、前記玉軸受に作用するアキシャル荷重を算出することを特徴とする(1)〜(3)のいずれかに記載の転がり軸受の状態監視装置。 The above object of the present invention can be achieved by the following constitution.
(1) A state monitoring device for a rolling bearing having a fixed wheel, a rotating wheel, and a plurality of rolling elements that are rotatably arranged between the fixed wheel and the rotating wheel,
A strain gauge disposed on the fixed ring for detecting strain of the fixed ring due to passage of the rolling elements;
An arithmetic unit that monitors the state of the rolling bearing from a strain observation waveform of the fixed ring observed by the strain gauge;
A state monitoring device for a rolling bearing, comprising:
(2) The calculation unit obtains the revolution number of the rolling element from the period of the strain observation waveform, and further calculates the rotation number of the rotating wheel from the equation (1). Rolling bearing condition monitoring device.
Figure 2018145998
However, nc: revolution number of rolling element, Dw: rolling element diameter, α: contact angle, Dpw: rolling element pitch diameter, ni: rotation speed of rotating wheel (3) The calculation unit calculates from the amplitude of the strain observation waveform. The state monitoring device for a rolling bearing according to (1) or (2), wherein a radial load acting on the rolling bearing is calculated.
(4) The rolling bearing is a ball bearing,
The calculation unit calculates an axial load acting on the ball bearing based on the number of revolutions of the rolling element obtained from the period of the strain observation waveform. Any of (1) to (3) The rolling bearing state monitoring device according to claim 1.

本発明の転がり軸受の状態監視装置によれば、固定輪に配設されて転動体の通過による固定輪のひずみを検出するひずみゲージと、ひずみゲージにより観測される固定輪のひずみ観測波形から転がり軸受の状態を監視する演算部と、を備えるので、部品点数の増大を招くことなく、転がり軸受の状態を監視することができる。   According to the rolling bearing state monitoring apparatus of the present invention, a rolling gauge is installed from a strain gauge that is disposed on a fixed ring and detects strain of the fixed ring due to the passage of rolling elements, and a fixed wheel strain observation waveform that is observed by the strain gauge. And a calculation unit that monitors the state of the bearing. Therefore, the state of the rolling bearing can be monitored without increasing the number of parts.

(a)は、本発明の一実施形態に係る転がり軸受の状態監視装置の構成を示す斜視図、(b)は、図1(a)のI部拡大側面図である。(A) is a perspective view which shows the structure of the state monitoring apparatus of the rolling bearing which concerns on one Embodiment of this invention, (b) is the I section enlarged side view of Fig.1 (a). (a)は、転動体通過により観測されるひずみ観測波形のグラフ、(b)は、図2(a)のIIに対応する、一対の転動体がひずみゲージを跨いで位置する状態を示す転がり軸受の要部側面図、(c)は、図2(a)のII’に対応する、転動体がひずみゲージの位置を通過する状態を示す転がり軸受の要部側面図である。(A) is a graph of a strain observation waveform observed by passing through the rolling element, and (b) is a rolling showing a state in which a pair of rolling elements are located across the strain gauge, corresponding to II in FIG. The principal part side view of a bearing, (c) is the principal part side view of a rolling bearing which shows the state through which the rolling element passes the position of a strain gauge corresponding to II 'of FIG. 2 (a).

以下、本発明の一実施形態に係る転がり軸受の監視装置を図面に基づいて詳細に説明する。
図1に示すように、本実施形態の転がり軸受の監視装置10は、転がり軸受20の外輪21に配設されたひずみゲージ30と、演算部40と、を備える。
Hereinafter, a rolling bearing monitoring device according to an embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the rolling bearing monitoring device 10 according to the present embodiment includes a strain gauge 30 disposed on an outer ring 21 of the rolling bearing 20 and a calculation unit 40.

本実施形態の転がり軸受の監視装置10は、ひずみゲージ30により観測される1つのひずみ観測波形から演算部40によって複数の情報を求め、該複数の情報に基づいて転がり軸受20の運転状態を監視可能とすることを主目的としている。   The rolling bearing monitoring device 10 according to the present embodiment obtains a plurality of pieces of information from the single strain observation waveform observed by the strain gauge 30, and monitors the operating state of the rolling bearing 20 based on the pieces of information. The main purpose is to make it possible.

本実施形態において、ひずみゲージ30の観測波形から得られ、転がり軸受20の運転状態を監視するための複数の情報としては、転動体の公転数、転動体の転がり確認、回転輪の回転数、ラジアル荷重、異常振動波形などであり、転がり軸受が玉軸受の場合には、さらにアキシャル荷重も対象となる。
なお、以下の説明においては、外輪21を固定輪、内輪22を回転輪として説明するが、外輪21を回転輪、内輪22を固定輪とすることもできる。
In the present embodiment, the plurality of pieces of information obtained from the observed waveform of the strain gauge 30 and monitoring the operating state of the rolling bearing 20 include the revolution number of the rolling element, the rolling confirmation of the rolling element, the rotation number of the rotating wheel, Radial load, abnormal vibration waveform, etc. When the rolling bearing is a ball bearing, the axial load is also targeted.
In the following description, the outer ring 21 is described as a fixed wheel and the inner ring 22 is a rotating wheel. However, the outer ring 21 may be a rotating wheel and the inner ring 22 may be a fixed wheel.

詳細には、転がり軸受20は、内周面に外輪軌道面21aが形成された固定輪である外輪21と、外周面に内輪軌道面22a(図2参照)が形成された回転輪である内輪22と、外輪軌道面21aと内輪軌道面22aとの間に転動自在に配置された複数のころ23と、を備える。なお、保持器の有無は、特に限定されない。また、転がり軸受20の材料は、軸受鋼、浸炭鋼等が使用可能であるが、焼入れ処理が可能であれば特に限定されない。   Specifically, the rolling bearing 20 includes an outer ring 21 that is a fixed ring with an outer ring raceway surface 21a formed on the inner peripheral surface, and an inner ring that is a rotating ring with an inner ring raceway surface 22a (see FIG. 2) formed on the outer peripheral surface. 22 and a plurality of rollers 23 that are disposed between the outer ring raceway surface 21a and the inner ring raceway surface 22a so as to be freely rollable. The presence or absence of the cage is not particularly limited. The material of the rolling bearing 20 can be bearing steel, carburized steel, or the like, but is not particularly limited as long as it can be quenched.

外輪21の外周面21bには、軸方向に延びる、断面略コの字型の切欠き25が形成されている。切欠き25の底面には、ひずみゲージ30が接着などにより固定されている。ひずみゲージ30は、外輪21に作用する応力により外輪21が弾性変形すると、そのひずみ量を電気的に検出し、ひずみ量に比例した電気信号を演算部40に送出する。   A cutout 25 having a substantially U-shaped cross section extending in the axial direction is formed on the outer peripheral surface 21 b of the outer ring 21. A strain gauge 30 is fixed to the bottom surface of the notch 25 by adhesion or the like. When the outer ring 21 is elastically deformed by the stress acting on the outer ring 21, the strain gauge 30 electrically detects the strain amount and sends an electric signal proportional to the strain amount to the calculation unit 40.

ひずみゲージ30の取り付け位置は特に限定されないが、他の部位と比較して機械的強度が弱い切欠き25に配置することで、ひずみ検出感度が向上する。同様の理由により、ひずみゲージ30は、転がり軸受20の負荷圏に配置するのが好ましい。また、ひずみゲージ30は、外輪21に直接接着しても、ひずみゲージ30が固定された不図示の基材を外輪21に固定するようにしてもよい。   Although the attachment position of the strain gauge 30 is not particularly limited, the strain detection sensitivity is improved by disposing the strain gauge 30 in the notch 25 whose mechanical strength is weaker than other portions. For the same reason, the strain gauge 30 is preferably disposed in the load zone of the rolling bearing 20. The strain gauge 30 may be directly bonded to the outer ring 21, or a base material (not shown) to which the strain gauge 30 is fixed may be fixed to the outer ring 21.

このように構成された転がり軸受20の外輪21を固定して内輪22を回転させると、複数のころ23は、外輪軌道面21aと内輪軌道面22aとの間で自転しつつ公転する。外輪21には、ころ23の通過に伴って周方向に引っ張り力が作用し、ひずみが生じる。ひずみゲージ30は、この外輪21のひずみを検出し、ひずみ量に比例した電気信号に変換する。   When the outer ring 21 of the thus configured rolling bearing 20 is fixed and the inner ring 22 is rotated, the plurality of rollers 23 revolve while rotating between the outer ring raceway surface 21a and the inner ring raceway surface 22a. A tensile force acts on the outer ring 21 in the circumferential direction with the passage of the rollers 23, and distortion occurs. The strain gauge 30 detects the strain of the outer ring 21 and converts it into an electrical signal proportional to the amount of strain.

図2(a)は、ころ23の通過に伴って観測されるひずみ観測波形のグラフであり、図2(b)に示すように、2つのころ23が、ひずみゲージ30を跨いで位置するとき、ひずみゲージ30で観測されるひずみ量は小さくなり、ひずみ観測波形のグラフでは谷Vが形成される。   FIG. 2A is a graph of a strain observation waveform observed as the roller 23 passes, and when the two rollers 23 are positioned across the strain gauge 30 as shown in FIG. The amount of strain observed with the strain gauge 30 is reduced, and a valley V is formed in the graph of the strain observation waveform.

また、図2(c)に示すように、ひずみゲージ30が配設された位置の近傍をころ23が通過するとき、大きなひずみがひずみゲージ30によって観測され、ひずみ観測波形のグラフではピークPが形成される。   Further, as shown in FIG. 2C, when the roller 23 passes near the position where the strain gauge 30 is disposed, a large strain is observed by the strain gauge 30, and a peak P is shown in the graph of the strain observation waveform. It is formed.

演算部40は、例えば、マイクロコンピュータなどで構成される情報処理部であり、ひずみゲージ30で観測されたひずみ観測波形から複数の情報を求める。具体的には、ころ23が、ひずみゲージ30の近傍を通過するごとにひずみ観測波形に出現するピークP間の周期Tからころ23の通過周期や通過状態を知ることができる。   The computing unit 40 is an information processing unit configured by, for example, a microcomputer and obtains a plurality of information from the strain observation waveform observed by the strain gauge 30. Specifically, the passing period and passing state of the roller 23 can be known from the period T between the peaks P appearing in the strain observation waveform every time the roller 23 passes near the strain gauge 30.

また、ひずみ観測波形の周期や振幅に発生する不規則な変動やノイズの有無を確認することで、ころ23の剥離や、保持器の破損などの転がり軸受20の異常の検出が可能となり、異常を初期段階で発見できる可能性が高くなる。   Also, by checking for irregular fluctuations or noise occurring in the period and amplitude of the strain observation waveform, it is possible to detect abnormalities in the rolling bearing 20 such as peeling of the rollers 23 or breakage of the cage, and abnormalities are detected. Is likely to be found at an early stage.

転がり軸受20のころ23の数は、転がり軸受20の設計諸元から分かっているので、ピークP間の周期Tによって、ころ23の公転数ncが求められる。   Since the number of the rollers 23 of the rolling bearing 20 is known from the design specifications of the rolling bearing 20, the revolution number nc of the roller 23 is obtained by the period T between the peaks P.

さらに、求められたころ23の公転数nc、及び転がり軸受20の他の設計諸元(ころ23の直径Dw、ころ23のピッチ円直径Dpw、接触角α)を式(1)に入力することで、内輪22の回転数niが算出できる。   Furthermore, the obtained revolution number nc of the roller 23 and other design specifications of the rolling bearing 20 (the diameter Dw of the roller 23, the pitch circle diameter Dpw of the roller 23, and the contact angle α) are input to the equation (1). Thus, the rotational speed ni of the inner ring 22 can be calculated.

Figure 2018145998
ただし、nc:転動体の公転数、Dw:転動体直径、α:接触角、Dpw:転動体ピッチ径、ni:回転輪の回転数
Figure 2018145998
Where nc: revolution number of rolling element, Dw: rolling element diameter, α: contact angle, Dpw: rolling element pitch diameter, ni: rotation number of rotating wheel

従って、ころ23の公転数ncや、内輪22の回転数niからも転がり軸受20の運転状態を監視することができる。   Therefore, the operation state of the rolling bearing 20 can be monitored from the revolution number nc of the roller 23 and the rotation number ni of the inner ring 22.

従来、内輪22の回転数niを知るためには多極磁石やスリット板などの専用部材が必要であったが、本実施形態の転がり軸受の状態監視装置10によれば、これらの専用部材を設けることなく、内輪22の回転数niを知ることができる。   Conventionally, in order to know the rotational speed ni of the inner ring 22, dedicated members such as multipolar magnets and slit plates have been required. However, according to the rolling bearing state monitoring device 10 of this embodiment, these dedicated members are The rotational speed ni of the inner ring 22 can be known without providing it.

さらに、ひずみ観測波形の振幅Wは、外輪21に作用するラジアル荷重に比例するので、予め、振幅Wとラジアル荷重との関係を求めておけば、ひずみ観測波形の振幅Wの大きさを観測することで、転がり軸受20に作用するラジアル荷重の大きさが推定可能となる。   Furthermore, since the amplitude W of the strain observation waveform is proportional to the radial load acting on the outer ring 21, if the relationship between the amplitude W and the radial load is obtained in advance, the magnitude of the amplitude W of the strain observation waveform is observed. Thus, the magnitude of the radial load acting on the rolling bearing 20 can be estimated.

また、転がり軸受20が玉軸受の場合、玉軸受にアキシャル荷重が作用すると、ころ23の接触角αが変化し、その結果として、ころ23の公転数ncが変化するので、ころ23の公転数ncを観測することで玉軸受のアキシャル荷重を推測することができる。   Further, when the rolling bearing 20 is a ball bearing, when an axial load is applied to the ball bearing, the contact angle α of the roller 23 changes, and as a result, the revolution number nc of the roller 23 changes. By observing nc, the axial load of the ball bearing can be estimated.

具体的には、玉軸受を一定回転数で回転させて、アキシャル荷重の無負荷状態におけるころ23の公転数ncと負荷状態におけるころ23の公転数ncとの差と、アキシャル荷重との関係を予め求めておくことで、アキシャル荷重負荷時に観測されるころ23の公転数ncと無負荷状態におけるころ23の公転数ncとの差からアキシャル荷重を推測することが可能となる。   Specifically, the relationship between the axial load and the difference between the revolution number nc of the roller 23 in the unloaded state of the axial load and the revolution number nc of the roller 23 in the loaded state is determined by rotating the ball bearing at a constant rotational speed. By obtaining in advance, the axial load can be estimated from the difference between the revolution number nc of the roller 23 observed when the axial load is applied and the revolution number nc of the roller 23 in an unloaded state.

以上説明したように、本実施形態の転がり軸受の状態監視装置10によれば、外輪21に配設されてころ23の通過による外輪21のひずみを検出するひずみゲージ30と、ひずみゲージ30により観測される外輪21のひずみ観測波形から転がり軸受20の状態を監視する演算部40と、を備えるので、部品点数の増大を招くことなく、転がり軸受20の状態を監視することができる。   As described above, according to the rolling bearing state monitoring device 10 of the present embodiment, the strain gauge 30 disposed on the outer ring 21 and detecting strain of the outer ring 21 due to the passage of the rollers 23 is observed by the strain gauge 30. Since the operation unit 40 that monitors the state of the rolling bearing 20 from the observed distortion waveform of the outer ring 21 is provided, the state of the rolling bearing 20 can be monitored without increasing the number of parts.

また、演算部40が、ひずみ観測波形の周期Tからころ23の公転数ncを求め、さらに内輪22の回転数niを算出するので、1つのひずみ観測波形から得られる複数の情報によって転がり軸受20の状態を監視することができる。   Moreover, since the calculating part 40 calculates | requires the revolution number nc of the roller 23 from the period T of a strain observation waveform, and also calculates the rotation speed ni of the inner ring | wheel 22, the rolling bearing 20 by the several information obtained from one strain observation waveform. Can be monitored.

また、演算部40が、ひずみ観測波形の振幅Wから転がり軸受20に作用するラジアル荷重を算出するので、転がり軸受20に作用するラジアル負荷を含む複数の情報によって転がり軸受20の状態を監視することができる。   Moreover, since the calculating part 40 calculates the radial load which acts on the rolling bearing 20 from the amplitude W of the strain observation waveform, the state of the rolling bearing 20 is monitored by a plurality of pieces of information including the radial load acting on the rolling bearing 20. Can do.

また、転がり軸受20が玉軸受の場合には、演算部40が、ひずみ観測波形の周期Tから求められたころ23の公転数ncに基づいて、玉軸受に作用するアキシャル荷重を算出するので、さらに精度よく転がり軸受20の状態を監視することができる。   In addition, when the rolling bearing 20 is a ball bearing, the calculation unit 40 calculates the axial load acting on the ball bearing based on the revolution number nc of the roller 23 obtained from the period T of the strain observation waveform. Furthermore, the state of the rolling bearing 20 can be monitored with high accuracy.

このように、1つのひずみゲージ30の観測波形からころ23の公転数nc、ころ23の転がり確認、内輪22の回転数ni、ラジアル荷重の大きさ、異常振動波形など、さらに転がり軸受20が玉軸受の場合にはアキシャル荷重の大きさなどの多くの情報を得ることができ、部品点数の増大を招くことなく、転がり軸受20の運転状態を監視することができる。   In this manner, the rolling bearing 20 is further in contact with the ball bearing 20 such as the revolution number nc of the roller 23, the rolling confirmation of the roller 23, the rotational speed ni of the inner ring 22, the magnitude of the radial load, the abnormal vibration waveform, etc. from the observed waveform of one strain gauge 30. In the case of a bearing, a lot of information such as the magnitude of the axial load can be obtained, and the operating state of the rolling bearing 20 can be monitored without increasing the number of parts.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上記説明では、ひずみゲージ30により外輪21のひずみを検出するようにしたが、外輪21のひずみを検出可能であれば特にひずみ検出方式は問わず、光ファイバセンサなどであってもよい。また、演算部40が軸受異常検出部を備え、該軸受異常検出部が異常を検出したとき、警報を発するようにすることもできる。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. For example, in the above description, the strain of the outer ring 21 is detected by the strain gauge 30, but an optical fiber sensor or the like may be used regardless of the strain detection method as long as the strain of the outer ring 21 can be detected. Further, the arithmetic unit 40 may include a bearing abnormality detection unit, and an alarm may be issued when the bearing abnormality detection unit detects an abnormality.

10 転がり軸受の状態監視装置
20 転がり軸受(玉軸受)
21 外輪(固定輪)
22 内輪(回転輪)
23 ころ(転動体)
30 ひずみゲージ
40 演算部
Dpw ピッチ円直径
Dw 転動体直径
nc 転動体の公転数
ni 回転輪の回転数
T 周期
W 振幅
α 接触角
10 Rolling bearing condition monitoring device 20 Rolling bearing (ball bearing)
21 Outer ring (fixed ring)
22 Inner ring (rotating wheel)
23 Roller (rolling element)
30 Strain gauge 40 Calculation unit Dpw Pitch circle diameter Dw Rolling element diameter nc Number of revolutions of rolling element ni Number of rotations of rotating wheel T Period W Amplitude α Contact angle

Claims (4)

固定輪と、回転輪と、前記固定輪と前記回転輪との間に転動自在に配設された複数の転動体と、を有する転がり軸受の状態監視装置であって、
前記固定輪に配設されて、前記転動体の通過による前記固定輪のひずみを検出するひずみゲージと、
前記ひずみゲージにより観測される前記固定輪のひずみ観測波形から前記転がり軸受の状態を監視する演算部と、
を備えることを特徴とする転がり軸受の状態監視装置。
A rolling bearing state monitoring device having a fixed wheel, a rotating wheel, and a plurality of rolling elements that are rotatably arranged between the fixed wheel and the rotating wheel,
A strain gauge disposed on the fixed ring for detecting strain of the fixed ring due to passage of the rolling elements;
An arithmetic unit that monitors the state of the rolling bearing from a strain observation waveform of the fixed ring observed by the strain gauge;
A state monitoring device for a rolling bearing, comprising:
前記演算部は、前記ひずみ観測波形の周期から前記転動体の公転数を求め、さらに式(1)から前記回転輪の回転数を算出することを特徴とする請求項1に記載の転がり軸受の状態監視装置。
Figure 2018145998
ただし、nc:転動体の公転数、Dw:転動体直径、α:接触角、Dpw:転動体ピッチ径、ni:回転輪の回転数
2. The rolling bearing according to claim 1, wherein the calculation unit calculates a revolution number of the rolling element from a period of the strain observation waveform, and further calculates a rotation number of the rotating wheel from the equation (1). Condition monitoring device.
Figure 2018145998
Where nc: revolution number of rolling element, Dw: rolling element diameter, α: contact angle, Dpw: rolling element pitch diameter, ni: rotation number of rotating wheel
前記演算部は、前記ひずみ観測波形の振幅から前記転がり軸受に作用するラジアル荷重を算出することを特徴とする請求項1又は2に記載の転がり軸受の状態監視装置。   The rolling bearing state monitoring device according to claim 1, wherein the calculation unit calculates a radial load acting on the rolling bearing from an amplitude of the strain observation waveform. 前記転がり軸受は、玉軸受であり、
前記演算部は、前記ひずみ観測波形の周期から求められた前記転動体の公転数に基づいて、前記玉軸受に作用するアキシャル荷重を算出することを特徴とする請求項1〜3のいずれか1項に記載の転がり軸受の状態監視装置。
The rolling bearing is a ball bearing,
The said calculating part calculates the axial load which acts on the said ball bearing based on the revolution number of the said rolling element calculated | required from the period of the said strain observation waveform, The any one of Claims 1-3 characterized by the above-mentioned. The rolling bearing state monitoring device described in the paragraph.
JP2017039858A 2017-03-02 2017-03-02 Rolling bearing condition monitoring device Active JP6953747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039858A JP6953747B2 (en) 2017-03-02 2017-03-02 Rolling bearing condition monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039858A JP6953747B2 (en) 2017-03-02 2017-03-02 Rolling bearing condition monitoring device

Publications (2)

Publication Number Publication Date
JP2018145998A true JP2018145998A (en) 2018-09-20
JP6953747B2 JP6953747B2 (en) 2021-10-27

Family

ID=63591039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039858A Active JP6953747B2 (en) 2017-03-02 2017-03-02 Rolling bearing condition monitoring device

Country Status (1)

Country Link
JP (1) JP6953747B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338386A (en) * 1976-09-18 1978-04-08 Mtu Muenchen Gmbh Method of measuring thrust in roller bearing
JPH06288409A (en) * 1993-03-31 1994-10-11 Agency Of Ind Science & Technol Dynamic load detecting method for main spindle in bearing with sensor
JP2004239397A (en) * 2003-02-07 2004-08-26 Koyo Seiko Co Ltd Roller bearing unit with sensor
JP2004270898A (en) * 2003-03-12 2004-09-30 Koyo Seiko Co Ltd Rolling bearing unit with sensor
JP2005249594A (en) * 2004-03-04 2005-09-15 Nsk Ltd Measuring method for load on rolling element and bearing for measuring load
JP2006017291A (en) * 2004-06-03 2006-01-19 Nsk Ltd Monitoring device and monitoring method
JP2006090507A (en) * 2004-09-27 2006-04-06 Jtekt Corp Rolling bearing unit with sensor
JP2006098258A (en) * 2004-09-30 2006-04-13 Jtekt Corp Sensor device and rolling bearing unit with sensor
JP2008281388A (en) * 2007-05-09 2008-11-20 Ntn Corp Bearing with bearing load measuring device, and method of measuring bearing load
JP2009192389A (en) * 2008-02-15 2009-08-27 Ntn Corp Wheel bearing with sensor
JP2011038557A (en) * 2009-08-07 2011-02-24 Jtekt Corp Rolling bearing device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338386A (en) * 1976-09-18 1978-04-08 Mtu Muenchen Gmbh Method of measuring thrust in roller bearing
JPH06288409A (en) * 1993-03-31 1994-10-11 Agency Of Ind Science & Technol Dynamic load detecting method for main spindle in bearing with sensor
JP2004239397A (en) * 2003-02-07 2004-08-26 Koyo Seiko Co Ltd Roller bearing unit with sensor
JP2004270898A (en) * 2003-03-12 2004-09-30 Koyo Seiko Co Ltd Rolling bearing unit with sensor
JP2005249594A (en) * 2004-03-04 2005-09-15 Nsk Ltd Measuring method for load on rolling element and bearing for measuring load
JP2006017291A (en) * 2004-06-03 2006-01-19 Nsk Ltd Monitoring device and monitoring method
JP2006090507A (en) * 2004-09-27 2006-04-06 Jtekt Corp Rolling bearing unit with sensor
JP2006098258A (en) * 2004-09-30 2006-04-13 Jtekt Corp Sensor device and rolling bearing unit with sensor
JP2008281388A (en) * 2007-05-09 2008-11-20 Ntn Corp Bearing with bearing load measuring device, and method of measuring bearing load
JP2009192389A (en) * 2008-02-15 2009-08-27 Ntn Corp Wheel bearing with sensor
JP2011038557A (en) * 2009-08-07 2011-02-24 Jtekt Corp Rolling bearing device

Also Published As

Publication number Publication date
JP6953747B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US7245123B2 (en) Rolling element bearing unit with sensor and hub unit with sensor
JP2006077938A (en) Abnormality diagnosing device
JPH0961268A (en) Load measuring apparatus for bearing
WO2019221251A1 (en) Bearing state monitoring method and state monitoring device
WO2016175322A1 (en) Abnormality diagnosis system
US20130116936A1 (en) Method for Detecting Damage to Bearing
JP4710455B2 (en) Abnormality diagnosis device for axle support device of railway vehicle
JP6686388B2 (en) Rolling bearing with sensor
US11181443B2 (en) Anti-friction bearing
JP2006250726A (en) Arrangement of bearing
JPH06100222B2 (en) Rolling bearing
KR20100016484A (en) Bearing device and device for sensing bearing preload
JP4529602B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
WO2016133100A1 (en) Abnormality diagnosis system
JP2007278895A (en) Device and method for diagnosing abnormality
JP5736762B2 (en) Bearing unit with sensor for continuous casting equipment roll neck
CN113614399A (en) Method for obtaining contact angle of angular ball bearing and method for manufacturing bearing device for wheel
JP4165260B2 (en) Rolling bearing unit with sensor
WO2018173832A1 (en) Condition monitoring device
JP6953747B2 (en) Rolling bearing condition monitoring device
JP2004156779A (en) Method and apparatus for determining bearing parameter
JP2005344842A (en) Monitor and monitoring method
JP2008281388A (en) Bearing with bearing load measuring device, and method of measuring bearing load
JP2017160974A (en) Bearing device with sensor
US6412339B1 (en) Monitoring of bearing performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6953747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150